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Abstract
The problem of minimizing the execution monetary cost of applications on cloud computing platforms has been studied

recently, and satisfying the deadline constraint of an application is one of the most important quality of service require-

ments. Previous method of minimizing the execution monetary cost of deadline-constrained applications was the ‘‘upward’’

approach (i.e., from exit to entry tasks) rather than combining the ‘‘upward’’ and ‘‘downward’’ approaches. In this study, we

propose monetary cost optimization algorithm (DCO/DUCO) by employing ‘‘downward’’ and ‘‘upward’’ approaches

together to solve the problem of execution cost minimization. ‘‘Downward’’ cost optimization is implemented by intro-

ducing the concept of the variable deadline-span and transferring the deadline of an application to each task. On the basis of

DCO, the slack time is utilized to implement ‘‘upward’’ cost optimization without violating the precedence constraints

among tasks and the deadline constraint of the application. Experimental results illustrate that the proposed approach is

more effective than the existing method under various conditions.

Keywords Cost optimization � DAG scheduling � Deadline constraint � Heterogeneous clouds � Workflows

1 Introduction

1.1 Background

Cloud computing has become one of the most attractive

platforms that can provide consumers a cost-efficient

computing service to execute various workflows [1, 2].

Large-scale science workflow applications, such as traffic

prediction and e-commerce, are often represented by

directed acyclic graphs (DAGs) [3, 4]. At present, a large-

scale scientific workflow application can at least contain

hundreds of tasks and has high performance computing

requirements, such as reasonable time and low cost. Cloud

computing can provide consumers cost-efficient computing

services through the service level agreement (SLA) that

defines the quality of service (QoS) on the basis of the pay-

as-you-go cost model [5]. In order to speed up the pro-

cessing, some tasks can be executed in parallel in the cloud

computing system, which contains heterogeneous resources

with various computing capabilities and prices [6, 7].
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1.2 Motivation

DAG scheduling is the problem of mapping each task of

the application to a suitable processor to satisfy a specific

performance criterion [8]. The tradeoff between time and

cost of executing a deadline-constrained parallel applica-

tion is the dilemma in solving the DAG scheduling prob-

lem. The scheduling problem becomes a challenge on

current and future heterogeneous cloud platforms. In a

cloud environment, service providers and customers are the

two parties with conflicting SLA requirements [5]. Mini-

mizing the execution cost of the application without vio-

lating the SLA is one of the most important concerns of

service providers. For customers, the deadline constraint of

the application is an important property of QoS

requirements.

Several studies have been conducted to optimize DAG

scheduling under grid and cloud computing environments

[9–14]. These studies have raised different approaches for

different scheduling targets, such as makespan minimiza-

tion, cost minimization, throughput maximization, and

resource utilization optimization, to solve QoS-required

DAG scheduling. In addition, the DAG scheduling of

deadline-constrained applications in cloud computing

environments has attracted the attention of researchers

[15–19]. The main idea of these algorithm is to transfer the

deadline constraint of an application to that of each task

and ensure that each task can be completed within indi-

vidual sub-deadline constraint. Abrishami et al. presented

the IaaS cloud partial critical paths (IC-PCP) algorithm, in

which tasks can be assigned to the admissible resource with

minimum cost based on the latest finish time (LFT) while

satisfying the deadline constraint of the application [15].

Although the IC-PCP algorithm significantly improved the

performance of cost optimization for deadline-constrained

parallel applications, it has its limitation: the IC-PCP

algorithm optimizes the execution cost of tasks only from

the upward perspective (i.e., from the exit task to the entry

task) as the LFT constraint of each task is being satisfied.

The deadline span that is equal to the difference between

the latest finish time and the earliest finish time of the

application is used in the LFT. The IC-PCP algorithm

transfers the deadline constraint of the application to each

task of the application with the same deadline span, which

can easily lead to violate the deadline constraint of the

application. However, the variable deadline-span is used in

our study, and the upward and downward cost optimization

approaches are proposed to satisfy the deadline constraint

of the application.

1.3 Contributions of the study

In this study, the objective is to minimize the total exe-

cution cost of parallel applications under the deadline

constraint. The DCO/DUCO algorithm using a variable

deadline-span is proposed for deadline-constrained parallel

applications. The contributions of this study are as

following:

(1) The algorithm of downward cost optimization

(DCO) is proposed. ‘‘Downward’’ means that cost

minimization is implemented from the entry task to

the exit task according to the non-increasing order of

rank upward (ranku) values. DCO transfers the

deadline constraint of the application to sub-deadline

of each task, and minimizes the total cost by defining

a variable deadline-span without violating the dead-

line constraint of the application.

(2) The algorithm of downward-upward cost optimiza-

tion (DUCO) is presented as a supplement to further

reduce the execution cost of the application. ‘‘Up-

ward’’ means that the cost minimization is imple-

mented from the exit task to the entry task according

to the non-decreasing order of the ranku values.

DUCO can eliminate or reduce the slacks between

adjacent tasks in the same processor as the deadline

constraint of the application is being satisfied.

(3) Simulated experiments with parallel applications are

conducted under different deadline-constrained and

scale conditions to verify that the proposed DUCO

can obtain the minimum execution cost compared

with the state-of-the-art algorithm.

The rest of this study is organized as follows. Section 2

reviews related literature. Section 3 presents the models

and problem formulation. Section 4 presents the prelimi-

naries and DCO algorithm. Section 5 presents the DUCO

algorithm. Section 6 evaluates the verification methods

with experiments. Section 7 concludes this study.

2 Related works

The DAG scheduling problem has been studied extensively

and various heuristic approaches have been proposed by

numerous researchers because of the demands for high-

performance computing for large-scale workflow applica-

tions [20–24]. These heuristics are classified into a variety

of categories, such as single and multiple QoS parameters

scheduling algorithms [25–27]. Time and execution cost

are the common parameters considered in scheduling

strategies [28–32]. The schedule length, also called

makespan, is the major concern for high performance

requirements. Topcuoglu et al. proposed the heterogeneous
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earliest finish time (HEFT) algorithm for heterogeneous

systems [6]. HEFT is one of the most popular high-per-

formance scheduling algorithm and plays a role in cost-

aware scheduling. The execution cost is an important

parameter for consumers in cloud systems. Abrishami et al.

[12] proposed a partial critical path algorithm on utility

grids to minimize the total execution cost. Convolbo et al.

[30] proposed a heuristic DAG scheduling algorithm to

optimize the execution cost as the load balancing. The

proposed method is hierarchical scheduling in heteroge-

neous cloud environments, but the communication time

between two adjacent tasks is assumed to be zero in their

model.

For the optimization scheduling of an application with

QoS awareness, one of the dual problems with our study is

to minimize the schedule length of the budget-constrained

parallel application. Wu et al. [25] proposed a critical-

greedy (CG) approach in homogeneous cloud environ-

ments to minimize the schedule length for executing the

scientific workflow application with the budget constraint.

Chen et al. [28] proposed a scheduling strategy called

minimizing the schedule length using the budget level

(MSLBL) to optimize the schedule length for budget-

constrained applications. Mao et al. [16] proposed the auto-

scaling computational instances approach to optimize the

cost of deadline-constrained parallel applications in cloud

environments. Rodriguez et al. [17] proposed an approach

of particle swarm optimization (PSO) to optimize the

number of computational instances for deadline-con-

strained parallel application. The PSO has a high time

complexity because the initial configuration and parameter

training is time-consuming. Reasonable results can be

obtained in a relatively short period of time only if the PSO

parameters are properly tuned in advance. Abrishami et al.

[15] designed a QoS-based workflow scheduling algorithm

called IaaS cloud partial critical paths for cloud environ-

ments, which aims to minimize the execution cost for

deadline-constrained parallel applications. IC-PCP dis-

tributed the overall deadline of the workflow across indi-

vidual tasks, and the task on the critical path was first

scheduled to minimize the cost before their individual sub-

deadline. Compared with our studies, their model corre-

sponds to the homogeneous cloud environment with an

unbounded set of resources. Moreover, the number of

computational instances is increased in the demand-supply

mode.

In this study, we focus on the cost optimization problem

for the DAG scheduling of deadline-constrained parallel

applications in heterogeneous cloud environments, in

which the communication time between tasks and the

execution cost on heterogeneous processors are considered,

and the number of processors is bounded.

3 System models and problem formulation

In this section, we describe an application model, a cost

model and problem formulation, which form the basis of

our approach. Table 1 introduces the important notations

and their definitions as used in this study.

3.1 Application model

The objective of this study is to minimize the execution

costs of applications by searching for an appropriate allo-

cation decision of mapping tasks into processors on

heterogeneous cloud systems. The targeted cloud system

consists of a set of heterogeneous processors that provide

computing services with different capabilities and costs

[10]. Assume that the processor set is P ¼ p1; p2; :::; p Pj j
� �

,

where Pj j is the size of set P. For any set X, Xj j represents

the set size in this study. In a DAG, nodes represent tasks

and edges represent dependencies between tasks. G ¼
fN;E;C;Wg represents the DAG of the precedence-con-

strained application that runs on processors. N and E are

the sets of task nodes and communication edges in G,

respectively. ni 2 N is a task with different execution times

on different processors, and ei;j 2 E is a communication

message from task ni to task nj. Accordingly, C is the set of

communication edges, and ci;j represents the communica-

tion time between ni and nj if they are not assigned to the

Table 1 Important notations in this study

Notation Definition

wi;k Execution time of task ni running on processor pk

ci;j Communication time between ni and nj

predðniÞ Set of predecessors of task ni

succðniÞ Set of successors of task ni

rankuðniÞ Upward rank value of task ni

f(i) Index of the processor assigned to task ni

lb(G) Lower bound of the application G

pricek Unit price of processor pk

costi;k Cost of task ni on processor pk ,

cost(G) Total cost of the application G

deadlineðniÞ Deadline of task ni

deadline(G) Deadline of the application G

dspanðniÞ Deadline span of task ni

dspan(G) Deadline span of the application G

makespan(G) Schedule length of the application G

ESTðni; pkÞ Earliest start time of task ni on processor pk

EFTðni; pkÞ Earliest finish time of task ni on processor pk

LFTðni; pkÞ Latest finish time of task ni on processor pk

AFTðniÞ Actual finish time of task ni
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same processor. W is an jNj � jPj matrix, where wi;k is the

execution time of task ni running on processor pk. predðniÞ
is the set of predecessors of task ni, and succðniÞ is the set

of successors of task ni. In a given DAG, the task without a

predecessor is the entry task denoted as nentry, whereas the

task without any successor is the exit task denoted as nexit.

If a DAG has multiple nentry or nexit tasks, then a dummy

entry or exit task with zero-weight dependencies is added

to the graph.

Figure 1 shows a motivating parallel application with

ten tasks [6]. The weight of the edge between n1 and n4

represents the communication time, which is denoted by

c1;4 ¼ 9 if n1 and n4 are not assigned to the same processor.

The predecessor of task n7 is n3, which is denoted by

predðn7Þ ¼ n3f g. Similarly, the successor of task n2 is n8

and n9, which is denoted by succðn2Þ ¼ n8; n9f g.

The tasks in the motivating example are assumed to be

executed on three processors fp1; p2; p3g. Table 2 shows

the execution time matrix jNj � jPj of tasks on different

processors of the motivating parallel application. The

execution time of task n1 on processor p3 is 9, which is

denoted as w1;3 ¼ 9. Due to the heterogeneity of proces-

sors, a task on different processors may have different

execution time values.

3.2 Cost model

The cost model of a DAG based on a pay-as-you-go basis

was defined based on the aforementioned application

model. Similar to current commercial clouds, the users are

charged according to the amount of time that they have

used the processors [15]. Each processor has an individual

unit price because of the heterogeneity of processors in the

system [26, 28].

We assume that pricek is the unit price of processor pk
and computation and storage services on processors are in

the same physical region. Therefore, the communication

time ci;j is independent of the computation service on the

processors and determined by the amount of data to be

transferred between task ni and task nj, except when tasks

ni and nj are executed on the same processor, where ci;j ¼ 0

[21]. The internal data transfer cost refers to the transfer

time of data from task ni to task nj executed on the same

processor multiplied by the unit price of the processor.

Since the data from ni to nj needed for computation may be

fetched locally, that is, no data transfer is required, the data

transfer time of tasks ni and nj is zero. Thus, the data

transfer cost is assumed to be zero in our model. Accord-

ingly, the cost costi;k of task ni on processor pk and the total

cost cost(G) of a DAG are defined as follows:

costi;k ¼wi;k � pricek; ð1Þ

costðGÞ ¼
XNj j

i¼1

wi;f ðiÞ � pricef ðiÞ; ð2Þ

where f(i) is the index of the processor assigned to task ni,

wi;f ðiÞ is the execution time of task ni on the processor pf ðiÞ,

and pricef ðiÞ is the unit price of the processor pf ðiÞ.

We assume that the unit price of heterogeneous pro-

cessors is known, as shown in Table 3. According to

Eqs. (1) and (2), we have the total cost value of executing
Fig. 1 Motivating example of a DAG-based parallel application with

ten tasks [6]

Table 2 Execution time value

of tasks on different processors

in Fig. 1 [6]

Task p1 p2 p3

n1 14 16 9

n2 13 19 18

n3 11 13 19

n4 13 8 17

n5 12 13 10

n6 13 16 9

n7 7 15 11

n8 5 11 14

n9 18 12 20

n10 21 7 16
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the application in Fig. 1 using the HEFT algorithm is

costðGÞ ¼ 612.

3.3 Problem formulation

The scheduling problem to minimize the execution cost of

deadline-constrained applications in heterogeneous cloud

environments is constructed, which is called Minimizing

Execution Cost - Deadline Constrained (MEC-DC).

Definition 1 (MEC-DC). Given a DAG-based parallel

application G ¼ fN;E;C;Wg, a set of heterogeneous

processors P ¼ fp1; p2; :::; pjPjg that support different unit

prices for executing tasks and a deadline constraint dead-

line(G) to find a task schedule f : ni ! pk, 8ni 2 N,

9pk 2 P, such that the total execution cost of the applica-

tion is minimized without exceeding the schedule length of

the deadline constraint, which is formulated as minimize

costðGÞ ¼
XNj j

i¼1

wi;f ðiÞ � pricef ðiÞ;

subject to

makespanðGÞ� deadlineðGÞ:

Because the MEC-DC scheduling is NP-hard, a heuristic

approach is designed in this study to address this opti-

mization problem.

4 Downward cost optimization

The algorithm of DCO, which aims to find a scheduling

strategy to minimize the execution cost of deadline-con-

strained parallel applications in heterogeneous cloud

environments, is presented in this section. The key idea of

DCO is to transfer the deadline of the application to that of

each task.

4.1 Preliminaries

For reducing the schedule length to a minimum with low

complexity and high performance in heterogeneous cloud

environments, the HEFT algorithm is the most popular

DAG scheduling algorithm [12] [13].

Upward rank value. HEFT uses the upward rank value

(ranku) of a task as the task priority standard shown in

Eq. (3).

rankuðniÞ ¼ wi þ max
nj2succðniÞ

fci;j þ rankuðnjÞg; ð3Þ

where wi is the average execution time of task ni on pro-

cessors and is calculated as wi ¼
PPj j

k¼1

wi;k= Pj j. In this case,

all tasks in the application are ordered according to the

descending order of ranku.

Table 4 shows the ranku values of tasks of the moti-

vating parallel application (Fig. 1). The task assignment

order is fn1; n3; n4; n2; n5; n6; n9; n7; n8; n10g.

Earliest finish time. EST nj; pk
� �

and EFT nj; pk
� �

rep-

resent the earliest start time (EST) and earliest finish time

(EFT) of task nj on processor pk, respectively. EFT is

considered as the task assignment criterion in HEFT

because the local optimal of each task can be satisfied.

These attributes are calculated by

ESTðnentry; pkÞ ¼ 0;

ESTðnj; pkÞ ¼ maxfTavailðpkÞ; max
ni2predðnjÞ

fAFTðniÞ þ ci;jg;

(

ð4Þ

and

EFTðnj; pkÞ ¼ ESTðnj; pkÞ þ wj;k; ð5Þ

where TavailðpkÞ is the available EST on processor pk for task

execution. ci;j is the actual communication time between ni
and nj. ASTðniÞ is the actual start time (AST) of task ni, and

AFTðniÞ is the actual finish time (AFT) of task ni. If nj and

its predecessor ni are assigned to the same resource, then

Table 3 Unit price of

processors employed
pk pricek

p1 3

p2 5

p3 7

Table 4 Task assignment of the application in Fig. 1 using HEFT

Task rankuðniÞ ASTðniÞ AFTðniÞ pf ðiÞ

n1 108 0 9 p3

n3 80 9 28 p3

n4 80 18 26 p2

n2 77 27 40 p1

n5 69 28 38 p3

n6 63 26 42 p2

n9 44 56 68 p2

n7 43 38 49 p3

n8 36 57 62 p1

n10 14 73 80 p2
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ci;j ¼ 0. The insertion-based scheduling strategy is used for

assigning task ni to the processor with the minimum EFT.

Table 4 shows the assignment of all tasks in the parallel

application (Fig. 1) using the HEFT algorithm. The AST,

AFT and f(i) of each task assignment are provided.

Lower bound and deadline constraints. Similar to

state-of-the-art studies [14], this study also takes advantage

of the HEFT algorithm to certify the lower bound of a

parallel application. When the standard DAG-based

scheduling algorithm is used, the minimum schedule length

of an application is referred as the lower bound. The lower

bound is calculated by

lbðGÞ ¼ min
pk2P

fEFTðnexit; pkÞg: ð6Þ

Then, the relative deadline of an application deadline(G) is

provided for the application, where deadlineðGÞ� lbðGÞ.
Table 4 shows that lb(G) is equal to 80.

4.2 Satisfying the deadline constraint

For a given application, lb(G) has been obtained by using

the HEFT algorithm. The deadline-span between the

deadline and the lower bound of the application dspan(G)

can be computed as

dspanðGÞ ¼ deadlineðGÞ � lbðGÞ: ð7Þ

When the value of lb(G) is equal to that of makespan(G),

dspan(G) is also called the slack time of G, denoted as

slack(G).

An awkward way to satisfy the deadline constraint of the

application is to set different deadline spans for different

tasks and satisfy the following:

XNj j

i¼1

dspanðniÞ� dspanðGÞ; ð8Þ

where dspanðniÞ is the deadline span of task ni.
According to Eq. (8), we have

0� dspanðniÞ� dspanðGÞ: ð9Þ

However, finding the optimal deadline-span for each task

by excluding all possible combinations for an application is

time consuming. For the application in Fig. 1 with

deadlineðGÞ ¼ 90, the deadline span of each task is in the

scope of [0, 10], and the exhausting number of deadline

combinations has reached 1110 when only the integer step-

size of the deadline span is considered.

For convenient description, the set of task assignments is

assumed to be fnsð1Þ; nsð2Þ; :::; nsðjÞ; nsðjþ1Þ; :::; nsð Nj jÞg. Such

task set includes three parts, namely, the tasks that have

been assigned fnsð1Þ; nsð2Þ; :::; nsðj�1Þg, the task to be

assigned nsðjÞ, and the tasks that have not been assigned

fnsðjþ1Þ; nsðjþ2Þ; :::; nsð Nj jÞg. Initially, the sequence number

of the task to be assigned is the first and j ¼ 1.

AFTHEFTðniÞ is the actual finish time of task by using the

HEFT algorithm, which is equal to lbðniÞ. The deadline

constraint of tasks uses the variable deadline span (VDS) to

ensure that the deadline constraint of the application can be

satisfied at each task assignment. For the variable deadline-

span of tasks vdspan is between 0 and dspan(G), so that

vdspan 2 ½0; dspanðGÞ�.
Initially, all tasks of the application are unassigned, and

vdspan ¼ dspanðGÞ. Then, when assigning nsðjÞ,

deadlineðnsðjÞÞ ¼ AFTHEFTðnsðjÞÞ þ vdspan: ð10Þ

If task nsðjÞ can be assigned within deadlineðnsðjÞÞ, a new

AFT of task nsðjÞ, AFTDCOðnsðjÞÞ, is generated by using the

DCO algorithm. The AFT change of task nsðjÞ has an effect

on the deadline span of unscheduled tasks in the applica-

tion. Therefore, vdspan can be updated by using Eq. (11)

for the next task to be scheduled in the application.

vdspan ¼ minfdspanðGÞ;
dspanðGÞ � max

1� i� j
fAFTDCOðniÞg þ max

1� i� j
fAFTHEFTðniÞgg;

ð11Þ

where AFTDCOðniÞ and AFTHEFTðniÞ are the actual finish

times of task ni using the DCO and HEFT algorithms,

respectively. If the task nsðjÞ can not be assigned within

deadlineðnsðjÞÞ, the next round operation is launched, in

which all tasks of the application are reset as unassigned

and vdspan is set to a new value according to the

scheduling algorithm. The above iterative process for tasks

are continued until all tasks have been scheduled.

Thus far, a deadline for each task has been defined. If we

can find a proper processor for task ni that minimizes

costðniÞ ¼ min
pk2P

fcostðni; pkÞg;

subject to

EFTðni; pkÞ� deadlineðniÞ;

then the MEC-DC problem of the parallel application is

transferred to the problem of each task.

4.3 DCO algorithm

Inspired by the aforementioned formal analysis, we pro-

pose the DCO algorithm described in Algorithm 1. The

main idea of DCO is to transfer the deadline constraint of
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the application to that of each task and take the advantage

of the variable deadline span to obtain a scheduling with

the minimum cost while satisfying the deadline constraint

of the application. The core details are explained as

follows:

1) In Lines 1–2, ranku, lb(G) and dspan(G) are

calculated.

2) In Lines 3–8, all variable deadline-spans between 0

and dspan(G) are traversed until a feasible scheduling

with minimum execution cost is obtained. The VDS

algorithm is used to find a scheduling of the

application with the minimum execution cost as

meeting the deadline constraint. It is implemented by

two stages: transferring the deadline constraint of the

application into sub-deadlines of tasks and minimiz-

ing the total cost. The VDS algorithm is invoked

iteratively by using vdspan to obtain makespan(G)

and cost(G). If makespanðGÞ� deadlineðGÞ, then a

feasible scheduling is obtained and we jump out of

the for loop.

In the VDS algorithm, deadline(G) of the application with

vdspan is initialized, and deadlineðniÞ is computed using

Eq. (10) in Lines 1–5. The processor with minimum cost

under satisfying the condition of

EFTðni; pkÞ� deadlineðniÞ is selected in Lines 6–20. When

task ni is assigned, vdspan is updated according to Eq. (11).

If all processors cannot satisfy its deadline constraint, then

task ni is assigned to the processor with the minimum EFT.

In terms of time complexity, the DCO algorithm

requires the computation of ranku, lb(G), and dspan(G). In

the phase of calling the VDS algorithm, the complexity of

each task is Oð Nj j � Pj jÞ for computing EFT, and Oð Pj jÞ
for selecting the processor with the minimum EFT. The

total time complexity of the DCO algorithm is

OðjNj2 � jPj � VÞ, where V is the number of variable

deadline spans.

Although the variable deadline span is real-valued in a

parallel application, an integer step-size for the application

is still provided to improve the searching efficiency.

4.4 Example of DCO algorithm

Example 1 We assume that deadlineðGÞ ¼ 90. Table 5

shows the results in the parallel application in Fig. 1 using

the DCO algorithm. Safe scheduling is obtained when

vdspan is initialized to 6, where costðGÞ ¼ 413 and

makespanðGÞ ¼ 81. Table 6 lists the task assignment and

Fig. 2 shows the task scheduling of the parallel application

in Fig. 1 using DCO when vdspan ¼ 6. Figure 4 shows

the scheduling obtained by DCO does not violate the

precedence constraints among tasks and the deadline con-

straint of the application.

5 Downward-upward cost optimization

This section presents a safe downward-upward cost opti-

mization (DUCO) algorithm as a supplement to the cost-

efficient scheduling of the parallel application with a

deadline constraint. First, LFT is defined. Then, the DUCO

algorithm described as Algorithm 3 is presented. Lastly,

an example using DUDO is provided.

Table 5 Results of the parallel application in Fig. 1 with

deadlineðGÞ ¼ 90 using DCO

deadline(G) vdspan makespan(G) cost(G) Safe?(Y/N)

90 10 95 479 N

90 9 95 503 N

90 8 95 503 N

90 7 95 503 N

90 6 81 413 Y
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5.1 Latest finish time

Definition 2 (LFT). The LFT of tasks is defined as

LFTðnexitÞ¼deadlineðGÞ;
LFTðni; pkÞ¼ min

nj2succðniÞ
fAFTðnjÞ � wj;f ðjÞ � ci;jg;

(

ð12Þ

where succðniÞ is the set of successors of task ni, and

AFTðnjÞ is the actual finish time of task nj using a

scheduling strategy.

The task scheduling of deadline-constrained applica-

tions is considered safe when makespanðGÞ� deadlineðGÞ
is satisfied. We call the value of deadlineðGÞ �
makespanðGÞ the slack time, denoted as slack(G). The

slack time of a safe scheduling using DCO may be greater

than zero, which can be utilized to further optimize the

execution cost of the application. Correspondingly,

slackðni; nj; pkÞ indicates the slack time between two

adjacent tasks ni and nj executed on the same processor pk.

For the exit task, slackðnexitÞ is equal to the difference

between deadline(G) and makespan(G). For example, the

slackðn7; n8; p1Þ in Fig. 2 is 18, and the slackðnexitÞ is 9.

5.2 DUCO algorithm

On the basis of the aforementioned analysis, the DUCO

algorithm described in Algorithm 3 is proposed. The main

idea of the DUCO algorithm is that the actual finish time of

task ni may be extended to LFTðniÞ because slacks exist

between adjacent tasks on the same processor. Each task

selects a cost-efficient processor by the non-decreasing

order of ranku as the precedence constraints among tasks

and the deadline constraint of the application are being

satisfied. Further details are provided as follows:

1) In Lines 1–3, the parameters for the DUCO algorithm

are initialized, i.e., dspan(G).

2) In Lines 4–32, the upward cost optimization is

performed on the basis of DCO scheduling only if the

value of dspan(G) is larger than zero.

3) In Lines 4–17, check whether the scheduling

obtained by using the DCO algorithm can be

optimized. If the execution cost of task ni on

processor f ðniÞ is not the minimum, the scheduling

of task ni may be further optimized and flag½ni� ¼ 1.

When task ni can be assigned the processor with the

lower execution cost within its deadline constraint,

the scheduling will be further optimized and FS ¼ 1.

4) In Lines 18–32, the processor with lower execution

cost is assigned to the task as the slack condition and

precedence constraints of tasks are satisfied. If

slackðnk1; nk2; fminðniÞÞ�wi;f 0ðniÞ for task ni with

flag½ni� ¼ 1, then a slack on processor f 0ðniÞ is

selected. When the precedence constraints and the

deadline constraint of task ni can be satisfied, f ðniÞ,
ASTðniÞ and AFTðniÞ are updated. In Line 25, the

AST and AFT of unassigned tasks in succðniÞ and the

LFT of unassigned tasks in predðniÞ are updated. In

Line 27, the execution of task ni is back translated by

a dspan time when it can not be optimized.

Table 6 Task assignment of the application in Fig. 1 with

deadlineðGÞ ¼ 90 using DCO

ni deadlineðniÞ ASTðniÞ AFTðni) f ðniÞ

n1 15 0 14 p1

n3 33 14 25 p1

n4 34 23 31 p2

n2 43 25 38 p1

n5 43 31 44 p2

n6 41 28 37 p3

n9 72 54 66 p2

n7 55 38 45 p1

n8 70 58 63 p1

n10 90 74 81 p2

costðGÞ ¼ 413;makespanðGÞ ¼ 81\deadlineðGÞ

Fig. 2 Scheduling of the

application in Fig. 1 with

deadlineðGÞ ¼ 90 using DCO
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In terms of time complexity, DUCO requires calling the

DCO algorithm for parameter initialization that has com-

plexity OðjNj2 � jPj � VÞ. In the upward cost optimization

phase, the complexity is Oð Nj j � Pj jÞ in searching for tasks

to be optimized, and Oð N2
�� ��� Pj jÞ in performing upward

cost optimization. The total complexity of DUCO is

OðjNj2 � jPj � VÞ, where |N| is the number of tasks, |P| is

the number of processors, and V is the number of steps in

DCO. When the scheduling using DCO is known, the

DUCO algorithm has low complexity of Oð N2
�� ��� Pj jÞ and

only needs to perform the upward cost optimization phase.

5.3 Example of DUCO algorithm

Example 2 In this example, deadlineðGÞ ¼ 90. Figure 3

shows the scheduling of the parallel application in Fig. 1

using the DUCO algorithm. For example, when DCO is

used, n6 is assigned to p3, n7 is assigned to p1, and

AFTðn6Þ ¼ 37 and AFTðn7Þ ¼ 45 as shown in Fig. 2.

When DUCO is used, n7 is still assigned to p1. However, n6

is switched to p1, and AFTðn6Þ and AFTðn7Þ are changed to

51 and 58, respectively, as shown in Fig. 3. Furthermore,

the makespan of the parallel application is 82 and the total

execution cost is 389. Compared with the scheduling of the

parallel application using DCO in Example 1, the execu-

tion cost using DUCO is reduced by 5.8% without violating

the precedence constraints among tasks and the deadline

constraint of the application.

6 Experimental results and discussion

This section shows that the performance comparisons of

the DUCO algorithm with DCO, HEFT [6] and IC-PCP

[15] algorithms because they have the similar application

models. The proposed approach is verified by the simula-

tion method. The simulator that includes workflow appli-

cations and the cloud environment modeling is

implemented in Java language on a PC platform with Intel

Core i5 2.60 GHz CPU and 4 GB memory.

6.1 Experimental workflows

Two parallel workflow applications, namely, fast Fourier

transform (FFT) parallel applications and Gaussian elimi-

nation parallel applications, are considered. The FFT par-

allel application is used to characterize low-task

parallelism. The Gaussian elimination parallel application

is used to characterize high-task parallelism.

The most important information on the workflow

application includes the workflow structure, task number,

and computational characteristics. The workflow structure,

namely, DAG shape, is defined based on five parameters,

namely, depth, width, regularity, density, and hops. The

number of a DAG is assumed as Nj j, and the shape

parameter is a. The DAG depth is randomly generated from

a uniform distribution with a mean value equal to Nj j=a.

Fig. 3 Scheduling of the

application in Fig. 1 with

deadline=90 using DUCO
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The width for each level is randomly generated from uni-

form distribution with mean Nj j � a, which implies a thin

DAG with low-task parallelism and a fat DAG with high

degree of parallelism. The regularity indicates the unifor-

mity of the number of tasks in each level. The density

denotes the number of edges between two DAG levels. A

hop is a connection, which indicates an edge that can go

from level l to level lþ 1, between two adjacent levels. In

our experiment, the parameter q is used as the size of the

FFT application and its task number is

Nj j ¼ 2 � q�1þq� log2q, where q ¼ 2y for some integer

y. Figure 4 shows an example of the FFT parallel appli-

cation with q ¼ 8. q exit tasks exist in the FFT application

with size q. A dummy exit task with zero execution time,

which connects these q exit tasks with zero communication

time, is created to adapt the application of this study. For

the Gaussian elimination parallel application, a parameter

q is used as its matrix size, and the total number of tasks is

Nj j ¼ q2þq�2
2

[5]. Figure 5 shows an example of the

Gaussian elimination parallel application with q ¼ 5.

6.2 Experimental setup

For our experiments, we assume that the cloud environ-

ment consists of 128 heterogeneous processors with dif-

ferent computing abilities and unit prices, in which the

types and the prices of processors are based on the Amazon

EC2 environment [2]. The application and processor

parameters are: $ 0:01=h� pricek � $ 1=h, 0:01 h�wi;k �
128 h, 0:01 h� ci;j � 30 h.

The normalized execution cost NC and the final sched-

ule length makespan(G) of the application are selected as

the performance metrics. The NC is expressed by Eq. (13)

as follows:

NC ¼ costðGÞ=costHEFTðGÞ; ð13Þ

where costHEFTðGÞ is the execution cost of the application

using the HEFT algorithm [6]. The scheduling of the

application described in Fig. 1 and Table 2 are taken as

examples, in which costHEFTðGÞ is 612 and NC is 1.0.

6.3 Experimental results

Two types of parallel applications with different scales and

deadline constraints are used to verify the proposed

method.

Table 7 and Fig. 6 show the actual makespan and NC

of scheduling FFT applications with varying deadline

constraints using the HEFT, IC-PCP, DCO, and DUCO

algorithms. The size of the application is limited to q ¼ 48

(i.e., jNj ¼ 1152). deadline(G) is changed from lbðGÞ �
1:0 to lbðGÞ � 1:4. The makespans obtained by all algo-

rithms are within the required deadline, that is, the four

algorithms can satisfy the deadline constraints from the

‘‘downward’’ or ‘‘upward’’ perspectives. The total cost of

the application using HEFT is 10960 and the value of NC is

1.0. When the deadline of an application with a certain

number of tasks is increased from lbðGÞ � 1:0 to

lbðGÞ � 1:4, the total costs obtained by IC-PCP, DCO, and

DUCO algorithms are decreased. The NC using DCO

fluctuates with respect to the total cost obtained by IC-PCP.

Fig. 4 Example of the fast

Fourier transform parallel

application with q ¼ 8
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However, the total cost obtained using DUCO is always

lower than the total cost obtained using IC-PCP and DCO

because of three reasons. First, HEFT minimizes the

makespan instead of the minimum cost. Second, the DCO

algorithm optimizes the execution cost from the upward

perspective, but the IC-PCP algorithm achieves cost opti-

mization from the downward perspective. Third, the

DUCO algorithm is based on DCO to further optimize the

total cost from downward and upward perspectives. The

cost saving obtained with DUCO also increases with the

increase in the deadline. DUCO can save more cost than

DCO and IC-PCP. Specifically, when the deadline is equal

to lbðGÞ � 1:4, DUCO, in terms of cost minimization, is

better than IC-PCP and DCO by 51.9% and 64.04%,

respectively. These results indicate that the total execution

cost of an application is decreased with the increase of the

deadline. Moreover, the approach that synthetically con-

siders ‘‘downward’’ and ‘‘upward’’ can save more execu-

tion cost than the approach that merely considers

‘‘downward’’ or ‘‘upward’’. The superiority of the synthetic

approach becomes increasingly evident when the deadline

span between the deadline and lower bound is large.

Table 8 shows the actual makespan and NC of

scheduling FFT parallel applications with different scales.

The number of tasks is changed from 96 (small scale) to

2560 (large scale) when q is changed from 32 to 256.

deadline(G) is limited as lbðGÞ � 1:4. The makespans

obtained by the HEFT, IC-PCP, DCO, and DUCO algo-

rithms do not exceed the user-specified deadline. The total

costs using the four algorithms increase gradually with the

increase in the number of tasks in applications. However,

the optimized cost also increases when IC-PCP, DCO, and

DUCO are used. DUCO can always save more execution

cost than IC-PCP and DCO. In the best case, the optimized

NC reaches 90.8%, 60.3%, and 77.11% with respect to

HEFT, DCO, and IC-PCP, respectively. These results fur-

ther confirm that DUCO, which is implemented from

‘‘downward’’ and ‘‘upward’’ perspectives, is more efficient

than DCO and IC-PCP in cost minimization.

Table 9 shows the performance of scheduling Gaussian

elimination parallel applications with varying deadline

constraints. The size of the applications is limited to q ¼
48 (i. e., jNj ¼ 1175), which is approximately equal to the

number of tasks of the FFT parallel application in Table 7.

deadline(G) is changed from lbðGÞ � 1:0 to lbðGÞ � 1:4.

Compared with the results in Table 7, the lower bound of

Fig. 5 Example of the Gaussian elimination parallel application with

q ¼ 5

Table 7 Actual makespan and total cost of the Fast Fourier transform application with q=48 (i.e.,|N|=1152) for varying deadline constraints

|N| HEFT [6] IC-PCP [15] DCO DUCO

cost(G) lb(G) deadline(G) makespan(G) cost(G) makespan(G) cost(G) makespan(G) cost(G)

1152 10960 1104 1104 1104 5121 1104 10960 1104 5121

1152 10960 1104 1214 1214 4285 1204 5474 1214 2692

1152 10960 1104 1324 1324 4184 1323 3743 1324 1579

1152 10960 1104 1435 1435 3739 1413 3132 1435 1389

1152 10960 1104 1545 1545 3474 1521 2593 1545 1248
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scheduling the Gaussian elimination application is longer

than the lower bound of the FFT application. However, the

difference between the execution costs from scheduling the

FFT application and the Gaussian elimination application

is small.

Similar to the results in Table 7, our proposed DUCO

can save more execution cost than IC-PCP and DCO.

When deadlineðGÞ ¼ lbðGÞ � 1:2, the cost saving using

DUCO is 64.7% and 28.0% with regard to IC-PCP and

DCO, respectively. The overall trend of Gaussian elimi-

nation and FFT applications in the same scale is similar.

That is, with the increase of the deadline of the application,

the total execution cost decreases gradually. These results

show that DUCO is effective in different types of parallel

applications.

Table 10 shows the results in scheduling Gaussian

elimination parallel applications with varying numbers of

tasks to further observe the performance of the proposed

algorithm. The number of tasks is changed from 77 (small

scale) to 1829 (large scale), which is approximately equal

to the number of the FFT application in Experiment 2.

deadline(G) is set to lbðGÞ � 1:4. Similar to the results in

Table 8, the makespans obtained by the four algorithms do

not exceed the required deadline. Moreover, the execution

Fig. 6 Normalized cost of a fast

Fourier transform application

with jNj ¼ 1152 at varying

deadline constraints

Table 8 Normalized cost and actual makespan of fast Fourier transform applications with deadline constraints for varying numbers of tasks

|N| HEFT [6] IC-PCP [15] DCO DUCO

cost(G) lb(G) deadline(G) makespan(G) NC makespan(G) NC makespan(G) NC

96 723 645 903 903 0.03 901 0.031 903 0.028

224 1525 776 1086 1086 0.129 1068 0.086 1086 0.037

512 5162 940 1316 1316 0.304 1290 0.195 1316 0.096

1152 9748 1082 1514 1514 0.402 1514 0.232 1514 0.092

2560 25194 1287 1801 1801 0.401 1768 0.435 1801 0.174

Table 9 Normalized cost and actual makespan of Gaussian elimination parallel applications with q ¼ 48ði:e:; jNj ¼ 1175Þ for varying deadline

constraints

|N| HEFT [6] IC-PCP [15] DCO DUCO

cost(G) lb(G) deadline(G) makespan(G) NC makespan(G) NC makespan(G) NC

1175 12819 5266 5266 5266 0.243 5266 1 5266 0.243

1175 12819 5266 5792 5792 0.204 5743 0.416 5792 0.148

1175 12819 5266 6319 6319 0.2 5996 0.408 6319 0.144

1175 12819 5266 6845 6845 0.183 6703 0.35 6845 0.144

1175 12819 5266 7372 7372 0.183 7259 0.348 7372 0.132
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cost increases with the increase in the number of tasks in

Gaussian elimination applications. DUCO can always save

more cost than IP-PCP and DCO, and the cost savings

using DUCO are 76.8% and 55.3% with respect to DCO

and IC-PCP in the best case ðjNj ¼ 1829Þ, respectively.

After combining all results in FFT and Gaussian elimi-

nation applications, the proposed DUCO is concluded to be

more efficient in cost minimization than existing algo-

rithms, given that the required deadline constraint is sat-

isfied in various conditions.

7 Conclusions

The cost optimization problem for deadline-constrained

parallel applications in heterogeneous cloud environments

is studied, and the DCO and DUCO algorithms with low-

time complexity are presented. DCO is implemented by

transferring the deadline constraint of the application to the

deadline constraint of each task and satisfying the deadline

constraint of tasks from downward perspective. DUCO is

implemented from upward perspective on the basis of

DCO. Furthermore, in term of cost minimization, our

proposed DUCO is more efficient than existing algorithms

for parallel applications in various conditions. The pro-

posed approach can provide a theoretical basis for QoS-

aware scheduling applications in heterogeneous cloud

environments.
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