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Big Data: A Revolution of the Location based Service
and Wireless Sensing

1.1
Introduction

Sensing applications are becoming ubiquitous smart applications. Beyond smart-
phones, tablets and wearable devices, and sensing ability will eventually be embed
and integrated in our living space. The recent surge in sensing applications is char-
acterized by distributed collection of data by either self-selected or recruited partic-
ipants for the purpose of sharing local conditions, increasing global awareness of
issues of interest, computing community statistics, or mapping physical and social
phenomena.

Most of these applications are location-based services (LBS), which is increasingly
important to the user experience. In the big data era, the information provided by LBS
enables meaningful and reasonable analysis or mining on the collected data. Some of
the most common LBS applications include local news, navigation, points of interest,
parking assistance, fleet management, emergency, asset tracking, location-sensitive
building, and local advertisement.

To specify the mobile user’s location, an intuitive solution depends on the mobile
phone system. For example, the current cell phone ID can be used for identifying
the base transceiver station (BTS) that the phone is communicating with. Once it is
determined, the only thing left is to pinpoint the location of the BTS.

Other solutions use GPS technique. GPS is much more accurate than BTS based
solution. Currently, it is very common that contains built-in GPS receivers. However,
GPS cannot work well in indoor environments. An alternative common method is
to use short-range positioning beacons. It is an ideal solution for existing utilizing
WiFi or Bluetooth technologies and are ideal for indoor LBS applications.

Big data spurs the revolution of smart sensing and LBS, which in turn enriches
big data in terms of data volume and application scale. Every digital process and
social media exchange produces big data. Besides physical locations, velocity, di-
rection, acceleration are all involved in the big data application. On the other hand,
application for big data are becoming selective, because the explosive increase of
sensed data will easily overwhelm the computing resource that people have. There-
fore, sensing should proceed by extracting meaningful value from big data, requiring
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optimal processing power, analysis capabilities and skills.

We are aiming at finding effective ways to estimate the location and sense the hu-
man behaviors purely by leveraging huge amount of wireless transmission metadata,
including signal strength, transmission successful rate, and so on. The transmission
metadata from all clients is collected from internet of things (IoT) devices and we
use it to automatically establish the mapping between the spatial location spot and
wireless signal strength distribution. When the sensing data obtained from each use
reach to a certain amount, the features of locations could be extracted through crowd-
sourcing. All of these elements accord well with the needs of crowdsourcing and big
data, where little can be assumed about users, and explicit input or other action from
users is best avoided.

As a result, we achieve this goal without any explicit human participation. We
expanded this methodology to estimate the number and behavior of people in indoor
environments. There are two kinds of our sensing approaches based on big data:
device-based sensing and device-free sensing. Device-based sensing approaches al-
low user to carry around a mobile phone, while device-free sensing approaches allow
sensing the target without attaching any electronic tags in wireless environments.

We introduce the big data technology to excavate potential relation between wire-
less signal variation and the behavior of people, which efficiently reduces the training
costs, extends the wireless sensing ability, and improves sensing accuracy.

1.2
Device-based Sensing using Big Data

1.2.1
Introduction

A critical challenge of LBS is to find the accurate location of mobile devices. In
outdoor environment, GPS-based localization can provide sufficiently high accuracy
for every GPS-enabled device [1]. However, in indoor environments, the existing
solutions [2, 3,4, 5, 6,7, 8,9, 10, 11, 12] are neither pervasive nor interoperable.

Just like the “traffic delay” for each packet transferred in wired network which may
act as an indicator the logic distance, each packet transferred in wireless network has
a “received signal strength” [2] can also indicate the distance relationship between
APs and client. Everyday TBs of data are silently transferred through the wireless
infrastructures. Hence, a very large amount of transmission meta data are collected.
Could we discover the location information from these meta data?

Turning this problem into a more practical way, we have the question: “Can we
automatically establish the mapping between geo-location and surrounding Wi-Fi
signal fingerprint?”’ In the following text, we introduce a crowdsensing based in-
door localization scheme, SENIL. It could extract the fingerprint map from the mere
knowledge of indoor floor plan and large amount of RSS samples passively collected
from AP-end. In this way, any devices with wireless connection are continuously
participating in the crowdsensing, while no exclusive APP is required to be installed.
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Figure 1.1 SENIL System architecture.

Our solution is based on a key observation that: although the location coordinates
and wireless fingerprints are so disparate, they are all generated according to the
same indoor manifold and therefore they share a highly similar intrinsic structure.
If we recognize this shared structure embedded in these two disparate data sets, we
will directly extract the fingerprints-to-coordinates mapping without indoor space
measurement.

1.2.2
Approach Overview

Since RSS can be estimated by both sides, SENIL can be deployed in either AP-end
or client-end. Whenever it is deployed at either end, the core of the system remains
same. We should mention that the positions of Wi-Fi APs are not required to be
known in either case. In the rest of the paper, we assume SENIL is deployed at
AP-end, which mean APs will also work as sniffer to overhear the Wi-Fi traffic and
conduct the necessary computation.

Fig. 1.1 demonstrates our system architecture. When a user enters the building, we
assume that the device carried along the user will establish wireless connections. The
Wi-Fi APs will record the RSS of the traffic sent from the client device and forward
the data to a localization server. The RSS values will be used to build a matching
with the fingerprint RSS values stored in the fingerprint database, which itself is
populated using crowdsourcing techniques. The estimated moving distance, together
with the estimated geodesic distance of different fingerprint locations in the map, will
be used to further improve the quality of the matching, and thus, the accuracy of the
localization.

1.2.3
Trajectories Matching

RSS fingerprint are the most representative RSS point extracted from many samples
for a given position, and the error of the fingerprint will directly affect the mapping
and localization accuracy. Besides the strong noise in RSS measurement, there are
two main type of errors. The first is the well-known device-based measurement off-
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Figure 1.2 4 RSS trajectories measured from 3 APs V. The color denotes the value for
3rd AP: deeper color denotes higher RSS for the 3rd AP.

set, which is mainly caused by the variation of device antenna. We observe another
measurement error, called directional shadowing problem, which has minor effect on
traditional site-survey but has strong interference on crowdsensing based approach.

1.2.3.1 The Directional Shadowing Problem

Human body is a strong electromagnetic energy absorption object, which may cause
directional shadowing effect to wireless signal. Therefore, when the same device
is placed at different position near human body, e.g. shirt pocket or back pocket,
the RSS measurements will be obviously deviated. This effect has been exploited in
previous works [4, 13] to achieve Direction-of-Arrival (DoA) detection, however, it
may cause severe error to unsupervised fingerprints-to-floor plan mapping, because
there may be multiple parallel RSS trajectories corresponding to the same physical
path. Fig. 1.2 presents an example of directional shadowing from real measurement
data. In this situation, the mapping algorithm may wrongfully think that there are
parallel paths between the start and end, and it is very likely to cause mapping failure.

1.2.3.2 Fingerprints Extraction

Previous approaches usually adopted cluster-based algorithm to extract fingerprints
by merging the the nearby RSS samples within a certain threshold. This is a coarse-
grained algorithm, and it cannot identify the device offset and directional shadowing.
Our solution comes from a intuitive observation: although the RSS samples are high-
ly deviated for the same physical position if under antenna variation and directional
shadowing, the temporal RSS samples transition trends are very similar. If we could
correctly identify the matching between these RSS trajectories, the fingerprints could
be extracted without two errors mentioned above.

This intuitive idea could be transformed to a a n-partite graph matching prob-
lem [14, 15] if we see these trajectories as curve-shaped graphs. This can further be
done by n — 1 times iteratively graph matching between n-th trajectory and previ-
ous resulting RSS fingerprints graph. Relaxation-based approaches approximate the
graph matching elegantly, and the only job is to build the affinity matrix M.

Given two RSS trajectories, G¥ and GQ, each of them contains n’ and n® RSS
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measurements respectively. A possible assignment a is defined as a = (,¢’) , where
i € VP and i’ € V2. Given another possible assignment b = (4, j'), the compati-
bility m, , € M is assigned as follows in current system:

—lldij—dgr ] if ||di; — dy;
_ e AL | ij Z’J’” > € 1.1
M) { 0, otherwise (4.

where d;; and d; ;- are the distance between ¢ and 7, and their assignment pairs ¢’ and
j', respectively. Since RSS attenuation along distance is non-linear, in our system the
Minkowski distance [16] with value p = 1.7 is used to define the distance between
RSS samples a and b by the following equation:

1

n P
dap = <Z |rssq; — rssb,~|p) (1.2)
i=1

where n represents the numbers of all heard APs, and rss,; for the i-th AP’s RSS
value of RSS sample a.

In each iteration the fingerprints extraction is a partial graph matching problem,
and it is not tight integer constrained. We use spectral matching (SM) algorithm [14]
to calculate the optimal column-wise vector X with length n? x n@. X is fur-
ther reshaped to an association matrix AP XQ, where each element Aij denotes the
matching rate between i € V¥ and j € V<.

When obtaining the association matrix AP XQ, the fingerprints extraction is easy.
Due to the representativeness of fingerprints, the task of extracting fingerprints can
be easily done by identifying the sampling points which have no correspondence in
historical data. Let U 4 be the upper triangular matrix of A and D 4 for its diagonal
matrix, a RSS point 7 is considered to be a RSS fingerprint iff

Y (Ua—Dy) =0

?

After identifying the fingerprint points, we need to assign the RSS measurement
values for each fingerprint. Due to the device variation, the RSS sample points for
a single location may present in multiple clusters. We assign the RSS value for the
specific fingerprint as the RSS samples which has the overall shortest distance to
other RSS samples.

1.2.3.3 Fingerprints Transition Graph
The Fingerprints Transition Graph G = (VF LEF ) records the spatial connectivity
of all fingerprints. Since the vertice set V" is the fingerprints set C', we only need
to determine the edge set £ and the weight of edges W (1.

Basically, any two nodes i, € V¥ have an edge eij € EF if they satisfy the
following two conditions:

1) ¢ and j are subsequent RSS fingerprints within the same RSS fingerprints trajec-
tory;
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2) or when 7 and j belong to different trajectory, the distance d;; is smaller than € and
at least one of both is the start or end of a trajectory.

The weight of edges will be set to the absolute distance between fingerprints in tradi-
tional approaches [5, 6, 7], however, in SENIL, there is no absolute distance informa-
tion due to the absence of physical space measurement. Fortunately, the walking du-
ration becomes a distance indicator, and we can assign virtual distance to the weight
of edges. The virtual distance is based on a reasonable assumption: although peo-
ple may vary their walking speed according to mood or ongoing tasks, they usually
maintain a constant speed during a single walking trip. Based on this assumption,
we can infer the distance ratio between nearby fingerprints sequences along a trajec-
tory, and eventually obtain a global distance matrix. Our virtual distance assignment
algorithm is briefly described as blow.

1) Find the longest common fingerprints sequence S. among all RSS trajectories of
all users.

2) Find the most stable user us who walks through sequence S, with minimum time
difference, and set the virtual distance L, (S,) to the average walking time of se-
quence S, by user us.

3) For every trajectory T; containing sequence .S, calculate the virtual speed V,,(T;)
according to the virtual distance L, (.S.), and assign virtual distance for other com-
mon fingerprints sequence within 7.

4) Calculate the virtual speed for trajectories which pass through the assigned se-
quences, and calculate virtual distance for those un-assigned sequence.

5) Repeat Step 4 if there is un-assigned fingerprints sequence.

6) Assign virtual distance for every fingerprints within the same sequence using in-
terpolation.

We design and develop a prototype system of SENIL. The prototype system is
deployed in a large 2000m? office environment with circular corridor network as
shown in Fig. 1.3(a). We have collect more than 17000 RSS trajectories across more
than 20 different mobile devices. Fig. 1.3(b) shows the extracted RSS fingerprint
transition graph.

1.2.4
Establishing the Mapping between Floor Plan and RSS Readings

Ordinary floor plan is not friendly for crowdsensing based approaches, especially
when client-side doesn’t provide direction information. By studying the shortest
walking distance (SWD) in indoor space, we realize that there is a highly curly 2D
manifold embedded in a 2D floor plan polygon [7]. The unfolded version of this
manifold will remove the direction information but preserving the SWD informa-
tion, which is friendly for crowdsensing-based approaches.

The technical underpinning of automatic establishing the mapping is based on the
topological similarity between the unfolded version of floor plan and the fingerprint
transition graph, which is a typical graph matching problem. However, challenges
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Figure 1.3 (a) The 2D floor plan of the deployed area. (b) The RSS transition graph
extracted from very large amount of RSS readings.

exist in many aspects, e.g. unacceptable computation cost and low accuracy of large-
scale graph matching [15, 14], scaling effect, and the unsupervised nature of auto
mapping. Here we start from transforming the floor plan, then go through the auto
mapping algorithm.

1.2.4.1 Floor Plan in Manifold’s Eyes

n-dimensional manifold is a topological space that near each point resembles 7-
dimensional euclidean space, while globally not euclidean. The indoor floor plan
shares the same property. Due to the obstruction of walls, the shortest walking dis-
tance (SWD) between two points ¢ and j in the floor plan P equals to the euclidean
distance dc., (4, ) iff the points ¢ and j are within the same local isolation with di-
rect Line-of-sight distance. When they are not in the same isolation, the SWD would
be the geodesic distance dge, (%, j) which detour through various of obstructions. In
this way, indoor space could be essentially viewed as a 2D-manifold G embedded in
a 2D-polygon P.

In a manifold space, the euclidean distance is misleading. The geodesic distance
actually reveals the true structure of the manifold. Therefore, we resample the 2D
floor plan P using n points uniformly scatted. A n points graph G is then con-
structed. For every pair of nodes i,j € V™| there is an edge e;; iff the cor-
respondence points i, j© in the floor plan P are in their mutual neighborhood
with direct line-of-sight distance, and the weight for edge is the direct distance that
W(eij) = deu<ip7jp)'

1.2.4.2 Unsupervised Mapping

Since the RSS samples are measured along users’ walking trajectories, the RSS fin-
gerprints transition graph G also share the same floor plan manifold structure. An
intuitive idea of establishing the fingerprint map is to apply graph matching algorithm
directly upon G and GM . However, the accuracy and performance of large-scale
graph matching (>50 points) is very poor for unsupervised situation. A lightweight
relaxation to the problem is to apply graphing matching only on corridor points. Once
the corridor points graph are mapped correctly, it is easy to match the rooms points.
Unfortunately, the accuracy and performance of graph matching between such cor-
ridor points graphs is still not satisfied.
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Fortunately, the highly sparse chain structure of corridor points give us a hint,
and we devise a method called “Skeleton-Based Matching” to achieve unsupervised
accurate mapping between G¥* and GM even for very complex indoor environment.
The basic idea is that: due to the high sparsity and chained structure of corridor
points graph, we can extract a coarse-grained skeleton graph from it while preserving
the identical topological structure. Adopting GM algorithm on skeleton graphs will
result high accuracy and performance. Once the main structures of G¥* and G are
matched, the remaining parts will be matched easily.

The algorithm is detailed in following 4 steps, including skeleton graphs extraction,
skeleton graphs normalization, skeleton graphs matching, and find-grained points
matching.

Skeleton Graph Extraction
Two sub-steps are required to extract the skeleton graphs. 1). Identifying the corridor
points graph GEF € GF and GEM € GM; 2). extracting skeleton graphs G5
and G°M based on corridor points graph G¢F € GT' .

In the first sub-step, a customized centrality measure C' (1) is designed to identify
the core corridor network. For a given point v € V/, its centrality C'(v) is measured
as follows:

Clw)= Y ou) (1.3)

s#EVALEV

where o4 (v) is the numbers of shortest path from s to ¢ via v.

Based on this definition, we design a iterative algorithm to remove the non-central
points effectively. In each round of iteration, the centrality C'(v) is measured for
every points. If C'(v) is smaller than a low-bound 7, then remove the points from the
graph. This procedure repeats until no points is removed.

In the second sub-step, the skeleton graphs VSis generated by clustering the cor-
ridor points graph GO and GEM | We use spectral clustering (SC) [17] as the clus-
tering algorithm. SC is computationally faster than K-means and it only requires the
adjacency matrix which is exactly suitable in our case that both G and GEM are
represented only in adjacency matrix. Fig. 1.4(a) and (b) show the corridor points
of fingerprint graph and corridor points.

By clustering on GYF and GEM, we obtain the vertices set of skeleton graph
GSF and G5M . The edge set £°F and ESM follow the underlying points, that if
two points i, j, belonging to different clustersc, and cj respectively, have an edge,
then there is an edge between c, and c. The weight of edge e, is defined as the
shortest distance between the central points of cluster a and b, and the central point
of a cluster is the point ¢ which has the shortest distances to other points within the
cluster. Fig. 1.4(c) and (d) show the extracted skeleton graph of fingerprint graph
and corridor points respectively.

Graphs Normalization
Since the graph matching algorithm assigns the matching score according to pairwise
distance, G and GM must be normalized to same scale so as to guarantee an accurate
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Figure 1.4 Corridor Points and Skeleton Points extraction from fingerprint graph and
floorplan graph, respectively.

matching result.

The scaling effect can be undone by some global normalization of the graph shape.
Possible ways includes normalization of bounding box, or normalized Laplace-
Beltrami eigenvalues (LBE). The bounding box approaches works only for rigid
graph, while LBE is sensitive to deformations. We use the commonly accepted
longest geodesic distance Ly, as scale indicator.

Skeletons Matching

After the extraction and normalization of skeleton graphs, we now find the best
correspondence between GSF and GSM | Let positive symmetrical square matrix
MSE and MSM represent their adjacency matrices. We build the affinity matrix
MSEXSM for graph matching as follows:

MSEXSM _ J(15M @ MSF_15R @ M SM)? (1.4)

where & denotes the Kronecker product [18] and 15% denotes the full-1 matrix
with the same size of G, The idea behind Eq.(1.4) is to enumerate all possible
matching candidates and store them in a large adjacency matrix M SEXSM We use
RRWM algorithm to perform the graph matching, and Hungarian algorithm is further
applied to discretize the X in order to meet the final integer constraints X € {0, 1}"™.
Fig. 1.5(a) shows the skeleton graphs matching.

Corridor Points Matching
Although GSF and G5M are matching in previous step, however, the corresponding
clustering groups in GYF and GEM are not necessarily matched due to the incon-
sistency of clustering operation.

In the corridor points graphs, we notice that only a few points connect multiple
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Figure 1.5 The Skeleton and corridor points matching

chain structures, and they may serve as the bridge points. Since the topological
structures of GF" and GEM are identical, if we could identify the correct correspon-
dences of these bridge points, the points within the chain structure will be matched
easily. In order to identify the bridge node, we introduce a new metric called ’bridge
centrality”, which is equal to the number of shortest paths from all vertices to all
others within nearby clusters that pass through that node, defined as follows:

Chg(v) = > ost(v) (15)

{(s,t)|vect,s,;te NN (ct),s,t¢ct}

where NN (ci) denotes the nearby clusters around c¢’. The bridge point will be the
point with the highest bridge centrality.

After identifying the of correspondence of bridge points in GOF and GEM, the
chain structures are easily matched according to the start and end bridge points.
Fig. 1.5(a) shows the corridor points matching.

Rooms Points Matching

If we remove the corridor points graph GM from GM, the rooms points will nat-
urally forms several clusters. Each room points cluster C'z connects to the corridor
by a door point, and the rooms matching is also easy by matching the door points in
both G¥" and GM.

However, if there is more than one rooms connect to a single door point in the cor-
ridor, e.g. two rooms in opposite side along the corridor, there may be mis-matching.
This kind of mismatching can be canceled using coarse-grained propagation model.
Along with the corridor points matching, the coarse-grained position estimation for
APs can be done. With the rough location of APs, the rooms mis-matching can be
easily eliminated by checking the RSS values. The smaller RSS difference means
higher probability of being in the candidate rooms. Figure 1.6 shows the accuracy of
corridor points matching and room points matching.

1.25
User Localization

SENIL provides a unified localization and tracking service by treating the direct lo-
calization request as a tracking request without historical data. Here we mainly focus
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Figure 1.6 The matching error of corridor points and room points.

on tracking technique in SENIL. In our solution, the users’ trajectories are globally
determined from the very beginning by transforming the tracking problem to a graph
matching problem between the measured RSS samples transition graph G and the
fingerprint transition graph GF'.

1.2.6
Graph Matching Based Tracking

Graph matching based tracking is to find the best correspondence between the se-
quence of RSS samples of tracking request and extracted fingerprints. This is exactly
the same matching process undertaken in Section 1.2.3, except for the differences that
the tracking is to find the matched points, while in Section 1.2.3 focus on collecting
RSS fingerprints.

Let An°xn” represent the association matrix obtained through spectral match-
ing [14] where n° and n'" are the numbers of RSS samples and candidate finger-
prints set respectively. Due to the error in RSS measurement and fingerprints map
construction, a single RSS samples p; may correspond to multiple fingerprints in
X.e.g., a RSS sample may correspond to two fingerprints, one is in corridor, and
another is in a room. Fortunately the temporal correlation can help eliminate those
false correspondence by checking the spatial continuity between current and subse-
quent candidate fingerprints. After eliminating the false correspondence, the glob-
ally estimated coordinates sequence will be given by Tzs = for (G®), where
f : fingerprint — GM represents the mapping from fingerprints to the floor
plan manifold Gy, and Ty;s are the resulting coordinates sequence in G .

1.2.7
Evaluation

We site-survey the testing environment with approximately 3 X 3m grid and imple-
ment RADAR system as comparison to SENIL. 5 students walk along a pre-defined
testing trace for 5 rounds. Fig. 1.7 shows the error CDF of RADAR and SENIL with
different length of historical data. Based on the commonly accepted 3 x 3m grid site-
survey, RADAR has less than 3.5m error in 80% situations, while SENIL is only 1m
error larger than RADAR. When in tracking scenarios, every 3m of increased track-
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Figure 1.7 The localization & tracking error CDF with different amount of RSS fingerprints
data. The RADAR scheme is as comparison.

ing range brings approximately 0.7m tracking accuracy improvement. When tracking
range is 10m, SENIL tracking accuracy is very close to RADAR-based tracking. In
practical tracking scenarios, 10m of tracking range is a very low requirement.

1.3
Device-free Sensing using Big Data

1.3.1
Customer Behavior Identification

With the explosive development of e-business, making a buck becomes more chal-
lenging for Brick-and-Mortar (B&M) retailers. The availableness of online payment,
the pervasiveness of smartphones, and the conveniences of few-day delivery make
the future of physical retailing ever more tenuous. According to a report issued last
year, Amazon has had tremendous success by using collected online data to discover
what products his users are likely to buy. Moreover, as the study noted, Amazon
reported that 30 percent of sales were due to its recommendation engine [19].

Physical stores and retailers seem destined to be left out in the cold. Fortunately,
with the recent advanced technologies, retailers have great chances to thrive in the
future. In fact, it is possible that traditional retailers could have a better understanding
of their customers than ecommerce firms do. Through a combination of Big Data
analytics and leading-edge technologies, brick and mortar retailers are promising to
stay relevant. Retailers can also benefit from Big Data to unlock the mysteries of
customer behavior and understand why, what, how people buy. Accumulating the
data of customer behaviors over a period could help retailers to determine which Ads
should be introduced, where and how items should be displayed, etc.

As an intuitive solution, retail stores can use video cameras to distinguish whether
a customer is male or female, know what he/she buy by identifying the customer’s
gestures, and analyze why he/she did or did not buy a certain product by interpret-
ing the customer’s facial expressions. This solution is attractive. However, privacy
concerns raise a barrier for its implementation. To achieve above goals without com-
promising the user’s privacy and disturbing the customer purchasing experience, we
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Figure 1.8 Three objectives of CBID.

propose a RFID-based solution (called CBID) to identify on-site customer behav-
iors and further deduce products correlations, which can provide rich information
for B&M stores.

CBID is implemented by commodity RFID readers and off-the-shelf tags. Suppos-
ing each products in the store is attached by a passive tag, CBID system can identify
customer behaviors by collecting and analyzing wireless signal changes of RFID
reader and tag communication. Specifically, CBID has three main objectives, name-
ly discovering popular items, revealing explicit correlations, and disclosing implicit
correlations.

1.3.1.1 Doppler-based Popular Item Discovery

Popular items are the ones with great interests of customers. Customer behavior
analysis of sales history can only consider the purchase actions to indicate interests
of items. The unique advantage of CBID is that it can identify other actions such as
picking up an item, as shown in Figure 1.8(a). Intuitively, the more times an item is
picked, the more attention the item gains. B&M stores can then adjust the display
accordingly. In the CBID system, we count the detected pick-up actions of an item
as a metric to reflect the amount of customer attention gained by an item, namely
popularity.

Popular item discovery in CBID can be achieved by detecting and counting the
pick-up events by customers. In this part, we propose an accurate and robust dis-
covery algorithm of popular items discovery by detecting variations of tag’s Doppler
frequency shift. Doppler reflects the relative velocity between a reader and tag. When
a customer picks up a tagged item, the speed of item movement, i.e., the velocity of
the attached tag perpendicular to the reader antenna, can result in frequency shifts.

Adaptive Doppler Peaks Detection

After accurate estimation of the Doppler frequency shift, to detect a pick-up action,
our system should find the peaks of Doppler frequency values quickly and precise-
ly. Many existing algorithms have been proposed for frequency change detection
or peak detection. However, they require to record measurement data and then ap-
ply analysis tools. In real deployment of the CBID system, keeping the values of
Doppler frequency would be a overloaded task considering a huge amount of data
will be generated by monitoring the movements of thousands of tags in very short
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time intervals.

Therefore, we design an accurate magnitude threshold-based detection which
drops the data not related to the Doppler change as much as possible. A challenge
is that such a deterministic threshold does not exist because of two limitations in
real deployment. 1) Tag diversity induces diverse noise levels across different tags,
and 2) item locations diversity also raises different Doppler patterns. For the above
reasons, we adopt an adaptive CUSUM algorithm [20] to track possible changes in
Doppler values.

Let d(t) denote the Doppler frequency value at time ¢ and its probability density is
denoted by pg, where 6 is the distribution parameter. Assume that a change happens
at time 7', the probability density of Doppler frequency changes from p,, to p,. Then
we can use a logarithmic ratio to compare these two distributions:

()
by =log ) ()

For the parameter z, it is easy to be obtained from the historical change record. But
the parameter y, which is also called post-change distribution parameter, is unknown.
It also varies during the detection process, leading more difficulty to predict.

To solve this problem, we define the change time 7" as:

(1.6)

t
Tinf{tmaley(i) zh},l <k<t, (1.7)

i=k

where h is a predefined value [21]. Given that the post-change distribution is un-
known, the time 7' cannot be directly known from Equation 1.7. CBID then recur-
sively applies the CUSUM method proposed in [20] to determine the range of pa-
rameter y. Based on the range of y, we can detect changes of the Doppler frequency
more accurately.

We verify the feasibility of above solution via extensive experiments. We conduct
experiments in three different scenarios. Here we only show a small part of results
about change point detection in Figure 1.9. Each of the subfigures 1.9(a)-(d) corre-
sponds to a pick-up experiment. In such an experiment, a volunteer picks up a book
from a shelve and puts it back. We record the signal phase and time stamp of every
tag packet during this period. The blue curve represents the estimates of Doppler
frequency. By examining these estimates using the adaptive CUSUM algorithm,
CBID detects a sudden change marked by a red circle in each of the subfigures. Ex-
perimental results of four actions indicate that the algorithm works well in different
scenarios. As a result, the CUSUM algorithm can successfully skip perturbations in
signal caused by environmental noise and discover the real change point in Doppler
frequency values.

1.3.1.2 Location-based Explicit Correlation Discovery
We say items have explicit correlations if they are rival or complementary. For exam-
ple, a customer may compare a bottle of CocaCola and a bottle of Pepsi. As another
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Figure 1.9 Change point detection by adaptive CUSUM: The subfigures show the Doppler
frequency changes of four continuous pick-up actions. The blue curve shows the
estimated Doppler values and the red circles are the change points detected by adaptive
CUSUM.

example, a customer may pick up a cap and a jacket to decide if they match each oth-
er. Sales history analysis may reveal some of complementary items but can hardly
discover rival items. The pick-up behaviors of explicit-correlated items are spatial-
ly and temporally close, e.g., a customer may pick up these items simultaneously
(Figure 1.8(b)). The CBID system applies novel passive tag localization methods to
reveal such spatial and temporal correlations of moving items.

The main challenge is to connect items that are picked by a same person. However
collected data are unable to report which items belong to whom. For the example of
the scenario shown in Figure 1.8(b), two customers stand in front of a goods shelf.
When three events of item pick-up are detected, our system should further figure
out that two pick-up actions belongs to a same customer. It is generally the truth
that when two items are holding by a same person, their positions should be close.
Inspired by this, we form the problem of explicit correlation discovery as locating
tagged items and deciding which tags are geographically close.

To locate close tags, an intuitive approach is to use the RSS of backscattered RF
signal as the position fingerprint. Nevertheless, this method has some well-known
drawbacks. First, it utilizes the Friis Equation that clarifies an RSS is inversely pro-
portional to the biquadrate of the distance. The equation can only become valid with
a strong assumption: the communication parties should be in a unobstructed free-
space. In indoor environments, the multipath effect will yield severe influence to
RSS measurement. Second, it is a huge workload to build an RSS map in advance.
In addition, recent studies further show that such an RSS value strongly depends
on the multipath profile [22]. Multipath profiling for localization, though being ac-
curate, requires modifications on the reader hardware, e.g., adopting the technique
of synthetic aperture radar. These modifications result in non-trivial customization
overhead.

Thus, we propose to allow the reader to intentionally move its antenna and collect
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multiple RSS samples from a same tag at different antenna locations. CBID then
uses multiple RSS from a same tag as a new metric for location. This method does
not need any modification on existing RFID hardware and protocols.

Antenna Movement Model

Different from traditional RSS models where one tag location is assumed to be cor-
responded to a single RSS value, the proposed solution in CBID moves the reader
antenna and collects multiple RSS samples for a tag. We first develop a simple an-
tenna movement model to characterize the direction-distance relationship at different
antenna locations. Based on that, CBID can retrieve the RSS information of tags and
determine whether they are close or not. In this new model, there are two require-
ments.

* In order to improve the accuracy, it is better to avoid changing the dominance of
direct path when antenna moves. So, the antenna should not move out of a range.
We define an upper bound of this range as % where Y is the vertical distance
between the antenna and tag (as shown in Figure 1.10).

* Inspired by Jakes Model [23], the signal within half wavelength are indistinguish-
able. Therefore the distance of antenna movement (7°) has a lower bound %

In summary, we have % <r< % To meet these conditions, we prefer to simply
move an antenna back and forth in our implementation, termed as shuttle antenna.
Figure 1.10 illustrates an example of the antenna movement model, where O is the
origin location of antenna, 7 is a static tag at position (x, Y') with distance d from
O, and the direction from O to T is in the angle . A is the shuttle antenna. The
position vector of tag T is :

OT = (d-cosa,d-sina) = (z,Y) (1.8)

Suppose that A moves along the vertical axis within a maximum range R. The dis-
placement of A periodically changes with ¢ within the range (—R, R). We take a
sine function to simulate this displacement for simplicity. Therefore, the position
vector of A can be represented as:

—
OA = (0,R -sint) (1.9)
The distance vector from the antenna to tag is AT

AT = OT — OA = (2,Y) — (0, R - sint)
= (z,Y — R-sint) (1.10)

Integration of Multi-RSS

The Received Signal Strength (RSS) is a measurement on the power of a received
radio signal. In RFID systems, RSS is one of the reader outputs, reflecting the power
of received backscattered signal Pr,. RSS can be measured in the unit of dbm and
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Figure 1.10 lllustration of Antenna Movement Model

calculated as: RS'S = 10 lg(%). According to the Friis Function [24], we can
model RSS as:

Pro ool X\

In this part, we propose to use a new metric, called Integration of Multi-RSS
(IMR), as the fingerprint of a tag’s location. By moving the reader antenna,
CBID obtains a set of RSS values for a fixed tag (i.e., a fixed location) when
the antenna moves. The RSS value varies because AT changes. Let M =
Lrg G’T2Gt2Tb(ﬁ)4. According to Equation 1.11, at time ¢, the RSS received

TmW
from the tag can be represented as:
RSS(t) = 101 (M L)
— R arp
4
=101g | M - !
8 Va2 + (Y — Rsint)
1 2
=101g | M - ( : )
( 2?2+ (Y — Rsint) (1.12)

Let P, be transmit power of reader, which is set to 32dbm. G, is 8dbi for our reader
antenna Laird A9028R30NF. G is 2dbi, which is the typical gain for real dipole-like
tag antenna. T} is % [24] here for backscatter transmission loss. Y can be measured
through real deployment and in our experiment, we put the shuttle antenna 1m away
from the tags. Then, the only unknown parameters in Equation 1.12 are the tag’s
horizontal axis value x and the time ¢. The IMR metric is used to reflect £ and x, and
thereby fingerprint the tag’s location.

The CBID reader collects the RSS values of a tag in a complete antenna movement
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Figure 1.11 The IMR values of different tag positions from our theoretical model, given the

same vertical distance. The red dotted box marked the practical reader range in 0 ~ 10
meters.

cycle. The multiple RSS values together provide the IMR fingerprint of the tag:

2m

RSS(t)dt

_ /0277 <10lg (M' (x2+(y1_Rsint))2>> "

2 2
:/ 101gMdt—/ (201g(2* + (Y — Rsint)))dt

0

2w 2w
—10/ lgMdt—ZO/ (Y — Rsint))dt (1.13)
Replacing sin ¢ with 6 in Equation 1.13, we have

/ RSS(6)d6

27 2m _ i .
710/ lgMdthO/ lg(z* 4+ (Y — Rsint)) - costdt

cost
_10/ g Mdo — 20/ lg(z? + (Y — R0))do

V1-62
+20/ lg(2? + (Y — RO))

V1-62
0
+20/ lg(2? + (Y — RO))do
V1-6? (1.14)

Given different x values, we can achieve the relationship between the tag locations
and the proposed fingerprint IMR, which is demonstrated in Figure 1.11. We can
see that when a tag’s vertical distance Y to the antenna is constant, its IMR value is
inversely proportional to the tag’s horizontal distance x.

The IMR metric is better than those used by traditional RSS methods for tag lo-
calization with the following reasons. Let S be the signal vector received from a
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given tag. S can be considered as the sum of a multi-path signal MPS and a noise
signal V. Thus, we have the expression S = M P.S + N. Normally, we can assume
that the noise signal follows a typical gaussian distribution with a mathematical ex-
pectation of 0. Hence the integral value of N should tend to 0. On the other hand,
the multi-path effect may cause RSS changes. In some positions and angles the RSS
may be strengthened, while in other cases, the RSS may be weakened. In our imple-
mentation, we adopt the shuttle antenna pattern and collect a set of RSS values for
each tag’s position. Multiple sampling of a tag can help the system to neutralize the
multi-path effect. Therefore, IMR-based localization has a better performance than
single-RSS based approaches.

1.3.1.3 Movement Pattern Based Implicit Correlation Discovery

We say items have implicit correlations if they share similar pick-up, moving, or
purchase correlations. The most famous example is the tale of beer and diapers,
which says that beer and diaper sales are explicitly correlated because young fathers
who are sent to buy diapers would also buy beer for themselves. CBID uses tag
trajectory monitoring and clustering to disclose these correlations by detecting and
analyzing movement patterns of tags, as shown in Figure 1.8(c).

Based on Section 1.3.1.1, the CBID system knows which items are picked up by
customers. Furthermore, we expect to find out the reason behind. For example, a cus-
tomer who has put onions and tomatoes into the shopping cart may also buy burgers.
This correlation can be expressed as Pre{Onion, Tomato} = Pn{Burger}.
Pre{} represents that a customer picked the item previously, while Pn{} repre-
sents that the customer is likely to pick the item in future. Previously picked items
may be in hand or in a shopping cart, within a short range in either way. Identifying
Pre{} and Pn{} items helps the system to connect items with implicit correlations.

Problem Formulation

When a customer chooses Pn{} items and leaves the shopping area together with
his/her Pre{} items, the reader can easily detect the movement of these items. Hence
if only one customer stands in the area, the correlated items are relatively easy to
detect. However, real situations are much more complicated. Considering two or
more customers (C1,Ca, ..., C,,) who are shopping in front of a shelf and they all
have their wished items. Some of them may have picked some items and leaved this
area almost at the same time. We denote all tags belonging to these customers are
near-context tags for this area. The near-context tags are actually identified in one
area of interests and their time stamps of residence differ slightly within certain time
tolerance. In our experiments, we set the time tolerance as 0.5 second.

Then the problem is formulated as, giving all the data of near-context tags, for
each Pn;{} item how to discover the previous items set Pre;{} which belongs to
the same customer C;.

One intuitive solution to this problem is to record each tag’s Doppler frequency
value and monitor its movement trajectory. For the items in a same shopping cart,
they will move together and share a similar movement pattern. The traces of all
near-context tags can be clustered to different customers. However, such a solution
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encounters two challenges in a real RFID system.

e Irregular sampling period: In an UHF RFID system, identifying tags will experi-
ence a collision-arbitration process, by which different tags are identified in differ-
ent time slots. This means the sampling time for different tags will not be the same.
In addition, several other factors, such as signal attenuation due to tag movement,
will also lead different sampling times to different tags. This problem makes the
sample density varies over time for each tag and then ruins the accuracy of clus-
tering.

* Unknown number of customers: As the number of customers is unknown for the
system, exhaustive search for the best clustering result is an NP hard problem.
Therefore, an effective clustering algorithm with rapid convergence is required.

Segment-based Interpolation

To overcome the first challenge, we implement a segment-based interpolation ap-

proach which makes all raw data have the same number of samples of different tags.

We set the time length of one segment as T, = 1s and find the minimal time stamp

(T'nin) and maximal time stamp (7,4, ) of all data reported from near-context tags.
Then the whole time period is partitioned into [V segments, where

N = |—(Tmaz - Tmi’ﬂ)/TSeQW

In each segment, CBID applies the Linear Interpolation method to fit the Doppler
curves. The advantage of this method is that we can reduce the interpolated error. In
addition, considering each segment of data is indeed one observation, this method
will increase the amount of data used for the clustering algorithm presented in the
next subsection.

Iterative Clustering Algorithm with Cosine Similarity
In this subsection, we present an iterative clustering approach to organize tags in
different groups, which utilizes cosine similarity measurements.

To clearly explain the goal of this algorithm, we use one group of experiment data
to serve as an example. Figure 1.12 shows tags’ Doppler frequency data processed by
the segment-based interpolation. In this set of experiments, two volunteers emulate
a shopping procedure and each of them has a shopping cart. Their trajectories are
random. Volunteer A has only one item which is associated with Tagl. The other
three items (with Tag2, Tag3, and Tag4, respectively) are all in volunteer B’s shop-
ping cart. In order to extract implicit correlations of the items, we have to cluster the
four tags.

As described in Section 1.3.1.3, we divide the Doppler data into /N segments. Each
segment of data is considered as a vector. We implement the cosine calculation to
measure the similarity between two vector observations within the same time peri-
od. Supposing there are M near-context tags. The similarity metric S; i, for two
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Figure 1.12 Doppler data of implicit-correlation experiment: Subfigure (a)-(d) demonstrate
4 tags’ doppler data after segment-based interpolation. Tag1 belongs to volunteer A and
the other 3 belong to volunteer B.

segments F J’, F ,: can be expressed as :

%

i i
_ Fl-F}
j,k*‘

I

: A<i<N1<j k<M (1.15)
I

where ¢ denotes the ith segment of Doppler data and j, k are tags’ identifiers. The
similarity ranges from -1 to 1, where -1 means completely different and 1 means
exactly the same.

For each time period ¢, (1\24 ) times of comparisons should be conducted. Consid-

ering all the time periods, the size of the result matrix is (J;[ ) X N:

52171 5%1 o 5%1
53,1 53,1 53,1 (1.16)
S%/I,]M—l SI2VI,M—1 T S]\A/;,M—l

The rows of the above matrix show all segments’ similarity values between two seg-
ments of Doppler data. Therefore, the mean value of each row (MS) can reflect the
average similarity of the Doppler data under comparison. Then we get the similarity
vector:

R' = [MS5,,MS5 -, MSi 1] (1.17)

where ¢ indicates the tth iteration in our clustering algorithm. Giving the vector R?,
we can calculate a similarity threshold T'hre! as:

Thre' = mean(R') + a x std(R") (1.18)

where « is a constant value.
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Figure 1.13 An example of iterative clustering algorithm.

We continue to use the example of Figure 1.12 to explain the effectiveness of our
algorithm. At first, each tag is considered as one individual cluster. According to
Equations 1.15, 1.16, 1.18, we can calculate the first similarity vector R based on the
measured data of the four tags. The results are shown in Figure 1.13. Each number
in this figure means the average similarity between two tags. The threshold of the
first iteration is 0.47, if o = 1. We pick similarity values which are greater than
the threshold: M Sé’ 4 in our example and put the two corresponding tags into one
cluster. Hence Tag3 and Tag4 are clustered in the first iteration. The mean similarity
R? and the threshold T'hre? should be re-calculated in next iteration. When there is
no similarity value is greater than the threshold, or only one cluster left in the end,
the iterative algorithm is terminated.

1.3.2
Human Object Estimation

Human objects counting at a certain location is an crucial problem that has been
researched within diverse research areas and application domains. Estimation of
number of people has a extensive use in customers favor detection, stream of people
location and quantification. By collecting these features of quite plenty of customers,
we can reach a conclusion or get some experiences about customers purchase, shop-
ping regional design or even people shopping habits. Currently, technique solutions
based on three main points: mechanical barrier, sensing and imaging. The mechani-
cal barrier based technology employs specific facilities to construct a one-way gate so
that once a person access the gate, the facilities will move and count the number. Sim-
ilarly, sensing based method utilize a break-beam sensor at the entrance of a one-way
gate that if a person pass through it, the beam will be blocked. Teixeira[25] provide
an extensive survey of methods for detecting human presence, count, location, etc. In
contrast, the imager based technology uses pattern recognition techniques to identify
the number of human beings in the videos.

We propose a system called R#, which employs existing passive Radio Frequen-
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cy Identification(RFID) tags. According to the reflection, blocking and absorption
of human beings, we can estimate the number of people by analyzing Radio Sig-
nal Strength(RSS) of the tag population. R# system has two major advantages.
First, R# utilize off-the-shelf commercial RFID systems, which have been widely
deployed in daily life. Secondly, R# is a device-free based solution that do not need
to attach any device to human objects, which is suitable for the purpose of collecting
information from quiet a lot of people.

However, we also face three key challenges. Firstly, we can extract limited types of
information from commodity RFID devices. In addition, tag location and diversity
lead to significant differences to the RSS value. Last by not the least, it is difficult to
model a RF signal pattern.

To solve these challenges, R# employs a pre-deployed passive RFID system in
supermarket, in which passive tags are attached to items. For a given region, a reader
identifies a number (say 20) of passive tags using protocols in EPC C1G2 [26]. In
particular, the tags are deployed in a line, as illustrated in Figure 1.14. The reader
periodically collects the tag IDs and RSS values. For simplicity, we call an RSS
sequence collected from such a period as an observation and each collection from a
tag as a sample in the following sections.

R# works in three phases, data preprocessing, feature extraction, and estimation.
In the first phase, R# preprocesses the raw RF signal data collected from the reader for
later operations. In the second phase, R# extracts three features from the RSS values
to establish a correlation between the number of human objects and the backscat-
tered RF signal. Finally, R# employs machine learning techniques for human object
estimation.

(C)

Passive
tags der

@ Ly
T = 0
" 4 ¢

Figure 1.14 The multipath propagation of RF signal in R#.

1.3.2.1 Data Preprocessing
There are two operations in the preprocess phase, regrouping and interpolation.
Following the specification of EPC C1G2, tags are identified using a slotted ALO-
HA mechanism. That is, each tag randomly selects a time slot for reporting to the
reader query and returning its ID. Hence the RSS values in one observation are
‘timeline-based’ but not grouped according to the tag ID, and hence cannot be used
by the feature extraction scheme of R#. Thus, we regroup the RSS values by tag IDs
in each observation.
Again due to the slotted Aloha mechanism, the slot in which a tag replies is ran-
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domly and uncontrollably distributed, leading various numbers of samples from dif-
ferent tags in one observation. In addition, ambient factors, such as the shadowing,
interference, and tag location, also influence the backscattered signal, resulting in
different sampling periods to these tags. Suppose K is the maximum number of
samples collected from a tag within one observation. To avoid the unfairness in the
sampling and later processes, for each tag we use a Linear Interpolation method to
virtually increase the number of its samples to K.

1.3.2.2 Feature Extraction

In R#, our expectation on a feature of the RF signal is that it monotonously increases
if enlarging the number of human objects, or vice versa. To this end, we select three
features, entropy, size of dilated area (SDA), and mean squared error (MSE). We
present their extraction schemes as follows.

e Entropy. Given a constant transmission power of the reader (32dBm in our im-
plementation) and fixed location for each tag, the collected RSS values vary within
a range, denoted as [Ry,;, Rimq)- the human interference may either strengthen or
offset the overlapped signal at the reader antenna. Correspondingly, the R,,,; and
R,,,, may change as well.

We setup a mathematical abstraction on the RSS values in an observation. If we use
a random variable to represent them, those values are actually a distribution of this
variable. As shown in Figure 1.15 and Figure 1.16, the distributions with different
numbers of moving human objects are distinguishable. Inspired by this, we attempt to
apply an information entropy based scheme to reflect the distribution of this variable,
and hence yield the first entropy feature for R#.

According to the information theory, the entropy is a measurement of the uncer-
tainty for a random variable. By monitoring the entropy of different observations,
we can measure the degree of their disparity or concentration [27]. To calculate the
entropy of an observation, we first establish the empirical distribution for this obser-
vation. The RSS range is divided into /V bins with an equalized length (B L), where
N = [(Rma — Rmi)/BL]. Let i denote the bin ID, ¢ < N, x; denote the number
of RSS values falling into the ith bin, and p; = x;/ Zivzl x; denote the probability
that z; RSS values fall into the 7th bin. According to entropy theory, the discrete
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Figure 1.17 Binary visualization and dilation results of the observation of 0, 2, 4 human
objects. When the number of human objects increases, the size of dilated area is
enlarged.

entropy of an observation can be calculated as:

N
E(X)=- pi-log(ps) (1.19)

i=1

We extract the second feature from the collected RSS values by using a Morpho-
logical Image Processing based Scheme (MIPS). This feature is firstly discovered
from the RSS data visualization. Intuitively, the higher the RSS variance, the larger
the area the points could covered. To formalize this observation,

we first binary-visualize an observation with the following operations.

To simplify the subsequent processes, we extend the range of [Ryui, Rma] to
[R,,;, R,.]. Since the RSS resolution of our RFID readers is 0.5 dBm, we then
normalize each RSS value 2 with the operation (z — R,,,;) X 2. Every x is within
[07 (R;na - R;”m) X 2]

We introduce a two-dimensional array Ry . and initialize its elements as zero.
Here [ is the length of the observation and c is (R/m(z - le,) x 2. We then set all
elements R(k,z;) to 1, where 1 < k < [;1 < i < c¢. Note that there is only one
’1” in every column of R;x.. Each element in this array represents a pixel. Let *1’
denote a white pixel and ’0’ denote a black pixel. Then we obtain a binary image.
For example, the upper half parts of Figure. 1.17(a), (b), and (c) show the results of
performing the binary visualization operation on the observations with 0, 2, and 4
human objects, respectively.

The core operation of MIPS is the morphological dilation, which makes a target in
an image "grown’ or ’fatten’. This operation is based on two fundamental morpho-
logical operations, reflection and franslation. The reflection of a set A is defined as:
A = {wjw = —a,a € A}. The translation from a set A to a point z = (21, 2p) is
defined as: (A), = {c|c = a + z,a € A}. To formalize, dilating a set A by using
aset Bis expressed as: A@ B = {z|((B). (N A) # }, where B is the structuring
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Figure 1.18 The error rate of R# vs. the error rate of variance-based method.
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Figure 1.19 Three features used by R#.

element, which decides the degree of dilation. Generally, B is a set of ’1’s with a
specific shape, such as a ’line’, ’diamond’, and the like. When conducting a dilation
operation, B will translate on the entire image region of A, and exam which posi-
tion is overlapped with its *1’s. The dilation result is a set with all these overlapped
positions. The lower parts of Figure 1.17 (a), (b), and (c) demonstrate the dilation
results of upper original binary images. We can see that after dilation, white pix-
els get connected and the area of them is extended. We find that the area of white
pixels can well represent the feature of observations. That is, when there are more
human objects in the surveillance region, the area of white pixels becomes larger in
the dilated image.

After the dilation, we find that the image has many burrs, which are probably de-
rived from some outliers. To eliminate these thin protrusions, we conduct an open
operation. The open operation is a combination of dilation and erosion operations.
Different from the dilation, erosion can shrink or diminish a target in an image. In
the open operation of R#, an erosion is followed by a dilation. An open operation of-
ten makes the edge of an object smooth, fills the gap, or eliminates the burr. Hence,
the purpose of performing open operations for R# is to remove the noise and out-
liers from an observation. We define an erosion on a set A by using a set B as:
Ao B={z| (é)z C A}. Hence, the open operation is symbolically expressed as:
Ao B = (A6 B)® B, where B is a structuring element. After the open operation,
we calculate the area of white pixels as the second feature.

e MSE. Based on the dilated image f(x,y), we introduce another independent
feature, the Mean Squared Error (MSE). By compressing f(x,y) using Discrete
Cosine Transform (DCT) followed by an de-compression, we obtain an recovered
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image f (z,y). We find that the fidelity between f and f can be used for character-
izing the observations. Specifically, the Mean Squared Error (MSE) represents the
fidelity feature. MSE is normally used to measure the information loss. We notice
that when there are more human objects moving in the area, the image of the obser-
vation will be more complicated. Correspondingly, when doing DCT compression,
more information will lose.

Considering a M x N image f(z,y), the forward DCT T'(u, v) can be expressed

as. M—-1N-1

v)= > fla ),y u,0)

u=0 v=0
g(x,y,u,v) = a(u)a(v)k(u,v)

)

where,

1
M
2
M
S
N
a(v) =
/2
N U=],2,...,N-1

DCT compression is an invertible transform and can be easily recovered. A brief
procedure of DCT compression is as follows: we first divide the original image in-
to some 8x8 subimages. We then use the DCT to represent these subfigures, and
discard a part of the coefficients achieved (85% in our implementation). When re-
covering the image, we run the reverse DCT on the intercepted coefficient matrix.
Although the discarded coefficients have little visual influence on the recovered im-
age, they still incur MSE. The incurred MSE between f(z, y) and f(z, y) is:

M-1N-1 o\ 12
MSE(MNZZ(fSUy fla, )))

u=0 v=0

1.3.2.3 Machine Learning based Estimation
Before the design of estimation mechanism, we exam the effectiveness of three fea-
tures.

We arrange 0~ 10 volunteers to move arbitrarily in the region and check the trend of
features with varying the number of volunteers. The result is reported in Figure 1.19
(a), (b), (c). It reveals an interesting insight. Each of the three features shows a good
ability of distinguishing different numbers of human objects in some ranges, e.g.,
0~4 persons for SDA and 6~10 persons for MSE. While the entropy feature shows
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an instable variance upon certain numbers of persons. Fortunately, the three features
exhibit the complementarity with each other, which inspires us to jointly use them in
the classifier of R#.

We adopt Naive Bayes method from WEKA as our machine learning classifier. In
real implementation, it is necessary to tune the classifier parameters to optimize the
estimation accuracy. To achieve this goal, we organize above experiment results into
two datasets, one for training and another for test. We then perform a 10-fold cross
validation on the datasets to determine the key parameter of classification.

1.4
Conclusion

Indoor wireless sensing has spawned numerous applications in a wide range of liv-
ing, production, commerce, and public services. The increase of mobile and perva-
sive computing has sharpened the need for accurate, robust, and off-the-shelf indoor
action recognition schemes. We explore the properties of wireless signals and pro-
posed a robust indoor daily sensing framework using the big data technology. We
can achieve relatively high recognition accuracy for a set of similar daily actions
insensitive to location, orientation, speed, and shopping habits.

Considering the advantages and limitations of wireless signals, we will put our
effort into exploring how to gain more robust and subtle indoor sensing in future
work, and we think vision-based methods and Wi-Fi based methods may be a good
complement to each other using crowdsourcing techniques in the age of big data.
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