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Abstract— With the prevalence of Intelligent Transportation
Systems (ITS), massive sensors are deployed on roadside, vehicles,
and infrastructures. One key challenge is imputing several
different types of missing entries in spatial-temporal traffic data
to meet the high-quality demand of data science applied in
Cooperative-ITS (C-ITS) since accurate data recovery is critical
to many downstream tasks in ITSs, such as traffic monitoring
and decision making. For such, it is proposed in this article
solutions to three kinds of data recovery tasks in a unified model
via spatial-temporal aware Graph Neural Networks (GNNs),
named Spatial-Temporal Aware Data Recovery Network (STAR),
enabling a real-time and inductive inference. A residual gated
temporal convolution network is designed to permit the pro-
posed model to learn the temporal pattern from long sequences
with masks and an adaptive memory-based attention model
for utilizing implicit spatial correlation. To further exploit the
generalization power of GNNs, a sampling-based method is
adopted to train the proposed model to be robust and inductive
for online servicing. Extensive numerical experiments on two real-
world spatial-temporal traffic datasets are performed, and results
show that the proposed STAR model consistently outperforms
other baselines at 1.5-2.5 times on all kinds of imputation tasks.
Moreover, STAR can support recovery data for 2 to 5 hours, with
its performance barely unchanged, and has comparable perfor-
mance in transfer learning and time-series forecast. Experimental
results demonstrate that STAR provides adequate performance
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and rich features for multiple data recovery tasks under the
C-ITS scenario.

Index Terms— Cooperative intelligent transportation system,
data recovery, graph neural network, spatial-temporal.

I. INTRODUCTION

W ITH the advancement of communication and informa-
tion security technologies [1], smart cities are rapidly

growing the scope and coverage of sensor networks to collect
and analyze data for city management such as traffic systems,
urban security, and weather forecast. With the widespread of
sensors of all types, a massive volume of data is generated [2]
and thereby, leading to possible advanced data science tech-
nologies applied in smart city applications. One of the most
successful applications is Intelligent Transportation Systems
(ITS), which broadly supports mitigating traffic congestion,
improving road safety, increasing road capacity, and saving
fuel consumption using data analysis algorithms. As illus-
trated in Figure 1, Cooperative-ITS (C-ITS) has emerged to
enable multiple isolated ITS to cooperate with each other in
recent years, thereby further improving safety, sustainability,
efficiency, and comfort by exploiting advanced communication
and collaboration between standalone agents.

As the volume of C-ITS systems and wireless communica-
tion networks expands, cases of sensor malfunction, transmis-
sion interruption, and missing data have become inevitable
issues, and therefore, severe consequences may occur. For
instance, such a phenomenon may lead to erroneous conclu-
sions, as missing values may distort statistical characteristics
and cause a model to produce unexpected results, misleading
wrong decisions. In addition, deploying sensors in urban areas
is expensive and laborious, not to mention the increasing
system operation and maintenance costs. As a matter of fact,
only a limited number of sensors is available for the C-ITS to
retrieve a conspectus of the region. Hence, the data recovery1

task is critical, since many applications may rely on it.
Essentially, the missing patterns can be summarized into

three types, namely random missing, segment missing, and
blockout missing, and corresponding intuitive examples of data
missing patterns are presented in Figure 2. Random missing
may cause accidental packet loss; segment missing may indi-
cate malfunctioning, and blockout missing is due to the new
deployment of sensors. In practice, all three kinds of data

1Data recovery and data imputation are used interchangeably in this article.
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Fig. 1. The demonstration of data recovery workflow in cooperative
intelligent transportation system.

Fig. 2. Data missing patterns of traffic data. (a) Random Missing is caused
by unexpected transmission errors, and interpolation methods can quickly fill
the missing values. (b) Segment Missing is caused by power outages, sensor
malfunctioning, and extreme weather conditions. Factorization-based methods
and neural network-based models can fill these missing values. (c) Blockout
Missing is caused by new deployments or long-time failure, as filling missing
values for such situations may be challenging, given that no historical data
is available, so thus, nearby sensors are used to fill the need to handle the
complicated spatial-temporal dependencies.

missing patterns co-exist in real-world collected sensor data,
incurring additional difficulties to data science. If missing data
is accurately reconstructed, this is an undoubtedly valuable
support for autonomous driving, traffic flow prediction, and
deploying virtual sensors.

Unfortunately, this is not an easy task, and there are needs
and challenges to design a highly precise while fast algorithm:

• Fast and Accurate Data Recovery. The algorithm
should fill the missing values as soon as possible to
meet the real-time requirement of several subsequent
tasks. The model should be inductive to get the imputed
data, which means no retraining when new data arrives.
Matrix/Tensor completion methods are mostly transduc-
tive, which means they cannot generalize to unseen nodes
(spatial aspect). In addition, completion-based methods
are also unable to generalize to the next time-window
(temporal aspect).

• Irregular Missing Pattern. Due to the randomness of
failure cases and data packet loss, the missing patterns
are usually highly irregular, and the total sampling rate
varies. It causes difficulty in representation learning for
such data dynamic scenes.

The fundamental challenge of the data completion task
is to exploit the limited observed data, using the internal

spatial-temporal correlations, to impute the missing entries
effectively. Although significant progress has been made on
spatial-temporal aware time series forecast in recent years,
a few numbers of literature focuses on the neural network-
based spatial-temporal imputation problem with complex
missing patterns. In this article, inspired by the successful
application of [3], [4] that GNNs are promising tools for
inductive tasks, we address the challenges mentioned above
and propose a novel framework named Spatial-Temporal
Aware Data Recovery Network (STAR) for this task based on
Graph Neural Networks (GNNs). The technical contributions
are threefold:

• We propose a novel inductive spatial-temporal model
called STAR to solve the data imputation problem under
C-ITS. Compared with transductive methods, the pro-
posed model can meet the requirements of real-time traf-
fic data imputation without retraining the whole model,

• The proposed model can capture spatial-temporal depen-
dencies with semantics effectively and efficiently. The
core idea is to assemble an adaptive memory-based
attention network into graph convolution and utilize
dilated Temporal Convolution Network (TCN) to accel-
erate training and inference,

• To conduct extensive numerical experiments on
real-world sensor datasets to verify the performance of
the proposed model.

The remainder of this article is organized as follows.
Section II briefly reviews related works, Section III presents
the methodology, Section IV discusses the experiment results
of the proposed model, and finally, concluding remarks and
future directions are presented in Section V.

II. RELATED WORK

A. C-ITS

ITS integrates multiple highly trended advanced tech-
nologies, including sensors network, communication, control
theory, and artificial intelligence. It focuses on digital tech-
nologies that provide intelligence for systems. The prevalence
of these systems and emerging network technologies (e.g.,
5G, WiFi6, Internet of Things (IoT), SD-WAN) enable C-ITS.
Infrastructures equipped with C-ITS can cooperate to improve
overall system efficiency, reliability, and sustainability. For
example, Ref. [5] proposed an augmented vehicle localization
that combined global navigation satellite systems (GNSS)
with vehicle-to-anything (V2X) communication systems. Ref-
erence [6] exploited streaming C-ITS data to detect anomaly
stopped cars and a growing pothole on the road using con-
cept drift detection methods. Reference [7] proposed a deep
neuro-evolution model to implement a cooperative control
scheme that integrated ramp metering, speed limits, and lane
change control agents to improve freeway traffic. Reference [8]
introduced a choreography-based heterogeneous service com-
position platform to accelerate the reuse-based development
of an urban traffic coordination application.

Despite the outstanding achievement, some open issues that
hinder the application of data science for C-ITS still exist [9].
This article focuses on the data imputation problem. That is,
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every single component collects traffic data and uses wireless
communication to propagate messages. With the increasing
volume of communication systems, data transmission errors
and data missing become assignable. In addition, as a critical
component of the system, sensors still require high costs to
deploy to large-scale networks [10]. Fortunately, these two
problems can be alleviated by a well-designed spatial-temporal
aware data recovery algorithm, and so thus, a better model for
high accuracy data recovery and estimation under C-ITS is
urgently needed.

B. Traffic Flow Forecast

The traffic flow forecasting problem is a fundamental
yet challenging issue. Earlier works as those presented
in [11]–[13] attempted to treat it as a time-series predic-
tion problem in isolated points. Unfortunately, these methods
heavily depend on local seasonality features, and hence they
often fail to model interstation dependencies. Recent works
explore the power of GNNs in modeling spatio-temporal data.
References [14], [15] proposed RNN-based methods that cap-
ture spatial and temporal dependency using graph convolution
and recurrent neural networks, respectively. Other alterna-
tives, as presented in [16], [17], are equipped with stacked
CNN-based temporal encoder and graph convolution-based
spatial encoder to gain better representation and faster training
speed. Li et al. [18] summarize and benchmark the previous
works on traffic flow forecast, then proposing novel RNNs
with dynamic graph inputs on each step.

C. Spatial-Temporal Kriging for Blockout Missing

Gaussian process regression (GPR) [19], [20] is an effective
tool to solve the Kriging problem, as it applies a flexible
kernel to construct spatiotemporal correlations. Nevertheless,
the major drawback of GPR is the high computation overhead,
which limits its real-time application.

In recent years, neural network-based Kriging emerged. Ref-
erence [4] overcame strong Gaussian assumptions and directly
used neighboring observations when generating predictions.
Ref. [21] proposed a novel generative adversarial network
for recovering missing entries in a fixed-size matrix, and
finally, Reference [3] applied diffusion graph convolution and
exploited training technique to enable inductive inference.
Unfortunately, most of the models mentioned above are trans-
ductive. That is, they needed to retrain the entire model when
the network structure is changed even slightly. Some recent
studies [3], [22]–[24] demonstrated that GNN could generalize
to an unseen new structure of graphs (i.e., new nodes or new
edges introduced). Inspired by these works, we develop an
inductive model to solve the spatial-temporal Kriging problem
for dynamic C-ITS.

D. Spatial-Temporal Imputation for Non-Blockout Missing

Works in literature pointed out the spatial-temporal imputa-
tion problem as matrix/tensor completion, as they leverage the
road network structure as regularization under the matrix com-
pletion framework [25]–[27]. To further utilize more spatial-
temporal patterns, other approaches as [28]–[30] tried tensor

TABLE I

MATHEMATICAL SYMBOLS AND DESCRIPTION

factorization to reconstruct the traffic data tensor, implicitly
learning latent factors for representing spatial and temporal
correlation. For example, [31] proposed a Bayesian Tensor
Factorization model, [32] leveraged autoregressive in tensor
completion to capture strong temporal correlation in traffic
data, and [33] optimize nuclear norm minimization through
integrating linear unitary transformation, achieving high scal-
ability. However, low-rank matrix/tensor completion methods
have two significant drawbacks. The former is, a retrain is
required if it is needed to impute a new sparse tensor, inducing
severe time-complexity concerns. On the other hand, low-rank
constraints and linearity may force the model to capture a
smooth pattern, limiting it to capture highly complex internal
temporal and spatial patterns.

III. METHODOLOGY

In this section, the definition of the spatio-temporal impu-
tation problem in math is formally presented. First, three
building blocks: temporal, spatial, and diffusion graph convo-
lution blocks are designed, and next, we outline the inductive
architecture of the proposed model to show how sub-modules
iterate together to solve the data recovery problem.

A. Notation

The mathematical symbols used in this section are presented
in the following table.

B. Problem Description

Spatial-temporal imputation problem under C-ITS scenario
refers to interpolating missing data for target sensor according
to sampled sensor data. Initially, we denote the entire sensor
network with N nodes and E edges as graph G while the
sampled data X ∈ R

N×T , where a mask M is created to
indicate the non-zero entries in X. Next, after n new nodes
with e new edges related to them are added to the sensor
network G, we have a new graph G�. Notably, n new nodes
only have e edges as knowledge prior. Thus, our task is to
interpolate X� ∈ R

(N+n)×T according to both G� and X by
estimating the missing history data for n nodes. Therefore,
we formulate the data imputation task as function f :

X� = f (X, M, G�)
s.t . X ∗ M = X� ∗ M (1)

According to the above formulation, we treat the data
imputation task as a conditional generation problem using
mask M.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 03,2023 at 08:30:27 UTC from IEEE Xplore.  Restrictions apply. 



8434 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 8, AUGUST 2023

Fig. 3. The framework of STAR.

C. Framework of STAR

We present the framework of STAR in Figure 3. It consists
of two parallel feature extraction modules, graph convolution
layers, and output layers. By stacking multiple graph convo-
lution and TCN layers, our model can handle spatial-temporal
dependencies at a different scale. For example, we can stack
more TCN layers if the input time series is long and contains
more graph convolution layers to capture long-range spatial
dependencies.

D. Temporal Feature Extraction

Recurrent Neural Network (RNN)-based approaches are
applied to extract features of a sequence such as time series
and natural language. However, RNN-based approaches do
have disadvantages, and they are threefold. First, they cannot
handle long sequences, since memory may lose. Second, they
suffer from gradient vanish/explosion problems, and finally,
the latter one, the recursive computation manner, brings low
efficiency in parallel training and inference. With the concern
mentioned above, we adopt TCN [34] in our tasks instead
of RNN. As illustrated in Figure 4, TCN applies dilated
causal convolution, which can enlarge its receptive fields
exponentially and thus enable the proposed model to capture
long-range temporal patterns, as well as to save computation
resources.

Inspired by gating mechanisms in RNNs and GLU [35],
we use residual gated TCN (RG-TCN) to control information
flow more effectively in a deep network. First, we stack
corrupted data series and masks to form original input H(0):

H(0) = stack(X, M, 1 − M). (2)

Given the H as input, RG-TCN takes the form:
H� = tanh(W1 � H(l) + b1) � sigmoid(W2 � H(l) + b2)

H(l+1) = H� + φ(H(l)), (3)

Fig. 4. TCN with kernel=2, stride=2, dilation=2.

where W1, W2, b1, b2 are learnable parameters, tanh(·) and
sigmoid(·) are two commonly used activation functions; and
φ denotes 1D-Conv with 1 × 1 kernel.

The missing values positions are crucial for imputation
tasks. We notice that, if we input a corrupted time series
into the neural network after the min-max scaler, the missing
values are set to zero, making it difficult to distinguish small
values and missing values. The mask, indicating the missing
values, contains positional information that guides the model
to extract temporal patterns from other time slices. The archi-
tecture of the temporal feature extraction module is presented
in Figure 5.

The proposed RG-TCN will not change the input length of
the time series data but changes the channel depth during the
hidden layers. Therefore, we maintain the identical length of
data after being processed by the RG-TCN.

E. Attention-Based Spatial Feature

To extract spatial features for further fusion, we propose
an attention-based spatial module that combines TCN, graph
convolution, and attention mechanism with linear time com-
plexity and space complexity. The architecture of this module
is shown in Figure 6.
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Fig. 5. The architecture of temporal feature extraction module.

Fig. 6. Architecture of spatial feature extraction module.

In this module, we first feed node-wise time series into
RG-TCN to extract its temporal patterns and then use graph
convolution to obtain node-wise embedding. The graph convo-
lution aims to obtain embedding for new nodes while aggre-
gating neighborhood information to distinguish them from one
another. Once node-level representation is computed, we use
the attention module to capture global similarity even two
nodes are in different connected components.

Recent works on spatial-temporal traffic prediction, as those
presented in [14], [16], [17], apply graph convolution to
model spatial correlations. However, due to the over-smooth
problem, we cannot stack graph convolution layers many
times to capture long-range dependencies, as nodes can only
capture signals from a local sub-graph. Besides, no path
is even available to connect sensors with a similar pattern.
Therefore, we argue that graph convolution is insufficient to
capture spatial correlation thoroughly. It is proposed in [17] a
self-adaptive adjacency matrix to solve such a problem. How-
ever, this solution’s major drawback is that it fails to generalize
unseen nodes, which belongs to transductive methods. One
straight-forward inductive solution is self-attention, while it
suffers from O(n2) computation complexity and only cap-
tures correlation inside given nodes. Considering the rapidly
expanding network scale and complicated spatial-temporal
dependencies, we adopt external attention [36]. The linear
complexity and global sample-wise memory can significantly
facilitate the real-time data imputation. External attention
module takes the form:

H(l+1) = E A(H(l)) = Norm(H(l)MT
k )Mv , (4)

where MT
k and Mv are two learnable parameter matrices as

memories for key-value matching, Norm(·) is a two-stage

normalization function that computes Softmax and L1-norm
in sequence.

F. EA-Diffusion Convolution and Output Layer

The temporal and attention-based spatial feature mod-
ules are two branches for spatial-temporal feature extrac-
tion. We concatenate these two representations as node-level
embedding for further propagation inside the graph.

The real-world sensor networks have underlying directed
topology. For example, sensors are deployed on the road,
which naturally forms a bi-directed graph. We adopt diffusion
graph convolution networks (DGCN) [14] as the propagation
layer to handle this directed graph. DGCN treats forward edges
and backward edges separately to create two matrices–forward
transition matrix A f and backward transition matrix Ab.
We denote the diffusion steps as K , the diffusion graph
convolution layer is written as:

H(l+1) =
K∑

k=0

(Ak
f H(l)Wk1 + Ak

bH(l)Wk2), (5)

where transition matrix A f and Ab are generate through A f =
A/

∑
j Ai j , Ab = AT /

∑
j AT

i j .
Graph Neural Networks highly rely on the pre-defined

adjacent matrix, given that it limits the neural network to
capture semantic similarity inside a large-scale sensor network.
In addition, the demand for semantic similarity depends on
the dataset itself rather than the network structure. Besides,
other works use attention mechanisms [37] and trainable
adaptive adjacent matrices [17], [38], [39] to capture semantic
similarity. However, the former suffers from high computa-
tion overhead, while the latter cannot generalize to unseen
nodes. To tackle the abovementioned challenges, we designed
an external attention-enhanced diffusion convolution to learn
semantic similarity adaptively:

H(l+1) = α ∗ E A(H(l)) +
K∑

k=0

(Ak
f H(l)Wk1 + Ak

bH(l)Wk2),

(6)

where α is initially set to zero as a weight to control semantic
similarity learning, and E A(·) is introduced in Equation 4.
Through this design, we enhanced diffusion convolution with
a second branch of linear time complexity semantic similarity
learning.

To better utilize features at multiple-scale and accelerate
the training process, we adopt a concatenation for node
features produced by each layer. In this layout, the neural
network can extract specific N-hop neighborhood information
for data recovery. Besides, the residual connection is added to
enable the information and gradient to flow through the whole
network. The graph convolution, as well as the output layers,
are presented in Figure 7.

G. Training and Loss Function

As mentioned in subsection III-B, our task is to reconstruct
the missing sensor data. Intuitively, we can define the loss
functions focusing only on the reconstructing errors used in
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Fig. 7. The architecture of graph convolution layers and output layers.

unsupervised tasks (e.g., mask language model, autoencoder).
Compared with a loss function with only the masked data, the
reconstruction error enables the model to generalize to unseen
samples better. The reconstruct error is given as below:

L = �X − X̂�2
2 + λ||�||2, (7)

where � denotes all trainable parameters, and λ is the regu-
larization coefficient empirically set to 0.01.

To learn generalized graph convolution and adapt to new
network structures, we use sampling-based training strategies,
such as [3], [22], [24]. As given in Algorithm 1, we randomly
treat a part of nodes as observed and the rest as Blockout
missing nodes for imputation for each batch in this training
algorithm. In addition, to further improve the robustness and
enable support of multiple recovery tasks, we generate two
other kinds of missing masks to simulate real-world data
corrupted scenes.

IV. EXPERIMENTS

In this section, we introduce the experiment environment,
also evaluating the proposed model with an extensive number
of experimentations.

A. Dataset

Two public spatial-temporal datasets are utilized to verify
the proposed model. METR-LA records four months of traffic
speed data on the highways of Los Angeles, California, USA
through 207 sensors, and PEMS-Bay collects traffic speed
data in California, USA, and normalized by a min-max scaler.
We randomly select 75% of sensors for training and hold out
the rest of 25% of sensors as testing data. Besides, we split the
datasets in chronological order, and the portion of the train set
and test set is 7:3. Detailed statistical properties of two datasets
are presented in Table II.

B. Baselines

We compare our model with the following baselines:
• Average, takes the average values from its neighborhoods

as the prediction.
• 2D-Krige, which is provided by a Python framework

downloaded from https://github.com/GeoStat-Framework/
PyKrige for statistical simulations in geography. This
method is only available when sensor locations are given.

Algorithm 1: Training Pseudocode (PyTorch-Style)
Input: Iteration num_i ter ,
number of batches num_batch,
batch size batch_si ze,
timespan span,
number of masked nodes num_masked ,
training dataset X ∈ Rn×T ,
adjacent Matrix for training A,
model to be trained model
Output: trained model model
for i=1:num_i ter do

for n=1:num_batch do
/* Prepare Training Data */
batch, label_data = list(), list()
spts = randInt([0, T-span], batch_si ze)
observed = randSample([0, n], n-num_masked)
for bs=1:batch_si ze do

batch.append(X[observed,spts[bs]: spts[bs] +
span])

label.append(X[:,spts[bs]: spts[bs] + span])
/* Prepare Mask for Data Missing */
randMask = genRandMask(batch.shape)
segMask = genSegMask(batch.shape)
blockMask = genBlockMask(batch.shape)
mask = randMask * segMask * blockMask
/* Model Inference and Optimization */
A f = forwardTransitionMatrix(A)
Ab = backwardTransitionMatrix(A)
optimizer.zero_grad()
yhat = model(batch, mask, A f , Ab)
loss = criterion(yhat, label)
loss.backward()
optimizer.step()

return model;

TABLE II

STATISTICAL PROPERTIES OF TRAFFIC DATASETS

• GCN, which introduces non-linearity compared with the
average model. It aggregates neighborhood information
under the message passing framework.

• IGNNK uses stacked diffusion graph convolution layers
and applies training strategy to be inductive for spatial
Kriging task.

• STAR. Whether the sub-modules are enabled or not, there
have three variants–STAR-T only enables the temporal
feature extraction module, STAR-S only enables the spa-
tial feature extraction module, and STAR enables both
modules for spatial-temporal feature extraction.

We also classify the baseline based on model category,
spatial dependency modeling, temporal dependency modeling,
and multistep imputation, as shown in Table III.
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TABLE III

SUMMARY OF MODEL USED IN EXPERIMENT

C. Settings

We implement our model in PyTorch 1.7.1 with Python
3.7 and deploy it on a server equipped with Intel i9-9900KS
process, 32GB memory, and an NVIDIA GTX 2080Ti GPU.
For hyperparameters, we select 100 as the hidden dimen-
sion for linear mapping. To learn the long-range temporal
pattern, we use six layers of RG-TCN with dilation factors
1,2,1,2,1,2 with kernel size 2 and stride 1. The activation
and normalization layers are Leaky ReLU [40] and Layer
Normalization [41], respectively. For the gradient descent
algorithm, we select Adam optimizer [42]. The batch size is
set to 8, and the learning rate is fixed to 0.008.

D. Metrics

To quantity our model performance and compare with other
baseline methods, we choose the following three metrics:

• MAE (Mean Absolute Error). It is commonly used in
evaluating the performance of regression tasks.

M AE =
∑ |xi j − x̂i j |

Nsample
. (8)

• RMSE (Root Mean Squared Error). RMSE is used to
illustrate the degree of dispersion of the sample. For non-
linear fittings, smaller RMSE indicates better regression
accuracy.

RM SE =
√∑

(xi j − x̂i j )2

Nsample
. (9)

• MAPE (Median Absolute Percentage Error). MAPE is
used to estimate relative absolute error. It takes the form:

M AP E =
∑∣∣∣∣ xi j − x̂i j

xi j

∣∣∣∣ × 100%. (10)

E. Imputation Performance

In this section, we compare the proposed model with other
baselines in different conditions of data missing to demonstrate
the superiority of the proposed model. First, we set the random
missing ratio to 20%, and then remove 200 segments of
30 minutes in each sensor for both the trainset and the rest.
Next, we hold out 25% of sensors as unsampled. Finally, the
experiment results are given in Table IV.

According to the results, we have the following conclusions:
1) High Performance: We compare the proposed model

with two mathematical models and two GNNs. The proposed
model consistently outperforms the baseline methods by a
large margin in all kinds of imputation tasks. We identified that
directly using neighborhood sensors can achieve competitive
performance because of the strong correlation and impact

between nearby sensors. The naive multi-layered GCN is also
a firm baseline in imputation. Specifically, for random miss-
ing and segment missing tasks, we significantly outperform
IGNNK, which shows that our scheme effectively captures
the spatial-temporal context.

2) Robustness: We evaluate the performance to impute the
highly corrupted data when three kinds of data missing coexist.
Out model achieves MAE of 2.63, 4.74 in PEMS-Bay and
METR-LA, respectively, which is a 44% and 29% improve-
ment compared to the best baseline model. The high impu-
tation performance under such highly corrupted inputs shows
the strong robustness of our model. We also observed that
when we applied the sampling training algorithm on IGNNK,
it became precarious to blockout missing tasks because it
does not apply any solution to the missing entries. Our model
applies positive masks and negative masks to indicate valid
and missing entries, treat missing value positions as useful
information, and thus, achieve robustness and accuracy.

3) Flexibility: The proposed model is trained with randomly
missing data and imputes them according to the given mask,
and so it can support three types of missing data imputation
in one single model. Moreover, according to the Table IV,
we learned that the proposed model achieves highly compet-
itive performance in all kinds of imputation tasks, which a
feature can support the ITS to reduce the cost of the entire
model life-cycle significantly.

F. Impact of Window Size

Table V presents the imputation accuracy of the STAR
model, and other baseline approaches for 24-, 36-, 48-, 60-step
(2 hours to 5 hours with the step of 1 hour) data recovery tasks
on METR-LA and Seattle Highway datasets. The STAR model
obtains the best recovery accuracy under nearly all evaluation
metrics, except RMSE, for all horizons, thereby providing the
effectiveness for spatial-temporal aware data recovery tasks.

From the experimental results, we conclude three significant
features of the proposed model:

1) High Recovery Accuracy: The proposed model, which
extracts the temporal features, performs better than other meth-
ods like IGNNK and Average. For example, for the 24-step
recovery, STAR outperforms IGNNK by 20.7% and 11.7% on
METR-LA and PEMS-Bay, respectively. The MAPE errors
of the STAR are significantly lower than those of IGNNK.
This phenomenon is mainly due to the ignorance of internal
temporal patterns.

2) Spatio-Temporal Recovery Capability: To prove the
STAR model can capture spatial and temporal dependencies,
we compare the variants of the STAR model with IGNNK.
As shown in Figure Figure 8(a), methods with temporal
feature extraction have better recovery precision than base-
line ones, indicating that our temporal module can capture
temporal patterns from traffic data. Furthermore, according to
Figure 8(b), we learn that by enabling spatial attention, RMSE
errors decrease, suggesting that our proposed module cap-
tures long-range spatial correlation beyond pre-defined graph
structure. Finally, only exploiting spatial and temporal features
could reach the best performance, indicating the presence of
spatial-temporal dependencies.
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TABLE IV

MODEL PERFORMANCE UNDER DIFFERENT IMPUTATION TASKS

TABLE V

PERFORMANCE COMPARISON WITH DIFFERENT TIMESTEPS

Fig. 8. Spatial-temporal aware recovery capability. (a) The comparison
of (non)temporal approaches on RMSE under different lengths of horizons.
(b) The comparison of (non)spatial approaches on RMSE under different
lengths of horizons. The suffix -S and -T indicates that the corresponding
feature extraction block is enabled.

3) Long Range Recovery: It shows that the proposed model
success in obtaining the best recovery performance regardless
of the changes in the prediction lengths. Furthermore, the
performance is stable with the increase in time steps, and thus,
the proposed model can be applied for both short-term and
long-term imputation.

As shown in Figure Figure 9(a) the change of MAE and
RMSE at varied recover lengths, we learn that it changes
slowly with time step increase by a large margin. In addition,
as depicted in Figure Figure 9(b), the proposed model is
compared with baselines and demonstrates that it outperforms
all methods, and added to the fact that it is not sensitive to
the length, the imputation relies more on local features than
the global one.

G. Ablation Study

To examine the effect of the key components that contribute
to the improved outcomes of STAR, we conduct experiments

Fig. 9. Long-term data recovery capability. (a) The change in MAE and
RMSE of STAR model under different recovery horizons. (b) the RMSE errors
of the STAR model and other baselines under different recovery horizons.

TABLE VI

ABLATION STUDY ON DIFFERENT MODULES

on two traffic datasets. Here, we concentrate on the three
kinds of factors: spatial block, temporal block, and external
attention. For each factor, a new model is built by removing
corresponding blocks, and we named the variants of STAR as
follows:

• w/o EA: This is STAR without adaptive weighted exter-
nal attention modules to capture semantic similarity.
The graph convolution layer is replaced with diffusion
convolution.

• w/o T: This is STAR without temporal feature extraction
branch before graph convolution layers.
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Fig. 10. Data recovery for 24 steps.

• w/o S: This is STAR without spatial feature extraction
branch.

We assess the performance with the early-stopping strat-
egy to prevent overfitting and present experimental results
in Table VI. The introduction of external attention modules
significantly improves the performance by providing global
sample-wise attention with trainable fractions. We can see the
sharp decrease in the accuracy of semantic feature extraction
(w/o S v.s. w/o EA v.s. Full), indicating the strong correlation
and rich semantic similarity inside traffic sensor data series.
One explanation to why attention can improve accuracy is that
it learns the similarity between nodes like matrix factorization.
By implicitly learning the low-rank property, one can accu-
rately recover missing entries by learning from a similar node.
The ablation study on the feature extraction, i.e., spatial feature
only (w/o T) and temporal feature only (w/o S), will degrade
the performance, which shows that two branches before graph
convolution layers can effectively capture the spatial-temporal
features for further data imputation. The improvement indi-
cates that, for data imputation tasks, it is better to embed
nodes into spatial-temporal context before diffusion through
the adjacent graph. Compare (w/o S) with (w/o T), we find that
spatial features share more importance than temporal features,
which demonstrates that the traffic speed may impact more by
nearby traffic conditions.

H. Imputation Visualization

To better understand the behavior of the STAR model,
we randomly select one sensor on PEMS-Bay and visualize the
recovery results at different prediction lengths. The following
four figures show the recovered time series and the ground
truth values in test set of 2 and 5 hours. The results are shown
in Figure 10, Figure 11, Figure 12, and Figure 13:

Through the figures presented above, we can learn that our
model successfully captured the periodicity of traffic data.
Moreover, our model generally provides comparable results
for the data series without a clear trend or periodical pattern.

Fig. 11. Data recovery for 36 steps.

Fig. 12. Data recovery for 48 steps.

Besides, by jointly analyzing four figures, we can learn that the
prediction performance has no apparent changes, indicating a
long sequences processing capability.

I. Time Series Prediction

As a particular segment type is missing, the time series pre-
diction problem could fit into our data imputation framework
if we changed the mask to force the model to impute the
missing values at the end of observed windows. With this in
mind, we experiment to investigate whether our model can be
applied to forecast tasks. We train our model from scratch to
predict traffic data using the same setting in [16]. The time
series prediction results are presented in Table VII.

According to Table VII, we learn that our model has highly
competitive performance in time series prediction though it is
designed for data imputation. This feature is due to the power
of RG-TCN and GNNs, which effectively extract the temporal
patterns and propagate them to nearby sensors. We notice that
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Fig. 13. Data recovery for 60 steps.

TABLE VII

TIME SERIES PREDICTION ACCURACY ON TRAFFIC DATASET

TABLE VIII

TRANSFER PERFORMANCE ON TWO TRAFFIC DATASETS

our model has significant advantages in long-range prediction
tasks compared with other baselines. Besides, since we fore-
cast the upcoming sensor data for all nodes in one forward
computation, our model has lower RMSE and MAPE. It indi-
cates that direct multistep predictions have higher accuracy
because of no error accumulation.

J. Transfer Learning

References [3] and [24] reported well-designed GNNs can
learn general message passing mechanisms and generalize to
a similar dataset. We investigate this phenomenon and report
the numerical results in the following table:

We observe from the results obtained that it is possible to
train the model on one dataset and directly apply it to another
dataset with competitive performance. For example, when we
train STAR on METR-LA, it shows a sharp degradation when
transferring to PEMS-Bay. In contrast, when we train STAR

on PEMS-Bay and test on METR-LA, the transferred model
performs even better than the non-transfer model on random
missing and segment missing.

This exciting result indicates that the real-world traffic
data may share similar spatial-temporal patterns. Further-
more, considering the high similarity between METR-LA and
PEMS-Bay, since they collect traffic data every five minutes
and provide a distance matrix, pre-trained models and transfer
learning have full potential for data-driven traffic analysis.

K. Complexity Analysis

Before we analyze the complexity, we introduce some
notation first. For instance, let N denote the number of sensors,
T represents the length of the input time series, E denotes the
edge in graph G, and d means the hidden model units at each
layer.

1) Time Complexity: First, the proposed model receives
input at size N × T , which is identical to many other
imputation models. Second, we apply RG-TCN as a temporal
feature extraction module, and the time complexity is O(NT )
(can be viewed as sliding window move over the all input
time series). Third, the DiffConv layer propagates the node
embeddings in a message-passing manner, thereby, has O(Ed)
time complexity. The attention model has O(Nd) time com-
plexity. By adding them up together, we have our model time
complexity as O(NT ) + O(Ed) + O(Nd).

2) Memory Complexity: Assume that our operation is fully
in-place operation. First, the input occupies O(NT ) memory.
Second, the graph convolution and attention need O(Nd)
space to store the immediate results. Therefore, the whole
memory complexity is O(NT ) + O(Nd).

3) Numerical Results: The parameters of the proposed
model occupy 700Kb disk space, and the inference speed on
a server with one single NVIDIA K80 GPU is 55ms (average)
for 325 nodes with 60-time slots. This significant result shows
that the proposed model can be served in an online manner
with low latency.

V. CONCLUSION AND FUTURE DIRECTIONS

This article introduces a novel framework for
spatial-temporal aware inductive data imputation, namely
STAR. The GNNs with an attention-based spatial feature
extraction block are enhanced to capture long-range spatial
similarity and dilated convolution-based temporal feature
extraction. Besides, the proposed model is inductive, which
means it can generalize to unseen nodes with retraining.
Results obtained from extensive experimentations show that
STAR consistently outperforms baseline models on three
real-world traffic sensor datasets. Furthermore, analysis of the
results demonstrates that the proposed model is insensitive to
prediction length, as also its flexibility permits applying it for
any data recovery task and model time-varying systems, such
as predicting sensor data for moving autonomous cars.

From the significant results and analysis obtained, we fore-
see some directions as future work to be explored: (1) to
extend the proposed model further to support multivariate data
imputation, as there are implicit correlations between collected
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series that can improve data recovery and decision-making,
(2) the high accuracy time series forecast can be explored and
then implemented into the proposed model, (3) to develop a
unified model to handle all kinds of missing data problems,
and lastly, and (4) to optimize the proposed model to be more
efficient, meeting the specific requirements of low latency real-
time applications.
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