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 A B S T R A C T

Entity alignment (EA) is the task of identifying equivalent entities in two knowledge graphs (KGs) using a 
limited set of seed entities. Existing research mainly uses graph neural networks (GNNs) to aggregate entity 
neighborhood features for representation to achieve better entity alignment. However, most of them ignore the 
fusion of multiple relations between entities and the mining of latent relations, which limits the effectiveness 
of entity representation to some extent. Therefore, this paper proposes a novel multi-relation fusion and latent-
relation mining graph convolutional network (MFLM-GCN) for entity alignment. Specifically, first, we use seed 
entity pairs to establish the connection between two knowledge graphs and enhance semantic consistency with 
the help of local isomorphism. Second, we screen potential important related entities through graph random 
walks and fuse multiple local and global relationships to obtain a preliminary representation of the entity. 
Third, we use a multi-head attention mechanism to generate multiple association graphs, prune them and 
construct a densely connected layer to fully explore the deep potential relationships between entities and 
obtain a multi-branch representation of the entity. Finally, we use linear fusion to obtain the final embedding 
of the entity and achieve entity alignment. In experiments on multiple real-world datasets, the MFLM-GCN 
method effectively improves the entity alignment performance by enhancing the entity node representation. 
The source code for our method is openly accessible on GitHub at the following link: https://github.com/meng-
tao/MFLR-GCN.
1. Introduction

Knowledge graphs, as a structured form of knowledge storage, has 
received extensive attention from academia and industry [1–3]. At 
present, there are knowledge graph datasets of different industries, do-
mains, and languages. For example, the multilingual knowledge graph 
DBpedia [4] from Wikipedia pages, the large-scale Chinese concept 
graph CN-Probase [5], the most important human knowledge base 
Cyc [6], etc. Due to the different emphases of knowledge graphs in 
gathering knowledge, variations exist in the descriptions of the same 
entity across different knowledge graphs. These differences contribute 
to a certain degree of complementarity among the knowledge graphs.

Knowledge fusion aims to consolidate entities representing identical 
concepts [7], integrate knowledge from diverse sources into a cohesive 
and succinct knowledge base, and foster interoperability among ap-
plications utilizing disparate knowledge graphs. Consequently, knowl-
edge fusion plays a crucial role in extracting fundamental insights 
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for downstream tasks, including link prediction [8], recommendation 
systems [1], and question-answering [9].

Existing research proposes that entity alignment serves as a mech-
anism for accomplishing knowledge fusion [10–12]. Entity alignment 
aims to correspond entities in different knowledge graphs so as to 
measure the ‘‘distance’’ between them in the shared embedding space 
and realize the structural alignment between knowledge graphs [13]. 
As depicted in Fig.  1, KG1 and KG2 represent knowledge graphs in 
different languages within the real-world context. Node ‘‘F’’ in KG1 and 
Node ‘‘b’’ in KG2 correspond to the identical entity ‘‘Philip’’, despite 
being expressed in unequal languages. The objective of the entity align-
ment task is to effectively establish a correspondence between these 
two nodes. Existing entity alignment methods based on representation 
learning are mainly divided into the following two types:

Translation-Based Representation. This type of method [14–16] 
mainly projects entities and relationships into a low-dimensional vector 
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Fig. 1. Examples of real-world knowledge graphs in different languages. It is obvious 
that there are multiple display relationships between entities, and there are rich 
potential relationships between entities. For example, in KG1, entities ‘‘A’’ and ‘‘F’’ 
are not directly related, but through entity ‘‘B’’, it is easy to know that there is a 
potential relationship between them.

space through the approximate representation of ℎ + 𝑟 ≈ 𝑡 to learn 
their vector space representation. Among them, ‘‘ℎ’’ is the head entity, 
‘‘𝑡’’ is the tail entity, and ‘‘𝑟’’ is the relationship between the two en-
tities. Although these methods have achieved particular success, these 
models cannot express the complex relationships between entities [10] 
and cannot exploit the rich topological semantic information between 
entities [7], resulting in insufficient entity representation.

GNN-Based Representation. Benefiting from the rapid advance-
ments in Graph Neural Networks (GNN) [17], especially in the rep-
resentation of graph-structured data, GNN-based methods can utilize 
topological information to show promising performance in entity align-
ment. For example, GCN-Align [18], HMAN [19], RDGCN [20], and 
HGCN [21]. In contrast to models based on translation, GNN-based 
models contain the topological information of the entity and train 
the GNN to integrate the entity of each KG, and attributes are em-
bedded in a low-dimensional vector space. This approach can ag-
gregate neighborhood structure information to enrich entity vector 
representations.

However, most existing GNN-based entity alignment methods di-
rectly treat multi-relationship knowledge graphs as single relationships 
and rarely consider the relationship types between entities, resulting 
in insufficient and inaccurate entity representation. Although some 
methods consider complex multiple relationships between entities, they 
are mainly oriented to explicit relationships and ignore potential rela-
tionships between entities. Obviously, it is not enough to only consider 
explicit relationships. In real KGs, the relationships of each entity 
are intricate and can be connected to other entities through multiple 
relationships, even in the absence of direct relationships. For example, 
as shown in Fig.  1, entity ‘‘B’’ within KG1 establishes connections 
with various entities through a diverse array of relationships, thereby 
encapsulating a wealth of information within the entities’ topological 
structure. Moreover, entity ‘‘B’’ maintains four distinct relationships 
with entity ‘‘F’’. However, the significance of these four relationships 
varies. Notably, KG1 does not exhibit a direct link between entity nodes 
‘‘A’’ and ‘‘F’’. However, through the intermediary entity ‘‘B’’ potential 
associations can be inferred, further influencing the representation of 
entities.

To address the above issues, this paper proposes a graph convolu-
tional neural network (MFLM-GCN) based on multi-relation fusion and 
latent-relation mining, which performs entity alignment by making full 
use of the topological semantic information of entities. The experimen-
tal results demonstrate that our proposed method can achieve superior 
2 
entity node representation, leading to enhanced performance in the 
task of entity alignment. Specifically, we first connect two knowledge 
graphs through seed entities to promote information dissemination 
between graphs. Second, we exploit the local isomorphism between 
seed entities and graph random walks to capture meaningful latent 
relationships. Third, we propose an explicit and implicit multi-relation 
fusion method for the preliminary representation of entities, which can 
aggregate relationships in a local and global manner. Fourth, to further 
explore potential relationships between entities, we adopt a multi-head 
attention mechanism to generate multiple complete association graphs 
representing potential correlations between entities and build dense 
connection layers to obtain multi-branch representations of entities. 
Furthermore, to improve the aggregation performance of densely con-
nected layers, we prune all correlation graphs with the previous graph 
random walk results before information aggregation. Finally, we use a 
linear layer to fuse entity features, obtain the final entity embedding, 
and complete entity alignment. The main contributions of this article 
include the following:

• We propose a novel multi-relation fusion and latent-relation min-
ing graph convolutional network (MFLM-GCN) to optimize entity 
embeddings by mining and fusing topological information to 
improve the overall EA performance.

• We propose an efficient latent relationship mining strategy, us-
ing local isomorphism, graph neural walking, and multi-head 
attention to mine deep potential relationships between entities.

• We propose a local and global multi-relation fusion method that 
can efficiently fuse explicit and implicit relationships between 
entities.

• We evaluated the performance of MFLM-GCN. The results show 
that MFLM-GCN significantly outperforms seven baseline models 
in terms of Hit@1, Hit@10, and MRR indicators on the DBP15K 
and DWY100K datasets.

The remainder of this paper is structured as follows. Section 2 
provides an overview of related work in the field of entity alignment. 
Section 3 illustrates the proposed neural network MFLM-GCN. The 
results of the experiments are showcased in Section 4, while Section 5 
provides the concluding remarks of this paper.

2. Related work

2.1. Traditional methods based on translation

Traditional translation-based knowledge graph embedding meth-
ods [14,15,22,23] usually assume that each entity has sufficient train-
ing triples. This type of method maps entities and relations together 
into a low-dimensional vector space, while keeping the model parame-
ters simple, showing excellent scalability and being able to effectively 
handle the embedding requirements of large-scale knowledge bases.

In knowledge graph representation, TransE [14] and its variant 
models [15,16] ascertain relationship and entity embeddings by consid-
ering relationships as equivalent to the vectorial translations from the 
head entity to the tail entity in vector space. For instance, TransH [15] 
represents relations as hyperplanes and conducts translation opera-
tions, assigning distinct hyperplanes and relation vector representa-
tions to each relation. Conversely, TransR [16] establishes embed-
dings in separate spaces for entities and relations, training embed-
dings through the projection of entities into corresponding relation 
spaces. This progressive augmentation of relational modeling intricacy 
significantly enhances knowledge graph representation, particularly 
concerning scenarios involving multi-mapping relations.

Furthermore, the earliest semantic matching model MTransE [22] 
employs TransE to embed entities and relations in different languages 
into distinct independent vector spaces and provides the transformation 
of each embedding vector to its cross-lingual counterpart in other 
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spaces. In contrast, IPTransE [24] integrates multiple knowledge graphs 
into a unified semantic space. This integration is achieved by imposing 
constraints on the vector representations of alignment seeds, ensuring 
consistency across diverse knowledge graphs. SEA [23] enhances align-
ment by incorporating cycle consistency constraints into the loss func-
tion. Additionally, it leverages unlabeled data to obtain more accurate 
node vector representations. BootEA [25] places significant emphasis 
on addressing the challenge of having fewer pre-aligned entity pairs 
in the entity alignment process. It employs an iterative method to 
continuously select potential entity pairs for training. Nevertheless, the 
aforementioned methods disregard the topological structure informa-
tion within the knowledge graph, consequently failing to acquire more 
enriched entity vector representations.

Beyond the structural information of the knowledge graph, the 
inclusion of semantic features like entities, relationships, and attributes 
also serves to elevate entity representation. Various methods [22] 
aim to enrich entity semantics by integrating a spectrum of diverse 
knowledge sources. JAPE [26] employs the TransE model for entity 
representation and employs Skip-gram [27] for acquiring attribute 
representations. Rooted in the premise that entities manifesting akin 
attributes tend to exhibit a heightened likelihood of equivalence, this 
approach extends attribute similarity to augment the semantic essence 
of entities. In addition, AttrE [28] introduces distinct attribute value 
representations to facilitate the acquisition of vectorized entity repre-
sentations. Notably, it can autonomously establish alignments across 
datasets replete with diverse attribute values, obviating the need for 
preemptively aligned entity pairs. MultiKE maximizes the utilization of 
relational triples, attribute triples, and entity name information. It en-
codes these information sources separately, integrates them efficiently, 
and generates an entity representation that amalgamates multi-view 
information for the purpose of entity alignment.

2.2. Graph representation methods based on GCN

In terms of exploration in the field of topological structure, GNN
[17] have garnered significant attention and research interest, achiev-
ing remarkable accomplishments in various domains such as node 
classification [29], graph classification [30], and link prediction [31]. 
Notably, Graph Convolutional Networks (GCN) [32] have harnessed 
node interconnectivity to capture comprehensive and localized graph-
embedded information, thus elevating the caliber of node representa-
tions.

GNN-based models possess significant prowess in capturing intricate 
graph structures, rendering them well-suited for the task of aligning 
entities by representing knowledge graph nodes and relationships. 
For example, GCN-Align [18] pioneering the use of GNN for entity 
alignment, leverages a pre-aligned set of entities to capture varying 
degrees of entity similarity through neighbor aggregation across two 
GCN layers. MuGNN [33] focuses on learning alignment-oriented KG 
embeddings. It achieves this by leveraging multiple channels, allowing 
for the joint execution of knowledge inference and entity alignment. 
This approach aims to address the heterogeneity inherent in KG struc-
tures. AttrGNN [34] partitions a comprehensive KG into four subgraphs 
based on attribute values. It employs BERT [35] to derive the initial 
features for each attribute value. GMNN and NMN [36] approach the 
EA task as a graph-matching problem. In this framework, the alignment 
of entities is achieved by assessing the similarity of their respective 
subgraphs. AliNet [37] uses the gating mechanism to aggregate neigh-
bors to expand the overlap of adjacent structures. It also proposes a 
relation loss to improve the representation of entities. However, these 
methods ignore the multiple relationships that often exist between two 
entities in the real world, resulting in insufficient and inaccurate entity 
representation.

The authentic graph data typically forms heterogeneous graphs
[38], where node representation is shaped by neighboring nodes and 
3 
their connecting relationships. To effectively capture the diverse se-
mantic associations between nodes of distinct types and various kinds 
of edges, and to more precisely portray the complexities of real-world 
correlations, Relational Graph Convolutional Networks (RGCN) [39] 
improve GCN to address the impact of different edge relationships 
on nodes within the graph structure. This approach models [40,41] 
relational data, facilitating the transition from a homogeneous graph 
representation to a representation that embraces graph heterogeneity.

Inspired by RGCN, some entity alignment methods [20,21,42,43] 
fully consider the graph structure information and pay attention to the 
relationship information. For example, HGCN [21] considered the rela-
tion information in the entity alignment task and jointly learned entity 
and relation representations. Afterward, RDGCN [20] and DNCN [11] 
construct a dual relation graph for embedding learning, aiming to 
capture neighborhood relations effectively. ERGCN [42] models the 
connections between a pair of relations by constructing quadruples, fa-
cilitating the determination of their neighborhoods. RHGN [43] encom-
passes a specialized convolutional layer gated by relational attributes, 
engineered to discern and delineate the unique roles of both relations 
and entities within the knowledge graph. RREA utilizes relational 
reflection transformation to efficiently derive relation-specific embed-
dings for individual entities. RE-GCN [44] combines the original graph 
convolution with an innovative triplet graph convolution to obtain both 
relational and entity embeddings. In addition to evaluating neighbor-
ing nodes during the process of matching neighborhoods, RNM [45] 
exploits the constructive synergy between entity alignment and rela-
tion alignment in a semi-supervised manner. GEM-GCN [46] jointly 
optimizes node and edge embeddings for goal-driven goals. RAGA 
incorporates the self-attention mechanism to disseminate entity infor-
mation to relations and subsequently aggregates relation information 
back to entities.

To enhance the outcomes of entity alignment, HMAN [19],
EAMI [47], and BNGNN [48] seamlessly combine the topological struc-
tural information of a knowledge graph while also providing additional 
semantic and string information about relationships and attributes.

Compared with the above methods, we aggregate local and global 
neighbor relation information through multi-relational fusion. Multi-
head attention is then employed to capture potential associations be-
tween entities and generate multiple fully-associated graphs. Second, 
a dense connection layer is introduced to enhance the information 
transfer process between sub-layers, preserving the topological infor-
mation of the original graph. Our model improves entity representation 
by capturing multi-relationship information among entity nodes and 
integrating their latent features.

3. Proposed method

The model architecture of MFLM-GCN is shown in Fig.  2, which 
contains knowledge graph preprocessing, multi-relation fusion, latent-
relation mining, and entity alignment. (1) Knowledge graph preprocess-
ing: We construct the connection between the two knowledge graphs 
based on the seed entities and use the local isomorphism of the seed 
entities and the random walk of the graph to enhance the connection 
between entities. (2) Multi-relation fusion: We first aggregate each 
relationship in a local manner, and then aggregate all relations in a 
global manner to obtain an entity representation based on multiple rela-
tionships. (3) Latent-relation mining: We first use multi-head attention 
to generate multiple fully related graphs and use the graph random 
walk results to prune them. Then, we build a dense connection layer 
to capture the deep latent relationships of entities and obtain entity 
representations based on latent relationships. (4) Entity alignment: We 
use a linear fusion layer to fuse multiple representations of entities to 
obtain the final embedding of entities and achieve entity alignment.
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Fig. 2. The framework diagram of the entity alignment method MFLM-GCN proposed in this paper mainly includes four parts: knowledge graph preprocessing, multi-relation 
fusion, latent-relation mining, and entity alignment.
3.1. Problem definition

Entity alignment involves identifying corresponding entities in two 
distinct knowledge graphs. A knowledge graph is represented as 𝐺 =
(𝐸,𝑅, 𝑇 ), where 𝐸 is the set of entities, 𝑅 is the set of relations, and 𝑇  is 
the set of triplets. In this paper, we denote the source knowledge graph 
as 𝐺1 = (𝐸1, 𝑅1, 𝑇1), the target knowledge graph as 𝐺2 = (𝐸2, 𝑅2, 𝑇2), 
and the seed-aligned entity set 𝑆 = {(𝑢, 𝑣)|𝑢 ∈ 𝐸1, 𝑢 ∈ 𝐸2, 𝑢 ↔ 𝑣}, 
denoting that the entity 𝑢 in the knowledge graph 𝐺1 is the same 
entity as 𝑣 in the knowledge graph 𝐺2, where the ↔ representations 
equal. Our entity alignment model acquires alignment information by 
matching entities with seeds, aiming to identify additional entities 
in the target knowledge graph that align with entities in the source 
knowledge graph.

3.2. Knowledge graph pre-processing

3.2.1. Graph fusion and isomorphism
Aligned entities refer to the same thing in real life, and their vector 

representations should be very similar. We can connect the two knowl-
edge graphs through the aligned seed entities given in the dataset, 
which can enhance the vector representation of the aligned entities and 
enable the model to learn richer information, thereby promoting the 
alignment of other entities. Therefore, to promote information sharing 
and fusion between the two knowledge graphs, we define an align tag 
to represent the alignment relationship and merge it into the triplet 𝑇 . 
The formula is as follows: 
𝑇 ← 𝑇 ∪ {(𝑢, 𝑎𝑙𝑖𝑔𝑛, 𝑣)|(𝑢, 𝑣) ∈ 𝑆, 𝑎𝑙𝑖𝑔𝑛 ∈ 𝑅} (1)

In addition, there are often differences in the local structure be-
tween seed entity pairs in different knowledge graphs. This local topo-
logical difference affects the consistent representation between pairs 
of entities when the model encodes and represents nodes. Therefore, 
we exploit existing information to improve the isomorphism of two 
different knowledge graphs.

As shown in Fig.  2, node 𝐴 in 𝐾𝐺2 and node 𝑎 in 𝐾𝐺1 are aligned 
entities, and similarly, node 𝐶 and node 𝑐 are aligned entities. In 
𝐾𝐺2, there is a relational connection between node 𝐴 and node 𝐶. 
Through relational inference, it can be known that node 𝑎 and node 𝑐
in 𝐾𝐺1 also have the same relationship, and a new edge is constructed 
between entities with such a relational inference mapping. To increase 
the isomorphism of the graph, the formula is as follows: 
(𝐴,𝑅, 𝐶) ←←→ (𝑎,𝑅, 𝑐)|𝐴 ↔ 𝑎, 𝐶 ↔ 𝑐

(𝐴,𝑅, 𝐶) ∈ 𝐺1; (𝑎,𝑅, 𝑐) ∈ 𝐺2
(2)

The reconstructed graph contains a large number of topological fea-
tures. Based on the process of graph fusion and isomorphism, we get 
the original graph 𝐺(𝑜) and its corresponding adjacency matrix 𝐴(𝑜).
4 
3.2.2. Graph random walk
In the knowledge graphs, the relationship distribution of entities 

conforms to the long-tail effect. That is, a small number of entities have 
many relationships, while most entities have only a small number of 
connections. Therefore, the structural features of most entities suffer 
from sparsity problems. In order to mine richer structural features 
in the graph to alleviate the feature sparseness problem of long-tail 
entities, we introduced the graph random walk method. Graph random 
walk simulates random walk paths between nodes, obtains the accessi-
bility and path features between node pairs, and thus mines potential 
relationship entities in the graph. Then, by aggregating these potential 
relationship entities, the feature sparseness problem of long-tail entities 
can be effectively alleviated.

Furthermore, for a comprehensive exploration of latent relations 
between entities, the dense connection layer is tasked with processing 
the complete associative graph. When the number of nodes of the entity 
becomes too large, the attention score matrix will reach unmanage-
able dimensions, seriously affecting the training effect of the model. 
The connectivity between entities can be enriched through a graph 
random walk. The adjacency matrix that introduces new neighbors 
can be used as the input of the dense connection layer, replacing the 
full-associative graph. This substitution not only significantly reduces 
resource requirements but also enhances overall performance.

Specifically, the graph random walk computes scores between the 
query node and other nodes in the graph using an affinity scoring 
algorithm (e.g., RWR) tailored for entity nodes. Subsequently, it or-
ganizes the other nodes in descending order based on these scores, 
forming a sequence. Initially, 1-hop neighbors are extracted, and then 
a normalized summation is performed, selecting nodes in descending 
order until reaching a cumulative score of 𝜆 (0 ≤ 𝜆 ≤ 1). The update 
process of neighbor nodes is shown in Fig.  3. This process yields a new 
adjacency matrix following graph random walk processing, as depicted 
by the following formula: 
𝑁𝐺𝑅𝑊

𝑒𝑖
= 𝑁(𝑒𝑖 ,1-hop) ∪ {𝑒𝑗 ∣ 𝑒𝑗 ∈ GRW(𝑒𝑖, 𝑓 ), 𝑒𝑗 ∉ 𝑁(𝑒𝑖 ,1-hop)} (3)

where 𝑁𝐺𝑅𝑊
𝑒𝑖

 represents the entity neighbor set updated by random 
walk, 𝑁(𝑒𝑖 ,1-hop) represents the first-order neighbors of the entity, 𝑒𝑗
represents other entities selected by random walks that are not in the 
first-order neighbors of the entity, and ∪ represents the union operation 
of the set.

3.3. Multi-relation fusion

3.3.1. Relationship coefficient initialization
Entity pairs establish connections through relationships, with in-

formation transmission occurring along edges constructed by these 
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Fig. 3. Nodes exhibiting robust correlations with the target node are identified. This 
process results in the creation of new edge connections, leading to the formation of an 
updated graph.

relationships. Examining the graph structure based on relationship 
information, we compute a relationship coefficient for each relationship 
on the entity node. Subsequently, we assign a weight to each edge based 
on the relationship coefficient, following the formula below: 

𝑎𝑖,𝑟 =
1
𝐶𝑟

⋅
𝐴𝐶𝑟

∑

𝑘∈𝑅 𝐴𝐶𝑘
(4)

𝑎𝑖𝑗 =
∑

𝑟∈𝑅𝑖𝑗

𝑎𝑖,𝑟 (5)

where 𝑎𝑖,𝑟 and 𝐶𝑟 represent the relationship coefficient and the quantity 
of relationship 𝑟 in the entity node 𝑒𝑖, respectively. and 𝐴𝐶𝑟 enotes 
the total count of relationship 𝑟 in the entire knowledge graph. 𝑎𝑖𝑗
represents the weight between the entity nodes, obtained by summing 
the relationship coefficients of all edges between entity nodes 𝑒𝑖 and 𝑒𝑗 , 
𝑅𝑖𝑗 are all relationship types between entities 𝑒𝑖 and 𝑒𝑗 .

3.3.2. Multiple relationship aggregation
Given the complexity and diversity of knowledge graphs, each 

entity node usually has multiple relationships with other entities. How-
ever, traditional GCN shows certain limitations in handling multiple 
relationships. These methods mainly infer the characteristics of the 
target node by aggregating limited neighborhood information through 
each relationship. This means that these methods can effectively prop-
agate entity alignment information between graphs only when the 
pre-aligned relationships between two knowledge graphs are rich. Nev-
ertheless, seed entity pairs between knowledge graphs are usually 
scarce. In this case, the ability of this per-relation-based neighbor-
hood aggregation method to effectively propagate entity alignment 
information will be weakened.

In order to enhance the information aggregation ability of multi-
relationship graph neural networks, we adopts a novel strategy — 
aggregating entity information based on local and global relationships. 
As shown in Fig.  4, the core of this strategy is to comprehensively 
consider the local and global impacts of entity relationships. On the 
one hand, it focuses on the relationship features of entities within local 
neighborhoods to capture their direct association information; On the 
other hand, it introduces a global relationship perspective to identify 
broader and more complex potential relationships between entities 
throughout the entire graph structure. By combining the local and 
global approaches, we can generate entity representations with global 
relationship awareness, thereby obtaining richer and more complete 
multi-relation information and effectively improving the performance 
of entity alignment.

In the process of local relationship aggregation, we expect to obtain 
more detailed relationship information for each entity node. Therefore, 
at each layer, for each relationship r, we aggregate the information of 
all related entities connected by the entity nodes under the relationship. 
At the same time, in order to further capture the complexity of local 
5 
Fig. 4. Multi-relationship aggregation entity information process. First, aggregate entity 
information from each local relationship, then aggregate entity information from all 
global relationships.

relations, we introduce a multi-head attention mechanism to more com-
prehensively extract local relation features from multiple dimensions: 

ℎ(𝑙)𝑒𝑖 ,𝑟,𝐾 =
∑

𝑒𝑗∈𝑁𝑟
(

𝑒𝑖
)

(𝑎𝑖,𝑟 ⋅𝑊
(𝑙−1)
𝑟,𝐾 ⋅ ℎ(𝑙−1)𝑒𝑗 ,𝑟

) (6)

ℎ(𝑙)𝑒𝑖 ,𝑟 = 𝐴𝐺𝐺(𝑙)
𝑙𝑜𝑐𝑎𝑙,𝑟(𝐶𝑜𝑛𝑐𝑎𝑡(ℎ(𝑙)𝑒𝑖 ,𝑟,1, ℎ

(𝑙)
𝑒𝑖 ,𝑟,2

...ℎ(𝑙)𝑒𝑖 ,𝑟,𝐾 ) (7)

where 𝑁𝑟(𝑒𝑖) represents the set of neighbor entity nodes connected to 
entity node 𝑒𝑖 through relation 𝑟, 𝐾 represents the number of heads of 
multi-head attention, 𝑊 (𝑙−1)

𝑟  represents the weight matrix of the K-th 
head under relation 𝑟 and 𝐶𝑜𝑛𝑐𝑎𝑡 represents the concatenation of the 
outputs of multiple heads along the feature dimension.

Then, during the global relation aggregation process, we share the 
same weight matrix with the dense connection layer and the global 
relation aggregation. It is hoped that the entity node representation of 
layer 𝑙 can learn the relationship information of the previous layer and 
simultaneously integrate all the relationship information of layer 𝑙. We 
define the global relationship aggregation of 𝑙-level entity nodes as: 
ℎ(𝑙)𝑒𝑖 = ℎ(𝑙−1)𝑒𝑖

⋅ 𝐴𝐺𝐺(𝑙)
𝑔𝑙𝑜𝑏𝑎𝑙,𝑟(

∑

𝑟∈𝑅
𝑊 (𝑙)

𝑟 ⋅ ℎ(𝑙)𝑒𝑖,𝑟 ) (8)

where ℎ(𝑙)𝑒𝑖  represents the hidden vector of the entity node in the 𝑙 layer, 
and ℎ(𝑙)𝑒𝑖,𝑟  is the local relation vector representation in the 𝑙 layer under 
the relation 𝑟. We propose a global relational aggregator 𝐴𝐺𝐺(𝑙)

𝑔𝑙𝑜𝑏𝑎𝑙,𝑟, 
which learns the local relational information of layer 𝑙 through the 
relational weight matrix 𝑊 (𝑙)

𝑟  and fuses the hidden entity node vectors 
of layer 𝑙−1 through splicing aggregation operators, e.g., concatenation, 
or Multi-layer Perceptron (MLP).

3.4. Latent-relation mining

3.4.1. Fully associated graph generation
The knowledge graph contains a large amount of topological struc-

ture information. Entity pairs with edge connections will have a direct 
impact on each other. Nonetheless, a potential influence may arise in 
scenarios where direct edge connections between entity nodes are ab-
sent. Existing methods may struggle to capture this latent relationship 
between entities. Therefore, we employ multi-head attention on the 
original pre-aligned knowledge graph, generating multiple attention 
adjacency matrices and obtaining a variety of fully associated pre-
aligned knowledge graphs with different weights, thereby capturing 
potential relationships between all entity pairs. Furthermore, the scaled 
dot product attention mechanism is known for its efficiency in terms of 
speed and space utilization. Consequently, we employ this mechanism 
in our computations, and its formula is expressed as follows: 

𝐴(𝑧) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝑊 𝑄

𝑧 × (𝐾𝑊 𝐾
𝑧 )𝑇

√
)𝐴(0) (9)
𝑑𝑧
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where 𝑧 denotes the index of the multi-head attention and the fully 
associated graph, 𝑧 ∈ {1,… , 𝑚}. 𝐴(𝑧) stands for the adjacency weight 
matrix of the 𝑧th fully associated graph, and 𝐴(0) represents the initial 
adjacency weight matrix composed of 𝑎𝑖𝑗 . 𝑄 ∈ 𝑅𝑧×𝑑 and 𝐾 ∈ 𝑅𝑧×𝑑

refer to the feature vectors of the entity nodes in the 𝑙 − 1-th layer. 
𝑊 𝑄

𝑧 ∈ 𝑅𝑑×𝑑 and 𝑊 𝐾
𝑧 ∈ 𝑅𝑑×𝑑 act as the linear transition matrices of 𝑄

and 𝐾, respectively. 𝑑𝑧 is the dimension of the feature output.
𝐴(𝑚) obtained through multi-head attention results in a fully asso-

ciated edge-weighted pre-aligned entity graph. The graph convolution 
model enables the capture of interactions between arbitrary nodes, 
facilitating the extraction of latent relationships between nodes. Mul-
tiple attention is given to obtaining multiple fully associated weighted 
graphs to capture different latent information with separate attention. 
Furthermore, this design tackles the constraints present in the original 
graph structure, offering potentially pertinent information between 
constituent utterances for subsequent stages of information propaga-
tion.

3.4.2. Information propagation
We obtain multiple fully associated graphs with edge weighting 

in the multi-head attention layer. However, directly propagating in-
formation on fully associated graphs has problems such as high com-
putational complexity and excessive storage space. Therefore, to pro-
mote deeper information propagation while reducing computational 
complexity, we introduce dense connections and data augmentation 
mechanisms in information propagation, the detailed structure shown 
in Fig.  5.

First, we use a multi-head attention mechanism to capture the latent 
relationships between entities from multiple perspectives and generate 
multiple fully connected graphs. Then, we generate candidate nodes 
through the random walk step of the Formula. (3), and integrate the 
candidate nodes with the original neighbors to form a new set of 
neighbors. Finally, we prune the fully connected adjacency matrix to 
only retain the connection relationship between the entity and the first-
order neighbors and the filtered candidate nodes, thereby reducing the 
computational complexity. For each attention head, we perform prun-
ing to generate multiple enhanced graphs. We use the enhanced graph 
as the input of the densely connected layer, and promote cross-layer 
propagation of information through deep connections, thereby retain-
ing more useful prior information and enhancing the expressiveness of 
the model.

The dense connections strategy establishes direct connections be-
tween the hidden vectors of the current layer and all previous layers 
when representing the entity nodes of the 𝑙 layer. Compared with 
traditional GCN, in the case of dense connections, the node of the 𝑙th 
layer not only receives input from the (𝑙 − 1)𝑡ℎ layer but also integrates 
information from all the previous layers. Mathematically, the node 
feature representation generated by layer 𝑙 in the attention head 𝑧th 
is defined as: 
𝑋(𝑧,𝑙)

𝑒𝑖
= [ℎ(0)𝑒𝑖

;ℎ(𝑧,1)𝑒𝑖
; ...;ℎ(𝑧,𝑙−1)𝑒𝑖

] (10)

where ℎ(𝑧,𝑙−1)𝑒𝑖  represent the vertex features generated by the entity 
node 𝑒𝑖 in the 𝑧th attention head through the (𝑙 − 1)𝑡ℎ sublayer, which 
obtained by the fully associated graph. 𝑋(𝑧,𝑙)

𝑒𝑖  denotes the connection 
between the initial entity feature vector under the dense sublayer 𝑙 of 
the 𝑧th attention head and the hidden feature vectors ℎ(0)𝑒𝑖  of all previous 
dense sublayers.

The hidden node vector calculation of each sub-layer is related 
to the number 𝑧 of fully connected edge weighted entity pre-aligned 
graphs 𝐺(𝑧) generated by multi-head attention, where the 𝑧th fully 
associated graph 𝐺(𝑧) is in layer 𝑙. The calculation formula in the 
sublayer is as follows: 

ℎ(𝑧,𝑙)𝑒𝑖
= 𝐴𝐺𝐺(

𝑛
∑

𝐴𝑧
𝑖𝑗𝑊

(𝑧,𝑙)𝑋(𝑧,𝑙−1)
𝑒𝑗

+ 𝑏(𝑧,𝑙)) (11)

𝑗=1

6 
Fig. 5. Taking the pruned fully associated graph as input, the information transfer 
mechanism between each sub-layer of the dense connection layer is shown from left 
to right, as well as the aggregation process of graph convolution from bottom to top.

where 𝐴𝑧
𝑖𝑗 represent the adjacency matrix, which correspond to the first 

fully connected edge weighted entity pre-alignment graph 𝐺(𝑧), 𝑋(𝑧,𝑙−1)
𝑒𝑗

denotes the feature vector representation of the entity node 𝑒𝑗 of the 
𝑧th attention head under the dense sublayer 𝑙 − 1, and 𝑏(𝑧,𝑙) represents 
the offset value, 𝑊 (𝑧,𝑙) denotes the corresponding weight matrix, and 
𝐴𝐺𝐺 stands for an aggregation function in the given context.

In the convolution process of traditional GCN, the hidden vector 
dimension is greater than or equal to the input vector dimension. 
Differing from this, the dense connection strategy dictates that the 
hidden vector of each sublayer is defined as 𝑑ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑑

𝐿 , where 𝑑
is the dimension of the input vector, and 𝐿 is the number of layers 
in the dense connection layer. It is evident that as the number of 
layers 𝐿 increases, 𝑑ℎ𝑖𝑑𝑑𝑒𝑛 diminishes, thereby enhancing parameter 
efficiency. Ultimately, the results of each sublayer are concatenated 
to form the final output, with the dimension of the output vector 
matching that of the input vector. The dense connection layer combines 
shallow and deep features through cross layer feature concatenation, 
while reducing the hidden dimension of each layer. This design not 
only achieves effective fusion of multi-level features while maintaining 
controllable total parameter quantity, but also enhances information 
flow and avoids performance degradation of deep networks caused by 
information dilution.

3.4.3. Linear fusion
Through the dense connection layer, we can get the hidden vectors 

ℎ(𝑧,𝐿)𝑒𝑖  of 𝑧 entity nodes learned by multi-head attention. In the multi-
relational fusion layer, we get the final relationship-aware vector ℎ(𝐿)𝑒𝑖
of entity nodes. The result is shown in the formula: 

ℎ(𝐿)𝑒𝑖
= ℎ(𝐿−1)𝑒𝑖

.𝐴𝐺𝐺(𝑙)
𝑔𝑙𝑜𝑏𝑎𝑙,𝑟 (12)

ℎ(𝑧,𝐿)𝑒𝑖
= [ℎ(0)𝑒𝑖

;ℎ(𝑧,1)𝑒𝑖
; ...;ℎ(𝑧,𝐿−1)𝑒𝑖

] (13)

We design a linear fusion layer to fuse the output of the dense 
connection layer and the multi-relational fusion layer to obtain the final 
representation of entity nodes. The linear fusion formula is as follows: 
ℎ𝑒𝑖 = 𝛽(𝑊𝑙𝑖𝑛𝑒ℎ

(𝑧,𝑙)
𝑒𝑖

+ 𝑏𝑙𝑖𝑛𝑒) + (1 − 𝛽)ℎ(𝐿)𝑒𝑖 (14)

where 𝑏𝑙𝑖𝑛𝑒 is the bias item of the linear fusion formula, and 𝑊𝑙𝑖𝑛𝑒 is the 
linear weight matrix. 𝛽 is a hyperparameter used to balance the results.
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Table 1
Analysis of the DBP15K dataset.
 Datasets DBP15K

 Entities Relations Attr′ Rel Tri′ Attr Tri′ 
 JA-EN Japanese 65 744 1299 5882 164373 354619  
 English 95 680 2096 6066 233319 497230  
 FR-EN French 66858 1379 4547 192191 528665  
 English 105889 2209 6422 278590 576543  
 ZH-EN Chinese 66 469 2830 8113 153929 379684  
 English 98 125 2317 7173 237674 567755  
′ Abbreviated form of Attributes, Relation and Triples.
Table 2
Analysis of the DWY100K dataset.
 Datasets DWY100K

 Entities Relations Attr′ Rel Tri′ Attr Tri′ 
 DBP-YG DBpedia 100000 302 334 428952 451646  
 YAGO3 100000 31 23 502563 118376  
 DBP-WD DBpedia 100000 330 351 463294 381166  
 Wikidata 100000 220 729 448774 789815  
′ Abbreviated form of Attributes, Relation and Triples.
3.5. Entity alignment

Entity alignment aims at the task of identifying equivalent entities 
in two distinct knowledge graphs and establishing connections between 
them for knowledge fusion. Following the acquisition of vector repre-
sentations for all entity nodes via MFLM-GCN, we assess the similarity 
between entities by examining the distances between their respective 
vectors in a graph. Entities with smaller vector distances are more likely 
to be aligned. We arrange each entity node in the target graph based 
on vector distances and designate the one with the smallest distance as 
the candidate for alignment. The distance formula between two entities 
is specifically expressed as: 
𝑑(𝑒𝑖, 𝑒𝑗 ) = ‖ℎ𝑒𝑖 − ℎ𝑒𝑗 ‖𝐿1 (15)

where 𝑒𝑖 is from 𝐺1 and 𝑒𝑗 is from 𝐺2.
During the model training process, the entity vectors obtained 

through model learning are utilized to compute the loss value. The 
objective is to optimize model training by minimizing the margin-
based ranking loss function with a margin of 𝜏𝑙𝑜𝑠𝑠, aiming to achieve 
the optimal performance in entity alignment. The formula for the loss 
function is: 
𝜏𝑙𝑜𝑠𝑠 =

∑

(𝑒𝑖 ,𝑒𝑗 )∈𝑆

∑

(𝑒𝑖′ ,𝑒𝑗 ′)∈𝑆′
[𝑑(𝑒𝑖, 𝑒𝑗 ) + 𝛾 − 𝑑(𝑒𝑖′, 𝑒𝑗 ′)]+ (16)

where (𝑒𝑖, 𝑒𝑗 ) ∈ 𝑆 denotes the entity alignment seed. During the model 
learning process, we aim for the distance between aligned entity nodes 
to be minimized, while the distance between the same entities should 
be maximized. To achieve this, we construct a batch of negative sample 
sets 𝑆′ = {(𝑒′𝑖 , 𝑒𝑗 ), (𝑒𝑖, 𝑒

′
𝑗 )|𝑒𝑖, 𝑒

′
𝑖 ∈ 𝐺1, 𝑒𝑗 , 𝑒′𝑗 ∈ 𝐺2} to be used in training 

the model. The notation [⋅]+ represents 𝑚𝑎𝑥{0, ⋅}, and 𝛾 denotes the 
margin hyper-parameter.

3.6. Complexity analysis

In order to comprehensively evaluate the performance of the model, 
we conducted a time complexity analysis on the four key components 
of MFLM-GCN, namely, Graph Fusion and Isomorphism, Graph Random 
Walk, Multi-Relation Fusion, and Latent-Relation Mining. First, in the 
Graph Fusion and Isomorphism part, its complexity mainly comes from 
the traversal of seed pairs and all their relations, so the complexity 
is (|𝐸| × |𝑅|). Second, in the Graph Random Walk part, each entity 
performs a random walk, and each step needs to traverse all neighbor 
nodes. Therefore, the complexity of this part is (|𝐸| × |𝑅| × |𝐸|). 
Next, in the Multi-Relation Fusion part, its complexity mainly depends 
on local relationship aggregation and global relationship aggregation. 
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Specifically, the complexity of local relation aggregation is (|𝐸|×|𝑅|), 
while the complexity of global relation aggregation is also (|𝐸|× |𝑅|). 
Therefore, the total complexity of this part is (|𝐸|×|𝑅|)+(|𝐸|×|𝑅|) =
(|𝐸|× |𝑅|). Finally, in the Latent-Relation Mining part, its complexity 
mainly depends on the process of Fully Associated Graph Generation, 
which has a complexity of (|𝐸| × |𝐸|). In summary, the total time 
complexity of MFLM-GCN is (|𝐸| × |𝐸| × |𝑅| + |𝐸| × |𝑅|).

4. Experiment

4.1. Datasets and baselines

Our experiments are conducted on two real-world multilingual data 
sets. Tables  1 and 2 provide statistical summaries for each dataset. 
The quantitative information includes statistics on entities, relations, 
attributions, relation triples, and attribute triples.

DBP15K is a cross-lingual entity alignment dataset with three 
KG pairs: ZH-EN, JA-EN, and FR-EN. In [26], the authors extracted 
15,000 links from DBpedia, annotating them as synonymous or non-
synonymous relations.

DWY100K [25] is a cross-KG alignment dataset comprising three 
networks: Wiki, YAGO, and DBP15K. It offers three sets of alignment 
tasks with varying difficulty levels. Each task maps entities in one 
network to entities in another network.

We conduct a comparative analysis of MFLM-GCN against seven 
representative baseline models. This includes three translation-based 
models and five GNN-based models, respectively.

• TransE [14] projects both entities and relationships into a low-
dimensional vector space.

• MTransE [22] maps entities from each language into distinct 
low-dimensional vector spaces and computes transformations that 
map them into the spaces of other languages.

• IPTransE [24] integrates relational attribute information by em-
bedding relations in entity representation.

• GCN-Align [18] conducts graph convolution operations across 
different knowledge graphs to capture relationships and semantic 
information between entities.

• MuGNN [33] treats multiple knowledge graphs as a collection of 
graphs, utilizing multi-graph joint training and multi-layer graph 
convolution operations.
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Table 3
Our proposed model is evaluated by comparing its performance with 8 baselines and LSM-GCN on DBP15K. We evaluate performance using Hit@k and MRR, which represent the 
top k accuracy scores and average ranking, respectively. Those that perform best in vertical contrast are highlighted in bold.
 DBP15KJA−EN DBP15KFR−EN DBP15KZH−EN

 Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR 
 TransE 20.13 46.92 0.31 21.36 48.01 0.33 18.97 44.68 0.29  
 MTransE 25.01 57.24 0.36 24.79 57.74 0.36 20.92 51.23 0.31  
 IPTransE 36.70 69.30 0.47 33.30 68.50 0.45 40.60 73.50 0.51  
 GCN-Align 41.54 74.64 0.55 40.43 76.67 0.54 40.93 72.88 0.54  
 MuGNN 50.10 85.70 0.62 49.50 87.00 0.62 49.40 84.40 0.61  
 AliNet 54.90 83.10 0.64 55.20 85.20 0.65 53.90 82.60 0.62  
 HMAN 55.76 86.10 0.67 55.03 87.61 0.66 56.14 85.73 0.67  
 GALA 56.83 81.78 0.65 58.09 84.06 0.66 56.33 81.11 0.65  
 LSM-GCN 57.18 88.39 0.69 59.83 89.98 0.71 57.21 87.21 0.68  
 MFLM-GCN 63.97 90.10 0.73 68.13 91.89 0.77 63.17 88.29 0.72 
• AliNet [37] employs adaptive feature exchange and multi-layer 
attention mechanisms.

• HMAN [19] integrates both global and local information, incor-
porating attention mechanisms of different scales.

• GALA [7] aligns the entities by forcing their global features 
to match with each other and progressively updating the en-
tity embeddings by aggregating local information from the other 
network.

Our experiments are conducted on NVIDIA A800 80 GB. We utilized 
the BERT model to obtain semantic vectors for entities, each with a 
dimension of 256. These vectors were then concatenated to form entity 
node feature vectors with a dimension of 512. In our architecture, 
we set the multi-head attention count for Multi-Relation Fusion to 2 
and for Latent-Relation Mining to 4. The number of sub-layers in the 
dense connection layer was also configured to be 4. For each positive 
sample, we generated 20 negative samples 𝜁 . During model training, 
the learning rate was set to 0.003. We used 30% of the dataset as the 
training set, and the model was trained for 300 epochs. Additionally, 
the model was saved every 50 epochs.

4.2. Evaluation metrics

Consistent with prior studies, we adopt Hit@k and MRR as the 
evaluation metrics for our model. A detailed description of each metric 
is provided below.

Hit@k: Entities are sorted based on the distances between their 
codes, and the proportion of correctly aligned entities within the top-k 
positions is calculated. We have chosen commonly used values of 1 and 
10 for k. Hit@1 evaluates the model’s precision in representing triples 
exactly and accurately. Hit@10 provides a more lenient assessment, 
considering correctly aligned entities within the top 10 positions as 
valid.

MRR: The Mean Reciprocal Rank (MRR) serves as a comprehen-
sive metric for evaluating search algorithms globally. It involves the 
summation of the reciprocal values of correctly aligned entity rankings, 
followed by averaging. Its calculation formula is as follows: 

𝑀𝑅𝑅 = 1
𝑁

∑

𝑒𝑖∈𝑆

1
𝑟𝑎𝑛𝑘𝑒𝑖

(17)

where 𝑟𝑎𝑛𝑘𝑒𝑖  denotes the position of the correctly aligned entity upon 
sorting based on the distance of entity codes, and 𝑁 represents the total 
number of entities in the test set 𝑆.

4.3. Qualitative comparison

Tables  3 and 4 present the descriptive statistics, including means 
and standard deviations, pertaining to baseline models’ performance 
evaluation on both the DBP15K and DWY100K datasets. An observa-
tion discernible from these tables is the compelling performance of 
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Table 4
Performance of MFLM-GCN in Handling Large-Scale and Diverse Knowledge Graphs 
such as DWY100K also made significant progress in model design and algorithm 
optimization.
 DBP-YG DBP-WD

 Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR 
 IPTransE 29.73 55.81 0.37 34.92 63.86 0.45  
 GCNAlign 59.72 83.85 0.68 50.64 77.28 0.60  
 MuGNN 73.91 93.76 0.81 60.41 89.48 0.70  
 AliNet 78.65 94.32 0.84 69.09 90.89 0.77  
 MFLM-GCN 80.80 95.73 0.86 69.11 87.59 0.77 

the MFLM-GCN model across various language pairs, surpassing other 
comparative models in the evaluations.

(1) Analysis of DBP15K indicates that the performance of
translation-based models generally falls short compared to GNN-based 
models. This inferior performance is attributed to the challenges faced 
by translation-based methods in adequately representing relations, 
particularly in complex adjacency and ring structures. This observation 
aligns with the consensus in most related methodologies. In compar-
ison to conventional GNN-based models like GCN-Align, which uses 
a standard GCN for entity embedding, MFLM-GCN demonstrates a 
significant 22.3% improvement in Hit@1 on the JA-EN dataset. This 
highlights the efficacy of MFLM-GCN’s entity convolution function 
in revealing latent association information, thereby improving entity 
alignment. Furthermore, MFLM-GCN’s notable performance gains over 
LSM-GCN emphasize the effectiveness of its novel graph random walk 
and multi-relation fusion modules in entity alignment tasks.

(2) Due to the fully connected graph module, LSM-GCN faces 
a quadratic increase in memory usage as the knowledge graph ex-
pands, hindering its efficiency in processing large-scale graphs. In 
contrast, MFLM-GCN, enhanced by its graph random walk module, 
effectively overcomes this limitation and demonstrates strong per-
formance on large-scale knowledge graphs. According to data from 
DWY100K, translation-based models like IPTransE exhibit a marked 
performance drop on large-scale knowledge graphs. In contrast, GNN-
based models show more pronounced performance improvements in 
such environments, as seen in comparisons with DBP15K. This improve-
ment can be attributed to the richer topological structure and relation-
ship information in large-scale knowledge graphs, which GNN-based 
models effectively leverage. Notably, MFLM-GCN also outperforms 
other models in most metrics. On the DBP-YG dataset, MFLM-GCN 
achieves Hit@1 and Hit@10 scores of 80.80 and 95.73, respectively, 
and an MRR index of 0.86. This underscores the superiority of our 
method in processing large-scale datasets.

These findings collectively affirm the efficacy of MFLM-GCN in 
addressing entity alignment challenges and the importance of its in-
novative modules.
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Fig. 6. Illustrative instances of the utility of graph random walks are demonstrated on the DBP15K_ZH and DBP15K_EN datasets. Specifically, target nodes exhibit connectivity 
to neighboring nodes with elevated GRW scores through stochastic traversal within the graph. This traversal encompasses both the exploration of original neighbor nodes and 
the discovery of novel neighbor nodes. The connections to original neighbor nodes are denoted by solid lines, while those to new neighbor nodes are indicated by dashed lines, 
delineating the distinct relationships established during the random walk process.
Table 5
The performance evaluation of various convolutional methods on the DBP15K 
dataset.MFLM-MR represents MFLM-GCN that only uses the MR module.
 Datasets JA-EN FR-EN ZH-EN

 Method Hit@1 MRR Hit@1 MRR Hit@1 MRR 
 GCN 41.54 0.55 40.43 0.54 40.93 0.54  
 GAT 48.02 0.60 50.49 0.63 46.44 0.58  
 R-GCN 49.98 0.62 52.17 0.65 49.41 0.61  
 LSM-GCN 57.18 0.69 59.83 0.71 57.21 0.68  
 MFLM-MR 60.40 0.70 64.52 0.91 58.10 0.69 

4.4. Ablation studies

To demonstrate the ability of MFLM-GCN to exploit relationships, 
the effectiveness of each design in each method module, and the 
spatiotemporal optimization brought by graph random walks, we con-
structed three ablation experiments on DBP15K.

The Ability to Exploit Relationships. To assess the efficacy in 
leveraging relations among various convolutional models, we substi-
tute MFLM-MR with re-tuned variants of GNN, namely, GCN [32], 
GAT [49], and R-GCN [39], all configured with identical parameters. 
The results presented in Table  5 reveal that MFLM-MR outperforms 
GCN and GAT by 18.86% and 12.38%, respectively. This discrepancy 
arises from the fact that both GCN and GAT neglect relationships. While 
R-GCN encounters challenges in fully harnessing relationship informa-
tion, our proposed method excels by achieving a notable improvement 
of 10.42% over R-GCN. Moreover, the superior performance of R-GCN 
compared to GCN and GAT underscores the crucial role of relationships 
in entity representation. In comparison to our previously proposed 
LSM-GCN, MFLM-GCN exhibits further enhancements.

The Effectiveness of Each Module. MFLM-GCN incorporates four 
key components to capture diverse aspects of information present in 
KGs: (1) Graph Random Walk (GRW), (2) Multi-Relational Aggregation
(MR), (3) Multi-Head Fully Connected Graph (MH), (4) Dense Connected 
Layer (DC). We perform an ablation study on each component of 
MFLM-GCN, evaluating their individual influences on performance. The 
corresponding results are presented in Table  6.

• The 1st and 2nd rows show the influences of multi-relational 
aggregation (MR) on EA performance. Compared with only using 
9 
GCN for entity alignment, MR can improve the Hit@1 by 18.86%. 
This improvement stems from the importance of relational infor-
mation in the knowledge graph.

• The 1st and 3rd rows show the influences of multi-head attention 
(MH) and densely connected layers (DC) on capturing latent re-
lational information. We can see that using MH and DC increases 
the accuracy by 15.64% compared to GCN alone. This indicates 
that the fully connected graph generated by MH convolved by DC 
can improve performance, capture potential relationship informa-
tion between entities and the deeper information contained in all 
convolutional network hidden layers.

• The 3rd and 4th rows show the influences of MR on MFLM-GCN, 
which brings 6.66% accuracy improvement. This enhancement 
underscores the effectiveness of MR in fully leveraging relational 
dynamics, thereby enabling a more robust learning of entity 
representations.

• The 4th and 5th rows show the influences of employing graph 
random walk (GRW). Compared with no GRW, the accuracy is 
improved by 0.13%, which shows that the GRW module im-
proves the alignment performance to a certain extent. The GRW 
is more about reducing the memory pressure caused by the fully 
connected graph.

The Spatiotemporal Optimization Brought by Graph Random
Walk. The goal of the graph random walk is to randomly sample 
adjacent nodes and selectively identify neighbors exhibiting high struc-
tural correlation, thereby enhancing the neighbor set. To explore the 
effectiveness of our model in relational representation, as shown in Fig. 
6, we took two nodes from the 𝐷𝐵𝑃 15𝐾𝑍𝐻−𝐸𝑁  graph as examples and 
visualized the experimental results of GRW. The analysis reveals two 
phenomena: neighbors that align with nodes in ZH were sampled for 
nodes in EN, and newly expanded neighbors in the EN and ZH graphs 
have aligning nodes. We can know that GRW effectively identifies 
relevant neighbors, alleviating the sparsity of the knowledge graph 
structure.

Moreover, the results of the graph random walk, combined with a 
fully connected graph, significantly reduce resource requirements and 
improve performance while thoroughly exploring potential relation-
ships between entities. As shown in Table  7, on the 𝐷𝐵𝑃 15𝐾
𝑍𝐻−𝐸𝑁
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Table 6
Ablation experimental performance of MFLM-GCN on the DBP15K dataset with different components.
 Components JA-EN FR-EN ZH-EN

 GRW MR MH DC Hit@1 MRR Hit@1 MRR Hit@1 MRR 
 – – – – 41.54 0.55 40.43 0.54 40.93 0.54  
 – ✓ – – 60.40 0.70 64.52 0.91 58.10 0.69  
 – – ✓ ✓ 57.18 0.69 59.83 0.71 57.21 0.68  
 – ✓ ✓ ✓ 63.84 0.73 67.21 0.76 62.17 0.71  
 ✓ ✓ ✓ ✓ 63.97 0.73 68.13 0.77 63.17 0.72  
Fig. 7. The impact of different numbers of multi-relation fusion attention heads (a), latent-relation mining attention heads (b), and sub-layers of densely connected layers on 
MFLM-GCN.
Table 7
Performance of graph random walk.
 Method Times (s) Space (M) 
 MFLM 5.761 9707  
 MFLM(w/o grw) 10.354 32361  

dataset, MFLM saved nearly 0.8 × execution time and over 2.4 × mem-
ory space after using GRW, making it feasible for entity alignment tasks 
in larger-scale knowledge graphs.

The above experiments demonstrate that using a graph random walk 
to sample neighbors with high structural correlation can better obtain 
entity representations and reduce memory resource requirements.

4.5. Parameter experiment

In this section, we conduct parameter experiments on the number of 
attention heads in multi-relation fusion, the number of attention heads 
in latent relation mining, and the number of sub-layers in the densely 
connected layers to analyze their effects on the model.

The number of heads in multi-relational fusion. In our investiga-
tion, we systematically examine diverse configurations for the number 
of attention heads in the context of multi-relation fusion, elucidating 
its influence on the depth of potential relationships explored during the 
entity alignment process. Illustrated in Fig.  7(a), we varied the number 
of attention heads from 1 to 6 across the three datasets in DBP15K, 
aiming to discern its impact on the model’s capacity to discern varied 
semantic relationships between entities. Our scrutiny of the alignment 
outcomes reveals that the optimal configuration, in terms of model 
performance, is observed when employing 2 attention heads.

The number of heads in latent-relation mining. We experimented 
with the number of multi-head attention heads in latent-relation mining 
on three datasets of DBP15K, ranging from 1 to 6. The experimental re-
sults in Fig.  7(b) show that as the number of multi-head attention heads 
increases, the model performance shows a trend of first increasing and 
then decreasing. Specifically, when the number of heads is 4, the model 
performance reaches the best state, which indicates that the model can 
most effectively capture the diversity of latent relationships at this time. 
However, when the number of heads exceeds 4, the model performance 
10 
begins to decline slightly. The reason for this phenomenon is that when 
the number of heads is small, the model may not be able to fully capture 
the complexity of the latent relationship; when the number of heads is 
too large, the model may introduce redundant information, resulting in 
performance degradation.

The number of sub-layers in densely connected layers. Similarly, 
we experimented with the number of sub-layers of densely connected 
layers in the three language directions of the DBP15K dataset, ranging 
from 1 to 6. From the data in Fig.  7(c), it can be seen that the model 
performance first increases and then decreases with the increase in the 
number of sub-layers, and the best state appears when the number of 
sub-layers is 4. However, it is worth noting that even under different 
parameter values, the model effect does not change much, and the 
model performance always remains at a high level. This phenomenon 
shows that MFLM-GCN is less sensitive to parameter selection and has 
strong adaptability and reliability.

5. Conclusions

This article proposes MFLM-GCN to explore latent structural nu-
ances and multi-relationship within knowledge graphs. Leveraging 
multi-head attention mechanisms, we meticulously discern latent corre-
lations amid entities, engendering a manifold of comprehensive corre-
lation graphs. Augmenting this, a densely connected layer is integrated 
based on random walk graphs, unraveling deeper topological insights. 
Furthermore, our approach orchestrates multi-relationship fusion to 
amalgamate both local and global relationship data, culminating in 
enriched entity node representations. On the DBP15K and DWY100K 
datasets, MFLM-GCN’s Hits@1, Hits@10, and MRR are significantly 
better than the baseline models, fully verifying its excellent perfor-
mance and effectiveness. However, there is still room for improvement 
in MFLM-GCN. MFLM-GCN mainly focuses on the structural informa-
tion processing of the knowledge graph, and has not yet considered 
the use of multi-dimensional data such as attribute information, image 
information, entity name semantics, etc., which may limit its perfor-
mance in some complex scenarios. Our future work will focus on using 
more multi-dimensional information to enhance the overall effect of 
the entity alignment process.
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