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Abstract—Processing large volumes of data has presented a challenging issue, particularly in data-redundant systems. As one of the

most recognized models, the conditional random fields (CRF) model has been widely applied in biomedical named entity recognition

(Bio-NER). Due to the internally sequential feature, performance improvement of the CRF model is nontrivial, which requires new

parallelized solutions. By combining and parallelizing the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) and Viterbi

algorithms, we propose a parallel CRF algorithm called MapReduce CRF (MRCRF) in this paper, which contains two parallel

sub-algorithms to handle two time-consuming steps of the CRF model. The MapReduce L-BFGS (MRLB) algorithm leverages the

MapReduce framework to enhance the capability of estimating parameters. Furthermore, the MapReduce Viterbi (MRVtb) algorithm

infers the most likely state sequence by extending the Viterbi algorithm with another MapReduce job. Experimental results show that

the MRCRF algorithm outperforms other competing methods by exhibiting significant performance improvement in terms of time

efficiency as well as preserving a guaranteed level of correctness.

Index Terms—Biomedical named entity recognition, conditional random fields, MapReduce, parallel algorithm

Ç

1 INTRODUCTION

1.1 Motivation

WITH the rapid development of computational and bio-
logical technologies, biomedical literatures are

expanding at an exponential rate. As one of the most con-
cerned areas, papers on biomedicine have been published
in a huge amount, reaching an average of 600,000 or more
per year. Currently, the most authoritative biomedical liter-
ature database MEDLINE (Medical Literature Analysis and
Retrieval System Online) in American National Library of
Medical (NLM) has included the information of more than
7,000 kinds of important biomedical journals published in
over 70 countries and regions since 1966, including more
than 18 million articles [1]. The explosion of literatures in
the biomedical domain promotes the application of text
mining. Aiming to identify words or phrases referring to
specific entities in biomedical literatures, biomedical named
entity recognition (Bio-NER) is a critical step for the text
mining. If biomedical named entities are not correctly
and effectively identified, other tasks like relationship

extraction, gene/protein normalization, and hypothesis
generation cannot be performed effectively.

Current methods for Bio-NER fall into three general clas-
ses, i.e., dictionary-based methods [40], heuristic rule-based
methods [24], and statistical machine learning methods [17].
Relying on dictionary-based methods could cause the low
recall due to the continual appearance of new entities with
the advancing biology research. Biological named entities
do not follow any nomenclature, which makes rule-based
methods hard to be perfect. Besides, rule-based systems
require domain experts, and they are not portable to other
NE types and domains. Machine learning methods are
more robust and they can identify potential biomedical enti-
ties which are not previously included in standard dictio-
naries. More and more machine learning methods are
introduced to solve the Bio-NER problem, such as Hidden
Markov Model (HMM) [10], Support Vector Machine
(SVM) [12], Maximum Entropy Markov Model (MEMM)
[16], and Conditional Random Fields (CRF) [20], [33].

Conditional random fields, a type of conditional probabil-
ity model, has been widely applied in biomedical named
entity recognition [7], [28], [34]. The advantage of the CRF
model is the ability to express long-distance-dependent and
overlapping features. CRF has shown empirical success
recently in Bio-NER, since it is free from the so-called label
bias problem by using a global normalization. However,
when facing large-scale data, the time efficiency of the CRF
model with the traditional stand-alone processing algorithm
is not satisfactory. For example, CRF takes approximately 45
hours (3.0 GHz CPU, 1.0 G memory, and 400 iterations) to
train only 400 K training examples [30]. It is caused by the
problem of CRF that the model parameter estimation cycle is
long, because it needs to compute the global gradient for all
features. The time complexity and space complexity of the
whole algorithm show non-linear growth with the growth of
the training data. To efficiently handle large-scale data, faster
processing and optimization algorithms have become critical
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for biomedical big data. Hence, it is vital to develop new
algorithms that aremore suitable for parallel architectures.

The CRF model needs to consider three key steps, i.e.,
feature selection, parameter estimation, and model infer-
ence. The parameter estimation step is very time-consuming
because of the large amount of calculations especially when
the training data set is large, which becomes the most
important reason that degrades the performance of the CRF
model. An optimization algorithm called Limited memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) is a popular
method that has been used to do parameter estimation of
CRF [9], [23], [29]. However, since it is an iterative algo-
rithm, achieving high parallelism is not easy and demands
considerable research attention for developing new parallel-
ized algorithms that will allow them to efficiently handle
large-scale data. It is a challenging task to parallelize such a
dependent iterative algorithm. The task of making iterations
independent of each other and thus leveraging and boosting
parallel architectures is nontrivial. In this paper, we solve
such an inter-dependent problem with an efficient strategy.

Current methods of improving time efficiency of the CRF
model focus on how to reduce the model parameter estima-
tion time. However, the complexity of the model inference
step increases quickly with the increase of constraint length
of training data set as well. The model inference step can be
performed using a modified Viterbi algorithm [5], [36], [41].
In this paper, we formulate the Viterbi algorithm within the
MapReduce framework to parallelize the model inference
step with a simple strategy.

1.2 Our Contributions

In this paper, we propose an improved parallel CRF algo-
rithm by combining the parallel L-BFGS and Viterbi algo-
rithms. The algorithm leverages the MapReduce framework
to enhance the capability of estimating parameters. Further-
more, it infers the most likely state sequence by extending
the Viterbi algorithm with another MapReduce job. We
empirically show that, while maintaining a competitive
accuracy on the test data, the algorithm achieves significant
speedup compared to the baseline CRF algorithm imple-
mented on a single machine. The proposed algorithms are
designed to work in the Hadoop environment, where each
mapper in the nodes only compute a subset of the data.

The major contributions of this paper are summarized as
follows.

� We propose an efficient method called MapReduce
CRF (MRCRF) to partition a large dataset across
Hadoop nodes in order to keep the context of each
word in each sentence of Bio-NER, balance the work-
load and minimize the need for replication. Com-
pared to the CRF method, the proposed MRCRF
method requires “partitioning” the data sets.

� We develop two efficient parallel algorithms, i.e., the
MapReduce L-BFGS (MRLB) algorithm and the
MapReduce Viterbi (MRVtb) algorithm to imple-
ment the parallel CRF for Bio-NER based on MapRe-
duce. The algorithms have improved performance
compared with an existing sequential algorithm.

� We conduct performance evaluation which can
reveal the performance benefit of the MRCRF

algorithm over the CRF counterpart. The perfor-
mance is presented with reported speedup versus
the sequential CRF under different data set sizes and
varying Hadoop configurations.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 describes the
CRF model and the related algorithms. Section 4 imports
the algorithms into MapReduce and implements the paral-
lelized CRF. Section 5 demonstrates the experimental
results. Section 6 concludes this paper.

2 RELATED WORK

There has been some prior works proposed in the literature
for accelerating CRF. These methods essentially gain accel-
eration by omitting important information of labels and los-
ing accuracy. Pal et al. proposed a Sparse Forward
Backward (SFB) algorithm, in which marginal distribution
is compressed by approximating the true marginal using
Kullback-Leibler (KL) divergence [25]. Cohn proposed a
Tied Potential (TP) algorithm which constrains the labeling
considered in each feature function, such that the functions
can detect only a relatively small set of labels [2]. Both of
these techniques efficiently compute the marginal with sig-
nificantly reduced runtime, resulting in faster training and
decoding of CRF. Although these methods could reduce
computational time significantly, they train CRF only on a
small data set.

In order to handle large data, Jeong et al. proposed an
efficient inference algorithm of CRF for large-scale natural
language data which unified the SFB and TP approaches
[11]. Lavergne et al. addressed the issue of training very
large CRF, containing up to hundreds output labels and sev-
eral billion features. Efficiency stems here from the sparsity
induced by the use of penalty term [15]. However, none of
these works described so far explore the idea of accelerating
CRF in a parallel or distributed setting and thus their perfor-
mance is limited by the resources of a single machine.

Given that CRF is weak in processing massive data, the
idea of parallelization is introduced into the algorithms.
Xuan-Hieu et al. proposed a high-performance training
method of CRF on large-scale data by using massively par-
allel computers [38]. In [19], a novel distributed training
method of CRF is proposed by utilizing the clusters built
from commodity computers. The method employs Message
Passing Interface (MPI) and improves the time performance
on large datasets. Recently, in [21], an efficient parallel infer-
ence on structured data with CRF based on Graphics Proc-
essing Units (GPU) is introduced and it is testified that the
approach is both practical and economical on very large
data sets. These methods achieve significant reduction in
computational time without losing accuracy. However, they
are not suitable for a distributed cloud environment, where
usually the communication cost is higher. In our approach,
we overcome this limitation by a parallel implementation of
CRF based on MapReduce which is suitable for huge data
sets [32].

MapReduce is an excellent model for distributed com-
puting on large data sets, which was introduced by Google
in 2004. It is an abstraction that allows users to easily create
parallel applications while hiding the details of data
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distribution, load balancing, and fault tolerance. At present,
it is popular in text mining of various applications, espe-
cially natural language processing (NLP) [8], [31], [37].
Laclavik et al. presented a pattern of annotation tool based
on the MapReduce architecture to process large amount of
text data [13]. Lin and Dyer discussed the processing
method of data intensive text based on MapReduce, such as
parallelization of EM algorithm and HMM model [18]. Palit
and Reddy proposed two parallel boosting algorithms, i.e.,
ADABOOST.PL and LOGITBOOST.PL, scalable and paral-
lel boosting with MapReduce [26].

3 CONDITIONAL RANDOM FIELDS MODEL

In this section, we first describe conditional random fields.
Then, we introduce the L-BFGS algorithm for CRF. Finally,
we introduce the Viterbi algorithm for CRF.

3.1 Conditional Random Fields

Conditional Random Fields was first introduced by Lafferty
et al. [14] as a sequence data labeling recognition model
based on statistical approaches. CRF has shown empirical
success recently in NER, since it is free from the so-called
label bias problem by using a global normalization.

CRF uses an undirected graphical model to calculate the
conditional probability P ðyjxÞ. In an NER application, a
given observed sequence x can be a set of words, and a state

sequence y can be in a binary value set C;Of g xj j, where
yt ¼ C indicates “word xt is inside a name” and yt ¼ O indi-
cates the opposite.

The result of NER is a label sequence, so we often use a
linear-chain CRF. Let y, x be random vectors. A linear-chain
CRF defines the conditional probability of the state
sequence y for a given input sequence x to be

P ðyjxÞ ¼ 1

ZðxÞ exp
XK
k¼1

�kfkðyt; yt�1; xtÞ
 !

; (1)

where fkðyt�1; yt; xtÞ is the feature function (the number is
K), �k is a learned weight of a feature , yt�1 and yt respec-
tively refer to the previous state and the current state, ZðxÞ
is the normalization factor over all state sequences as fol-
lows:

ZðxÞ ¼
X
y

exp
XK
k¼1

�kfkðyt; yt�1; xtÞ
 !

: (2)

The key problem of linear-chain CRF is how to find the
parameter vector ~� ¼ �1; . . . ; �kf g. This is done during the
training process. The training process is just for parameter
estimation, and the most commonly used method is maxi-
mum likelihood.

Presume every ðxi; yiÞ 2 D ¼ xi; yið Þf gNi¼1 is indepen-

dently and identically distributed, where each xi ¼ xi
1;

�
xi
2; . . . ; x

i
Tg is a sequence of inputs and each yi ¼ xi

1;
�

yi2; . . . ; y
i
Tg is a sequence of corresponding predictions. Then

the log-likelihood function of the training data D will be
shown below

L ~�
� �

¼
XN
i¼1

logP yijxi
� �

: (3)

From Eq. (1) and Eq. (3), the log-likelihood function should
be as follows:

Lð~�Þ ¼
XN
i¼1

log
1

Z xið Þ exp
XT
t¼1

XK
i¼1

�kfk
�
yit; y

i
t�1; x

i
t

� !" #

¼
XN
i¼1

XT
t¼1

XK
k¼1

�kfk
�
yit; y

i
t�1; x

i
t

��
XN
i¼1

logZðxiÞ: (4)

In order to avoid overfitting, a penalty term is involved, and
Eq. (4) becomes

Lð~�Þ ¼ Lð~�Þ �
XK
k¼1

�2
k

2s2
: (5)

From Eq. (4) and Eq. (5), the log-likelihood function should
be

Lð~�Þ ¼
XN
i¼1

XT
t¼1

XK
k¼1

�kfk
�
yit; y

i
t�1; x

i
t

��
XN
i¼1

logZðxiÞ �
XK
k¼1

�2
k

2s2
:

(6)

To maximize Eq. (6), numerical optimization techniques,
such as the improved iterative scaling (IIS) method [3] or
the quasi-Newton method [4], can be applied to calculate
the optimal value ~� ¼ �kf g. As an equally good choice, we
adopt the L-BFGS algorithm [22] to do that, because it is a
quasi-Newton method with high efficiency compared to the
IIS method.

After ~� ¼ �kf g is derived, Eq. (1) will then be used to do
NER during the labeling process. The labeling process is to
infer the most likely state sequence according to the known
word sequence x, i.e., the maximum value of P ðyjxÞ. The
labeling process is called model inference. The linear-chain
CRF model has efficient algorithms when using Eq. (1),
such as the Viterbi algorithm [6], [35]. As one of the most
commonly used methods, the Viterbi algorithm is adopted
to do that, because it is an effective algorithm searching for
the optimal path and considering the optimal of whole state
sequence.

We adopt a two-phase approach based on CRF proposed
by Yang and Zhou [39]. The approach explores novel fea-
ture sets for identifying the entities in text into five types.
We divide the whole biomedical NER into two sub-tasks:
term boundary detection and semantic labeling. In the first
phase, the boundaries of the entities are detected, which is
to label words with C and O. Here C indicates “word is a
name entity” and O indicates the opposite. In the second
phase, the entities detected in the first phase are labeled into
five classes: protein, DNA, RNA, cell-line, and cell-type. We
use the CRF method for both phases.

Section 1 of the supplemental file presents more detailed
description of the above approach, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2014.2368568.

3.2 L-BFGS Algorithm for CRF

Limited-memory BFGS is an optimization algorithm in the
family of quasi-Newton methods that approximates the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using
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a limited amount of computer memory. In the field of large-
scale unconstrained optimization, one of the most versatile,
effective, and widely used methods is the L-BFGS method.

In an NER application, training a CRF model needs to
adjust the parameters ~� ¼ �1; . . . ; �kf g, so that it is in confor-

mity with the training data D ¼ xi; yið Þf gNi¼1. The essence of

the L-BFGS algorithm is looking for a suitable ~� for a given
input sequence x, and making P~�ðyjxÞ the largest, i.e., maxi-

mizing Eq. (6). L-BFGS first sets parameters an initial value
~�0. Then L-BFGS repeatedly improves the parameter esti-

mates: ~�1; ~�2; . . .. The whole process uses a loop with a given

number L of iterations. From ~�t to ~�tþ1, L-BFGS finds the

search direction ~Pt, decides the step length at, and moves in

this direction ~Pt. The key of finding the search direction ~Pt

is to calculate a gradient vectorrLt.
The pseudo code of the L-BFGS algorithm is described in

Algorithm 1. The algorithm consists of three steps in each
iteration and the process in each iteration is as follows.

Step 1. Calculate the gradient vectorrLt (line 4). The gra-
dient vector of the model, i.e.,

rL ¼ aLð~�Þ
a�1

;
aLð~�Þ
a�2

; . . . ;
aLð~�Þ
a�k

 !
;

can be obtained by calculating the partial derivative of
each �k

aLð~�Þ
a�k

¼
XN
i¼1

XT
t¼1

fk
�
yit; y

i
t�1; x

i
t

�

�
XN
i¼1

X
y

P
�
yi
0 jxi0�fk

�
yi
0
t ; y

i0
t�1; x

i
t

�� �k

s2
: (7)

Step 2. Calculate the search direction ~Pt (line 5).
Step 3. Select the step size at that meets the wolf condition

and update the estimated parameters of the next ~�tþ1
according to the first and the second steps (lines 6-7).

Algorithm 1. L-BFGS Algorithm

Input: Training date set ofN samplesD.
Output: ~�.
Procedure:
1: ~�0  ð1n ; . . . ; 1nÞ
2: t 0
3: repeat
4: rLtð�1; �2; . . . ; �kÞ  ðaLð�Það�1Þ ;

aLð�Þ
að�2Þ ; . . . ;

aLð�Þ
að�kÞÞ

5: ~Pt  Ht � 5Lt

6: Select the step size at
7: ~�tþ1  ~�t þ at � ~Pt

8: t tþ 1
9: until convergence
10: return ~�

3.3 Viterbi Algorithm for CRF

The Viterbi algorithm is a dynamic programming algorithm
for finding the most likely sequence of hidden states, called
the Viterbi path that results in a sequence of observed
events.

We use the Viterbi algorithm to label the entities in an
NER application. xi ¼ xi

1; x
i
2; . . . ; x

i
T

� �
is a given sequence

of input, and ~� ¼ �kf g is obtained by the L-BFGS algorithm.
The Viterbi algorithm can find the optimal state sequence

yi ¼ xi
1; y

i
2; . . . ; y

i
T

� �
, i.e., the maximum value of P ðyi; xij~�Þ,

in the mT possible sate sequences. For mT , m is the number
of state in the CRF model and T is the length of the input
sequence. In our two-phase approach, m is equal to 2 in the
first phase, and the state can be in a value set C;Of g. Andm
is equal to 5 in the second phase, and the state can be in a
value set {protein, DNA, RNA, cell-line, cell-type}.

The pseudo code for Viterbi is described in Algorithm 2.
The algorithm consists of four steps and the algorithm pro-
ceeds as follows.

Step 1. Initialization (lines 2-4): calculate the probability
(a1) of all possible paths for the position t ¼ 1 that has j as
its state .

Step 2. Recursive Calculation (lines 5-8): calculate the
maximum of the probability atðlÞ of all possible paths for
the position t ¼ i that has j as its state, and use ftðlÞ to store
the previous state of maximum probability path for the
position t ¼ i that has l as its state.

Step 3. Termination Calculation (lines 9-10): calculate the
maximum of the normalized probability of the position

t ¼ T and return to the end of the optimal path (yi�T ).
Step 4. Return Path (lines 11-13): according to the end of

the optimal path (yi�T ) reversely find the optimal path (yi�t ),
i.e., the most likely state sequence.

Algorithm 2. Viterbi Algorithm

Input: Training date set ofN samplesD, parameters vector ~�,
model feature function F ðx; yÞ.

Output: The state sequence yi1; y
i
2; . . . ; y

i
T

� �N
i¼1.

Procedure:
1: for i 1 toN do
2: for j 1 tom do
3: a1  ~� � F1ðyi0 ¼ start; yi1 ¼ j; xiÞ
4: end for
5: for t 1 to T do
6: atðlÞ  max1�j�m fat�1ðjÞ þ ~� � Ftðyit�1 ¼ j; yit ¼ l; xiÞg;

for l ¼ 1; 2; . . . ;m
7: ftðlÞ argmax1�j�mfat�1ðjÞ þ ~� � Ftðyit�1¼ j; yit¼ l; xiÞg;

for l ¼ 1; 2; . . . ;m
8: end for
9: maxy F ðyi; xiÞÞ  max1�j�m atðjÞ
10: yi�T  max1�j�m atðjÞ
11: for t T � 1 to 1 do
12: yi�t  ftþ1ðyi�tþ1Þ
13: end for
14: end for
15: return yi1; y

i
2; . . . ; y

i
T

� �N
i¼1

4 MAPREDUCE ALGORITHM FOR CRF

In this section, we first implement the MapReduce L-BFGS
algorithm for large data sets. Next, we decompose the basic
Viterbi algorithm using MapReduce. Then, we present the
MRCRF algorithm and use the flow of the MRCRF algo-
rithm to illustrate the MapReduce scheme of CRF. Finally,
we analyze the performance benefit of the MRCRF algo-
rithm over its sequential counterpart.
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4.1 Data Sets Partitioning

In MapReduce, the training data set is divided into many
subsets, whose size depends on the number of map tasks
that can be run in parallel. To ensure the context of each
word in each sentence of Bio-NER, one sentence cannot be
split into two map tasks. In addition, in order to achieve
optimal resource utilization and minimize the need for rep-
lication, we will develop a load balancing technique to par-
tition a large dataset. LetDi represent the sentences number
of the ith map task. Then, the Di value must satisfy the fol-
lowing equation:

Di ¼
dN=Me; if R 6¼ 0; i ¼ 1; . . . ;R;
bN=Mc; if R 6¼ 0; i ¼ Rþ 1; . . . ;M;
N=M; if R ¼ 0; i ¼ 1; . . . ;M;

8<
: (8)

whereM denotes the number of map tasks, and R is equiva-
lent to NmodM.

This paper does not consider the length of the sentence.
We can divide the training data intoM random subsets with
approximately equal size. If NmodM ¼ 0, every map tasks
has one input split with N=M sentences. If NmodM 6¼ 0, R
map tasks have the input split with N=Md e sentences and
others have the input split with N=Mb c sentences.

4.2 MapReduce L-BFGS

The process of parameter estimation is also the process of
training. For large-scale training data, the model will tre-
mendously increase the training time consumption and take
much time to study. Numerous experiments show that the
first step of the L-BFGS algorithm which is described in
Section 3:2 is the main part of the training process. About
90 percent of the total computation time of L-BFGS is used
for the first step. If the first step be accelerated, we would
cut down the whole training time sharply. Therefore, the
main part of parallelization of the L-BFGS algorithm is par-
allelized objective function gradient calculation.

As in Eq. (7), we can extract the factor as follows:

@Lð~�Þ
@�k

¼
XN
i¼1

XT
t¼1

fk
�
yit; y

i
t�1; x

i
t

� 
�
X
y

p
�
yi
0 jxiÞfk ðyi0t ; yi

0
t�1; y

i
t

�!

� �k

s2
;

(9)
where the first item is the expectations of characteristics fk
under the empirical distribution with a given vector xi. The
first item can be described as Eq. (10):

Eðxi;yiÞðfkÞ ¼
XT
t¼1

fk
�
yit; y

i
t�1; x

i
t

�
: (10)

The second item is the expectations of characteristics fk
under the model distribution with a given vector xi. The
second item can be described as Eq. (11):

�Eðxi;yiÞðfkÞ ¼
XT
t¼1

fkðyi0t ; yi
0
t�1; x

i
tÞ: (11)

So Eq. (11) can be written as

@Lð~�Þ
@�k

¼
XN
i¼1

Eðxi;yiÞðfkÞ � �Exi;yiðfkÞ
� �

� �k

s2
: (12)

rLðxi;yiÞ is the objective function of a set of ðxi; yiÞ pairs:

rL ¼
XN
i¼1
rLðxi;yiÞ �

�k

s2
: (13)

From the above reasoning, the first step of Algorithm 1 can
be revised as Algorithm 3.

Algorithm 3. Compute Gradient Algorithm

Input: Training date set of N samplesD.
Output:rLt.
Procedure:
1: rLt  0
2: for each ðxi; yiÞ 2 D do
3: for t 1 to T do
4: Fðxt;ytÞðfkÞ  Eðxt;ytÞðfkÞ � �Ext;ytðfkÞ
5: rLðxt;ytÞðfkÞ  

Fðxt;ytÞðf1Þ; Fðxt;ytÞðf2Þ; . . . ; Fðxt;ytÞðfkÞ
6: end for
7: rLt  rLt þ Lðxi;yiÞ
8: end for
9: rLt  rLt � �

s2

10: returnrLt

Algorithm 4.MR Compute Gradient Algorithm

Input: Training date sets ofM workers ðD1
n1
; D2

n2
; . . . ; DM

nM
Þ.

Output:rLt.
Driver:
1: Execute Mapper1
2: Execute Reducer1
3: Computepenalty(sum,rLt)
Mapper1:
Method:Map(key, value)
//key: the name of subsetDm

nm

//value: the value of ~�t

4: s 0
5: for each ðxi; yiÞ 2 Tm

nm do
6: for t 1 to T do
7: Fðxt;ytÞðfkÞ  Eðxt;ytÞðfkÞ � �Ext;ytðfkÞ
8: rLðxt;ytÞðfkÞ  

Fðxt;ytÞðf1Þ; Fðxt;ytÞðf2Þ; . . . ; Fðxt;ytÞðfkÞ
9: end for
10: S T; i½ �  5Lðxi;yiÞð�1; �2; . . .�kÞ
11: end for
12: EMITð1; SÞ
Reducer1:
Method: Reduce(key, value)
//key: the key emitted fromMapper1
//value: the value emitted fromMapper1

13: sum 0
14: for each val in value do
15: sum sumþ val
16: end for
17: EMIT(1, sum)
Method: Computepenalty(sum,rLt)
18: rLt  sum
19: rLt  rLt � �

s2

20: EMIT(rLt)

In Algorithm 3, we first compute the gradient vector for
each ðxi; yiÞ (lines 2-6), and then add up these gradient
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vector so that we can get the gradient vector in the whole

training data (line 7). In addition, the ordered pairs ðxi; yiÞ
are mutually independent and identical, which means that

we can use the MapReduce framework to get @Lð~�Þ
@�k

rapidly.

Formulation of the first step of the L-BFGS algorithm in one
iteration within the MapReduce framework is shown in
Algorithm 4.

In each iteration of Algorithm 4, we first specify different
mappers to count the gradient vector for one input split. The
Map(key, value) method emits ð1; SÞ for each gradient vector
that occurs in the training sample. Then, the reducer iterates
through all the values with the same key, parses the value,
and adds up each value with the same key. Next, the Reduce
(key, value) method emits the sum, and the sum corresponds
to the gradient vector of the whole training data. Finally, the
output key-value pair is used for computing penalty func-
tion entry, and the Computepenalty( ) method uses the
immediate results to compute the final gradient vector.

4.3 MapReduce Viterbi

Algorithm 5 shows the formulation of the Viterbi algorithm
within the MapReduce framework. The algorithm partitions
the entire training data set into M smaller subsets, whose
sizes follow the load balancing technique described in
Section 4.1, and allocates each partitioned subset to a single
map task. Each map function optimizes a partition in paral-
lel. In the case of the Viterbi algorithm, the output of each
map function is a partial state sequence for the local parti-
tion. Hence, we do not need a combined output, and we can
save the reduce stage. The output of map which is no longer
the intermediate result will be directly output and becomes
the final result.

Algorithm 5.MRVtb Algorithm

Input: Training date sets ofM workers ðD1
n1
; D2

n2
; . . . ; DM

nM
Þ.

Output: the state sequence yi1; y
i
2; . . . ; y

i
T

� �nm
i¼1.

Driver:
1: Execute Mapper2
Mapper2:
Method:Map(key, value)
//key: the name of subsetDm

nm

//value: the value of ~�t

2: s 0
3: for i 1 to nm do
4: a1  ~� � F1ðyi0 ¼ start; yi1 ¼ j; xÞ; for j ¼ 1; 2; . . . ;m
5: for t 1 to T do
6: atðlÞ  max1�j�m fat�1ðjÞ þ ~� � Ftðyit�1 ¼ j; yit ¼ l; xiÞg;

for j ¼ 1; 2; . . . ;m
7: ftðlÞ argmax1�j�m fat�1ðjÞþ~� � Ftðyit�1¼ j; yit¼ l; xiÞg;

for j ¼ 1; 2; . . . ; m
8: end for
9: maxy F ðyi; xiÞÞ  max1�j�m atðjÞ
10: yi�T  max1�j�m atðjÞ
11: for t T � 1 to 1 do
12: yi�t  ftþ1ðyi�tþ1Þ
13: end for
14: S T; i½ �  yi�

15: end for
16: EMIT(key, S)

4.4 MapReduce Scheme of CRF

Our MapReduce CRF algorithm consists of a sequence of
MapReduce rounds. Each MapReduce round consists of a
map phase and a reduce phase in the MRLB algorithm, and
each MapReduce round only consists of a map phase in the
MRVtb algorithm. The MapReduce algorithm for CRF is
shown in Algorithm 6.

Algorithm 6.MRCRF Algorithm

Input: Initial parameter ~�0, training date sets ofM workers

ðT 1
n1
; T 2

n2
; . . . ; TM

nM
Þ.

Output: ~�.
Driver:
1: repeat
2: Execute Mapper1
3: Execute Reducer1
4: Userprogram(sum, ~�tþ1)
5: t tþ 1
6: until convergence
7: Execute Mapper2
Method: Userprogram(sum, ~�tþ1)
8: Computepenalty(sum,rLt)
9: NextEstimate(rLt; ~�tþ1)
10: return ~�tþ1
Method:NextEstimate(rLt, ~�tþ1)

11: ~Pt  Ht � 5Lt

12: Select the step size at
13: ~�tþ1  ~�t þ at � ~Pt

14: return ~�tþ1

In algorithm MRCRF, we first use the MRLB algorithm
to estimate the parameter. We then find the state sequence
in the MRVtb algorithm based on the parameter obtained
from the MRLB algorithm. In the MRLB algorithm, the
calculations of gradient vector are done by M mappers
and one reducer present in the compute cluster. At the
end of each MRLB algorithm iteration, the newly com-
puted parameters need to be updated in the Hadoop dis-
tributed file system (HDFS), so that every mapper gets
these values before the beginning of the next iteration.
Thus, along with the calculation of gradient vector there
is one more step to update parameters by using the User-
program() method. In the MRVtb algorithm, only our
defined map function is applied to find the most likely
state sequence. Fig. 1 shows the flow of our MapReduce
algorithm for CRF.

We summarize the implementation of the MRCRF algo-
rithm as follows.

The first phase (parameter estimation using the MRLB
algorithm) - The MRLB algorithm is an iterative algorithm.
Each iteration has the following steps.

1) Divide the training set intoM subsets of fixed size.
2) Allocate each partition to a single map task.
3) Calculate the gradient vectors using the first map

function, where the output of the first map function
is a partial weight of gradient vectors.

4) Sum up the partial weight of gradient vectors using
the first reduce function to produce the global
weight of gradient vectors.
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5) Output the value of the first reduce function to the
HDFS, which is used to update the next estimated
parameters in post-processing.

The second phase (model inference using the MRVtb
algorithm) - The MRVtb algorithm uses the parameters gen-
erated by the MRLB algorithm to calculate the most likely
state sequence of the training data set.

1) Divide the training set intoM subsets of fixed size.
2) Allocate each partition to a single map task.
3) Calculate the observation of the subset using the sec-

ond map function.
4) Output the values of the second map function to the

HDFS, which become the final results.

4.5 Analysis of Execution Time

In this section, we analyze the performance benefit of the
parallel MRCRF algorithm over the sequential CRF counter-
part. In particular, we compute the speedup ’ of the
MRCRF algorithm compared to the CRF

’ ¼ TCRF

TMRCRF
; (14)

where TCRF and TMRCRF are the computation times of
the CRF and MRCRF algorithms respectively. For clarity,
the correlated variables are listed in Table 1.

4.5.1 Computation Time of CRF

The total time of CRF consists of two parts, i.e., the L-BFGS
and the Viterbi. The computational time of L-BFGS depends
on the calculation of the gradient vector in line 4 of
Algorithm 1. Assume that the time of calculating the gradi-
ent vector for N input records is tgN and the rest of the
operations can be performed in time tu. The overall cost of

the L-BFGS algorithm with L iterations is Tlb ¼ ðtgN þ tuÞL.
In the Viterbi algorithm, assume that the computational
time taken by N input records is Tvb ¼ tvN . Hence, the total
time of CRF is

TCRF ¼ Tlb þ Tvb ¼ ðtgN þ tuÞLþ tvN: (15)

4.5.2 Computational Time of MRCRF

As shown in Fig. 1, the computation time of MRCRF con-
sists of four major parts, i.e., the first map phase, the first
reduce phase, post-processing, and the second map
phase. Unlike the sequential L-BFGS and Viterbi in the
CRF algorithm, the time to transmit each key-value over
the network (i.e., the communication cost) is considered
in MRCRF.

The first map phase - In a distributed setting, where M
workers participate in parallel and the data are distributed
evenly among the workers, according to the implementation
of MRLB, the computational time of the first map phase is
tg N=Mb c.

The first reduce phase - Each mapper can emit one
intermediate key. All values associated with the same
intermediate key will generate one reduce task. Hence,
the computational time of the first reduce phase can be
defined as trd.

Post-processing - At the end of each iteration, the User-
program( ) method is used to update the recently calculated
values. As described in Section 4.5.1, the computational
time of the rest of the operations is tu.

Hence, the computational time taken by one iteration of
the MRLB algorithm is

Tmrlb ¼ tg N=Mb c þ trd þ tu: (16)

The second map phase - For MRVtb, the computational
time of the second map phase is similar to that of the first
map phase, which is tv N=Mb c.

Communication cost - For the communication cost analy-
sis, let the cost of communication from the map function to
the reduce function, from the reduce function to the user
program, and from the user program to the map function be
f , g, and h, respectively. Then, the communication cost of
MRCRF will take Tcc ¼ Lðf þ gÞ þ h time, where L is the
number of iterations.

From the above analysis, the total time taken by MRCRF
is as follows:

Fig. 1. Flow of the MapReduce CRF algorithm.

TABLE 1
Notations and Definitions

Notation Definition

TCRF The computation time of CRF
TMRCRF The computation time of MapReduce CRF
Tlb The computation time of L-BFGS
Tvb The computation time of Viterbi
Tmrlb The computation time of MapReduce L-BFGS
Tmrvb The computation time of MapReduce Viterbi
Tcc The communication cost of MapReduce CRF
L The number of iterations of L-BFGS

3046 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 11, NOVEMBER 2015



TMRCRF ¼ Tmrlb þ Tmrvb þ Tcc

¼ ðtg N=Mb c þ trd þ tuÞLþ tv N=Mb c
þ ðLðf þ gÞ þ hÞ:

(17)

4.5.3 Speedup

Based on Eqs. (15) and (17), we compute the speedup ’ of
the MRCRF algorithm compared to the sequential CRF as

’ ¼ TCRF

TMRCRF

¼ Tlb þ Tvb

Tmrlb þ Tmrvb þ Tcc

¼ ðtgN þ tuÞLþ tvN

ðtg N=Mb c þ trd þ tuÞLþ tv N=Mb c þ ðLðf þ gÞ þ hÞ :

(18)

From the above equation, where we let M be a constant, we
can expect the following conclusions.

1) As N increases, the numerator TCRF increases at a
higher rate compared to the denominator TMRCRF .
This indicates that the MRCRF algorithm is more
effective for larger training data sets.

2) For very small values of N , the denominator in
Eq. (18) will be greater than the numerator. In this
case, MRCRF will be slower than sequential CRF
(’ < 1), and at some point TCRF exceeds TMRCRF ,
making ’ > 1.

3) For sufficiently large values of N , the following
equations hold:

tg N=Mb c � Lðf þ gÞ þ trd; tv N=Mb c � h:

We can approximate ’ as follows:

’ ¼ TCRF

TMRCRF

¼ ðtgN þ tuÞLþ tvN

ðtg N=Mb c þ tuÞLþ tv N=Mb c :
(19)

In this equation, we observe that as N increases, the
speedup is becoming greater and converges to a cer-
tain value. In this situation, the speedup is close to
the linear growth.

4) Let N be a constant, the speedup value actually
increases as we increase the value of M from
Eq. (18). This demonstrates that the map number
and performance of the cluster do affect the effi-
ciency of the MRCRF algorithm.

5 EXPERIMENTS

In this section, we first describe the experimental setup. We
then test the recognition result correctness, and show the
results of evaluating the effectiveness of the proposed
MRCRF algorithm on different data set sizes and various
Hadoop configurations.

5.1 Experimental Setup

We have searched for three groups of key words in MED-
LINE by using GoPubMed. The first group is biological-pro-
cess and disease, the second group is cellular-component

and disease, and the third group is molecular-function and
disease. 326937, 112998, and 157749 documents were down-
loaded respectively from these three fields. And among these
documents, there were respectively 489, 170, and 237 docu-
ments selected randomly as the corpus. After eliminating the
duplicate documents, there were still 595 ones related to
gene function and disease. We named the corpus as GO-DO.
The experiments are based on this corpus, and we adopt a
two-phase approach based on CRF and our MRCRF. The
unparallel CRFwas carried out on a singlemachine.

There are two effective parallel implementations cur-
rently, i.e., the CRF based on Message Passing Interface and
Graphics Processing Units. However, they are not suitable
for large volumes of data in data-intensive applications. The
strongest weakness of MPI is communication latency in a
big data environment for data-intensive applications,
because a large amount of data are exchanged between a
large number of nodes, and network communications will
spend long time, such that the MPI method shows low per-
formance. Due to the capacity limits of global memory and
the bottleneck of data transmission for data-intensive appli-
cations in a big date environment, the GPU method also
shows low performance. Hence, we have the proposed
algorithm compared with the sequential CRF algorithm, but
not compared with other parallel implementations of the
algorithm.

Hadoop, an implementation of MapReduce, has a mas-
ter-slave file system HDFS, which is the underlying support
for the MapReduce data processing function. With the
HDFS, Hadoop can easily realize “computation to the data
storage migration”, thus greatly improve the computational
efficiency of the system. MapReduce can deal with huge
amount of data, especially for data-intensive applications.

Recognition of biomedical named entity using condi-
tional random fields in this paper is a data-intensive appli-
cation in the big data environment, so the Hadoop method
is a suitable method.

Virtual machine instances are usually used in a public
cloud to run Hadoop applications. The CPU instructions
and memory space within a virtual machine need to be
translated and mapped to its physical machine host. There-
fore, this intermediate operation degrades the efficiency of
running Hadoop jobs, and we choose to deploy them on
physical machines directly. Meanwhile running Hadoop
applications on a public cloud can be enabled by virtual
machine templates and more execution nodes can be instan-
tiated. Therefore, the scalability capacity will be much bet-
ter, but this is not the focus of this paper. To analyze the
speedup in a more efficient way, a local cluster with less
interaction with the virtualization hypervisor, reveals the
real performance of Hadoop jobs.

5.2 F-Score Check

First we test the recognition result correctness of MRCRF
by comparing the results generated by MRCRF and
CRF. The experiment results are measured with F-score
valued below:

Fb ¼ ð1þ b2Þðprecision	 recallÞ
b2 	 precisionþ recall

; (20)
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where precision is the percentage of the correct annotations,
recall is the percentage of the total NES that are successfully
annotated, F stands for the synthetic performance of a sys-
tem, and the value of b is taken as 1. The value of b denotes
the relative weight between precision and recall. The value of
b is less than 1 if the recall is more important and vice versa.
We consider precision and recall to be equally important in
our experiments and set the value to 1.

Two experiments are carried out using CRF and MRCRF
with 1 MB training samples. The experiment of CRF was
carried out on a single machine. In the experiment of
MRCRF, Hadoop 1.2 is deployed in a cluster with five
nodes, and the size of its data block is limited to 64 MB. The
software and hardware configurations in the Hadoop clus-
ter are presented in Section 2 of the supplemental file, avail-
able in the online supplemental material.

We make comparisons for the results generated by
MRCRF and CRF in each phase. Table 2 shows the results.

We conclude that the F-score of both methods are
approximately the same. This happens due to the inherent
similarity of the two implementations and thus we conclude
that MRCRF is a correct implementation of CRF.

5.3 Varying Data Set Size

5.3.1 Results on Runtime

Our experiments were carried out on a single machine and a
Hadoop cluster with 15 nodes using different scale of train-
ing samples, respectively. For clearly observing the results,
we divide our experimental results into several charts to
show different measures. In Fig. 2, with two charts, the CRF
and MRCRF methods are compared in terms of the run
time in the two phases.

We vary the data set size, using 0.5, 1, 5, 10, and 20 MB
training samples for CRF and MRCRF respectively. Fig. 2a
illustrates the two algorithms in a small instance. It is obvi-
ous that increasing the size of the training samples leads to
increased run time, and the extent of growth is more and
more big. However, there is no much difference between
the run times of the CRF and the MRCRF.

Fig. 2b illustrates the two algorithms by varying the data
set size, using 1, 2, 3, and 4 GB training samples. The time of
the sequential method in the two phases keeps growing,
and the extent of growth is more and more significant.
While using the parallel method, the time has modest
growth especially for large-scale samples. Therefore, under
large training samples, there is significant difference
between the run times of the CRF method and the MRCRF
method. This is because the parallel method reduces time
cost significantly.

From the two groups of experimental results, we know
that the run times of both the sequential CRF and MRCRF
algorithms increase linearly with increasing sizes of data
sets but at different rates.

5.3.2 Results on Speedup

In order to better demonstrate the performance benefit
of the MRCRF algorithm over the CRF counterpart, we
calculate the parallel speedup and make comparison
between them. Fig. 3 shows the speedup on different
data sets.

In Fig. 3a, the speedup in case of small data sets is typi-
cally smaller. For small data sets, we can observe the mini-
mum size of input data sets, which ensures the speedup to
be greater than 1. This is primarily due to the fact that the
communication cost is significantly larger compared to
the computation cost, resulting in diminishing effect on the
speedup. We observe that running Hadoop starts giving
performance improvement for data sizes around 5 MB,
where the cross-over point means that the sequential run-
time exceeds the runtime on Hadoop, i.e., the speedup will
be greater than 1.

From Fig. 3b, it can be seen that when facing a large
amount of data, our algorithm can bring larger speedup.
This is primarily due to the fact that the computation cost is

TABLE 2
Comparison of CRF and MRCRF

Methods First phase (Precision, Recall, F-score) Second phase (Precision, Recall, F-score)

CRF (75.22, 78.32, 76.74) (70.79, 76.01, 73.31)
MRCRF (75.20, 78.36, 76.75) (70.80, 76.07, 73.34)

Fig. 2. Varying the data set size.
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so dominant that the effect of communication cost on
speedup is almost invisible. Moreover, we observe that as
N increases, the speedup is becoming greater and close to
the linear growth.

From these plots, we observe that the larger the data set
is, the better the speedup will be for our proposed algo-
rithm. These behaviors of Fig. 3 are consistent with our
mathematical analysis in Section 4.5.3 and confirm that the
input data size required can gain sufficient performance
improvement.

5.4 Varying the Number of Hadoop Nodes

For the same training size (4 GB training samples), we vary
the number of Hadoop nodes in the MRCRF algorithm.
Fig. 4 shows the changes in the run time when using differ-
ent numbers of Hadoop nodes. These experiments are run
in the same experimental environment. Thus, the perfor-
mance of the MapReduce job is affected by some external
factors such as the network bandwidth.

In Fig. 4, we find that increasing the number of Hadoop
nodes from 5 to 20 significantly reduces the running time.

This demonstrates that the number of Hadoop nodes does
affect the time efficiency of MRCRF. However, when the
number of Hadoop nodes is increased from 20 to 40, the total
running time shows no obvious decrease. We can observe
that for more than 20 nodes, compute nodes have little
impact on computing performance. This is because the exter-
nal factors and overheads of Hadoop aremore obvious.

5.5 Varying Hadoop Parameters

The performance of Hadoop is related to its job configura-
tions, e.g., the number of map tasks and the number of copy
threads. Table 3 shows the different Hadoop parameters in
our experiment.

We first run the MRCRF algorithm with 4 G training
samples using 5, 10, 20, 30, and 40 map tasks with a differ-
ent number of Hadoop nodes. We then use 5, 10, 15, 20, and
25 copy threads to run the MRCRF algorithm. The results
are shown in Fig. 5.

It can be seen from Fig. 5a that by increasing the number
of map tasks from 5 to 20, the run time decreases noticeably.
However, when the number of map tasks is increased from
20 to 40, the total running time does not decrease so much.
This happens because too many map tasks lead to over-
splitting of the data, introducing too much overhead and
internal communication delay.

In Fig. 5b, by increasing the number of copy threads from
5 to 15, the run time decreases. When the number of copy
threads reaches 15 and continues increasing, the run time
will almost certainly be moderate. This is because increasing
copy threads causes internal communication delay. So the
right level of parallelism for copy threads is around 15 for
the 5 nodes case.

6 CONCLUSIONS

MapReduce is commonly used to distribute computation
for vast amounts of data. In this paper, we apply the frame-
work to a two-phase biomedical named entity recognition
method using CRF. In this method, the L-BFGS algorithm is

Fig. 3. Speedup of MRCRF relative to CRF for varying data set size.

Fig. 4. Varying the Hadoop nodes with the same data set size.

TABLE 3
Different Hadoop Parameters

Configuration items Configuration properties Value1 Value2 Value3 Value4 Value5

Map Task mapred.JobConf. setNumMapTasks (int n) 5 10 20 30 40
Copy Thread mapred.reduce. parallel.copies 5 10 15 20 25
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used to learn the parameters while the Viterbi algorithm is
used to model the inference procedure. Our work formu-
lates both parameter estimation and model inference of the
CRF model according to the MapReduce framework, and
designs a parallel algorithm for these two steps. We present
the details of our Hadoop implementation, report speedup
versus the sequential CRF, vary different data set sizes and
compare various Hadoop configurations for MRCRF.
Experiments result show that the method can improve the
data mining performance for biomedical literatures while
guaranteeing the correctness of recognition result.

Spark is an open-source data analytics cluster comput-
ing framework, which provides primitives for in-memory
cluster computing, making it particularly suited for
machine learning algorithms. We intend to investigate
parallel Spark implementation of conditional random
fields for biomedical named entity recognition in the near
future.
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