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Abstract
As an important task of natural language processing (NLP), text classification has flourished with the rise of deep learning
techniques. However, existing deep learning methods face challenges as the length of input text increases. Many long text
classification works are classified by text truncation or simply extracting keywords, which leads to the loss of rich semantic
and structural information. Furthermore, there are great demands for studying semi-supervised long text classification due to
the lack of labeled training data and continuously generated long texts in different stylistic. To alleviate these problems, we
propose a heterogeneous attention network method based on a multi-semantic passing framework. In particular, we develop
a flexible heterogeneous information graph to model the long texts by extracting information, including keywords, entities,
titles, and their multi-interrelation. It can effectively integrate the semantic relationship and condense the global information
to preserve the significant semantic and structural information well. Furthermore, we design a multi-semantic passing
framework capable of extracting the semantic and structural information in the constructed heterogeneous information
graph by the semantic degree of specific structures. Experimental works on four real-world datasets are studied, such
as ThuCNews, SougouNews, 20NG, and Ohsumed, yielded outstanding results. It is shown an accuracy rate of 98.13%,
98.69%, 87.62%, and 71.46%, respectively, which performs better than the existing methods.

Keywords Graph neural network · Heterogeneous information graph · Long text classification · Semantic information

1 Introduction

With the rapid development of social media, much text
data is always generated. Therefore, obtaining adequate
information from massive network data has already become
a research hotspot in academia. Text classification plays
an essential role in information extraction as one of the
basic tasks of NLP, which has many applications, including
question answering, spam detection, sentiment analysis,
news categorization, user intent classification, etc [16].
In recent years, many deep learning methods have been
proposed to promote the development of text classification
research [2, 11, 23, 28, 31]. However, most of these existing
deep-learning methods have several challenges as the length
of the input text increases.
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Recently, long text classification has been nontrivial due
to the following challenges. The first challenge is that it
is difficult to preserve and extract useful information from
long texts after they have been preprocessed due to their
prosperous and complex information. The most direct and
easiest method to solve this problem is to process the long
text into multiple short pieces and process them separately.
It is contained the following two types of processing
methods. The first type is to truncate a specific character
length in order. One of the most well-known methods is
a transformer-based pre-train model named Bert, which is
used a masked language model and limits input length to
pre-train the bidirectional transformers [3]. The second type
is to select specific paragraphs or sentences to represent
the text. For example, Chen et al. [1] constructed a multi-
task architecture, which jointly trains an Albert [12] model
to key-sentence extraction with distance square loss and
multi-label long text classification tasks with cross-entropy
loss. To better capture the semantics of long texts, Du
et al. [5] proposed a Knowledge-Aware Leap-LSTM to skip
irrelevant words in the input for accelerating LSTM models
by integrating prior human knowledge. However, this

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04556-x&domain=pdf
http://orcid.org/0000-0002-9787-2002
mailto: mengtao@hnu.edu.cn


W. Ai et al.

method of inputting the entire text sequence for processing
can not distinguish the noise information. Therefore, it
can not accurately extract important information from the
text. Although the methods of truncation and selection can
condense long texts to some extent, there still inevitably
ignore part of the semantic and structural information,
which leads to the loss of essential information and results
in misjudgment of the model.

The second challenge is the complicated construction of
the training set of long text. Massive new and different
stylistic text data are constantly generated, which requires
a lot of new labeled data for existing deep learning models
to learn. The emergence of graph convolutional neural
networks (GNN) provided a new direction for solving the
problem [10]. It aggregated the information of neighbor
nodes in the relational network constructed by different
texts to achieve similar effects as other methods, but only
required a small part of the labeled data. Meanwhile, GNN-
based models can better preserve the structural and semantic
information by modeling the corpus. For example, Yao
et al. [30] built a text graph for corpus based on word co-
occurrences and document-word relationships, then jointly
learned the embeddings for both words and documents
by graph convolutional neural networks. Ragesh et al.
[20] designed a heterogeneous graph convolutional network
modeling approach to learn feature embeddings and derive
document embeddings by combining the best aspects of
PTE [22] and TextGCN [30]. Moreover, Linmei et al. [13]
proposed a heterogeneous graph attention network with
two-level attention mechanisms for learning the importance
of different neighboring nodes and node types to a
current node. These GNN-based models can aggregate the
information of neighbors to strengthen the representation
of nodes by semi-supervised learning. After these existing
methods simply construct a heterogeneous graph through
documents or keywords, the authors believe that the most
important thing is to enrich the representation of the node
itself through the neighbors. However, it is necessary to
consider the semantic relationship in the text and the high-
order semantic structure in the graph, which is because the
long text contains too many words and complex features.
Unfortunately, these methods do not take these aspects
into account.

To address the above problems, we propose a novel
Heterogeneous Attention Network for semi-supervised
Long Text classification (Han-LT). Firstly, according to
the characteristics of long text, the definition of multi-
interrelation based on entity-keyword-title is defined. We
extract the titles, entities, and keywords from the texts and
get their initial embeddings. Then, their multi-interrelation
is found within and between texts, building edges by the
multi-interrelation to construct the heterogeneous infor-
mation graph. In this way, the semantic and structural

information of long texts can be preserved to a great extent.
Secondly, the multi-semantic passing framework is
designed to extract crucial semantic and structural infor-
mation. Specifically, we first put forward the definition of
the semantic degree to measure the importance of different
semantic structures in the heterogeneous information graph.
Then, the attention mechanism and the semantic degree are
combined to capture high-order semantic information while
capturing the importance difference of neighbor nodes.
Finally, we construct a heterogeneous neural network
named Han-LT based on the multi-interrelation heteroge-
neous information graph and the multi-semantic passing
framework to get the classification results by adding
the softmax layer at the end of the network. The main
contributions of this paper can be summarized as follows:

• We construct a novel heterogeneous information graph
for long texts by extracting titles, entities, keywords,
and their multi-interrelation to preserve their significant
semantic and structural information.

• We design a special multi-semantic passing framework
for capturing the importance of different nodes, higher-
order semantics, and structural information by combing
the attention mechanism and the semantic degree.

• We evaluate the effects of the Han-LT and compare it
with 7 state-of-the-art methods. Extensive experimental
results show the superiority of our Han-LT method on
the long text classification task.

In Section 2, we will introduce the related work of this
paper from text classification in deep learning and graph
neural networks. In Section 3, we will elaborate on our
Han-LT method. In Section 4, we present a large number
of designed experiments, experimental results, and related
analysis verify the superiority of Han-LT. The Section 5 is
the conclusion of this paper.

2 Related work

2.1 Text classification in deep learning

In the past decades, text classification has gradually changed
from a shallow learning model to a deep learning model.
Deep learning methods can avoid the manual design of
rules and functions. The proposal of convolutional neural
networks (CNN) [11] was aimed at image classification,
which has achieved subversive achievements and promoted
the arrival of the hot era of deep learning. In order to
apply CNN to text classification tasks, Kim et al. put
forward a convolutional neural network called TextCNN
[9]. It took an embedding obtained with a pre-trained
word vector method as input, which determined the
discriminative phrase through one convolution layer and
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one max-pooling layer. Tan et al. [21] utilized gated
units and shortcut connections to transform and carry
word information to control how much context information
is incorporated into each specific position of the word
embedding matrix in the text. Considering long-range
or sequential semantics, Peng et al. [18] inputted the
word matrix that maintained word order into attention
graph capsule recursive CNN to learn semantic features,
then a hierarchical classification embedding method was
designed to learn the hierarchical relationship between
category labels. To alleviate computational complexity,
Johnson et al. [8] developed a low-complexity, word-level
deep convolutional neural network for text classification
called DPCNN. It could obtain a global representation of
text by deepening the network without greatly increasing
the computational cost. However, the effect of applying
them directly to long texts is not satisfactory. The
excessive length of the long text can make the graph too
complex, which results in the disappearance of gradient or
network degradation.

Recurrent Neural Networks (RNNs) have been widely
used to capture long-term dependencies through recursive
computation, and the performance in long text classification
tasks is better than CNNs. For instance, Liu et al.
[14] designed a model to capture long text semantics,
which could extract context information and effectively
reduce the time complexity of the model. Du et al. [4]
proposed the Pointer-LSTM framework, which relied on
a pointer network to select important words for target
prediction. It generated self-attention distribution over
the whole input sequence through a small bidirectional
LSTM network. Then, a large BiLSTM network was
used to obtain Top-k keywords for target prediction.
Later, the authors put forward the Knowledge-Aware
Leap-LSTM [5] to skip irrelevant words in the input
for accelerating RNN models by integrating prior human
knowledge. It integrated prior knowledge through factorized
and gated integration to partially supervised the word-
skipping process, which achieved higher accuracy and
faster training speed. Moreover, Du et al. [6] proposed
recurrent BLS (R-BLS) and long short-term memory
(LSTM) architecture: gated BLS (G-BLS) to learn multiple
information simultaneously to achieve high accuracy in text
classification. Unfortunately, the gradient problem of those
RNN-based methods still exists and might be intractable
when facing longer sequences. In addition, all those
CNN-based and RNN-based methods were data-driven,
which usually required a large amount of high-quality
labeled data or prior professional knowledge to achieve
higher performance.

The emergence of pre-training models, such as Bert [3],
GPT [19], XLNet [29], MacBERT [26], etc., has greatly
promoted the development of text classification, especially

for long and ultra-long texts. Bert adopted a novel masked
language model to pre-train bidirectional transformers to
generate deep bidirectional language representations. After
pre-training, it was necessary to add an output layer for fine-
tuning to achieve state-of-the-art performance in tasks such
as text classification. Meanwhile, unsupervised learning
under large-scale data has significantly improved the
classification effect of the model. However, the mechanism
of Bert required the text to be truncated. It was shown that
part of the semantic and global information was missing,
which made the classification results more likely to be
disturbed by noise.

2.2 GNN for text classification

The appearance of GNN provided a new idea for the text
classification task, which was transformed into a graph node
classification task. GNN-based text classification methods
could capture the structural information of texts, and other
methods can not replace it.

In recent years, Graph Convolutional Networks (GCN)
[10] performed convolution operations on graph structure
data and achieved attractive performance in various tasks.
They could encode the characteristics of the graph structure
and nodes without designing features or fusion methods.
Many variants of GCNs were proposed over the next few
years. These methods could be divided into 1) homogeneous
graph neural network and 2) heterogeneous graph neural
network. The difference between the two methods lies in
how the graph was constructed and processed.

GraphSAGE [7] was a classic algorithm based on
airspace. It improved the traditional GCN in two aspects.
During training, the sampling method optimized the
full-graph sampling of GCN to partial node-centered
neighbor sampling. The second aspect was that GraphSAGE
studied several ways of neighbor aggregation. GAT
[24] aggregated neighbor nodes through a self-attention
mechanism to achieve adaptive matching of the weights
of different neighbors, which improved the accuracy of
the model. Moreover, Yao et al. [30] designed a text
graph convolutional network (TextGCN), which constructed
a heterogeneous word text graph for the entire data
set and captured global word co-occurrence information.
These homogeneous graph neural network methods have
achieved remarkable results in multiple fields. However,
most networks in reality are heterogeneous. It is essential
to build and deal with heterogeneous graphs according
to the actual situation. Zhang et al. [32] constructed the
HetGNN model for processing the heterogeneous graphs,
which used LSTM for node-level aggregation and an
attention mechanism for semantic-level aggregation. It
could simultaneously capture the heterogeneity of structure
and content, which is suitable for transductive and inductive
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tasks. Heterogeneous Graph Attention Network (HGAT)
with a two-level attention mechanism could learn the
importance of different adjacent nodes and node types in the
current node [27]. It propagated information on the graph
and captured relationships to solve the semantic sparsity
problem of semi-supervised short text classification. Ragesh
et al. [20] designed a heterogeneous graph convolutional
network modeling approach which utilized across layers to
learn feature embeddings and derive document embeddings.
It greatly reduced the model’s parameters and achieved
better performance.

These GNN-based models have made remarkable
achievements in text classification tasks by aggregating the
information of node’s neighbors to enrich the embedding
about the node itself. However, most of these methods used
chapter-level texts as nodes or simply extracted keywords as
text embeddings, which inevitably led to excessive compu-
tation or loss of semantic information if applied to the long
text classification task.

3 The proposedmethod

In this paper, we propose a novel semi-supervised long-
text classification method named Han-LT, which can take
advantage of limited labeled data to preserve and extract
the significant structural and semantic information. The
general process of Han-LT is shown in Fig. 1. Firstly, we
extract titles, entities, and keywords from long texts and
get their initial embeddings by using Bert and Word2vec
[15]. Secondly, we give the definition of multi-interrelation
based on the entity-keyword-title. The heterogeneous
information graph is built based on the multi-interrelation to
preserve the long texts’ semantic and structural information.

Thirdly, the definition of the semantic degree is used to
measure the importance of different semantic structures
in the heterogeneous information graph. By combining
the semantic degree and attention mechanism, we design
the multi-semantic passing framework to capture the
relationship of nodes and extract the higher-order semantic
and structural information. Finally, a softmax layer is
added at the end of the network to obtain the final
classification results.

3.1 Multi-interrelation heterogeneous
information graph

Due to the high complexity of features, the tasks of
long text classification face many challenges. The most
difficult one is extracting valuable and essential information
from complex features. Existing graph neural network
methods usually construct information graphs simply from
documents or keywords. This approach does not consider
retaining semantic information from the internal level of
the text, which results in the loss of the key information
in subsequent processing. To address this issue, we
present a heterogeneous graph construction method for
long text classification task. Specifically, we put forward
the definition of multi-interrelation based on the entity-
keyword-title to preserve the core semantic and structural
information in long texts. The graph construction method is
mainly divided into two steps. Firstly, we extract the titles,
entities, and keywords from the texts and get their initial
embeddings. Secondly, the multi-interrelation within and
between texts are found and built edges for them according
to the multi-interrelation.

Here, we consider constructing the heterogeneous
information graph G = (V , ξ) including entities

Fig. 1 Illustration of our method Han-LT. Among them, (a) represents
the acquisition of keyword, entities, titles, and their initial embedding.
(b) represents the heterogeneous information graph constructed by the
multi-interrelation. In (c) multi-semantic passing framework, AGGδ

represents the multi-semantic passing mecanism, AGGα represents
the attention mechanism. (d) represents the graph convolution layers
and (e) represents the final classification result
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Fig. 2 Illustration of the multi-interrelation heterogeneous information graph for long texts

E = {e1, ..., em}, keywords K = {k1, ..., ks}, titles T =
{t1, ..., tn}, and V = E∪K∪T . ξ represents the relationship
between nodes. The details of the graph construction are
shown in Fig. 2, which are described in the next paragraphs.

3.1.1 Information extraction

The title information is extracted directly as the title has
been placed in the first row in most cases. Then the trained
model Berts are used to extract keywords and entities.
Compared to other methods, Bert introduced Masked
Language Model (MLM) and Next Sentence Prediction
(NSP) in pre-training to train bidirectional features and
capture the connection between two sentences. Therefore,
the model has the ability to understand the connection
of long sequence contexts. Furthermore, a large-scale
unlabeled corpus is used for pre-training, so that the
model contains text representation information with rich
semantics. The text is processed into three embeddings
(Bw, Bs , Bp) and used as input to Bert. Bw is the word
embedding. Bs is the segment embedding to help Bert
distinguish between paired input sequences. Bp is the
position embedding, which indicates the index embedding
of the position of the current word. The three embeddings
are summed with dimensions (1, n, 768) to get the final
Binput as Bert’s input, where n represents the number
of words in the text. At the end of the model, a fully
connected layer is followed to obtain a 256-dimensional
word embedding. Then, it is fine-tuned through the labeled
keywords and entity corpus to make it have qualified
extraction ability.

The embedding obtained by Berts is used as the
initialization embedding of keywords and entities. For
the titles, the Word2vec is chosen to embed them. It
is worth noting that we treat the title as a separate
sentence containing the core intent of the article, so
the title and article information need to be separately
processed when considering the relationship between texts.
The semantics of general titles are relatively complete,
and the words in the title can well represent their
semantics. Furthermore, taking the efficiency factor into
consideration, Word2vec is finally chosen to embed the
titles.

3.1.2 Multi-interrelation and edge construction

The construction of edges between different nodes is
completed according to the defined multi-interrelation
and position information. Specifically, we construct a
corresponding sub-graph for each text according to the
multi-interrelation between different nodes. Then, the
connection between texts through the titles and entities
is realized to obtain the multi-interrelation heterogeneous
information graph finally.

Multi-interrelation: Inside the text, the interrelation is
expressed as the relationship of em-ks in each sentence
and the relationship of tn-em-ks in the title, where ks and
em appear in tn. Among texts, interrelation is expressed
as the relationship ti-tj or ti-em-tj , and the relationship
between the same entities appearing in different texts and
their interactive information.
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The relationship between entities and keywords (em-
ks) can represent the specific intent of the text, while
the relationship of title-entity-keywords (tn-em-ks) can
represent the core intent of the text. The relationship of title-
title (ti-tj ) and title-entity-title (ti-em-tj ) can connect similar
titles. As a core element of an article, a specific entity
often appears in certain types of texts. Therefore, entities
themselves have rich features and strong characteristics. We
connect texts that contain the same entity.

Inside the text, we construct edges through the multi-
interrelation between entities and keywords in each
sentence. Entities and keywords in the same sentence are
connected in the order of their appearance to complete
the construction of the em-ks relationship. Among texts,
we construct the relationship between texts through the
entities and the titles. Considering the relationship between
texts, we regard the title as an independent sentence that
contains the core intent of the article. If two titles contain
the same entity, they will be connected through this entity
to complete the construction of ti-em-tj . Moreover, articles
with similar titles are more likely to belong to the same
category. Therefore we set similarity score s to measure the
similarity of two titles if they do not contain the same entity.
The similarity score s between title ti and title tj can be
formulate as follows:

s =
∑n

i=1 Ai · Bi

(∑n
i=1 A2

i

) 1
2 · (∑n

i=1 B2
i

) 1
2

, (1)

where A and B represent the vectors of ti and tj , respec-
tively. And n represents the dimension of the vector. If
the similarity score s between the title ti and tj is greater
than the set threshold, the ti-ti relationship will be con-
structed successfully. As for entities, we regard multiple
identical entities in different texts as the same node. The
same keywords appearing in different texts are regarded
as different nodes. The reason is that the same entity rep-
resents the same semantics in different articles in most
cases, while keywords do not. Therefore, we connect dif-
ferent texts through entities and titles, while keywords are
connected with their corresponding entities and titles. In
this way, different texts can be related by title and entity
information and keep their established multi-interrelation.
Furthermore, in Fig. 2(d), the color of each element in the
heterogeneous information graph is one-to-one correspond-
ing to that in Fig. 2(a). It can help us better understand
the multi-interrelation heterogeneous information graph
construction method.

The essential semantic and structural information of long
texts are well preserved by constructing the novel multi-
interrelation heterogeneous information graph. It reduces

much redundant information, which greatly benefits the
subsequent classification tasks.

3.2 Multi-semantic passing framework

How to extract and represent the key information in a
heterogeneous information graph is a complex problem
in graph neural network-based long text classification
tasks. However, existing methods are more concerned with
enriching the representation of the node itself through
the neighbors. It inevitably loses important high-order
semantic and local structural information, especially for
complex information bodies such as long texts. To further
capture the significant information, we design a novel multi-
semantic passing framework based on the definition of
semantic degree. It can aggregate the information about
surrounding different types of neighbors to obtain higher-
order semantic information. Especially combined with the
constructed multi-relationship heterogeneous information
graph containing title, entity, and keyword information,
better relevant information can be extracted.

Semantic degree: The proportion of each specific semantic
structure among all semantic structures in the multi-
interrelation heterogeneous information graph.

The process is described as follows. Firstly, we search
and extract specific semantic structures in the heterogeneous
information graph according to MotifNet [17], which
analyzes integrated networks and searches for specific
structures. Secondly, we define the semantic degree to
measure the importance of specific semantic structures.
With the combination of the semantic degree and attention
mechanism, the mutual importance between different nodes
can be obtained. The high-order semantic information
can be captured according to the semantic degree of the
structure where the nodes are located. Finally, the semantic
information retained by the node and the neighbors’
information is locally propagated. The illustration of our
multi-semantic passing framework is shown in Fig. 3.

3.2.1 Semantic degree of edge

In other networks, the motif is a metric used to measure the
significance of a structure in a graph. In the heterogeneous
information graph of long texts constructed on the
entity-keyword-title, motifs represent the core semantic
information of texts to a large extent. For example, the entity
can be the subject of an event in the structure of entity-
keyword-keyword. The keyword can be time, action, or a
certain noun or adjective. Then, such a semantic structure
can contain rich and important semantic information. Based
on the semantic degree, we assign a weight to each edge that
is in a specific semantic structure. Formally, the semantic
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Fig. 3 Illustration of our
multi-semantic passing
framework

structure is denoted as f ∈ F , F = (f1, f2, ..., fk), k means
all categories of semantic structures. The semantic degree
ρf is given by

ρf = 1 +
(

Xf
∑

f ∈F Xf

) 1
2

, (2)

where ρf represents the semantic degree of each edge under
the structure f . Xf represents the number of structures
occupied in the entire heterogeneous information graph.
The corresponding weights are set for each edge based on
the semantic degree to realize the difference between the
feature vectors of different nodes in aggregation. Besides,
it is worth noting that some edges are not in any particular
semantic structure, while some may be in multiple semantic
structures. To accurately measure the semantic weight
contained in each edge, the semantic degree calculation
formula of each edge is defined as

δij =
∏

eij in f

(ρf ), (3)

where δij represents the product of the semantic degrees of
all semantic structures where the edge eij is located, namely
the semantic degree of the edge. The more types of semantic
structures an edge is located in and the higher the semantic

degree of the semantic structures, and the larger the value of
δij are.

3.2.2 Multi-semantic message passing

According to the obtained semantic degree, a multi-
semantic passing framework is designed for extracting the
important higher-order semantics of long texts. Formally,
for a graph G = (V , ξ), let X ∈ Rm∗n be the feature
matrix of the nodes, where each row is the feature vector
of node v. A is the adjacency matrix of G and D is the
degree matrix, where Dii = ∑

j Aij . Moreover, each node
is connected to itself. Then, according to the aggregation
function AGG, the neighbors’ information of node v is
aggregated into Nv to update the embedding of node v

recursively. Equations (3) and (4) demonstrate the steps of
the attention mechanism:

Hl
Nv

= AGG(Hl
j , vj ∈ Nvi

), (4)

Hl+1
i = σ(αij · Ã · Wl · (H l

i ⊕ Hl
Nv

)), (5)

where Ã = D− 1
2 AD− 1

2 is the symmetric normalized
adjacency matrix. αij is the attention value of nodes
vi and vj . It need to be learned by the model, which
represents the different importance of each neighbor node
to vi . The operator ⊕ denotes concatenation. σ denotes
the activation function, such as Leaky ReLU. Wl is the
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trainable transformation matrix of the layer l. Furthermore,
H 0

i = Xvi
. The calculation of αij is shown in Eq. (6),

αij = exp(σ (μT · [Hl
i ⊕ Hl−1

i ]))
∑

j∈N(vj )
exp(σ(μT · [Hl

i ⊕ Hl−1
j ])) , (6)

where μ is the attention parameter. T = (τ1, τ2, τ3) are
different types of nodes, where τ1, τ2, τ3 represent title,
entity, and keyword types respectively. It is worth noting
that attention values exist between all nodes, but not all
nodes exist in a specific semantic structure. If more than
one node in a node pair does not belong to any particular
semantic structure, the semantic degree value of the edge
between them will be treated as 1. The overall flow of the
multi-semantic passing can be expressed as follows:

Hl+1
i = σ(δij · αij · Ã · Wl · (H l

i ⊕ Hl
Nv

)). (7)

Considering the heterogeneity of different types of
nodes, traditional methods generally concatenate the feature
spaces of different types of nodes to construct a new large
feature space and set the values of other types of irrelevant
dimensions to 0 for summation. The obvious disadvantage
of is that it ignored the heterogeneous information of
different nodes and increased the difficulty of calculation.
To optimize this problem, we project different types of
nodes into a common space through each type-specific
transformation matrix Wτ . Thus, the representation Hl+1 is
given by

Hl+1 = σ

(
∑

τ∈T

δ · α · Ãτ · Wl
τ · Hl

τ

)

, (8)

where τ represents the type of neighbor node. The rows of
matrix Ãτ represent all nodes, and the columns represent
neighbor nodes of type τ . Then, the neighbor nodes of dif-
ferent types τ are aggregated with different transformation
matrices Wl

τ to obtain the final representation Hl+1 of node
vi . The final aggregation formula can be described as

Hl+1
i = σ

⎛

⎝
∑

τ∈T

∑

j∈Nτ(i)

δij · αij · Ãτ · Wl
τ · Hl

j

⎞

⎠ , (9)

where Nτ(i) means the set of neighbors of node i belonging
to type τ . In this way, the titles, entities, keywords, and
the multi-interrelation information between them in the
multi-interrelation heterogeneous information graph can be
effectively aggregated, which obtains higher-order semantic
and structural information.

3.2.3 Label classification

After going through an L-layer Han-LT, we feed the
obtained final embedding Q of the long text into a softmax
layer for classification. Formally,

Zi = sof tmax(Q
(L)
i ). (10)

Moreover, the binary cross-entropy loss function we
utilized is as follows,

ζ = −
N∑

i=1

t∑

j=1

(Yij log(Zij ) + (1 − Yij ) log(1 − Zij )), (11)

where t is the number of classes, and N is the number
of training examples. Yij denotes the binary ground truth
label value, and Z represents the predicted value of the long
text i obtained by the Han-LT model, which represents the
likelihood that text i will be labeled j .

4 Experiments

Experimental works have been conducted on four common
datasets to evaluate the performance of the Han-LT method.
This section introduces the data sets and preprocessing,
comparison of methods, experiment settings and details,
experimental results, and corresponding analysis.

4.1 Datasets and preprocessing

We compare Han-LT with several state-of-the-art meth-
ods in different scenarios. Two Chinese datasets and two
English datasets are selected from news topic classification
and medical disease classification to perform our experi-
ments, they are:

ThuCNews: The ThuCNews corpus is a news document
generated by filtering the historical data of the Sina News
RSS subscription channel from 2005 to 2011, which
contains 14 news categories and about 740,000 news
texts. About 6,000 pieces of text data with more than 300
characters are randomly selected for each category.
Sogou News: Sogou News corpus is a news dataset
provided by Sogou Lab, including Sogou CA and Sogou
CS datasets. It contains about 27,000 news items in
ten categories. To balance the dataset, about 3,000
samples were randomly selected for each category, and
the number of characters in each sample was greater
than 300.
20NG: The 20newsgroups dataset is one of the inter-
national standard datasets for text classification, text
mining, and information retrieval research. It contains
18,846 non-repeating news texts divided equally into
20 categories.
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Table 1 Summary statistics of datasets

Dataset Docs Train Docs Test Docs Classes Avg.Length

ThuCNews 84,000 58,800 25,200 14 539.75

Sougou News 30,000 21,000 9,000 10 502.4

20 NG 18,846 13,192 5,654 20 221.26

Ohsumed 7,400 5,180 2,220 23 135.82

Ohsumed: Ohsumed contains 7,400 articles. Each article
is a medical abstract with at least one or more labels from
23 cardiovascular disease categories. Since a document
may be labeled with multiple labels, the label with the
highest level is taken as its final label in the experiments.

The two Chinese datasets are filtered by length to
construct two real long text datasets, which makes our
results more convincing in long text classification tasks.
For all selected datasets, we remove stop words and low-
frequency words (word frequencies below 5). We select
70% of each dataset as the training set and the rest as the
test set. About 30% of the data in the training set is labeled
data. In our datasets, all long texts contain entities that we
have defined. The statistics of the pre-processed datasets are
detailed in Table 1.

4.2 Comparison of methods

To comprehensively evaluate our method, we compare it
with the following 7 state-of-the-art algorithms:

CNN [11]: CNN is a classical neural network that utilizes
convolutional computation. We explore a 13-layer CNN
with two variants: 1) CNN-rand, which uses randomly
initialized word embeddings, and 2) CNN-pre, which
uses pre-trained word embeddings.
Bert [3]: It is a pre-trained model that stacks multi-
ple transformer models and pre-trains bidirectional deep
representations by conditioning the bidirectional trans-
formers in all layers. We choose an existing trained
Bert-base model and fine-tune it to convergence with our
training data.
Pointer-LSTM [4]: A LSTM framework that relies on
pointer networks to select important words for target
prediction. It maintains a consistent input process for the
LSTM module and allows it vary the skip rate during
inference.
TextGCN [30]: It is used a graph convolutional
network to model the corpus for capturing neighborhood
information, and it is built a bipartite graph using
word co-occurrence information and word frequency
information. It is transformed the text classification
problem into a node classification problem.

GAT [24]: Graph Attention Networks adopt the attention
mechanism to learn the weights of neighbor nodes
adaptively. The nodes’ expression is obtained through the
weighted summation of neighbor nodes.
HAN [25]: It puts forward a novel dual-level attention
mechanism, including node-level attention and semantic-
level attention. The node-level attention is used to learn
the importance between the central node and its different
types of neighbor nodes, and the semantic-level attention
is used to learn the importance of different meta-paths.
HeteGCN [20]: A heterogeneous graph convolutional
network combines the best aspects of PTE and TextGCN.
It learns feature embeddings and derives document
embeddings using a HeteGCN architecture with different
graphs used across layers.

4.3 Experiments settings and details

The following experiments are conducted to compare
and analyze our Han-LT method comprehensively. The
first experiment provides an overall evaluation of all
methods. Our method achieves excellent results on multiple
datasets, which demonstrates the effectiveness of Han-
LT. The second and third experiments are designed to
embody the superiority and flexibility of the multi-
interrelation heterogeneous information graph construction
method and the multi-semantic passing framework. In the
second experiment, the corpus is modeled using Han-
LT for constructing a heterogeneous information graph
of long texts and then processing them with different
heterogeneous graph neural networks. The third experiment
is designed to demonstrate the scalability of the multi-
semantic passing framework. The framework achieves good
results on different heterogeneous graphs based on text
classification. The fourth experiment is to demonstrate the
superiority of Han-LT in semi-supervised algorithms by
changing the proportion of labeled data in the training
set. To further verify the superiority of Han-LT on semi-
supervised learning, we design the fifth experiment to
find out which part of Han-LT has a greater impact on
semi-supervised learning. Then, the sixth experiment is
designed to demonstrate the selection process of some core
parameters in the method. Besides, for the viewability of the
experimental tables, the heterogeneous information graph is
defined as HIN.

We evaluated the performance of all classifier models
using Acc and F1 score. Acc represents accuracy which
represents the correct prediction ratio among all the
predicted samples. The F1 value is introduced to evaluate
the model more comprehensively, which is formulated as

F1 = 2 ∗ P · R
P + R

, (12)
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where P represents precision and R represents recall.
During model training, we train all models until the loss
value converges and repeat this process ten times. Then,
average the best accuracy and F1 score obtained in each
experiment as the final results.

After experimental verification, we select the optimal
number of entities and keywords for each document, and the
value of title similarity x. To construct the heterogeneous
information graph of long texts, we set the maximum
number of entities extracted per document K = 5, and the
maximum number of keywords J = 10. For all text corpora,
the title similarity threshold x is set to 0.6. Furthermore,
the initial dimension of words is set to 258. As for model
training, we set the learning rate l = 0.005, regularization
factor n = 1e-6, and dropout rate as 0.5. All methods
are run on a computer with an i7-9700kf CPU and an
RTX2070s GPU.

4.4 Experimental results

4.4.1 The overall experiment

Table 2 shows the classification accuracy rate and F1 score
of different algorithms on the four datasets. The accuracy
rate of Han-LT is higher than 98% on both Chinese long
text datasets, of which 98.86% is achieved on Sougou News
and 87.62% accuracy on the classic news classification
dataset 20NG and 71.46% on the disease classification
dataset Ohsumed. Compared with the classical attention
mechanism-based method GAT, Han-LT has higher effects
on all datasets, and the highest improvement can reach
8.9%. We note that Han-LT is improved by 0.38%–1.56%
compared with the new baseline methods (except CNN-
based methods) in the Chinese datasets, while Han-LT
has an improvement of 0.55%–8.81% compared with the
new baseline methods in the English datasets. Compared
with the baseline method, the improvement of Han-LT on
the English datasets is significantly greater than that on
the Chinese datasets. It is because the Chinese datasets
have less room for improvement (the accuracy rate of the

baseline methods is about 97%). However, Han-LT further
improves the effect due to its ability to extract deeper
semantic information. In general, it is obtained that Han-
LT performs best on all datasets, which represents the
Han-LT method’s effectiveness and superiority on long text
classification tasks.

It is noted that all methods, including Han-LT, outper-
form the English datasets on the Chinese datasets. After
analysis, it is concluded that because the data characteris-
tics of each category in the Chinese datasets are obvious, the
data of different categories are quite different. The English
data sets do not have the property, especially for Ohsumed,
whose original data set may contain multiple labels for each
data. It is indicated that their textual information is intricate.
Secondly, the English datasets contain fewer entities that we
have defined. For example, most of the entities in Ohsumed
are medical-related professional vocabulary. However, the
proposed Han-LT method can still achieve better results
than other methods in such cases.

For more in-depth performance analysis, we note that
there are also specific differences within the baseline
methods. For instance, the CNN-pre using pre-trained word
vectors is significantly improved compared to the CNN-
rand which randomly initializes word vectors. It shows the
importance of node representation learning. The pretrained
model Bert outperforms CNN-pre on two datasets with
longer text lengths but is not as good as CNN-pre on 20NG.
It is analyzed that CNN can better simulate continuous
and short-range semantics while Bert can better capture
long-range semantic information. Similarly, the LSTM-
based method Pointer-LSTM has a greater advantage in
long sequence classification, which performs better on
longer texts. Graph neural network-based model TextGCN
achieves comparable results with the pret-rained deep model
Bert. Compared to the CNN-pre method, the GNN-based
methods (such as TextGCN, GAT, HAN, and HeteGCN)
can improve up to 9.92% on the Ohsumed dataset is a
significant improvement. The overall performance of GAT
is better than that of TextGCN on most datasets since
the attention mechanism can adaptively learn the weights

Table 2 Test accuracy and F1 score of different methods on two Chinese datasets and two English datasets

Dataset CNN-rand CNN-pre Bert Point-LSTM TextGCN GAT HAN HeteGCN Han-LT

ThuCNews Acc 0.9273 0.9554 0.9677 0.9783 0.9682 0.9754 0.9779 0.9795 0.9833

F1 0.924 0.9536 0.9641 0.9745 0.966 0.9728 0.9751 0.9769 0.9782

SougouNews Acc 0.9364 0.9581 0.9722 0.9817 0.9734 0.9784 0.9806 0.983 0.9869

F1 0.9325 0.9542 0.9694 0.9789 0.9702 0.9733 0.9752 0.9804 0.9821

20NG Acc 0.7678 0.8216 0.7923 0.8328 0.8569 0.8619 0.8645 0.8707 0.8762

F1 0.7643 0.8197 0.7902 0.8304 0.8515 0.8573 0.8608 0.8665 0.8714

Ohsumed Acc 0.4387 0.5844 0.6745 0.6853 0.6836 0.6256 0.632 0.6574 0.7146

F1 0.4348 0.5781 0.6687 0.6809 0.6792 0.6194 0.6267 0.6513 0.7083

The bold entries shows the best results of the experiments to better demonstrate the effect of Han-LT
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of neighbor nodes. It is indicated the superiority of the
attention mechanism. HeteGCN combines the advantages
of TextGCN and PTE to construct a text corpus as
a heterogeneous graph, which achieves good results on
four datasets. However, these methods do not profoundly
consider the semantic information inside the text, resulting
in the partial loss of the rich semantic information in the
long text. The proposed Han-LT method takes into account
and achieves better results.

4.4.2 The analysis of the multi-interrelation heterogeneous
information graph

The following experiments are designed to verify the
superiority of the constructed heterogeneous information
graph for long texts. We apply GAT, GCN, HeteGCN,
and HAN to our constructed heterogeneous information
graph for classification. GAT and GCN do not consider the
heterogeneity of nodes, while HeteGCN and HAN consider
the heterogeneity of nodes. In response to this problem,
we treat nodes as homogeneous nodes when running GAT
and GCN. Although part of the feature information will
be lost, the core features of our graph construction method
are preserved, named entities, keywords, titles, and their
multi-interrelation.

The results obtained from the experiment are shown in
Table 3. It can be seen that with the graph we constructed,
a certain extent of optimization has been obtained on GCN,
GAT, and HeteGCN. However, the performance of HAN
is not very satisfactory because that HAN needs to specify
the meta-path in advance manually. However, HAN’s dual
attention mechanism still has a small improvement on the
Chinese datasets with the heterogeneous information graph.
The improvement of our graph construction method on
GCN and GAT is more obvious, especially the 0.91%
improvement of GAT-HIN on 20NG.

The experimental results are shown that the multi-
interrelation heterogeneous information graph for long texts
is superior. Because our method considers the relative
opposition between words, the semantic relationship of the

article is not only be more intuitively accepted by humans
and allows the model to learn more semantic information.
Another benefit is that two long-distance but related words
are allowed to be associated together, which makes the
global semantics richer.

4.4.3 The analysis of the multi-semantic passing framework

Our heterogeneous information graph constructed for the
semantic information of long texts has certain advantages
in long text classification tasks. We design a multi-semantic
passing framework for the constructed heterogeneous
information graph to capture deeper semantics and more
structural information. Moreover, we believe that the
multi-semantic passing framework has a certain degree
of adaptability, which can also capture more semantic
information in other heterogeneous graphs.

The process of the experiment is as follows. Firstly,
we select three graph construction methods for text
classification. 1) Based on the most primitive graph
construction method of document-document, the edges are
constructed according to the similarity between documents.
The proposed approach was used in GCN. 2) The document-
word-based graph construction method mentioned in
TextGCN. It constructs edges according to word co-
occurrence and word frequency. 3) The graph construction
method based on the unique words has appeared in the
text and the co-occurrence mechanism of words proposed
by TextING [33]. However, it is a separated graph
construction method for each text. The method is adopted
inside the text in this experiment, which is used the
word co-occurrence mechanism to realize the interaction
between texts. Secondly, we process four text data sets
through these three graph construction methods to construct
corresponding corpus information graphs. Thirdly, we
compare their original algorithm with the multi-semantic
passing framework. In particular, only text-word graphs
can be considered heterogeneous among these three graph
construction methods, and the other two are homogeneous.

Table 3 Test accuracy and F1 score of different methods with the HIN we constructed

Dataset TextGCN TextGCN-HIN GAT GAT-HIN HeteGCN HeteGCN-HIN HAN HAN-HIN Han-LT

ThuCNews Acc 96.82 97.12(+0.3) 97.54 97.93(+0.39) 97.95 98.11(+0.16) 97.79 97.85(+0.06) 98.33

F1 96.6 96.83(+0.23) 97.28 97.46(+0.18) 97.69 97.76(+0.07) 97.51 97.53(+0.02) 97.82

SougouNews Acc 97.34 97.86(+0.52) 97.84 98.33(+0.49) 98.3 98.38(+0.08) 98.06 98.11(+0.05) 98.69

F1 97.02 97.43(+0.41) 97.33 97.75(+0.42) 98.04 98.04(-) 97.52 97.61(+0.09) 98.21

20NG Acc 85.69 86.15(+0.46) 86.19 86.85(+0.66) 87.07 87.19(+0.12) 86.45 86.29(-0.16) 87.62

F1 85.15 85.62(+0.47) 85.73 86.31(+0.58) 86.65 86.84(+0.19) 86.08 86.01(-0.07) 87.14

Ohsumed Acc 68.36 68.91(+0.55) 62.56 63.47(+0.91) 65.74 66.07(+0.33) 63.2 63.03(-0.17) 71.46

F1 67.92 68.46(+0.54) 61.94 62.73(+0.79) 65.13 63.2(+0.19) 62.67 62.53(-0.14) 70.83

The bold entries shows the best results of the experiments to better demonstrate the effect of Han-LT
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Table 4 Test accuracy and F1
score of different graph
construction methods with the
multi-semantic passing
framework

Dataset GCN GCN-M TextGCN TextGCN-M TextING TextING-M

ThuCNews Acc 95.34 (+0.22) 96.82 (+0.25) 96.95 (+0.36)

F1 94.86 (+0.23) 96.6 (+0.19) 96.52 (+0.28)

SougouNews Acc 95.42 (+0.16) 97.34 (+0.27) 98.15 (+0.33)

F1 95.01 (+0.12) 97.02 (+0.21) 97.76 (+0.29)

20NG Acc 82.49 (+0.31) 85.69 (+0.3) 86.85 (+0.32)

F1 82.04 (+0.25) 85.15 (+0.26) 86.32 (+0.27)

Ohsumed Acc 65.73 (+0.12) 68.36 (+0.37) 64.9 (+0.44)

F1 65.17 (+0.07) 67.92 (+0.24) 64.63 (+0.51)

In response to this problem, we treat the two graphs of
text-text and word-word as homogeneous. Specifically, we
change Aτ in the formula to A. Here, all nodes are adopted
the same transformation matrix.

The final results are shown in Table 4. The multi-
semantic passing framework achieves better results than the
original method on these three graphs, especially in the
word-word graph. We notice that in the document-document
graph, the improvement effect is relatively insignificant
after we apply the multi-semantic passing framework. It
is because the homogeneous graph is constructed only
from documents. The semantic information captured by
the multi-semantic passing framework is more graph-
based and global than the semantic information inside the
text. The multi-semantic passing framework we designed
for the long texts graph construction method is more
sensitive to the capture of text semantics. Meanwhile, it
can capture more structural information about the graph.
Our multi-semantic passing framework can better extract
semantic and structural information in both homogeneous
and heterogeneous graphs.

The above three experimental results are shown that
the Han-LT method has obvious superiority on long text
classification tasks. Moreover, the multi-interrelation het-
erogeneous information graph construction method and the
multi-semantic passing framework in Han-LT are flexi-
ble and applicable. The main reasons are referred Han-LT
works well are twofold: 1) Multi-interrelation heteroge-
neous information graph based on entities, titles, and key-
words can better preserve more significant semantic and
structural information. 2) Based on the constructed het-
erogeneous information graph, the multi-semantic passing
framework can adaptively find important nodes and extract
more crucial higher-order semantic information to repre-
sent the long text. In conclusion, Han-LT shows sufficient
superiority over other methods.

4.5 Effects of labeled data size

Nowadays, the training set of long text is difficult to
construct. Therefore, there is an urgent need to develop
semi-supervised long text classification methods. It is

obtained that Han-LT can produce good results in semi-
supervised learning due to its superior local label transfer
ability. It can achieve better results than other methods in
limited labeled data. We design the following experiment
to verify the effectiveness of our semi-supervised long text
classification method.

We chose 4 related algorithms: CNN-rand, TextGCN,
HAN, and Han-LT, and the effect of the number of labeled
documents are studied. Specifically, we vary the proportion
of labeled texts on each dataset, and compare their accuracy
on all datasets. The proportion of labeled data is increased
from 2% to 30%. In addition, the experimental results are
the average values obtained by running each algorithm
10 times.

From Fig. 4, it can be seen that all algorithms’ accuracy
on all datasets increases with the increased ratio of labeled
data. Generally, the GNN-based methods achieve better
accuracy, which indicates that GNN-based methods can
better use limited labeled data through a message passing
framework. When the proportion of labeled data is low,
the performance of other algorithms drops significantly.
Meanwhile, our method still maintains a relatively high
accuracy, which shows that the method can better utilize
limited annotated data to achieve better results in long
text classification. It is because the multi-semantic passing
framework can adaptively learn the importance of different
nodes, which can better spread the label information of
nodes locally. The superiority of Han-LT in semi-supervised
learning can achieve satisfactory results even when labeled
data is relatively rare.

4.6 Ablation analysis

To further verify the superiority of Han-LT on semi-
supervised learning and find out which part of Han-LT
provides a greater impact on semi-supervised learning,
we design an ablation experiment as follows. Specifically,
we divide Han-LT into two parts: the multi-interrelation
heterogeneous information graph and the multi-semantic
passing framework. We name the method of preserving
the multi-interrelation heterogeneous information graph as
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Fig. 4 The test accuracy with
different proportion of labeled
documents on four data sets
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Han-LT mhg, and the method of preserving the multi-
semantic passing framework as Han-LT mpf. The scale of
labeled text on each dataset is varied and compared the
accuracy of Han-LT, Han-LT mhg, and Han-LT mpf on
THUCNews and 20NG. The proportion of labeled data is
set as 2%, 5%, 10%, 15%, 20%, 25%, and 30%.

The experimental results are shown in Fig. 5. It is
seen that the improvement of Han-LT mhg with the
multi-interrelation heterogeneous information graph is
more pronounced when the proportion of labeled data
is low. As the labeled data increases, the Han-LT mpf
method with the multi-semantic passing framework also
becomes obvious. The improvement of Han-LT mhg is
evident because the information in the multi-interrelation
heterogeneous information graph is compact. We link the

core information of each article by multi-interrelation,
and articles of the same category will directly become
neighbors to each other with a high probability. To a certain
extent, we can think of the multi-interrelation heterogeneous
information graph as a ”pre-categorized” graph with core
informational elements and relationships. It is because
we do not make major changes to the core network
structure but focuses on improving the network’s ability
to perceive multi-interrelation. It is worth noting whether
adding the multi-interrelation heterogeneous information
graph or the multi-semantic passing framework has a
particular improvement effect compared to the original GAT
and TextGCN methods. In general, our proposed Han-
LT method is a ensemble including the multi-interrelation
heterogeneous information graph and the multi-semantic

Fig. 5 Test accuracy of Han-LT
variants on datasets with
different proportion of labeled
documents
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Fig. 6 The average accuracy
with different number of entities
on four data sets
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passing framework. The multi-interrelation heterogeneous
information graph connects the core elements of the article,
and the multi-semantic passing framework captures the

essential semantics on the graph. The combination of
the two makes Han-LT provides the superiority of semi-
supervised learning.

Fig. 7 The average accuracy
with different number of
keywords on four data sets
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4.7 Parameter analysis

For Han-LT, the selection of entities and keywords is
essential, which determines the difficulty of capturing
semantic information and the running time of the algorithm.
To intuitively show the process and ideas of our graph
construction method, the following experiment is designed
and visualized the results for reference. It is experimented
with separately by varying the number of keywords and
entities extracted for each text at each run. We set the
extraction number of entities to 3, 5, 7, 9, 11, and 13 due
to the high importance with low occurrence in the text. The
extracted number of keywords is set to 3, 6, 9, 12, 15, 18,
and 21.

Figure 6 shows the accuracy tests using different
numbers of entities on the four datasets. Figure 7 shows the
accuracy tests using different numbers of keywords on the
four datasets. It can be seen that the accuracy rate increases
with the number of selected entities and keywords in all
datasets at the beginning of the experiment. However, when
the number of selected entities in 20NG is greater than 5
or the number of selected keywords is greater than 10, the
accuracy rate decreases with the increase of selected entities
or keywords numbers. It is because selecting too many
words will make the constructed heterogeneous information
graph complicated. Furthermore, it is added edges between
nodes that are not closely related so that the model can not
accurately extract the semantics of the text. Combining the
best experimental performance, we finally select 5 entity
counts and 10 keyword counts.

In order to comprehensively evaluate our proposed
method Han-LT, we designed the above six experiments
in total. Combined with all the obtained experimental
results, we strongly demonstrate that the Han-LT method
can effectively preserve and extract the semantic and
structural information of long texts to achieve excellent
results in semi-supervised learning task. Overall, Han-LT
shows significant superiority in semi-supervised long text
classification tasks.

5 Conclusion

This paper proposes a semi-supervised long text classifica-
tion method based on a graph neural network. Aiming at the
core intention expressed by the text, we construct the long
text corpus from three aspects: title, entity, and keyword. We
model the text itself and link different texts together through
their multi-interrelation to condense the meaning expressed
by the texts while retaining the semantic structures. Then,
we design the message passing framework by combining the
attention mechanism and the semantic degree for the rela-
tionship between title-entity-keyword again to aggregate the

multi-interrelation heterogeneous information graph. These
make our model have a strong ability to extract deeper
semantic and structural information. Validated by exten-
sive experiments, our method achieves remarkable results
on long text classification tasks.
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