
1 23

The Journal of Supercomputing
An International Journal of High-
Performance Computer Design,
Analysis, and Use

ISSN 0920-8542
Volume 73
Number 5

J Supercomput (2017) 73:1760-1781
DOI 10.1007/s11227-016-1881-x

A parallel solving method for block-
tridiagonal equations on CPU–GPU
heterogeneous computing systems

Wangdong Yang, Kenli Li & Keqin Li

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

J Supercomput (2017) 73:1760–1781
DOI 10.1007/s11227-016-1881-x

A parallel solving method for block-tridiagonal
equations on CPU–GPU heterogeneous computing
systems

Wangdong Yang1 · Kenli Li1 · Keqin Li1,2

Published online: 22 September 2016
© Springer Science+Business Media New York 2016

Abstract Solving block-tridiagonal systems is one of the key issues in numerical sim-
ulations of many scientific and engineering problems. Non-zero elements are mainly
concentrated in the blocks on the main diagonal for most block-tridiagonal matri-
ces, and the blocks above and below the main diagonal have little non-zero elements.
Therefore, we present a solving method which mixes direct and iterative methods.
In our method, the submatrices on the main diagonal are solved by the direct meth-
ods in the iteration processes. Because the approximate solutions obtained by the
direct methods are closer to the exact solutions, the convergence speed of solving the
block-tridiagonal system of linear equations can be improved. Some direct methods
have good performance in solving small-scale equations, and the sub-equations can
be solved in parallel. We present an improved algorithm to solve the sub-equations by
thread blocks on GPU, and the intermediate data are stored in shared memory, so as
to significantly reduce the latency of memory access. Furthermore, we analyze cloud
resources scheduling model and obtain ten block-tridiagonal matrices which are pro-
duced by the simulation of the cloud-computing system. The computing performance
of solving these block-tridiagonal systems of linear equations can be improved using
our method.

B Wangdong Yang
yangwangdong@163.com

Kenli Li
lkl@hnu.edu.cn

Keqin Li
lik@newpaltz.edu

1 College of Information Science and Engineering, Hunan University,
Changsha 410008, Hunan, China

2 Department of Computer Science, State University of New York,
New Paltz, NY 12561, USA

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-016-1881-x&domain=pdf

A parallel solving method for block-tridiagonal equations… 1761

Keywords Block tridiagonal ·Linear equations ·Sparsematrix-vectormultiplication ·
Solving

1 Introduction

1.1 Motivation

Solving block-tridiagonal systems is one of the key issues in numerical simulations of
many scientific and engineering problems. The block-tridiagonal equations are arisen
from classical finite-difference discretizations of two-dimensional separable elliptic
equations. For instance, the Fourier-transformed partial differential equations (PDEs)
have block-tridiagonal characteristics when the underlying equations involve at most
second-order derivatives for three-dimensional systems, where two coordinates are
angular and one is radial. Particularly, the optimal resource allocation schemes of
cloud-computing platform are found by solving the block-tridiagonal equations, which
are generated by queuing model.

The frequency of the processor is difficult to significantly increase due to the lim-
itation of the current very large-scale integration (VLSI) technology. In response,
multicore processors and/or specialized hardware accelerators have been designed
and developed by most hardware manufactures [1]. The new parallel characteristics
of new architectures are used and exploited to improve the performance of programs.
The appearance of GPUs for general-purpose computing platforms offers powerful
parallel processing capabilities at a low cost, and GPUs are widely used in the field of
high-performance computing.

There are twomethods to solve the block-tridiagonal equations, which are the direct
methods and iterative methods. The solutions are obtained by elimination for direct
methods, and some zero elements may become non-zero elements in the process of
elimination. Furthermore, the error of the solutions will increase with more elimina-
tion operations. The iterative methods are suitable for large sparse matrices, such as
Jacobi method, Gauss–Seidel method, GMRES, and Conjugate gradient, etc, and have
no cumulative error. However, the stability of the iterative methods is poor, and the
iterations may be slow convergence for some sparse matrices.

1.2 Our contributions

For block-tridiagonal system of linear equations, we present a solving method which
mixes direct and iterative methods. Our method generates a sequence of approxi-
mate solutions {xk} in the same way as the conventional iteration methods, where xk

expresses the approximate solutions of the kth iteration. The conventional iteration
methods essentially involve a matrix A only in the context of matrix-vector multi-
plication and do not make full use of tridiagonal characteristics of block-tridiagonal
matrices, so as to result in slow convergence. Non-zero elements are mainly concen-
trated in the blocks on the main diagonal for most block-tridiagonal matrices, and the
blocks up and down the main diagonal have little non-zero elements. In our method,
the submatrices on the main diagonal are solved by the direct methods in the iteration

123

Author's personal copy

1762 W. Yang et al.

processes. Because the approximate solutions obtained by the directmethods are closer
to the exact solutions, the convergence speed of solving the block-tridiagonal system
of linear equations can be improved. Some direct methods have good performance
in solving small-scale equations, and the sub-equations can be solved in parallel. We
present an improved algorithm to solve the sub-equations by thread blocks on GPU,
and the intermediate data are stored in shared memory, so as to significantly reduce
the latency of memory access. Therefore, the computational complexity of the hybrid
method is not increased and the convergence speed can be accelerated.

According to our experiments on ten test cases, the performance improvement using
our algorithm is very effective and noticeable. The average number of iterations is
reduced by 283.15 and 18.34 % using our method compared with CG and BiCGSTAB
of PARALUTION library, respectively, and the performance using ourmethod is better
than those of the commonly used iterative and direct methods, and the performance
of solving the test cases on GPU is improved by 26.98, 11.52, and 9.25 % using our
method compared with CG, BiCGSTAB of PARALUTION library, and cuSolverSP
of CUDA.

The remainder of the paper is organized as follows. In Sect. 2, we review the related
research on solving block-tridiagonal system of linear equations. In Sect. 3, we present
an introduction to CUDA. In Sect. 4, we develop the method of solution for solving
block-tridiagonal matrices. In Sect. 4.6, we describe parallel implementation of our
method on GPU. In Sect. 5, we demonstrate the performance comparison results in
our extensive experiments. In Sect. 6, we conclude the paper.

2 Related work

Block-tridiagonal matrices have a central diagonal and two adjacent, which are located
at a distance m from the center, and m is the size of the block matrix. There has been
considerable work in developing solution algorithms for block-tridiagonal matrices.
For a block-tridiagonal matrix A, it is possible to obtain an exact inverse (direct solu-
tion) with no fill-in using the well-known Thomas [2] serial algorithm, which is easily
generalized for block sizes m = 1. While this is the fastest algorithm on a serial
computer, it is not parallelizable, since each solution step in the algorithm depends
on the preceding one. Many authors have considered efficient parallel block solvers
for scalar block (m = 1) matrices based on cyclic reduction [3]. Cyclic reduction
was first described by Heller [4] for block-tridiagonal systems, although an efficient
parallel code was not described. The new code BCYCLIC described here fills a soft-
ware gap in the available codes for solving tridiagonal systems with large (m = 1),
dense blocks [5]. Reference [6] analyzed the projection of four known parallel tridi-
agonal system solvers: cyclic reduction [7,8], recursive doubling [9], Bondeli’s divide
and conquer algorithm [10], and Wang’s partition method [11]. Cyclic reduction and
recursive doubling focus on a line grain of parallelism, where each processor computes
only one equation of the system. Reference [11] developed a partition method with a
coarser grain of parallelism. ScaLAPACK [12] provided anothermethod for efficiently
solving dense block-tridiagonal systems. Block factorization and solution based on
ScaLAPACK are currently implemented in the SIESTA [13] MHD equilibrium code.

123

Author's personal copy

A parallel solving method for block-tridiagonal equations… 1763

This technique scales well with processor count only for very large matrix block sizes.
For matrix blocks of interest for small 3DMHD problems (m = 300), scalability was
found to be limited to about 5–10 processors.

Some works [14–24] presented how hardware and software can work in concert
on scalable multiprocessor systems with a number of illustrative matrix-based exam-
ples and applications, and provided a historical perspective and relevant context to
numerical computation onCPU–GPUheterogeneous computing systems. Someworks
[25–33] discussed how processor technologies can help scientific computing applica-
tions which involve matrix operations. Two-level parallelization [34] was introduced
to solve a massive block-tridiagonal matrix system. One-level was used for distrib-
uting blocks, whose size is as large as the number of block rows due to the spectral
basis, and the other level is used for parallelizing in the block row dimension.

Some researchers have investigated parallel algorithms for solving systems of linear
algebraic equations with block-tridiagonal matrices using iteration methods. In [35,
36], the Krylov method is used [37], and special preconditioning procedures, which
account for the structure of a block-tridiagonal matrix, are used to increase the rate
of convergence. The efficiency of the algorithms described above depends on a great
extent on the size of the matrix blocks. Asm increases, the local calculations become a
greater part of the calculation, and consequently, the efficiency of themethod increases.
This determines the domain of applicability of presently available parallel algorithms.
An important case in practice is the case when the matrix block size is not large,
i.e., does not exceed several hundreds. This is because, for such a matrix, one can
effectively apply a cost-effective variant of the Gaussian method with overheads of
O(m3n) [38]. For a large cloud-computing platform, there are tens of thousands of
computing resources which have several or dozens of execution states, and statematrix
generated by state transition is a block-tridiagonal matrix. Therefore, for this case, it
is necessary to develop a parallel algorithm with comparable overheads, which will
also enable the effective implementation of thousands of processors.

There are two common methods for solving block-tridiagonal equations: using a
block-tridiagonal factorization , or treating the matrix as a band matrix [39]. Some
preconditioners are used to improve the performance and robustness of solving block-
tridiagonal equations. For a symmetric positive definite block-tridiagonal matrix A,
using the Cholesky decomposition once can reduce the operation count [39,40]. Rug-
giero and Galligani [41] considered a new form of the arithmetic mean method for
solving large block-tridiagonal linear systems and proposed a parallel implementation
using the iterative method and the preconditioner on a multi-vector computer. [42]
presented an efficient blockwise update scheme for the QR decomposition of block-
tridiagonal and block Hessenberg matrices, which come up in generalizations of the
Krylov space solvers to block methods for linear systems of equations with multiple
right-hand sides, and could improve the performance and stability of block Krylov
space solvers. Incomplete LU factorization is a common way to construct precondi-
tioner for sparse linear systems and is known to give excellent results for this class
of problems. Some theory for block ILU preconditioner is discussed in [37,43]. This
type of approach needs to approximate inverse of pivot blocks.

Work on SpMV [44–46], LU factorization [47], and general hybridized linear
algebra routines [48], including tridiagonal solvers on GPUs, has been studied and

123

Author's personal copy

1764 W. Yang et al.

optimized in the recent literature [49–52]. For GPUs provided by NVIDIA, NVIDIA
provided CUDA (compute unified device architecture) to improve the development
efficiency of parallel program [53]. CuSolver library [54] provided by CUDA tools
includes some implementation codes of the direct solving algorithms based on the
cuBLAS and cuSPARSE libraries [55]. PARALUTION [56] proposed a sparse lin-
ear algebra library with focus on exploring fine-grained parallelism, targeting modern
processors and accelerators, including multi/many-core CPU and GPU platforms, and
provided a portable library for iterative sparse methods on the state-of-the-art hard-
ware. [57] presented the parallel algorithmof the generalizedminimal residual iterative
method using the Compute Unified Device Architecture programming language and
the MPI parallel environment. The GREMLINS code [58] had been developed for
solving large sparse linear systems on distributed grids. [59] analyzed the perfor-
mance of the GREMLINS code obtained with several libraries for solving the linear
subsystems and compared with that of the widely used PETSc library [60] that enables
one to develop portable parallel applications.

The conventional iteration methods essentially involve a matrix only in the context
of matrix-vector multiplication and do not make full use of tridiagonal characteristics
of block-tridiagonal matrices, so as to result in slow convergence. Furthermore, the
utilization of shared memory has a large effect on the performance of solving on GPU.
The whole matrix is stored in the global memory using the conventional GPU-based
methods that lead to larger data access latency. However, we present an improved
algorithm to solve the sub-equations by thread blocks on GPU, and the intermediate
data are stored in shared memory, so as to significantly reduce the latency of mem-
ory access to improve solving performance. Although PARALUTION provided some
iterative and direct solving algorithms on GPU, no hybrid iterative and direct solv-
ing algorithms for block-tridiagonal equations were provided. We present the hybrid
solving method which has faster convergence speed and higher parallel efficiency.

3 An introduction of CUDA

GPUs are widely used in parallel computing, because there are more cores and co-
processors to speed the computing in more and more computing systems. CUDA can
improve the development efficiency of parallel program. The CUDA heterogeneous
programming model is shown in Fig. 1. The CUDA heterogeneous programming
model assumes that the CUDA threads execute on a physically separate device that
operates as a coprocessor to the host running the main program. This is the case, for
example, when the kernels execute on aGPU and the rest of themain program executes
on a CPU. The number of threads is decided by the programmer to be executed. A
collection of threads (called a block) runs on amultiprocessor at a given time.Multiple
blocks can be assigned to a single multiprocessor and their execution is time-shared.
For heterogeneous computing systems with CPUs and GPUs, each core of CPU can
independently perform its instructions and data, which is called the MIMD model. If
there is not dependency, it does not need synchronization between threads on various
cores of CPU. For multicore CPUs, each core can be scheduled independently to
perform the threads. Therefore, the partitioning methods for multicore CPU do not
consider the uniformity of NNZ of rows in the block for SpMV. However, the basic

123

Author's personal copy

A parallel solving method for block-tridiagonal equations… 1765

Fig. 1 CUDA heterogeneous
programming model

computing unit of a GPU is called streaming multiprocessor (SM). As a component
at the bottom of the independent hardware structure, SM can be seen as an SIMD
processing unit. Each SM contains some scalar processors (SP) and special function
units (SFU) [53]. It needs synchronization between SPs of the same SM on GPU [53].
Therefore, the inequality of the load of different threads will have a larger impact on
performance.

4 The solving method for blocked tridiagonal matrix

4.1 The compressed storage format

For many scientific and engineering applications, these sparse matrices may have
various sparsity characteristics. Different sparse matrices with different sparse distri-
butions should be stored by the most appropriate compressed storage format.

The 6-by-6 sparse matrix A shown below is used as a running example in this
section:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

6 0 2 0 0 0
1 9 7 0 0 0
0 5 4 3 0 0
0 1 0 8 7 3
0 0 6 2 11 4
0 0 0 0 6 21

⎞
⎟⎟⎟⎟⎟⎟⎠

.

123

Author's personal copy

1766 W. Yang et al.

4.1.1 COO storage format

The coordinate (COO) format is a particularly simple storage scheme with a triplet
(row, column, value). The arrays row, column, and value store the row indices,
column indices, and values of the non-zero elements in a matrix, respectively. For the
example sparse matrix A, we have

row = (0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5),

column = (0, 2, 0, 1, 2, 1, 2, 3, 1, 3, 4, 5, 2, 3, 4, 5, 4, 5),

value = (6, 2, 1, 9, 7, 5, 4, 3, 1, 8, 7, 3, 6, 2, 11, 4, 6, 21).

4.1.2 CSR storage format

The compressed sparse row (CSR) format is a popular and general-purpose sparse
matrix representation scheme. CSR explicitly stores column indices and non-zero
values in arrays Aj and Av. The third array Ap represents the starting position of each
row in the array Aj. For an n-by-m matrix, Ap has length n + 1 and stores the offset
of the i th row in Ap[i]. The value of the last element is NNZ , which is the number of
non-zero elements. For the example sparse matrix A, we have

Ap = (0, 2, 5, 8, 12, 16, 18),

Aj = (0, 2, 0, 1, 2, 1, 2, 3, 1, 3, 4, 5, 2, 3, 4, 5, 4, 5),

Av = (6, 2, 1, 9, 7, 5, 4, 3, 1, 8, 7, 3, 6, 2, 11, 4, 6, 21).

4.1.3 DIA storage format

For the n-order sparse matrix A with k diagonal line, it can greatly reduce the storage
overheadwhen only the non-zero elements in diagonal are stored. DIA format includes
two parts. The first part is an n × k matrix D to store the value on the diagonal. The
second part is an array offset to store k elements, which are the offsets of a diagonal
with respect to the main diagonal. For the sparse matrix A, we have

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 6 0 2
∗ 1 9 7 0
1 5 4 3 0
6 0 8 7 3
0 2 11 4 ∗
0 6 21 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

,Offset = (−2,−1, 0, 1, 2) .

DIA is perfect format for the compression and storage of diagonal matrix, but not
good for dispersed sparse matrix [44]. The main reason is that the presence of non-
zero element in most of diagonals will lead to too much columns in matrix D. As the

123

Author's personal copy

A parallel solving method for block-tridiagonal equations… 1767

matrix with non-zero elements in all diagonals, in this extreme case, the data matrixD
will involves 2n − 1 columns, and it will cost double storage volume than the original
matrix.

4.2 The blocked tridiagonal matrix

The block-tridiagonal matrix A is shown as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 U1
L2 D2 U2

L3 D3 U3
. . .

. . .
. . .

. . .
. . .

. . .

Lm−1 Dm−1 Um−1
Lm Dm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where D1, D2, . . . , Dm , L2, L3, . . . , Lm , and U1,U2, . . . ,Um−1 are k × k squares,
and the other positions in B are zero. Assume that the number of rows in B is n, where
n is m × k.

4.3 Partitioning of block-tridiagonal matrix

The block-tridiagonal matrix A is partitioned into 3×(m − 2) squares, which
are D1, D2, . . . , Dm , L2, L3, . . . , Lm , and U1,U2, . . . ,Um−1. L2, L3, . . . , Lm , and
U1,U2, . . . ,Um−1 are very sparse in the block-tridiagonal matrices which are
arisen from the most scientific computing applications, such as finite difference and
resource scheduling, and most non-zero elements are in D1, D2, . . . , Dm . There-
fore, L2, L3, . . . , Lm and U1,U2, . . . ,Um−1 are stored as the compressed formats,
such as COO or CSR formats. D1, D2, . . . , Dm are stored as the suitable storage
formats according to the distribution features of the non-zero elements. They are
stored as dense matrices if non-zero elements are more dense, and are stored as
DIA format if they are tridiagonal matrices. The block-tridiagonal matrices arisen
from resource scheduling are partitioned into D1, D2, . . . , Dm , which are tridiagonal
matrices.

4.4 Hybrid blocked iterative solving algorithm (HBISA)

The block-tridiagonal equation is given by Eq. (1):

Ax = b. (1)

123

Author's personal copy

1768 W. Yang et al.

Equation (1) can be given by the following:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 U1
L2 D2 U2

L3 D3 U3
. . .

. . .
. . .

. . .
. . .

. . .

Lm−1 Dm−1 Um−1
Lm Dm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
...
...

xm−1
xm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
...
...

bm−1
bm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where x j and b j for j = 1, 2, . . . ,m are the sub-vectors of x and b. x j includes the
((j − 1) × k)th to the (j × k)th elements of x , and b j includes the ((j − 1) × k)th to
the (j × k)th elements of b.

Assume that B = L + D +U , where

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L2
L3

. . .

. . .

Lm−1
Lm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1
D2

D3
. . .

. . .

Dm−1
Dm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1
U2

U3
. . .

. . .

Um−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

123

Author's personal copy

A parallel solving method for block-tridiagonal equations… 1769

Therefore, we have

(L + D +U)x = b, (2)

and

Dx = b − Lx −Ux . (3)

Letting

r = b − Lx −Ux .

Then

Dx = r. (4)

Solving Eq. (4) is much easier than to solve Eq. (1). Define the iterative equation:

Dxi+1 = b − Lxi −Uxi , x0 = 0. (5)

For each block in B, Eq. (5) can be expressed as

Dj x
i+1
j =

⎧⎪⎪⎨
⎪⎪⎩

b j −Uj xij+1 j = 1;
b j − L j xij−1 −Uj xij+1 1 < j < m;
b j − L j xij−1 j = m.

(6)

For Algorithm 1, i index represents the i th iteration for solving process, and j index
represents the j th block for the block-tridiagonal matrix. r j is a right-hand vector for
Dj xij = r j , which can be stored in an array to reuse in all iterations. r j are independent
vectors for different values of j . There are no data dependency among different r j .
Therefore, lines 5–17 can be processed in parallel.

For j > 1, xi+1
j−1 has been computed in the current iteration, and Eq. (6) can be

replaced by Eq. (7):

Dj x
i+1
j =

⎧⎪⎪⎨
⎪⎪⎩

b j −Uj xij+1 j = 1;
b j − L j x

i+1
j−1 −Uj xij+1 1 < j < m;

b j − L j x
i+1
j−1 j = m.

(7)

4.5 The iterative convergence analysis

Lemma 1 Assume that Ax = b, A = D+ L +U, where A is the nonsingular block-
tridiagonal matrix and D, L , U are submatrices which are obtained by Eq. (2). The
necessary and sufficient condition of convergence for solving Ax = b using Algorithm
1 is ρ(D−1(L+U)) < 1, where ρ(D−1(L+U)) is the spectral radius of D−1(L+U).

123

Author's personal copy

1770 W. Yang et al.

Algorithm 1 The hybrid blocked iterative solving algorithm (HBISA) for the block-
tridiagonal equation.
Require: The blocks partitioned from A, i.e., L2, L3, . . . , Lm , D1, D2, . . . , Dm andU1,U2, . . . ,Um−1;

The vector, b.
Ensure: The solution, xt .
1: x0 ← 0;
2: r ← b;
3: for i ← 1,2,3,…, until convergence do
4: //The tridiagonal equation is solved by direct method, such as Gauss elimination or Thomas;
5: for j ← 1 to m do
6: //Dj x

i
j = r j is solved by direct method, such as Gauss elimination or Thomas;

7: Solve Dj x
i
j = r j ;

8: if j = 1 then
9: r j ← b j −Uj x

i−1
j+1;

10: else
11: if j > 1 and j < m then
12: r j ← b j − L j x

i−1
j−1 −Uj x

i−1
j+1;

13: else
14: r j ← b j − L j x

i−1
j−1;

15: end if
16: end if
17: end for
18: β ← ‖xi − xi−1‖ ;
19: if β =0 then
20: t ← i ;
21: Stop;
22: end if
23: end for
24: return xt .

Proof (Sufficiency): D is the nonsingular matrix, because A is the nonsingular block-
tridiagonal matrix. Therefore, Eq. (5) can be transformed into the following equation:

xi+1 = D−1(b − Lxi −Uxi) = −D−1(L +U)xi + D−1b.

Assume that B = −D−1(L + U) and f = D−1b, the above iterative equation
can be expressed xi+1 = Bxi + f . Ax = b has a unique solution, because A is
a nonsingular matrix. Assume that the solution is x∗ and x∗ = Bx∗ + f . Assume
that an error vector is εk = xk − x∗ = Bkε0, ε0 = x0 − x∗, where Bk expresses
the matrix B raised to the power k. ρ(B) < 1, because ρ(−D−1(L + U)) < 1 and
ρ(B) = ρ(−D−1(L + U)). ρ(B) is the supremum among the absolute values of
the eigenvalues of B, and ρ(B) < 1 if and only if limk→∞ Bk = 0 [61]. Therefore,
limk→∞ εk = 0 for any x0, and limk→∞ xk = x∗.

(Necessity): Assume that limk→∞ xk = x∗ for any x0, where xk+1 = Bxk + f .
Obviously, x∗ is the solution of x = Bx+ f , and for any x0, εk = xk −x∗ = Bkε0 →
0 (k → ∞). Therefore, limk→∞ Bk = 0, and ρ(B) < 1. Therefore, ρ(−D−1(L +
U)) < 1, because ρ(−D−1(L +U)) = ρ(B). ��

123

Author's personal copy

A parallel solving method for block-tridiagonal equations… 1771

4.6 Parallel implementation

The iterative solving algorithm for the block-tridiagonal equation can be parallelized.
We can observe that the codes in lines 5–17 can be executed in parallel, and each i of
loops can be processed as a task in parallel. If Algorithm 1 is processed in parallel,
Eq. (6) should be used in lines 9, 12, and 14, because xi+1

j−1 is computed synchronously
and cannot be obtained in the same iteration. Li , Di , andUi are assigned to processors
as standalone tasks for i = 1, 2, . . . , q, and lines 7–16 in Algorithm 1 are computed in
parallel. The residual β of the iterative solution can be piecewise calculated in parallel,
and line 18 can be replaced by βi

j ← ‖xij − xi−1
j ‖ and moved into the loop 5–17. The

tasks allocation is shown in Fig. 2.
For CUDA, the threads are allocated and scheduled in accordance with blocks.

Furthermore, the number of cores in GPU is far more than that of CPU, and SpMV
of lines 12 and 17 in Algorithm 1 is computed in parallel on GPU. Some common
parallel algorithms can be used to solve Dj xij = r j , such as CR and PM. Due to the
small size of Dj , the performance of direct solving algorithms should be good. SpMV
is suited to be computed in parallel on GPU using CUDA, and each row of L j andUj

is assigned to a thread of the block to execute multiplication with x j , which is the j th
approximate solution (Fig. 3).

L j , Dj , and Uj of each block can be loaded into the shared memory on GPU
to reduce access latency, because these data sets can be used in the all iterations.
The approximate solutions x j generated by the iterations are used by multiple
SpMV, and should be stored in the shared memory. The residual β of the itera-
tive solution can be calculated by two steps, which are inside a block and between
blocks. The parallel reduction algorithm can be used to get the residual β, and the
parallel reduction algorithm of the residual calculation using CUDA is shown in
Algorithm 2.

In Algorithm 2, the maximum residual of a block is calculated from lines 5–12,
and then, it is stored in the first element in the residual sub-array, which corresponds
to the block. The maximum residual of the whole residual array is obtained from the
maximum residuals of the blocks, and it is stored in the first element of the residual
array.

Fig. 2 Tasks allocation for solving the block-tridiagonal equation using Algorithm 1 in parallel

123

Author's personal copy

1772 W. Yang et al.

Fig. 3 Parallel computing tasks for Algorithm 1 on GPU

5 A case study: cloud resources scheduling

More and more computing resources are deployed in the cloud-computing platform,
and massive amounts of computing tasks are processed in the cloud-computing plat-
form. The computing resources should be allocated reasonably, and the computing
tasks should be processed in time. Some computing resources will be idle if too
much computing resources are turned on. Therefore, some resources should be turned
off when the number of computing tasks is declined; in contrast, more computing
resources should be turned on when the number of computing tasks is increased. The
number of computing resources that are turned on should be consistent with that of
the arrived tasks. However, some computing resources may not be fully used, because
the arrival time of tasks is random.

5.1 M/M/n+ k dynamic queuing model

Assume that the arrival of tasks meets Poisson distribution and the processing time
of the tasks meets exponential distribution. M /M /n + k dynamic queuing model can
describe the process of cloud resources scheduling if computing resources are the
same. A new computing resource will be turned on if the number of tasks processed
on the computing resource reaches an upper limit value. In contrast, an used com-
puting resource will be turned off if the average number of tasks processed on the
computing resources is below a lower limit value. The tasks migrated to new com-
puting resources will be delayed, because turning on and off computing resources
must be time-consuming. The state transition diagram of task allocation and resource
scheduling using M /M /n + k dynamic queuing model is a birth and death process,

123

Author's personal copy

A parallel solving method for block-tridiagonal equations… 1773

Algorithm 2The parallel reduction algorithm of the residual calculation using CUDA.
Require: The residual array, i.e., R0, R2, . . . , Rq×k−1; The number and size of the block, k and q.
Ensure: The maximum of residual, r .
1: t id ← thread Idx .x ;
2: bid ← block Idx .x ;
3: start_idx ← block Idx .x ∗ blockDim.x ;
4: i_loop_num ← 	lgq2
;
5: for i ← 0 to i_loop_num do
6: intervals ← 2i ;
7: width ← 	 q

2i+1
;
8: if tid > width then
9: pos ← tid × 2i+1;
10: if Rpos < Rpos+intervals then
11: Rpos ← Rpos+intervals ;
12: end if
13: end if
14: end for
15: i_loop_num ← 	lgk2
;
16: for i ← 0 to i_loop_num do
17: intervals ← 2i ;
18: width ← 	 k

2i+1
;
19: if bid > 2i−1 then
20: pos ← bid × 2i+1;
21: if Rbid∗q < R(bid+intervals)×q then
22: Rbid×q ← R(bid+intervals)∗q ;
23: end if
24: end if
25: end for
26: r ← R0
27: return r .

and instantaneous states of flow are showed in Fig. 4, where the ellipses express
the states of the resources and the numbers in ellipses express the numbers of pend-
ing tasks assigned to the resources. The first line of Fig. 4 expresses the states of
the cloud-computing system with one resource and the second line expresses the
system with two resources, and so on. λ, μ, η, and ν express request arrival rate,
processor’s service rate, processor’s opening rate, and processor’s closing rate. The
number i in ellipses expresses that there are i pending tasks in the cloud-computing
system.

Assume that there are n computing resources in a cloud-computing platform.When
more than k-computing tasks assigned into a computing resource are pended, a new
computing resource will be turned on to process the new tasks. Furthermore, the
computing resources without computing task should be turned off.

For a cloud-computing system, how many computing resources need to be
deployed? The utilization efficiency of resources should be computed. The proba-
bility that the resources are used must be calculated for the poisson distribution of the
arrival of tasks. Define that Si, j is the state, which has i pending tasks in j computing
resources. The transition probability between the system states can be calculated by

123

Author's personal copy

1774 W. Yang et al.

Fig. 4 State transition diagram of task allocation and resource scheduling using M /M /n + k dynamic
queuing model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λi, j =
{

λ, i ≤ j × k

0, i > j × k

μi, j =

⎧⎪⎨
⎪⎩

� i
k
 × μ, j ≤ i ≤ j × k

k × μ, i > j × k

μ, i < j

ηi, j =
{
0, i ≤ j × k

	 i− j×k
k
 × η, i > j × k

νi, j =
{
0, i ≥ j × k

� j×k−i
k
 × ν, i < j × k

(8)

If there are too many pending tasks in a computing node, another computing nodes
should be turned on to process the new tasks. The probability of the state Si, j will be
very little when i > k × (j + 1) for j computing resources, and the probability of the
state Si, j will be very little when i < k×(j−1) for j computing resources, because the
computing resources without computing task should be turned off, so the states can be
ignored. The transition probability matrix P is a block-tridiagonal matrix composed
of Eq. (8), whose size is n × n and the size of blocks is k. The k × k submatrices
along the main diagonal are tridiagonal matrices, and another submatrices outside the
main diagonal are sparse matrices. The computing resources should not be turned
on and off frequently, because it takes time to turn off and on. Therefore, a certain
number of computing resources should be turn on in advance, but howmany computing
resources should be turn on in advance? Define that πi is the probability of the state
with i pending tasks in cloud system. The probabilities of πi for i = 1, 2, . . . , n are
obtained by solving the following Markov stationary equation:

π = π P. (9)

123

Author's personal copy

A parallel solving method for block-tridiagonal equations… 1775

Assume that the state with maximum probability is πM , which has M pending tasks,
M/k computing resources should be turn on in advance to reduce waiting time of
pending tasks.

5.2 Hybrid storage format for block-tridiagonal matrix

Di for i = 1, 2, . . . , n are tridiagonalmatrices in the block-tridiagonalmatrix obtained
by M /M /n+ k dynamic queuing model for cloud resources scheduling modeling, and
Ui and Li for i = 1, 2, . . . , n − 1 are sparse matrices.

The 9-by-9 block-tridiagonal matrix B shown below is an example obtained by
M /M /n + k dynamic queuing model:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 0
... −2 0 0

... 0 0 0

−3 7 −4
... 0 −2 0

... 0 0 0

0 −3 5
... −4 0 0

... 0 0 0··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
−1 0 0

... 5 −4 0
... −2 0 0

0 0 −3
... −3 9 −4

... 0 −1 0

0 −1 0
... 0 −2 9

... 0 −2 0··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···
0 0 0

... 0 −1 0
... 5 −3 0

0 0 0
... 0 0 −2

... −4 9 −4

0 0 0
... 0 0 −1

... 0 −3 12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Matrix B has seven diagonal blocks which have three rows and three columns. D1,
D2, and D3 are tridiagonal matrices, which can be stored as DIA format. Furthermore,
offset array can be omitted, because the offsets of three diagonals are fixed (−1, 0, 1).
L2, L3, U1, and U2 are sparse matrices, which have few non-zero elements in each
row. Therefore, L2, L3, U1, and U2 should be stored as COO format. The number of
storage units of D1, D2, and D3 is 21 and that of L2, L3,U1, andU2 is 36. Few storage
units are occupied using COO format for L2, L3, U1, and U2, because there are few
non-zero elements and irregular distributions of non-zero elements in L2, L3,U1, and
U2.

5.3 Experimental evaluation

5.3.1 Experiment settings

The following test environment has been used for all benchmarks. The test computer
is equipped with two AMDOpteron 6376 CPUs running at 2.30 GHz and an NVIDIA
Tesla K20c GPUs. Each CPU has 16 cores. The GPU has 2496 CUDA processor
cores, working at 0.705GHz clock, and possessing 4 GB global memory with 320 bits

123

Author's personal copy

1776 W. Yang et al.

Table 1 Parameters of the test computer

Parameters Description Values

Si The size of integer 4 Byte

Ss The size of single 4 Byte

Sd The size of double 8 Byte

C The number of stream processor 2496

fs The clock speed of SP 0.705 GHz

fa The clock speed of the global memory 2.6 GHz

AW The bus width of the global memory 320 bits

TW The bandwidth of PCIe 8 GiB/s

Table 2 General information of
the block-tridiagonal matrices
used in the evaluation

No. Sparse matrix n k NNZ

1 Cloud16–100 1600 16 7231

2 Cloud16–500 8000 16 35,431

3 Cloud16–800 12,000 16 56,331

4 Cloud16–1000 16,000 16 70,931

5 Cloud16–2000 32,000 16 135,931

6 Cloud32–100 3200 32 14,196

7 Cloud32–500 16,000 32 66,196

8 Cloud32–1000 32,000 32 136,696

9 Cloud64–100 6400 64 25,215

10 Cloud64–500 32,000 64 127,915

bandwidth at 2.6 GHz clock, and the CUDA compute capacity is 3.5. As for the
software, the test machine runs the 64 bit Windows 7 and NVIDIA CUDA toolkit 7.0.
The hardware parameters of the testing computer are shown in Table 1.

All benchmarks are chosen from the simulation of the cloud-computing system.
Ten kinds of cloud-computing systems were simulated to get ten block-tridiagonal
matrices. Further characteristics of these matrices are given in Table 2, where n, k,
and NNZ are the number of matrices, the size of block, and the number of non-zero
elements, respectively, in matrices.

5.3.2 The test using HBISA on GPU

The tridiagonal submatrices along the main diagonal of the coefficient matrix are
solved by our parallel CR algorithm for GPU. SuiteSparse library provides a sparse
direct solver SuiteSparseQR for GPU [62,63]. CUDA tools also provide cuSolver
library, which are a high-level package based on the cuBLAS and cuSPARSE libraries
[54]. The cuSolverSP of cuSolver library provides a new set of sparse routines based
on a sparse QR factorization. However, the performance of SuiteSparseQR is worse

123

Author's personal copy

A parallel solving method for block-tridiagonal equations… 1777

Table 3 Number of iterations
for solving the cases using
iterative algorithms

Sparse matrix HBISA CG BiCGSTAB

Cloud16–100 120 154 175

Cloud16–500 128 956 150

Cloud16–800 127 971 164

Cloud16–1000 125 959 157

Cloud16–2000 131 836 159

Cloud32–100 162 163 165

Cloud32–500 186 195 217

Cloud32–1000 181 No 203

Cloud64–100 309 333 356

Cloud64–500 371 334 365

than that of cuSolverSP. For QR factorization, non-zero elements will increase sharply
resulting in a decline in performance because of irregular distributions of non-zero
elements. The cases were solved using the iterative solvers of PARALUTION library
for parallel and serial modes on CPUs and GPU [56], and the solving process is not
convergent using the GMRESmethod of PARALUTION for the test cases. Therefore,
the iterative solvers of PARALUTION library using the CG and BiCGSTAB methods
are used to test the cases.

The convergence speed refers to the number of iterations of solving the equation
using iterative algorithms. The less number of iterations, the faster convergence speed.
The convergence tolerance is set to 0.0000001 for the iterative algorithms in the test.
The cases are solved by the tested algorithms using double precision. The number of
iterations for solving the cases using iterative algorithmsHBISA, CG, andBiCGSTAB
is shown inTable 3,whereNo expresses that the solving process is not convergent using
the iterative algorithm for the test case. It is observed from Table 3 that Cloud32–1000
cannot be solved by CG. HBISA and BiCGSTAB have better robustness than CG, and
the number of iterations using CG is far more than that of HBISA and BiCGSTAB for
Cloud16–500, Cloud16–800, Cloud16–1000, and Cloud16–2000. The convergence
speeds of HBISA are faster than those of CG and BiCGSTAB exception Cloud64–
500. For the test cases, the average number of iterations is reduced by 283.15 and
18.34 % using HBISA compared with CG and BiCGSTAB of PARALUTION library.

The performance of solving the test cases on K20c GPU is shown in Table 4,
where No represents that the case cannot be solved using the algorithm. For Cloud16–
500, Cloud16–800, Cloud16–1000, and Cloud16–2000, the performance of CG is
significantly worse than those of HBISA and BiCGSTAB, because the number of
iterations using CG is far more than that of HBISA and BiCGSTAB for these cases.
The performance of HBISA is worse than those of CG, BiCGSTAB, and cuSolverSP,
because the convergence speed of HBISA is slow for Cloud64–500.

The parallel efficiency refers to the speedup, which is a metric used to express rel-
ative performance improvement. To more clearly describe the performance improve-
ment, the performance improvement percentages using HBISA on GPU compared
with CG, BiCGSTAB of PARALUTION library, and cuSolverSP of CUDA in Fig. 5
are calculate by (Ti −TH)/TH ×100 (i = 1, 2, 3), where T1, T2, and T3 are the perfor-

123

Author's personal copy

1778 W. Yang et al.

Table 4 Performance of solving the cases (unit: second)

Sparse matrix HBISA CG BiCGSTAB cuSolverSP

Cloud16–100 0.196 0.267 0.297 0.263

Cloud16–500 0.354 0.733 0.401 0.428

Cloud16–800 0.525 0.754 0.622 0.598

Cloud16–1000 0.698 0.913 0.731 0.719

Cloud16–2000 0.960 1.186 0.962 0.965

Cloud32–100 0.284 0.286 0.288 0.297

Cloud32–500 0.460 0.462 0.469 0.489

Cloud32–1000 0.509 No 0.595 0.566

Cloud64–100 0.324 0.336 0.350 0.334

Cloud64–500 0.703 0.682 0.696 0.667

Fig. 5 Performance improvement of solving the cases using HBISA on K20c GPU

mance of CG, BiCGSTAB of PARALUTION library, and cuSolverSP, respectively,
and TH is the performance ofHBISA. It is observed fromFig. 5 that the average perfor-
mance of solving the test cases on GPU is improved by 26.98, 11.52, and 9.25% using
HBISA compared with CG, BiCGSTAB of PARALUTION library, and cuSolverSP
of CUDA.

6 Conclusion

In this paper, a parallel hybrid solving algorithm is proposed for block-tridiagonal
systems of linear equations, and the performance is better than that of the other iterative

123

Author's personal copy

A parallel solving method for block-tridiagonal equations… 1779

algorithms and direct algorithms on GPU because of faster convergence speed and
higher parallel efficiency. Furthermore, we analyse cloud resources scheduling model
and obtain ten block-tridiagonal matrices produced by the simulation of the cloud-
computing system. The computing performance of solving these block-tridiagonal
systems of linear equations can be improved by using our method. Other sparse linear
systems arising from numerical simulation may be quasi-block-diagonals equations,
and how to solve them quickly will be our next step of investigation.

Acknowledgements The authors deeply appreciate the anonymous reviewers for their comments on the
manuscript. The research was partially funded by the Key Program of National Natural Science Foundation
of China (Grant Nos. 61133005 and 61432005), the National Natural Science Foundation of China (Grant
Nos. 61370095, 61472124, and 61572175), and the Science and technology project of Hunan Province
(Grant No. 2015SK20062).

References

1. Geer D (2005) Chip makers turn to multicore processors. Computer 38(5):11–13
2. Thomas LH (1949) Elliptic problems in linear difference equations over a network. Watson Sci. Com-

put. Lab. Rept. Columbia University, New York
3. Stone HS (1975) Parallel tridiagonal equation solvers. ACM Trans Math Softw 1:289–307
4. Heller D (1976) Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems.

SIAM J Numer Anal 13(4):484–496
5. Hirshman SP, Perumalla KS, Lynch VE, Sanchez R (2010) Bcyclic: a parallel block tridiagonal matrix

cyclic solver. J Comput Phys 229(18):6392–6404
6. Lamas-Rodrıguez J, Heras D, Bóo M, Argüello F (2011) Tridiagonal system solvers internal report.

Department of Electronics and Computer Science Internal Report, University of Santiago de Com-
postela, Spain

7. Buzbee BL, Golub GH, Nielson CW (1970) On direct methods for solving poisson’s equations. SIAM
J Numer Anal 7:627–656

8. Hockney RWA (1965) fast direct solution of Poisson’s equation using fourier analysis. J ACM 12:95–
113

9. Stone HS (1973) An efficient parallel algorithm for the solution of a tridiagonal linear system of
equations. J ACM 20:27–38

10. Bondeli S (1990) Divide and conquer: a parallel algorithm for the solution of a tridiagonal linear system
of equations. In: Joint International Conference on Vector and Parallel Processing, CONPAR 90, vol.
IV. Springer, Berlin, pp 419–434

11. Wang HH (1981) A parallel method for tridiagonal equations. ACM Trans Math Softw 7:170–183
12. Lorenzo PAR,MüllerA,MurakamiY,Wylie BJN (1996)High performance fortran interfacing to scala-

pack. In: Proceedings of the Third International Workshop on Applied Parallel Computing, Industrial
Computation and Optimization, pp 457–466

13. Sanchez R, Hirshman S, Lynch V (2010) Siesta: an scalable island equilibrium solver for toroidal
applications. American Physical Society, Providence

14. Arabnia HR, Oliver MA (1986) Fast operations on raster images with SIMD machine architectures.
Comput Graph Forum 5(3):179–188

15. Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images.
Comput J 30(30):425–432

16. Arabnia HR, Oliver MA (1987) Arbitrary rotation of raster images with simd machine architectures.
Comput Graphics Forum 6(1):3–11

17. Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitised images. Comput
Graphics Forum 8(8):3–11

18. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-
and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–192

19. Arabnia HR (1995) Distributed stereo-correlation algorithm. In: Proceedings of the International Con-
ference on Computer Communications and Networks, pp 707–711

123

Author's personal copy

1780 W. Yang et al.

20. Bhandarkar SM, Arabnia HR, Smith JW (2011) A reconfigurable architecture for image processing
and computer vision. Int J Pattern Recognit Artif Intell 9(2):201–229

21. Bhandarkar SM, Arabnia HR (1995) The hough transform on a reconfigurable multi-ring network. J
Parallel Distrib Comput 24(1):107–114

22. Bhandarkar SM, Arabnia HR (1995) The refine multiprocessor theoretical properties and algorithms.
Parallel Comput 21(11):1783–1805

23. Arabnia HR, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring network.
J Supercomput 10(3):243–269

24. Wani MA, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at recon-
figurable multiring network. J Supercomput 25(1):43–62

25. Thapliyal H, Srinivas MB, Arabnia HR (2005) A need of quantum computing: Reversible logic syn-
thesis of parallel binary adder-subtractor. In: International Conference on Embedded Systems and
Applications. ESA, Las Vegas

26. Thapliyal H, Arabnia H, Vinod AP (2006) Combined integer and floating point multiplication archi-
tecture (CIFM) for fpgas and its reversible logic implementation. Comput Sci 2:438–442

27. Gopineedi PD, Thapliyal H, Srinivas MB, Arabnia HR (2006) Novel and efficient 4: 2 and 5: 2
compressors with minimum number of transistors designed for low-power operations. In: International
Conference on Embedded Systems Applications, Las Vegas, pp 160–168

28. Thapliyal H, Arabnia HR (2006) Reversible programmable logic array (RPLA) using fredkin and
feynman gates for industrial electronics and applications. Computer Science

29. Thapliyal H, Arabnia HR, Bajpai R, Sharma KK (2007) Combined integer and variable precision
(CIVP) floating point multiplication architecture for fpgas. Comput Sci

30. Thapliyal H, Arabnia HR, Srinivas MB (2009) Efficient reversible logic design of BCD subtractors.
Springer, Berlin

31. Balasubramanian P, Edwards DA, Arabnia HR (2011) Robust asynchronous carry lookahead adders.
In: International Conference on Computer Design, pp 321–324

32. Balasubramanian P, Arabnia HR, Arisaka R (2012) Rb_dsop: a rule based disjoint sum of products
synthesis method. In: International Conference on Computer Design

33. Thapliyal H, JayashreeHV,Nagamani AN,Arabnia HR (2013) Progress in reversible processor design:
a novel methodology for reversible carry look-ahead adder

34. Lee J, Wright JC (2014) A block-tridiagonal solver with two-level parallelization for finite element-
spectral codes. Comput Phys Commun 185(10):2598–2608

35. Ruggiero V, Galligani E (1992) A parallel algorithm for solving block tridiagonal linear systems.
Comput Math Appl 24(4):15–21

36. Li HB, Huang TZ, Zhang Y, Liu XP, Li H (2009) On some new approximate factorization methods for
block tridiagonal matrices suitable for vector and parallel processors.Math Comput Simul 79(7):2135–
2147

37. Henk A, Vorst VD (2003) Iterative krylov methods for large linear systems, vol 13. Cambridge Uni-
versity Press, Cambridge xiv+221

38. Samarskii A A, Nikolaev E S (1989) Numerical methods for grid equations. Birkhäuser, Basel
39. Varah JM (1972) On the solution of block-tridiagonal systems arising from certain finite-difference

equations. Math Comput 26(120):859–868
40. Terekhov AV (2011) A fast parallel algorithm for solving block-tridiagonal systems of linear equations

including the domain decomposition method. Parallel Comput 39(s 6–7):475–484
41. Ruggiero V, Galligani E (1992) A parallel algorithm for solving block tridiagonal linear systems.

Comput Math Appl 24(4):15–21
42. Gutknecht MH, Schmelzer T (2007) Updating the qr decomposition of block tridiagonal and block

hessenberg matrices. Appl Numer Math 58(2008):871–883
43. Koulaei MH, Toutounian F (2007) On computing of block ilu preconditioner for block tridiagonal

systems. J Comput Appl Math 202(2):248–257
44. YangW,LiK, LiuY, Shi L,WangC (2014)Optimization of quasi diagonalmatrix-vectormultiplication

on gpu. Int J High Perform Comput Appl 28(2):181–193
45. Li K, Yang W, Li K (2015) Performance analysis and optimization for SPMV on GPU using proba-

bilistic modeling. IEEE Trans Parallel Distrib Syst 26:196–205. doi:10.1109/TPDS.2014.2308221
46. Yang W, Li K, Mo Z, Li K (2015) Performance optimization using partitioned SPMV on GPUs and

multicore cpus. IEEE Trans Comput 64(9):2623–2636
47. DAzevedo E, Hill J C (2012) Parallel lu factorization on GPU cluster. Proc Comp Sci 9(11):67–75

123

Author's personal copy

http://dx.doi.org/10.1109/TPDS.2014.2308221

A parallel solving method for block-tridiagonal equations… 1781

48. Tomov S (2012) A hybridization methodology for high-performance linear algebra software for GPUs,
Chap 34. Elsevier, Amsterdam

49. Agullo E, Demmel J, Dongarra J, Hadri B, Kurzak J, Langou J, Ltaief H, Luszczek P, Tomov S (2009)
Numerical linear algebra on emerging architectures: the plasma and magma projects. J Phys Conf Seri,
p 012037

50. DavidsonA, ZhangY,Owens JD (2011) An auto-tunedmethod for solving large tridiagonal systems on
the gpu. In: Proceedings of the 2011 IEEE International Parallel Distributed Processing Symposium,
pp 956–965

51. Göddeke D, Strzodka R (2011) Cyclic reduction tridiagonal solvers on GPUs applied to mixed-
precision multigrid. IEEE Trans Parallel Distrib Syst 22(1):22–32

52. László E, Giles M, Appleyard J (2016) Manycore algorithms for batch scalar and block tridiagonal
solvers. ACM Trans Math Softw 42(4):31:1–31:36

53. NVIDIA (213) NVIDIA CUDA C programming guide, Tech. Rep
54. NVIDIA (2015) Cusolver library, Tech. Rep
55. NVIDIA (2015) Cusparse library, Tech. Rep
56. PARALUTION Labs UG & Co. KG (2015) Paralution—user manual, Tech. Rep., Gaggenau
57. Ziane Khodja L, Couturier R, Giersch A, Bahi J (2014) Parallel sparse linear solver with gmres method

using minimization techniques of communications for gpu clusters. J Supercomput 69(1):200–224.
doi:10.1007/s11227-014-1143-8

58. Couturier R,Denis C, Jzquel F (2008)Gremlins: a large sparse linear solver for grid environment. Paral-
lel Comput 34(6C8):380–391. ParallelMatrix Algorithms andApplications. http://www.sciencedirect.
com/science/article/pii/S0167819107001354

59. Jezequel F, Couturier R, Denis C (2012) Solving large sparse linear systems in a grid environ-
ment: the gremlins code versus the petsc library. J Supercomput 59(3):1517–1532. doi:10.1007/
s11227-011-0563-y

60. SmithB (2001) PETSC: portable, extensible toolkit for scientific computation. Encyclopedia of Parallel
Computing, pp 1530–1539

61. Householder AS (1964) The theory of matrices in numerical analysis. Dover, New York
62. Davis T A (2011) Algorithm 915, suitesparseqr: multifrontal multithreaded rank-revealing sparse qr

factorization. ACM Trans Math Softw (TOMS) 38(1):8
63. Davis TA, Yeralan SN, Ranka S (2015) Algorithm 9xx: sparse qr factorization on the GPU. ACMTrans

Math Softw 1:1–28. doi:10.1145/0000000.0000000

123

Author's personal copy

http://dx.doi.org/10.1007/s11227-014-1143-8
http://www.sciencedirect.com/science/article/pii/S0167819107001354
http://www.sciencedirect.com/science/article/pii/S0167819107001354
http://dx.doi.org/10.1007/s11227-011-0563-y
http://dx.doi.org/10.1007/s11227-011-0563-y
http://dx.doi.org/10.1145/0000000.0000000

	A parallel solving method for block-tridiagonal equations on CPU--GPU heterogeneous computing systems
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our contributions

	2 Related work
	3 An introduction of CUDA
	4 The solving method for blocked tridiagonal matrix
	4.1 The compressed storage format
	4.1.1 COO storage format
	4.1.2 CSR storage format
	4.1.3 DIA storage format

	4.2 The blocked tridiagonal matrix
	4.3 Partitioning of block-tridiagonal matrix
	4.4 Hybrid blocked iterative solving algorithm (HBISA)
	4.5 The iterative convergence analysis
	4.6 Parallel implementation

	5 A case study: cloud resources scheduling
	5.1 M/M/n+k dynamic queuing model
	5.2 Hybrid storage format for block-tridiagonal matrix
	5.3 Experimental evaluation
	5.3.1 Experiment settings
	5.3.2 The test using HBISA on GPU

	6 Conclusion
	Acknowledgements
	References

