
J. Parallel Distrib. Comput. 104 (2017) 49–60
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A hybrid computing method of SpMV on CPU–GPU heterogeneous
computing systems
Wangdong Yang a,b, Kenli Li a,c,∗, Keqin Li a,d
a College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410008, China
b College of Information Science and Engineering, Hunan City University, Yiyang, Hunan 413000, China
c The National Supercomputing Center in Changsha, Hunan University, Hunan 410008, China
d Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• Adopt a CPU–GPU hybrid parallel programming model for SpMV performance enhancement.
• We develop a sparse matrix partitioning algorithm based on a distribution function, so that SpMV can be computed by both CPU and GPU.
• We find a strategy which optimizes the overall parallel computing time of SpMV on a CPU–GPU heterogeneous computing system.

a r t i c l e i n f o

Article history:
Received 3 November 2014
Received in revised form
19 December 2016
Accepted 24 December 2016
Available online 6 January 2017

Keywords:
Heterogeneous computing
Hybrid storage format
Partition
Sparse matrix–vector multiplication

a b s t r a c t

Sparsematrix–vectormultiplication (SpMV) is an important issue in scientific computing and engineering
applications. The performance of SpMV can be improved using parallel computing. The implementation
and optimization of SpMV on GPU are research hotspots. Due to some irregularities of sparse matrices,
the use of a single compression format is not satisfactory. The hybrid storage format can expand the range
of adaptation of the compression algorithms. However, because of the imbalance of non-zero elements,
the parallel computing capability of a GPU cannot be fully utilized. The parallel computing capability of a
CPU is also rising due to increased number of cores in CPU. However, when a GPU is computing, the CPU
controls the process instead of contributing to the computational work. It leads to under-utilization of the
computing power of CPU. Due to the characteristics of the sparse matrices, the data can be split into two
parts using the hybrid storage format to be allocated to CPU andGPU for simultaneous computing. In order
to take full advantage of computing resources of CPU and GPU, the CPU–GPU heterogeneous computing
model is adopted in this paper to improve the performance of SpMV. With analysis of the characteristics
of CPU and GPU, an optimization strategy of sparse matrix partitioning using a distribution function is
proposed to improve the computing performance of SpMV on the heterogeneous computing platform.
The experimental results on two test machines demonstrate noticeable performance improvement.

© 2017 Elsevier Inc. All rights reserved.
1. Motivation

Sparse matrix–vector multiplication (SpMV) is an essential
operation in solving linear systems. For many scientific and
engineering applications, thematrices can be very large and sparse.
Furthermore, these sparse matrices may have various sparse
characteristics. It is a challenging issue to adopt an appropriate

∗ Corresponding author at: College of Computer Science and Electronic Engineer-
ing, Hunan University, Changsha, Hunan 410008, China.

E-mail addresses: yangwangdong@163.com (W. Yang), lkl@hnu.edu.cn (K. Li),
lik@newpaltz.edu (K. Li).

http://dx.doi.org/10.1016/j.jpdc.2016.12.023
0743-7315/© 2017 Elsevier Inc. All rights reserved.
algorithm to implement and optimize SpMV for a given parallel
computing environment. This paper addresses this challenge by
presenting a hybrid parallel programming model, a novel sparse
matrix partitioning algorithm, and performance analysis and
optimization of SpMV on a CPU–GPU heterogeneous computing
platform.

1.1. Suitable compressed format of sparse matrix

Design of a suitable storage format for the sparse matrix
can improve the computing performance of SpMV. There already
exist a lot of storage formats to match the various features of
sparse matrices. DIA (diagonal format) stores elements in every

http://dx.doi.org/10.1016/j.jpdc.2016.12.023
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.12.023&domain=pdf
mailto:yangwangdong@163.com
mailto:lkl@hnu.edu.cn
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.jpdc.2016.12.023

50 W. Yang et al. / J. Parallel Distrib. Comput. 104 (2017) 49–60
diagonal, which is suitable for the storage of a diagonal matrix [1].
ELL (ELLPACK format) uses an n × k matrix to store the data,
where k denotes the maximum number of non-zero elements
in a single row, and it is appropriate for a matrix with non-
zero elements evenly distributed between rows [1]. If the number
of nonzero elements varies widely among rows, the computing
scale of data will be increased as a large amount of data was
filled. COO (coordinate format) uses a list of (row, column, value)
tuples to store a matrix. CSR (compressed sparse row format) is
a widely used format exploiting the row compression technology,
which can achieve parallel computing through data partitioning by
rows [1]. However, there is load imbalance for parallel computing
because of length difference between rows. PKT (packet format)
is a new sparse matrix representation to exploit the locality of
non-zero elements. The packet format decomposes a matrix into
a given number of fixed-size partitions which are stored in a
specialized packet data structure. If the data distribution is not
concentrated, the number of block packet will increase, resulting
in a large amount of data filled in to increase the computing scale
of data. Li et al. [17] provided a strategy to choose the appropriate
storage format according to the distribution features of the non-
zero elements in a sparse matrix. However, due to irregular
sparse characteristic of a sparse matrix, it is difficult to achieve
better compression effect using single compressed storage format.
Thus, some hybrid compressed storage formats are used, such
as HYB (hybrid format), where some discrete non-zero elements
are stored in the COO storage in hybrid compressed format, and
more non-zero elements are stored by ELL. At present, HYB has
been implemented on GPU, such as the HYB function developed by
NVIDIA [24] for SpMV, but it is not implemented on any CPU–GPU
heterogeneous computing system.

1.2. New computing platform for SpMV

ModernGPU (graphics processing units) programminghas been
extensively used in the last several years for resolving a broad
range of computationally demanding and complex problems.
Brodtkorb et al. [4] provided an overview of hardware and
traditional optimization techniques for the GPU and gave a step-
by-step guide to profile-driven development. The introduction
of some vendor specific technologies, such as NVIDIA’s Compute
Unified Device Architecture (CUDA), further accelerates the
adoption of high-performance parallel computing to commodity
computers. Using CUDA, not only SpMV performs well, but also
the programming is relatively easy. However, for the imbalances of
non-zero elements of rows, the parallel computing power of GPU
cannot be fully utilized. The parallel computing power of CPU is
also rising due to increase in the number of cores in CPU. However,
when GPU is computing, CPU controls the process instead of
contributing to the computational work, and leads to under-
utilization of CPU. The CPU–GPU heterogeneous computing model
can take full advantage of the CPU and GPU resources to improve
computing performance. Furthermore, due to different computing
models between CPU and GPU, computational efficiency cannot be
fully aroused using the same storage format for CPU and GPU, and
a hybrid format can solve this problem.

1.3. Our contribution

The contribution and content of the paper are summarized
as follows. We adopt a CPU–GPU hybrid parallel programming
model (Section 3.2) for SpMV performance enhancement. Based
on a distribution function of sparse matrices (Section 4.1) and
by using a hybrid storage format of COO and ELL (or DIA)
(Section 4.2), we develop a sparse matrix partitioning algorithm
(Section 4.3), so that SpMV can be computed by both CPU and GPU
(Section 4.4). Furthermore, using analytical results on the CPU and
GPU computing times (Section 5.1), we are able to find a strategy
which optimizes the overall parallel computing time of SpMV on a
CPU–GPU heterogeneous computing system (Section 5.2).

In this paper, we use SpMV CUDA kernels developed by
NVIDIA [24] on NVIDIA GPU and MKL BLAS functions developed
by Intel [13] on Intel CPU for our experiments. Our experimental
results on two test machines demonstrate noticeable performance
improvement, with flop-rate improvement 11.07% compared to
computing with GPU-only, and speedup 11.89 compared to
computing with CPU-only, for the 40 tested cases of 10 sparse
matrices, 3 test machines, and 2 precision levels (Section 6).

2. Related research

In order to improve the performance of SpMV, some new
storage models using the blocked strategy are provided, such as
blocked compressed sparse row (BCSR) format [5], row-grouped
CSR (RGCSR) format [25], blocked ELLPACK (BELLPACK) format [2],
sliced coordinate (SCOO) format [28], sliced ELLPACK (SELLPACK)
format [20], fixed scale blocked format [9], doubly separated block
diagonal (DSBD) format [31]. However the effect of these storage
models using the blocked strategy is not good for different sparse
matrices with various sparsity features. Some storage models use
a reordering technique to expand the scope of a sparse matrix
[20,26]. But the process of reordering is very costly, leading to cer-
tain impact on computing performance of SpMV. In addition, some
hybrid storage models are provided to improve the efficiency of
compression of a sparse matrix, such as hybrid ELL and COO for-
mats (HYB), hybrid DIA and CSR formats [30], hybrid JDS and CSR
formats [7], and hybrid COO and CSR [3]. But these hybrid formats
are suitable for specific types of sparse matrices and implemented
on a single processor, and collaborative computing on CPU–GPU
heterogeneous processors is relatively rare. Furthermore, how to
determine the proportion of the division of two formats is a chal-
lenge. Some strategies partition sparse matrices according to the
configuration of a computing environment, such as the cache scale
of processors [11,28], the computing power of processors [3,12],
the data transmission bandwidth [6,15,27], the computational
methodology of CPU and GPU [14] and the sparse characteristics
of the sparse matrix [12,15,16]. But due to the complexity of a het-
erogeneous systemand thediversity of sparsematrices, sometimes
the models do not work effectively.

A heterogeneous computing platform is now a universal
concern by everyone. How to make full use of the computing
power of heterogeneous computing platforms is a great challenge.
Researchers have conducted extensive research on the issue.
Our approach differs from the others, which focuses on the
optimization of architecture properties and data sharing. We
mainly analyze the sparsity feature by a distribution function to
optimize the division of tasks in order to balance the workload
between CPU and GPU.

3. CPU–GPU heterogeneous computing

3.1. GPU computing architecture

The modern 3D graphics processing unit (GPU) has evolved
from a fixed-function graphics pipeline to a programmable parallel
processor with computing power exceeding that of multicore
CPUs. In November 2006, NVIDIA corporation introduced Tesla
architecture which unifies the vertex and pixel processors and
extends them to enable high-performance parallel computing
applications. The basic computing unit of GPGPU is called
streaming multiprocessors (SM). As a GPU at the bottom of the
independent hardware structure, SM can be seen as an SIMT

W. Yang et al. / J. Parallel Distrib. Comput. 104 (2017) 49–60 51
processing unit. In March 2010, NVIDIA corporation introduced
Fermi architecture, and GF100 with Fermi architecture has 4
graphics processing clusters (GPC), 16 SMs and 512 cores. For
Fermi architecture, each SM has 32 cores, 12KB L1 cache and 2-
warps scheduling. In May 2012, NVIDIA corporation introduced
Kepler architecture. For Kepler architecture, each SM contains
192 scalar processors (SP) and 32 special function units (SFU). In
addition, each SMcontains 64K sharedmemory for threads to share
data or communicate in the block. Using the model explicitly to
access memory, the access speed of the shared memory is close
to that of register without bank conflict. Each SM contains some
registers, which are allocated by each thread in the execution.
A graphics processing cluster (GPC) is composed of 2 SMs. Two
SMs share one GPC and L1 and texture cache. Only four GPCs
share the L2 cache. All SMs share the global memory [21]. NVIDIA
launchedMaxwell architecture in 2014. This architecture provides
substantial application performance improvements over prior
architectures by featuring large dedicated shared memory, shared
memory atomics, and more active thread blocks per SM. NVIDIA
launched Pascal architecture in 2016. NVIDIA’s new NVIDIA Tesla
P100 accelerator using the groundbreaking new NVIDIA Pascal
GP100 GPU takes GPU computing to the next level. GP100 is
composed of an array of Graphics Processing Clusters (GPCs). Each
GPC inside GP100 has ten SMs. Each SM has 64 CUDA Cores and
four texture units. With 60 SMs, GP100 has a total of 3840 single
precision CUDA Cores and 240 texture units. Tesla P100 features
NVIDIA’s new high-speed interface, NVLink, that provides GPU-to-
GPU data transfers at up to 160 Gigabytes/second of bidirectional
bandwidth which is 5 times the bandwidth of PCIe Gen 3 x16.

3.2. CPU–GPU hybrid parallel programming

With the rapid development of multicore technology, the
number of cores in CPUhas been increasing. The CPUswith 4-cores,
6-cores, 8-cores, and more cores enter the general computing
environment to improve rapidly the parallel processing power. A
heterogeneous computing environment can be built up with GPU
and multicore CPU.

The GPU does not have a process control capability as a device
in CUDA,which is controlled by CPU. The data are transported from
host memory to the global memory of GPU. Then CPU invokes the
calculation process of GPU by calling the kernel function [23].

OpenMP provides a simple and easy-to-use parallel comput-
ing capability of multi-threading on multicore CPUs [8]. A het-
erogeneous programming model can be established by combining
OpenMP and CUDA for a CPU–GPU heterogeneous computing en-
vironment. OpenMP dedicates one thread for controlling the GPU,
while the other threads are used to share the workload among the
remaining CPU cores. Fig. 1 shows the CPU–GPU heterogeneous
parallel computing model.

Initially, the data must be divided into two sets which are
assigned to CPU and GPU respectively. Then, two groups of threads
are created in the parallel section of OpenMP,where a single thread
is dedicated to controlling the GPU while other threads undertake
the CPU workload by utilizing the remaining CPU cores [29].

4. Sparse matrix partitioning for CPU–GPU parallel computing

4.1. The distribution function of sparse matrices

A is a sparse matrix. N is the number of rows in A and M is
the number of columns in A. Define a distribution function (DF)
f : ΩA → B, where ΩA = {R1, R2, . . . , RM} is domain and Ri
represents row vector set (RVS) in which each row has i non-zero
elements. B = {b1, b2, . . . , bM} is range, where bi represents the
number of rows with i non-zero elements in A. So ΩA and B meet
the following properties.

f (Ri) = bi, Ri ∈ ΩA, bi ∈ B,

A =
M
i=1

Ri, Ri ∩ Rj = φ, i ≠ j,

M
i=1

bi = N.

(1)

4.2. The hybrid format for sparse matrices

HYB has better performance when amatrix has a small number
of non-zero elements per row, andmost rows have nearly the same
number of non-zero elements but there may be a few irregular
rows with much more non-zero elements. The matrix is split into
two parts, i.e., ELL (or DIA) and COO, such that the most rows
which are nearly equal are stored by ELL (stored by DIA for the
quasi diagonalmatrix) and the other few irregular rowswithmuch
more non-zero elements are stored by COO. The coordinate (COO)
format is a particularly simple storage scheme with tuples of (row,
column, value). The arrays row, column, and value store the row
indices, column indices, and values of the non-zero elements in a
matrix respectively. For an N-by-M matrix with a maximum of K
non-zeros per row, the ELL format stores the non-zero values in a
dense N-by-K data array, where rows with less than K non-zeros
are zero-padded. Similarly, the corresponding column indices are
stored in a dense N-by-K index array, again with a sentinel value
used for padding. The DIA format is formed by two arrays, i.e., data
stores the non-zero values with N-by-K matrix and offset array
stores the offset of each diagonalwith respect to themain diagonal.

HYB is a hybrid format of COO and ELL (or DIA). Given a
threshold K , the part exceeding K non-zeros in a row is extracted
to be stored by COO and the other part is stored by ELL (or DIA)
in order to minimize zero-padding. A sparse matrix can be divided
into two parts, i.e., COO and ELL (or DIA), by threshold K . Let us
consider the following example:

A =

3 0 0 0
0 1 4 0
6 0 2 8
0 5 0 7

 .

Assume that K = 2. Then, we have

COO :

row =

3

,

column =

4

,

value =

8

.

ELL :

data =

3 0
1 4
6 2
5 7

 ,

index =

1 ∗

2 3
1 3
2 4

 .

or

COO :

row =

3 4

,

column =

1 2

,

value =

6 5

.

DIA :

data =

3 0
1 4
2 8
7 0

 ,

offset =

0 1

.

While the ELL format is well-suited for vector architectures, its
efficiency rapidly degradeswhen the number of non-zeros per row
varies. DIA is suitable for compression and storage of a diagonal
matrix. If the data of a sparse matrix do not concentrate on the
diagonal and have more dispersed distribution area, the more

52 W. Yang et al. / J. Parallel Distrib. Comput. 104 (2017) 49–60
Fig. 1. The CPU–GPU heterogeneous parallel computing model.

diagonals should be converted into more columns in the data
matrix of DIA, leading performance deterioration. In contrast, the
storage efficiency of COO is invariant to the distribution of non-
zeros per row. HYB stores the majority of matrix entries in ELL (or
DIA) and the remaining entries in COO.

Define the number of non-zero elements in the RVS Ri in
ΩA to be NNZ(Ri) = f (Ri) × i = bi × i. For a subset Ω ′

of ΩA,NNZ(Ω ′) is the number of non-zero elements in Ω ′ and
NNZ(Ω ′) =

R∈Ω ′A

NNZ(R), where R is the RVS.
Define Ω ′i≤K to be a subset of ΩA, in which the NNZ of the RVS’s

are no more than K . NNZ(Ω ′i≤K) is calculated by Eq. (2):

NNZ(Ω ′i≤K) =

K
i=1

(NNZ(Ri)). (2)

Define Ω ′i>K to be a subset of ΩA, in which the NNZ of the RVS’s
are more than K . NNZ(Ω ′i>K) is calculated by Eq. (2):

NNZ(Ω ′i>K) =

M
i=K+1

(NNZ(Ri)). (3)

The number of non-zero entries in ELL (or DIA) of hybrid format
is calculated by Eq. (4):

NNZ = NNZ(Ω ′i≤K)+ K ×
M
i=K

bi. (4)

The number of non-zeros of the remaining entries in COO of hybrid
format is calculated by Eq. (5):

NNZ = NNZ(Ω ′i>K)− K ×
M
i=K

bi. (5)

4.3. The partitioning algorithm

Given a threshold K , the part exceeding K non-zeros in a row
is extracted to be stored by COO, and the other part is stored by
ELL or DIA. The sparse matrix includes two parts. One contains
the rows with more than K non-zeros and the other contains the
rows with less than K non-zeros. The first part is classified into ELL
part. For the second part, only K non-zeros in the front of the rows
with more than K non-zeros are classified into ELL part, and the
rest of the second part is classified into COO part. The partitioning
algorithm for anN-by-M sparsematrix A into two parts is shown in
Algorithm1. The number of loops using Algorithm1 is less than the
number of rows in the sparse matrix and there are little additions
and multiplications in Algorithm 1, so the execution time using
Algorithm 1 has little impact on the computing of SpMV. If the
sparse matrix is a quasi diagonal matrix, the non-zero elements on
the diagonals should be split to form the block, which is computed
using DIA format on GPU.

Algorithm 1 Partitioning algorithm for HYB.
Require: The domain ΩA of DF, i.e., R1, R2, ..., RM ; The range B of

DF, i.e., b1, b2, ..., bM ; the threshold K of the number of non-
zero elements of one row.

Ensure: A hybrid representation of A with sub-matrices
SubMatrixGPU and SubMatrixCPU.

1: for j← 1 toM do
2: if j ≤ K then
3: SubMatrixGPU ← SubMatrixGPU ∪ Rj;
4: else
5: for i← 1 to bj do
6: if A is the quasi diagonal matrix then
7: V ← the K non-zero elements around the main

diagonal from the ith row in Rj;
8: else
9: V ← the first K non-zero elements from the ith row

in Rj;
10: end if
11: SubMatrixGPU ← SubMatrixGPU ∪ V ;
12: V ′ ← the remaining non-zero elements of the ith row

in Rj;
13: SubMatrixCPU ← SubMatrixCPU ∪ V ′;
14: end for
15: end if
16: end for
17: return SubMatrixGPU and SubMatrixCPU.

4.4. Implementation of SpMV for CPU–GPU heterogeneous computing

The submatrix which is stored by ELL (or DIA) is more suitable
for execution on the GPU’s grid of threads, which canmake full use
of the parallelism of GPU. But due tomore uneven distribution, the
data set of COO is better suited for CPU. The execution process on
CPU–GPU for SpMV includes three steps.

(1) The sparse matrix is split into two parts, i.e., SubMatrixGPU
and SubMatrixCPU , using the threshold K according to Algorithm 1.

(2) The SubMatrixCPU is stored by COO format and is executed
on CPU using the SpMV function (mkl_cspblas_coogemv) in MKL
blas lib. The SubMatrixGPU is stored by DIA format and is executed
on GPU using the SpMV function (spmv_dia)in CUSP lib if the
sparse matrix A is the quasi diagonal matrix; otherwise, it is stored
by ELL format and is executed on GPU using the SpMV function
(cusparsehybmv) in CUSPARSE lib.

(3) The result of SpMVon CPU and that of GPU are added onGPU
using the vector addition function (cusparseAxpyi) in CUSPARSE
lib.

The implementation for SpMV uses OpenMP to achieve
parallelism on a CPU–GPU heterogeneous computing platform, as
shown in Algorithm 2.

5. Performance analysis and optimization

Multicore CPU is a computing model of multiple instruction
stream multiple data stream (MIMD) and GPU is a computing
model of single instruction stream multiple thread stream
(SIMT). The computing tasks should be assigned to the CPU
and GPU according to the characteristics of each calculation

W. Yang et al. / J. Parallel Distrib. Comput. 104 (2017) 49–60 53
Algorithm 2 The process of SpMV on CPU–GPU heterogeneous
computing system.
Require: A hybrid representation of A with sub-matrices using

Algorithm 1: SubMatrixGPU and SubMatrixCPU.
Ensure: The result vector: X .
1: #pragma omp parallel//Set parallel code area
2: {
3: #pragma omp sections nowait
4: {
5: #pragma omp section //Build the parallel section for GPU.
6: {
7: x1 ← Call the DIA kernel function spmv_dia

(SubMatrixGPU) of CUSP lib;// A is the quasi diagonal ma-
trix.

8: or
9: x1 ← Call the ELL kernel function cusparsehybmv

(SubMatrixGPU) of CUSPARSE lib;// A is not the quasi diagonal
matrix.

10: }
11: #pragma omp section ////Build the parallel section for CPU.

12: {
13: x2 ← Call the COO function mkl_cspblas_coogemv

(SubMatrixCPU) of MKL blas lib.
14: }
15: }
16: }
17: x ← Call the vector addition function cusparseAxpyi(x1,x2) in

CUSPARSE lib.
18: return x.

in the heterogeneous computing environment to improve the
performance of SpMV. For hybrid format, the ratio of zero padding
can be controlled by adjusting the threshold of partition in
Algorithm1. So the hybrid format can adapt tomore types of sparse
matrices. Moreover, data transmission is also reduced between
CPU and GPU, because ELL or DIA part is put into GPU to be
computed only. The sparse matrix stored by hybrid format is
divided into two parts with only one needing to be transferred
into GPU, such as ELL part of HYB format and DIA part of HDC
format [30]. So data transmission is also reduced between CPU and
GPUbecause another part does not need to be transferred intoGPU.

5.1. Performance estimate of SpMV on CPU–GPU

The data assigned to GPU must be transported from host
memory to global memory of GPU by PCIe. Data transmission
between CPU and GPU does impact on performance of SpMV,
but SpMV will be performed many times after the sparse matrix
was transported into the GPU for a solving process using iterative
solver. So computing performance improvement using GPU will
offset the adverse effects of data transmission [18]. Globalmemory
has greater access latency than shared memory, which is shared
by a thread warp. Multicore CPU can reduce the delay of memory
access by amulti-level cachemechanism, but the use of the cache is
controlled by CPU itself and the program cannot control by coding.

With large data bandwidth and large thread bundle, GPU is
suitable for the calculation of a data set with a large volume of
regular data. But the frequency of GPU is lower than that of CPU.
The differences in data access and computing power of both CPU
and GPU should be consideredwhen a sparsematrix is partitioned.

It is very difficult to accurately estimate computing time of
SpMV on CPU and GPU, because SpMV is a very irregular for
numerical calculation. Some estimation methods for SpMV are
provided on GPU and CPU, such as [12,16,20]. But the actual
estimation results are not very accurate for different kinds of
sparse matrices with various sparsity features. In addition, there
are other tasks of the operating system to be executed on CPU,
leading to the available computing resources of CPU difficult to
determine, so the computing time of SpMV on CPU is very difficult
to accurately estimate. So we adopt a kind of relatively simple
estimation method to improve the efficiency of estimating. The
optimal threshold K may be found by Algorithm 3. We find that
these values around the optimal value have similar performance
in testing, so the threshold K found by Algorithm 3 is effective for
partitioning.

Assume that CPU = (nc, fc), where nc is the number of cores in
the CPU and fc is the frequency of the CPU.

There are NNZ(CPU) non-zero elements in the COO format,
which is divided from a sparse matrix and is assigned to multicore
of CPU to be computed. So the CPU computing time TC of SpMV
using COO can be approximately expressed by Eq. (6):

TC =
2× NNZ(CPU)

fc
×

1
nc − 1

, (6)

wherewe notice that there are nc−1 cores that are assigned tasks,
because one core is used to control the GPU.

The GPU computing time TG of SpMV depends on two parts,
i.e., computing time TG and transmission time between CPU and
GPU. But the sparse matrix is loaded into GPU only once in the
whole process of solving a system of linear equations and SpMV
is performed many times. The transmission time has little impact
on the whole time of solving. So the transmission time is not
considered in ourmodel.Wedefine the following variables.N is the
number of rows in a sparse matrix and K is the partition threshold
of ELL (or DIA) and COO. C is the number of streaming processors.
The rate of multiplication and addition on SP can be considered
to be the same, because SP can execute a multiplication and an
addition operation with the same time. Define F to be the single-
precision execution rate on SP. The computing time in a thread is
NNZ(GPU)/(N × F). So the computing time is expressed as

TG =
N
C
×

NNZ(GPU)

N × F
=

NNZ(GPU)

C × F
. (7)

Finally, the CPU–GPU parallel computing time T of SpMV is
expressed as

T = max(TC, TG). (8)

5.2. An optimizing strategy for SpMV on CPU–GPU

The performance optimizing workflow for SpMV on CPU–GPU
consists of three steps, i.e., establishment of a DF (Section 4.1),
split of a sparse matrix into COO and ELL (or DIA) by threshold
K (Section 4.3), and estimate of the performance of SpMV under
different threshold K (Section 5.1). A sparse matrix A can be split
into COO and ELL (or DIA) formats by a threshold K . The choice of
parameter K can affect the performance of SpMV on CPU–GPU. The
optimal choice of K can minimize the value of Eq. (8). According
to Eqs. (6) and (7), TG increases with the increasing of K and TC
decreases. Hence, TG and TC have only one intersection point. If
K = x and TG = TC , then x is the optimal choice of K . If there
is no value x such that TG = TC , the optimal choice of K can be
found out by Algorithm3, and the two computing tasks partitioned
by the threshold K are balanced for the computing powers of CPU
and GPU, so parallel computation efficiency can be improved to
reduce the computing time of SpMV. If the NNZ of the row with
most non-zero elements is M , the threshold K is in [1 . . .M]. The
sparse matrix is split into two parts, one is ELL (or DIA) part and
another is COO part using each value in [1 . . .M]. The ELL (or DIA)

54 W. Yang et al. / J. Parallel Distrib. Comput. 104 (2017) 49–60
part will be computed on GPU and the COO part will be computed
on CPU. So the computing time on CPU–GPU can be estimated by
Eqs. (6) and (7) (Lines 3–6 in Algorithm 3). The loads of CPU and
GPU are balanced if the computing time on CPU and GPU is the
same or closest. Lines 11–26 in Algorithm 3 seek the threshold K
which makes the computing time on CPU and GPU is the same or
closest.

Algorithm 3 Seeking the optimal threshold K for SpMV on CPU–
GPU.
Require: The domain ΩA of DF, i.e., R1, R2, ..., RM ; The range B of

DF, i.e., b1, b2, ..., bM ;
Ensure: The optimal choice of the threshold K .
1: for j← 1 toM do
2: SubMatrixGPU and SubMatrixCPU are obtained by Algorithm 1

using threshold j;
3: NNZ(SubMatrixGPU)← Eq. (4);
4: NNZ(SubMatrixCPU)← Eq. (5);
5: TC← Eq. (6);
6: TG← Eq. (7);
7: if j = 1 then
8: TC′ ← TC;
9: TG′ ← TG;

10: end if
11: if TC = TG then
12: K ← j;
13: break;
14: else
15: if TG′ < TC′ and TG > TC then
16: if TC′ < TG then
17: K ← j− 1;
18: else
19: K ← j;
20: end if
21: break;
22: else
23: TC′ ← TC;
24: TG′ ← TG;
25: end if
26: end if
27: end for
28: return K .

In fact, for f (Ri) = bi, if bi = 0, Ri can be removed from the
domain ΩA for Algorithms 1 and 3. Assume the number of RVS’s
in ΩA − {Ri|f (Ri) = 0} is q. Due to A is the sparse matrix, q is
much less than the number of columns in A, and the number of
loop seeking the optimal threshold are less than q. So the execution
time of Algorithm 3 has little impact on the computing of SpMV.

6. Experimental evaluation

All benchmark are tested on three test machines. The first test
machine (abbreviated TM1) is equipped with two AMD Opteron
6376 CPUs running at 2.30 GHz and a NVIDIA K20c GPU. Each CPU
has 16 cores. The GPU has 2496 CUDA processor cores, working on
0.705 GHz clock and 4 GB global memory with 320 bits bandwidth
at 2.6 GHz clock, with CUDA compute capacity 3.5. The computing
performance fp of a SM in K20c GPU is about 157.2 Gflop/s for
single precision and about 89.4 Gflop/s for double precision. As for
software, the test machine runs the 64bit Windows 7 and NVIDIA
CUDA toolkit 7.0. The second test machine (abbreviated TM2) is
equipped with one Intel Core E5506 running at 2.13 GHz and a
NVIDIA Geforce GTX 460 GPU. The CPU has 4 cores. The GPU has
336 CUDA processor cores working on 1.5 GHz clock and 1 GB
global memory with 256-bit bus width and 1.9 GHz clock, with
CUDA compute capability 2.1. As for software, TM2 ran the 64-bit
Windows 7 and NVIDIA CUDA toolkit 5.0. The third test machine
(abbreviated TM3) is equipped with an Intel i7-6700 CPU running
at 3.40 GHz and a NVIDIA GTX1070 GPU with Pascal architecture.
The CPU has 4 cores with hyper-threading technology. The GPU
has 1092 CUDA processor cores, working on 1.683 GHz clock and 8
GB global memory with 256 bits bandwidth, with CUDA compute
capacity 6.1, but the bus of the tested GPU only supports PCIe 3.0.
The test machine runs the 64bit Windows 10 and NVIDIA CUDA
toolkit 8.0.

All benchmarks are chosen from the UF Sparse Matrix Collec-
tion [10], whose main features are shown in Table 1. Most of these
matrices are derived from scientific computing and real engineer-
ing applications. E(X) is the average number of non-zeros in rows
in Table 1. E(X) = NNZ/N . max(xi) is the number non-zeros of the
row with the maximum number of non-zeros in Table 1.

All the evaluation results are averaged after running 100 times.

6.1. Test functions

NVIDIA corporation provides three libraries (CUBLAS, CUS-
PARSE and CUSP) to support matrix calculation. These libraries are
provided as CUDA development tools and source codes. CUBLAS
offers three levels of library functions, where the second level sup-
ports the SpMV of sparse matrices [22].

CUSPARSE also provides three levels of function for the sparse
matrix, with the first level for ADD operation, the second level for
MUL operation of SpMV [24], and the third level for MUL operation
of sparse matrix. It uses both the CSR and HYB formats. HYB is a
hybrid format of ELL and COO. The performance of HYB function is
better than that of CSR function for most cases. HYB function for
SpMV has a parameter, which has three values: AUTO,USER,MAX .
The function automatically selects a threshold segmentation if
the parameter is AUTO. The caller must provide a segmentation
threshold if parameter is USER. If the threshold is 0, HYB will
become COO. If the parameter is MAX , HYB will become ELL. Due
to the official and high-performance feature of the CUSPARSE, the
library is widely used for solving linear systems. We test SpMV on
GPU-only based on HYB function, where the parameter is set to
AUTO for TM1 and TM2. But the parameter is set to USER for TM3
and the threshold segmentation is obtained by our strategy [17].
NVIDIA provides another library, CUSP, to offer SpMV for the GPU
platform. CUSP supports a variety of compression formats such
as COO, DLA, CSR, ELL, and HYB. The COO, CSR, and HYB from
CUSP showworse performance than CUSPARSE. We chose the DLA
function in CUSP to test for DIA format.

Since Simon/bbmat, Muite/Chebyshev4, Boeing/pwtk, and Si-
mon/raefsky3 have the obvious characteristics of quasi diagonal,
the submatrices partitioned from the sparse matrices are per-
formed SpMV using DIA format. Although ATandT/twotone and
Fluorem/PR02R have some diagonals, they are scattered, result-
ing in decline in performance using DIA format. Simon/raefsky5
is a spindle and does not belong to the real quasi diago-
nal matrix. Bova/rma10 is not suitable for using DIA format
because there are many non-zero elements missed on the
diagonals. So ATandT/twotone, Hamm/scircuit, Fluorem/PR02R,
Simon/raefsky5, Bova/rma10, and TSOPF/TSOPF_RS_b300_c3 are
performed SpMV using ELL format.

The Intel Math Kernel Library provides developers of scientific
and engineering software with a set of linear algebra, fast Fourier
transforms and vector math functions optimized for the latest
Intel processors. MKL contains LAPACK, the basic linear algebra
subprograms (BLAS), and the extended BLAS (sparse) [13], which
have high performance compared to the other libraries for most of
the processors. We calculate the COO part of our SpMV on the CPU
using the MKL.

W. Yang et al. / J. Parallel Distrib. Comput. 104 (2017) 49–60 55
Table 1
General information of the sparse matrices used in the experiments.

Sparse matrix Dimension NNZ E(X) max(xi) Characteristic

Simon/bbmat 38744 ∗ 38744 1,771,722 45.729 132

Muite/Chebyshev4 68121 ∗ 68121 5,377,761 78.944 81

ATandT/twotone 120750 ∗ 120750 1,224,224 10.139 188

Hamm/scircuit 170998 ∗ 170998 958,936 5.608 353

Fluorem/PR02R 161070 ∗ 161070 8,185,136 50.817 88

Boeing/pwtk 217918 ∗ 217918 5,926,171 27.194 90

Simon/raefsky3 21200 ∗ 21200 1,488,768 70.225 80

Simon/raefsky5 6316 ∗ 6316 168,658 26.703 54

Bova/rma10 46835 ∗ 46835 2,374,001 50.689 145

TSOPF/TSOPF_RS_b300_c3 42138 ∗ 42138 4,413,449 104.7 20,702
Table 2
The relative difference of tested values over estimated values using Algorithm 3 for threshold K .

Sparse matrix TM2 TM1
Ke Kt RD (%) Ke Kt RD (%)

bbmat 120 116–122 0.0 122 120–122 0.0
Cheby_ shev4 72 72 0.0 72 64 11.1
scircuit 9 11 22.2 62 73 11.7
twotone 31 33 6.5 107 97 9.3
PR02R 62 58 6.5 56 47 16.1
pwtk 50 52–54 4.0 69 64–65 5.8
raefsky3 72 80 11.1 72 72,80 0.0
raefsky5 50 31–47 6.0 39 35–40 0.0
rma10 87 88–91 1.1 102 99–100 2.0
TSOPF_ RS_ b300_c3 140 140 0.0 212 140,212 0.0

Average relative difference 5.7 5.6
6.2. Comparison of estimated and tested values of the threshold K

Figs. 2 and 3 show the performance of SpMV using Algorithm
3 for various threshold K on CPU–GPU heterogeneous computing
systems. Table 2 gives the relative difference (abbreviated RD)
of tested values over estimated values using Algorithm 3 for
threshold K . The relative difference is calculated by |Kt − Ke|/Ke×

100%, where Kt and Ke are the tested value and the estimated value
respectively for threshold K . The average relative difference of the
ten test matrices are 5.7% and 5.6% respectively for TM2 and TM1.
We can find that the estimated values and tested values have good
consistency.

6.3. Performance improvement of SpMV on CPU–GPU

Different sparse matrix computation times vary greatly due
to the difference in matrix sizes. The computation time is
proportional to the scale of a computation. We define flop-rate as
the number of operations per second. The scale of the computation
for SpMV is NNZ . We adopt flop-rate to describe the performance,
because the computing times of SpMV for various sparse matrices
are relatively wide apart, resulting in difficulty of comparison
in the chart. Since each non-zero element should perform a
multiplication and an addition operations for SpMV, the flop-rate
is calculated by ((2× NNZ)/T)× 10−9, where T is the computing
time (in seconds) of SpMV.

The flop-rate of CPU-only, GPU-only, and CPU–GPU on TM1
for single-precision and double-precision are shown in Fig. 4. The
flop-rate of CPU-only, GPU-only, and CPU–GPU on TM2 for single-
precision and double-precision are shown in Fig. 5. The flop-rate
of CPU-only, GPU-only, and CPU–GPU on TM3 for single-precision
and double-precision are shown in Fig. 6.

The flop-rate improvement of using both CPU–GPU over GPU-
only is calculated by ((flop− rate1 − flop− rate2)/flop− rate2)×
100%, where flop− rate1 is the performance of SpMV on CPU–GPU
and flop− rate2 is that of GPU-only. The flop-rate improvement of
using both CPU–GPU over GPU-only on TM1 and TM2 are shown
in Fig. 7. The speedup of using both CPU–GPU over CPU-only is
calculated by flop− rate1/flop− rate3, where flop− rate1 is the
performance of SpMV on CPU–GPU and flop− rate3 is that of CPU-
only. The speedup of using both CPU–GPU over CPU-only on TM1
and TM2 are shown in Fig. 8. The flop-rate improvement and

56 W. Yang et al. / J. Parallel Distrib. Comput. 104 (2017) 49–60
Fig. 2. The performance of SpMV using Algorithm 1 for various threshold K on the TM1 (unit:second).
speedup of using both CPU–GPU over GPU-only and CPU-only on
TM3 are shown in Fig. 9.

We have the following important observations from our
experimental data.

(1) The flop-rate of SpMV improves by 9.20%, 17.01%, and 8.17%
for single-precision, and 9.33%, 16.29%, and 6.41% for double-
precision, on the average by using both CPU–GPU compared with
GPU-only on TM1, TM2, and TM3. Especially for the sparse matrix
Simon/bbmat, the performance improves by more than 14% for
TM1 and TM2, because the tasks divided using Algorithm 3 are
relatively balanced for GPU and CPU.

(2) The speedup of SpMV is 23.80, 13.03, and 3.03 for single-
precision, and 20.27, 10.64, and 2.56 for double-precision, on the
average by using both CPU–GPU compared with CPU-only on TM1,

W. Yang et al. / J. Parallel Distrib. Comput. 104 (2017) 49–60 57
Fig. 3. The performance of SpMV using Algorithm 1 for various threshold K on the TM2 (unit:second).
TM2, and TM3. For Fluorem/PR02R, the performance improvement
for SpMV on CPU–GPU is very significant, because the speedup of
SpMV on GPU is high. The performance improvement for SpMV
on CPU–GPU compared with CPU-only is not significant on TM3,
because the performance of the CPU (i7 6700) is relatively close
to that of GPU (GTX1070). Furthermore, The performance of SpMV
on GPU is worse than that on CPU for Simon/raefsky5, because the
scale of Simon/raefsky5 is too small to give full play to the parallel
computing power of GPU. The effect of data transmission between
CPU andGPU on the performance of SpMV ismore obvious on TM3.

7. Concluding remarks

In this paper, we have developed a heterogeneous parallel
computing method for SpMV based on a hybrid CPU–GPU

58 W. Yang et al. / J. Parallel Distrib. Comput. 104 (2017) 49–60
Fig. 4. Performance of CPU-only, GPU-only, and CPU–GPU on TM1 (unit:GFlop/s).
Fig. 5. Performance of CPU-only, GPU-only, and CPU–GPU on TM2 (unit:GFlop/s).
Fig. 6. Performance of CPU-only, GPU-only, and CPU–GPU on TM3 (unit:GFlop/s).
Fig. 7. The flop-rate improvement of using both CPU–GPU over GPU-only (unit:%).
computing model. Our heterogeneous parallel computing model
can make full use of the computing power of both CPU and GPU
to improve the performance of SpMV. A sparse matrix can be split
into two parts to be computed on CPU and GPU simultaneously.
The partition of a sparse matrix can be optimized by performance
analysis and workload balancing between CPU and GPU using a DF
of sparse matrices.

The method is not only suitable for CPU–GPU cluster systems,
but also applicable to other homogeneous and heterogeneous
computing platforms. However, the performance of heterogeneous

W. Yang et al. / J. Parallel Distrib. Comput. 104 (2017) 49–60 59
Fig. 8. The speedup of using both CPU–GPU over CPU-only (unit:time).
14
12
10

8
6
4
2
0

sp
ee

du
p

10

8

6

4

2

0

Fig. 9. The flop-rate improvement and speedup of using both CPU–GPU over GPU-only and CPU-only on TM3.
computing will be affected, because the data of CPU and GPU
cannot be directly shared. AMD’s APU Fusion chip can solve the
problemof data sharing. In addition, the heterogeneous computing
model withmulti-GPUs andmulti-CPUs is widely adopted in some
supercomputers [19]. Our next step will be further investigation
of heterogeneous computing strategies in these heterogeneous
computing platforms and environments with further enhanced
performance.

Acknowledgments

The authors deeply appreciate the anonymous reviewers for
their comments on the manuscript. The research was partially
funded by the National Natural Science Foundation of China (Grant
Nos. 61572175, 61472124) and the Key Program of National
Natural Science Foundation of China (Grant No. 61432005).

References

[1] M.M. Baskaran, R. Bordawekar, Optimizing sparsematrix vectormultiplication
on GPUs, Research Report RC24704, IBM TJ Watson Research Center, Tech.
Rep., 2008, December.

[2] M. Belgin, G. Back, C.J. Ribbens, Pattern-based sparse matrix representation
for memory-efficient SMVM kernels, in: Proceedings of the 23rd International
Conference on Supercomputing, ACM, 2009, pp. 100–109.

[3] B. Boyer, J.G. Dumas, P. Giorgi, Exact sparse matrix–vector multiplication on
GPU’s and multicore architectures, in: Proceedings of the 4th International
Workshop on Parallel and Symbolic Computation, ACM, 2010, pp. 80–88.

[4] A.R. Brodtkorb, T.R. Hagen, M.L. Sætra, Graphics processing unit (GPU)
programming strategies and trends in GPU computing, J. Parallel Distrib.
Comput. 73 (1) (2013) 4–13.

[5] L. Buatois, G. Caumon, B. Levy, Concurrent number cruncher: a GPU
implementation of a general sparse linear solver, Int. J. Parallel Emerg. Distrib.
Syst. 24 (3) (2009) 205–223.

[6] A. Buluc, S. Williams, L. Oliker, J. Demmel, Reduced-bandwidth multithreaded
algorithms for sparse matrix–vector multiplication, in: 2011 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2011,
pp. 721–733.

[7] A. Cevahir, A. Nukada, S. Matsuoka, Fast conjugate gradients with multiple
GPUs. In: Proceedings of the International Conference on Computational
Science (ICCS09), Baton Rouge, LA, May 2009, 2009, pp. 893–903.

[8] B. Chapman, G. Jost, R. Van Der Pas, Using OpenMP: Portable Shared Memory
Parallel Programming, Vol. 10, The MIT Press, 2008.
[9] J.W. Choi, A. Singh, R.W. Vuduc, Model-driven autotuning of sparse matrix
vector multiply on GPUs, in: PPoPP ’10: Proceedings of the 15th ACM
SIGPLAN symposiumonPrinciples and Practice of Parallel Programming, 2010,
pp. 115–126.

[10] T.A. Davis, Y. Hu, University of Florida sparse matrix collection, 2009.
[11] X. Feng, H. Jin, R. Zheng, K. Hu, J. Zeng, Z. Shao, Optimization of sparse

matrix vector multiplication with variant CSR on GPUs, in: 2011 IEEE 17th
International Conference on Parallel and Distributed Systems (ICPADS), IEEE,
2011, pp. 165–172.

[12] P. Guo, L. Wang, P. Chen, A performance modeling and optimization analysis
tool for sparse matrix–vector multiplication on GPUs, IEEE Trans. Parallel
Distrib. Syst. 25 (5) (2014) 1112–1123.

[13] John L. Gustafson, Bruce S. Greer, Clearspeed whitepaper: Accelerating the
intel math kernel library, 2007.

[14] S.B. Indarapu, M. Maramreddy, K. Kothapalli, Architecture-and workload-
aware heterogeneous algorithms for sparse matrix vector multiplication,
2013. [Online]. http://cstar.iiit.ac.in/kkishore/spmv2.pdf.

[15] M. Kreutzer, G. Hager, G. Wellein, et al., Sparse matrix–vector multiplication
on GPGPU clusters: A new storage format and a scalable implementation,
in: Proceedings of the 2012 IEEE 26th International Parallel and Distributed
Processing SymposiumWorkshops & Ph.D. Forum, IPDPSW 12, IEEE Computer
Society, Washington, DC, USA, 2012, pp. 1696–1702.

[16] J. Li, G. Tan, M. Chen, N. Sun, SMAT: an input adaptive auto-tuner for sparse
matrix–vector multiplication, in: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ACM,
2013, pp. 117–126.

[17] K. Li, W. Yang, K. Li, Performance analysis and optimization for SpMV on GPU
using probabilisticmodeling, IEEE Trans. Parallel Distrib. Syst. (2015) 196–205.
http://doi.ieeecomputersociety.org/10.1109/TPDS.2014.2308221.

[18] K. Li, W. Yang, K. Li, A hybrid parallel solving algorithm on gpu for quasi-
tridiagonal system of linear equations, IEEE Trans. Parallel Distrib. Syst. 27 (10)
(2016) 2795–2808.

[19] F. Lu, J. Song, F. Yin, X. Zhu, Performance evaluation of hybrid programming
patterns for large CPU/GPU heterogeneous clusters, Comput. Phys. Comm. 183
(6) (2012) 1172–1181.

[20] A. Monakov, et al., Automatically tunings parse matrix–vector multiplication
forGPUarchitectures, in: YaleN. Patt, et al. (Eds.), High Performance Embedded
Architectures and Compilers, in: Lecture Notes in Computer Science, vol. 5952,
Springer, Berlin Heidelberg, 2010, pp. 111–125.

[21] NVIDIA, GPU. Computing Developer Home Page. Dostopno na: (2010).
[Online]. http://developer.nvidia.com/object/gpucomputing.html.

[22] NVIDIA, CUDA. CUBLAS library programming guide. NVIDIA Corporation. edit
2 (2012). [Online]. http://docs.nvidia.com/cublas/index.html.

[23] NVIDIA CUDA C Programming Guide, Version 5.0, May 2012. [Online].
http://docs.nvidia.com/cuda-c-programming-guide/index.html.

[24] TheNVIDIA CUDASparseMatrix Library (cuSPARSE), second ed., NVIDIA, 2012,
[Online]. http://docs.nvidia.com/cusparse/index.html.

http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref1
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref2
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref3
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref4
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref5
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref6
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref8
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref11
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref12
http://cstar.iiit.ac.in/kkishore/spmv2.pdf
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref15
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref16
http://doi.ieeecomputersociety.org/10.1109/TPDS.2014.2308221
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref18
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref19
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref20
http://developer.nvidia.com/object/gpucomputing.html
http://docs.nvidia.com/cublas/index.html
http://docs.nvidia.com/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cusparse/index.html

60 W. Yang et al. / J. Parallel Distrib. Comput. 104 (2017) 49–60
[25] T. Oberhuber, A. Suzuki, J. Vacata, New row-grouped CSR format for storing
the sparse matrices on GPU with implementation in CUDA, Acta Tech. 56 (4)
(2011) 447–466.

[26] J.C. Pichel, F.F. Rivera, Sparse matrix–vector multiplication on the Single-Chip
Cloud Computer many-core processor, J. Parallel Distrib. Comput. 73 (12)
(2013) 1539–1550.

[27] W.T. Tang,W.J. Tan, R. Ray, Y.W.Wong, et al. Accelerating sparsematrix–vector
multiplication on GPUs using bit-representation-optimized schemes, in:
Proceeding SC ’13 Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, 2013.

[28] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J. Demmel, Optimization of
sparsematrix–vectormultiplication on emergingmulticore platforms, Parallel
Comput. 35 (3) (2009) 178–194.

[29] W. Yang, K. Li, K. Li, Performance optimizationusing partitioned SpMVonGPUs
and multicore CPUs, IEEE Trans. Comput. 64 (9) (2015) 2623–2636.

[30] W. Yang, K. Li, Y. Liu, L. Shi, C. Wang, Optimization of quasi diagonal
matrix–vector multiplication on GPU, Int. J. High Perform. Comput. Appl. 28
(2) (2014) 181–193.

[31] A.N. Yzelman, R.H. Bisseling, Two-dimensional cache-oblivious sparse matrix
vector multiplication, Parallel Comput. 37 (12) (2011) 806–819.

Wangdong Yang received the M.S. degree from Central
South University, China, in 2006. He is currently working
toward the Ph.D. degree at Hunan University, China.
He is a professor of computer science and technology
at Hunan City University, China. His research interests
include modeling and programming for heterogeneous
computing systems, parallel algorithms, grid and cloud
computing.
Kenli Li received the Ph.D. degree in computer science
from Huazhong University of Science and Technology,
China, in 2003 and the M.S. degree in mathematics from
Central South University, China, in 2000. He was a visiting
scholar at University of Illinois at Urbana–Champaign
from 2004 to 2005. He is a full professor of computer
science and technology at Hunan University and deputy
director of National Supercomputing Center in Changsha.
His major research includes parallel computing, grid and
cloud computing, and DNA computing. He has over 100
research publications. He has published more than 100

papers in international conferences and journals such as IEEE-TC, IEEE-TPDS, JPDC,
ICPP, CCGrid. He is an outstanding member of CCF.

Keqin Li is a SUNY distinguished professor of computer
science. His current research interests include parallel
computing and high-performance computing, distributed
computing, energy-efficient computing and communica-
tion, heterogeneous computing systems, cloud comput-
ing, big data computing, CPU–GPU hybrid and cooperative
computing, multicore computing, storage and file sys-
tems, wireless communication networks, sensor net-
works, peer-to-peer file sharing systems. He has over 300
research publications. He has published over 300 journal
articles, book chapters, and refereed conference papers,

and has received several best paper awards. He is currently or has served on the
editorial boards of IEEE Transactions on Parallel and Distributed Systems, IEEE Trans-
actions on Computers, IEEE Transactions on Cloud Computing. Journal of Parallel and
Distributed Computing, International Journal of Parallel, Emergent and Distributed Sys-
tems, International Journal of High Performance Computing and Networking, Interna-
tional Journal of Big Data Intelligence, and Optimization Letters.

http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref25
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref26
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref28
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref29
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref30
http://refhub.elsevier.com/S0743-7315(17)30001-1/sbref31

	A hybrid computing method of SpMV on CPU--GPU heterogeneous computing systems
	Motivation
	Suitable compressed format of sparse matrix
	New computing platform for SpMV
	Our contribution

	Related research
	CPU--GPU heterogeneous computing
	GPU computing architecture
	CPU--GPU hybrid parallel programming

	Sparse matrix partitioning for CPU--GPU parallel computing
	The distribution function of sparse matrices
	The hybrid format for sparse matrices
	The partitioning algorithm
	Implementation of SpMV for CPU--GPU heterogeneous computing

	Performance analysis and optimization
	Performance estimate of SpMV on CPU--GPU
	An optimizing strategy for SpMV on CPU--GPU

	Experimental evaluation
	Test functions
	Comparison of estimated and tested values of the threshold K
	Performance improvement of SpMV on CPU--GPU

	Concluding remarks
	Acknowledgments
	References

