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For large-scale sparse matrices, SpMV cannot be processed on GPU using the common 
storage formats because of the memory limitation. In addition, the parallel effect is poor 
using general formats for the sparse matrices with extremely uneven distribution of non-
zero elements, which leads to performance deterioration. This paper presents an optimal 
partitioning strategy based on the distribution of non-zero elements in a sparse matrix to 
improve the performance of SpMV, and uses a hybrid format, which mixes CSR and ELL 
formats, to store the blocks partitioned from the sparse matrix. The hybrid blocked format 
has better compression effect and more uniform distribution of non-zero elements, which 
can be suitable for more types of sparse matrices. Our partitioning strategy is proven to be 
optimal, which can yield the minimum parallel execution time on GPU.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

In recent years, accelerator-based computing using accelerators, such as the IBM Cell synergistic processing unit (SPU), 
field programmable gate array (FPGA), graphics processing unit (GPU), and application specific integrated circuit (ASIC), 
has achieved clear performance gains compared to CPUs. Among the accelerators, GPUs have occupied a prominent place 
due to their low cost and high performance-per-watt ratio along with powerful programming models. However, as CPU 
architectures also evolve and address challenges such as the power wall and the memory wall, and compete with these 
accelerators, it is imperative that CPUs should also be included in computations. It is further observed by [1] that several 
irregular applications such as sparse matrix–vector multiplication (SpMV) can benefit from heterogeneous algorithms that 
run on a CPU and GPU based heterogeneous computing platform.

SpMV is an essential operation in solving linear systems and partial differential equations. SpMV faces two challenges, 
which are large scales and irregular distributions of non-zero elements. With the increasing scale of sparse matrices, 
the sparse matrix of SpMV cannot be loaded into the GPU once to be computed. So a large-scale sparse matrix must be 
split into some submatrices to be computed separately. It is a challenging issue to adopt an appropriate method to split a 
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sparse matrix. In addition, load imbalance of parallel computing on GPU are generated, because of irregular distribution of 
non-zero elements in a sparse matrix, which leads to parallel efficiency decrease. The ELL format is a regular compression 
format for a sparse matrix, which has the same length of rows, and can avoid load imbalance. But the significant difference 
between the numbers of non-zero elements in rows will lead to more filling of zeroes. So those rows with similar numbers 
of non-zero elements are grouped into the same block from a sparse matrix to improve the effect of compression of ELL. It 
is also a challenging issue to determine the size of a block. If the size of the block is too large, there are more zeros to fill 
in the block. On the contrary, if the size of the block is too small, the number of blocks is too much, leading to an increased 
number of computing tasks.

How to make full use of computing resources to maximize parallel computing ability is the key to improve the per-
formance of SpMV. Firstly, load balancing between the threads is the basis of improving performance for streaming 
multiprocessor (SM) on GPU. Secondly, improving the efficiency of data access is very important to improve the parallel 
efficiency of GPU.

1.2. Our contributions

The present paper makes the following unique contributions to parallel computation of SpMV on GPU and CPU.

• We develop an optimal partitioning strategy based on dynamic programming and a distribution function (DF) of non-
zero elements to improve the performance of SpMV.

• We present a reordering algorithm in which the time complexity is only O (N log2 k), where k is the number of partitions 
and far less than the number of rows. However, the time complexity of a general method is O (N log2 N).

• We employ a hybrid format to store a blocked sparse matrix partitioned by our optimal partitioning strategy.

Our partitioning strategy is proven to be optimal, which can yield the minimum parallel execution time on GPU. Our 
partitioning strategy is based on the DF, which characterizes the distribution of non-zero elements in a sparse matrix. Our 
partitioning strategy consists of three steps, i.e., building the DF of a sparse matrix, partitioning the rows using dynamic 
programming, and reordering the rows. Firstly, the DF of a target sparse matrix is constructed according to the analysis of 
the distribution of non-zero elements per row. Secondly, the intervals of partitioning are determined by our partitioning 
algorithm based on the DF. Thirdly, these blocks for SpMV are segmented from the sparse matrix by a reordering algorithm. 
Furthermore, these blocks are stored in a hybrid format to obtain further performance gain.

In this paper, 20 sparse matrices, which are obtained from [2], are tested on NVIDIA K20c GPU and AMD Opteron 
6376 CPU. The performance improvement of our algorithm is very effective according to our experiments. Our partitioning 
strategy has the best performance, which can partition for sparse matrices according to the minimum parallel processing 
time. According to our experiments on 20 test cases, the performance of SpMV is significantly improved when a sparse 
matrix is partitioned into blocks by our method, and improvement of our reordering algorithm is also effective.

This paper extends our previous work [3,4]. The current paper presents a new partitioning strategy based on processing 
time and using DF, and proposes a hybrid storage format and a kernel function for SpMV on GPU.

The remainder of the paper is organized as follows. In Section 2, we review related research on SpMV. In Section 3, we 
review the programming model of GPU and the storage formats of sparse matrices. In Section 4, we present the DF for 
sparse matrices. In Section 5, we analyze the parallel processing time of SpMV to develop our optimal partitioning strategy. 
In Section 6, we describe the implementation of SpMV in parallel using our method on GPU. In Section 7, we demonstrate 
our extensive experimental performance comparison results. In Section 8, we conclude the paper.

2. Related work

2.1. Parallel implementation of SpMV on GPU and partitioning strategies

Bolz et al. [5] proposed one of the first SpMV CUDA kernel implementations. [6] designed a new HYB format for SpMV 
in CUDA, representing the matrix in ELLPACK format (ELL) and coordinate format (COO) portions, to combine the speed of 
ELL and the flexibility of COO. Lee et al. [1] discussed optimization techniques for both CPU and GPU, and analyzed what 
architecture features contribute to performance differences between the two architectures. Stanimire et al. [7] presented a 
set of techniques that can be used to develop efficient dense linear algebra algorithms for hybrid multicore + GPU systems, 
and used asynchronous techniques to reduce the amount of communication between the hybrid components.

In large-scale scientific and engineering calculations, some very big sparse matrices are produced. These sparse matrices 
are too big to compute by one GPU once. So they should be partitioned into small blocks to be processed multiple times 
on GPU. But due to various distributions of non-zero elements in sparse matrices, there is no general partitioning method 
to adapt to all kinds of sparse matrices.

For the blocked compressed sparse row (BCSR) format [8] and the row-grouped CSR (GCSR) format [9], which the rows 
in a sparse matrix are split into blocks. For the blocked ELLPACK (BELLPACK) format [10] and the sliced ELLPACK (SELLPACK) 
format [11], a sparse matrix is partitioned into blocks after it is compressed by the ELL format. For segmented interleave 
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combination (SIC) format [12], and compressed sparse blocks (CSB) format [13], a sparse matrix is partitioned into subma-
trices according to the distribution of non-zero elements. The padded jagged diagonals storage (pJDS) format [14] is suitable 
for diagonal matrices. A sparse matrix is partitioned using the above partitioning algorithms in accordance with the original 
order.

Other strategies partition sparse matrices according to the configuration of a computing environment, such as the cache 
scale of processors [15,12], the computing power of processors [16,17], and the data transmission bandwidth [13]. Further-
more, other strategies partition sparse matrices according to the characteristics of a sparse matrix, such as the proportion 
of non-zero elements in the sparse matrix [18], the compression effect of different formats [19], and dense blocks in the 
sparse matrix [20].

Refs. [21,22] proposed to perform three-way and multi-way split approaches to break down a matrix–vector product 
into some matrix–vector products with smaller sizes. The partitioning strategies based on the original order are sensitive 
to sparse distribution and cannot achieve satisfactory compression effect in most cases. The partitioning strategies based on 
the characteristics of a sparse matrix need an effective analysis method to analyze quantitatively the sparse characteristics 
results in computing complexity. In addition, a row may be split into different submatrices by a partitioning strategy, leading 
to the need of accumulation of calculation results [16,10], which adds extra time overhead.

2.2. Reordering techniques of sparse matrices for SpMV

Reordering techniques have been a successful approach to improving the performance of SpMV. These techniques eval-
uate the sparsity pattern of a matrix to find an appropriate permutation of rows and columns of the original matrix. The 
traditional reordering techniques mainly include approximate minimum degree (AMD) [23], distance function [24], reverse 
Cuthill–McKee (RCM) [25], and nested dissection [26]. All the ordering techniques try to reduce the fill-in, but each one uses 
a different approach. The objective of AMD is to find a permutation of the original matrix that reduces the fill-in. Distance 
function allows to permute individual rows/columns of the original matrix or sets of consecutive rows/columns. RCM algo-
rithm is the same algorithm as the original one but with the resulting index numbers reversed. METIS [27] included in the 
library computes fill-reducing orderings using a particular implementation of nested dissection algorithm, which can only 
be applied to matrices with symmetric pattern.

A sparse matrix should be reordered in order to make the calculated loads of the segmented blocks more balanced. 
The rows with similar numbers of non-zero elements should be allocated in the same block, which is suitable for parallel 
processing. All the rows in CSR are reordered according to their lengths in the process of some reordering [12,14], leading 
to calculation amount increase, whose time complexity is O (N log2 N). Ref. [28] discussed three reordering methods: CRS 
block order, ACRS block order, and ZZ-CCS block order. The ZZ-CCS block order is superior to the ACRS block order, which 
in turn is better than the CRS block order. Ref. [29] discussed a Hilbert-ordering on the non-zeroes of a sparse matrix and 
found a perfectly balanced partitioning based on this ordering, which is equivalent to partitioning into equally-sized parts.

3. CUDA and storage of sparse matrices

3.1. An introduction to CUDA

The modern GPUs have evolved from a fixed-function graphics pipeline to a programmable parallel processor with com-
puting power exceeding that of multicore CPUs. The basic computing unit of a GPU is SM. As a component at the bottom 
of the independent hardware structure, SM can be seen as a single instruction multiple data (SIMD) processing unit. Each 
SM contains some scalar processors (SP) and special function units (SFU). In addition, each SM contains the shared memory 
for threads to share data or communications in the block. Using the model explicitly to access memory, the accessed speed 
of the shared memory is close to that of register without bank conflict. SM contains some registers, which are allocated by 
each thread in the execution. All SMs share the global memory [30]. For GPU architectures, CUDA (Compute Unified Device 
Architecture) was provided from NVIDIA to improve the efficiency of programming on GPU. CUDA is a complete general 
purpose graphics processing units (GPGPU) solution that provides direct access to the hardware interface, rather than the 
traditional approach that must rely on the graphical interface API. A heterogeneous parallel computing system based on CPU 
and GPU can be built using CUDA, as shown in Fig. 1.

The number of threads used in CUDA is decided by the programmer to be executed. A collection of threads (called a 
block) runs on a SM at a given time. Multiple blocks can be assigned to a single SM and their execution is time-shared. 
Warp is a group of threads which are issued and scheduled as a basic unit on Nvidia GPUs. Currently, the size of a warp is 
32, so 32 threads are issued and scheduled at the same time by a SM.

3.2. Storage formats of sparse matrices

The 4-by-4 sparse matrix A shown below is used as a running example in this section:



W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170 155
Fig. 1. A heterogeneous parallel computing system based on CUDA.

A =

⎛
⎜⎜⎝

1 0 2 0
0 0 7 0
4 5 0 8
0 1 0 3

⎞
⎟⎟⎠ .

3.2.1. Storage space of CSR
The compressed sparse row (CSR) format is a popular and general-purpose sparse matrix representation scheme. CSR 

explicitly stores column indices and non-zero values in arrays Aj and Av. The third array Ap represents the starting position 
of each row in the array Aj. For an N-by-M matrix, Ap has length N + 1 and stores the offset of the ith row in Ap[i]. The 
value of the last element is the number of non-zeros (NNZ). For the example sparse matrix S , we have

Aj = (
1 3 3 1 2 4 2 4

)
,

Av = (
1 2 7 4 5 8 1 3

)
,

Ap = (
0 2 3 6 8

)
.

3.2.2. Storage space of ELL
Another storage scheme that is well-suited to vector architectures is the ELL format. For an N-by-M matrix with a 

maximum of K non-zeros per row, the ELL format stores the non-zero values in a dense N-by-K array EData, and rows 
with fewer than K non-zeros are zero-padded. Similarly, the corresponding column indices are stored in Offset, again with 
some sentinel value used for padding. For the example sparse matrix A, we have

EData =

⎛
⎜⎜⎝

1 2 0
7 0 0
4 5 8
1 3 0

⎞
⎟⎟⎠ , Offset =

⎛
⎜⎜⎝

1 3 ∗
3 ∗ ∗
1 2 4
2 4 ∗

⎞
⎟⎟⎠ .

3.2.3. Storage space of COO
The coordinate (COO) format is a particularly simple storage scheme of triples (row, column, value). The arrays row, 

column, and value store the row indices, column indices, and values of the non-zero elements in matrix respectively. For 
the example sparse matrix A, we have
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row = (
1 1 2 3 3 3 4 4

)
,

column = (
1 3 3 1 2 4 2 4

)
,

value = (
1 2 7 4 5 8 1 3

)
.

3.2.4. Storage space of HYB
HYB is a hybrid format of ELL and COO. Given a threshold K , the part of rows with more than K non-zeros is extracted 

to be stored by COO and the other part is stored by ELL with little zero-padded in ELL. A sparse matrix can be divided into 
two parts: COO and ELL. For the example sparse matrix A, we have

COO :
⎧⎨
⎩

row = (
3

)
column = (

4
)

value = (
8

) ELL :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EData =

⎛
⎜⎜⎝

1 2
7 0
4 5
1 3

⎞
⎟⎟⎠

Offset =

⎛
⎜⎜⎝

1 3
3 ∗
1 2
2 4

⎞
⎟⎟⎠

.

While the ELL format is well-suited to vector architectures, its efficiency rapidly degrades when the number of non-
zeroes per matrix row varies. In contrast, the storage efficiency of COO is invariant to the distribution of non-zeros per row. 
HYB stores the majority of matrix entries in ELL and the remaining entries in COO.

The non-zeros in rows with no more than K non-zeros are stored in ELL and the remaining entries in COO. ELL stores 
an N-by-K dense matrix.

3.2.5. Storage space of BSR
The only difference between the CSR and BSR formats is the format of the storage element. The former stores primitive 

data types whereas the latter stores a two-dimensional square block of primitive data types. The dimension of the square 
block is blockDim. An m × n sparse matrix A is equivalent to a block sparse matrix Ab with mb = m+blockDim−1

blockDim block rows 
and nb = n+blockDim−1

blockDim block columns. If m or n is not multiple of blockDim, then zeros are filled into Ab .
As with CSR format, (row, column) indices of BSR are stored in row-major order. The index arrays are first sorted by 

row indices and then within the same row by column indices. For the example sparse matrix A, if blockDim is 2, then mb
and nb are 2, and matrix A is split into 2 × 2 block matrix Ab . Based on one-based indexing, the block-wise view can be 
represented as follows:

Ab =
(

A11 A12
A21 A22

)
,

A11 =
(

1 0
0 0

)
, A12 =

(
2 0
7 0

)
, A21 =

(
4 5
0 1

)
, A22 =

(
0 8
0 3

)
.

4. Distribution of non-zero elements in a sparse matrix

Taking into consideration the structure of a sparse matrix can dramatically improve the performance of SpMV. However, 
sparse matrices arise from different domains and have distinct distribution patterns of non-zero elements. Adopting a suit-
able storage format according to the distribution pattern of a sparse matrix is very helpful to improve the performance of 
SpMV. We can accurately describe the distribution pattern of a sparse matrix by a DF, and get numerical characteristics of 
sparsity distribution from the DF. The suitable blocks can be partitioned from the sparse matrix by numerical characteristics 
of sparsity distribution.

4.1. The DF of sparse matrices

Let A be a sparse matrix with N rows and M columns. A can be viewed as a sequence of M-dimensional rows, i.e., 
A = (rT

1 , rT
2 , ..., rT

N)T . For convenience, we also treat A as a multiset in which members are allowed to appear more than 
once, i.e., A = {r1, r2, ..., rN}, since some row vectors may be identical. Without loss of generality, we assume that there is 
no zero-vector (i.e., all components of a vector are zero) in A; otherwise, we can simply remove the zero-vectors from A, 
and add corresponding zeros to the result vector of SpMV.

Let Rm represent the multiset of row vectors in A, in which all vectors have m non-zero components, where 1 ≤ m ≤ M . 
Thus, we have A = R1 ∪ R2 ∪ · · · ∪ R M . We call R1, R2, ..., R M as row vector sets (RVS). Define the DF of A as

f A : {1,2, ..., M} → {0,1,2, ..., N},
where f A(m) = |Rm| = bm is the number of row vectors in Rm . It is clear that b1 +b2 +· · ·+bM = N . Also, Rm = ∅ if bm = 0.
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4.2. The characteristics of the DF

Let C = {rn1 , rn2 , ..., rnb } be any set of row vectors. The number of row vectors in C is

N(C) = |C | = b.

The width of C is expressed as

W (C) = max{NNZ(rn1),NNZ(rn2), ...,NNZ(rnb )},
where NNZ(r) is the number of non-zero elements in a row vector r. The number of non-zero elements in C is

NNZ(C) = NNZ(rn1) + NNZ(rn2) + · · · + NNZ(rnb ).

The total number of elements in a minimum dense matrix (i.e., in the ELL format) that includes C is

E(C) = N(C) × W (C).

The density of C is the proportion of non-zero elements in E(C), expressed as

D(C) = NNZ(C)

E(C)
.

As a special case, we use R M1,M2 to denote the union R M1 ∪ R M1+1 ∪ · · · ∪ R M2 . Hence, we have

N(R M1,M2) =
M2∑

m=M1

bm,

and

W (R M1,M2) = max
M1≤m≤M2

{m (bm �= 0)},
and

NNZ(R M1,M2) =
M2∑

m=M1

mbm,

and

E(R M1,M2) = N(R M1,M2) × W (R M1,M2),

and

D(R M1,M2) = NNZ(R M1,M2)

E(R M1,M2)
.

5. An optimal partitioning algorithm

5.1. Construction of DF

The number of non-zero elements in each row are scanned to store the number of rows with the same NNZ by the 
array B , which has the length M . The B[m] = bm will be added 1 if a row has m non-zero elements. The number of 
scanning will be N if the storage format of the sparse matrix is CSR. For the following 10 × 10 sparse matrix A,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 1 0 0 0 0 0
0 0 9 −1 0 0 7 0 0 0
0 4 0 0 0 0 0 0 0 0
0 0 0 12 3 0 0 0 0 0

−1 8 0 2 0 5 0 2 7 9
0 0 0 0 0 0 −6 0 0 0
0 0 6 4 0 0 0 3 0 0
0 2 0 5 0 0 8 0 1 0
2 1 0 5 0 3 7 0 0 4
0 0 3 0 0 7 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we have A = {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10} and

B = [b1,b2,b3,b4,b5,b6,b7,b8,b9,b10] = [2,3,2,1,0,1,1,0,0,0].
The RVS’s are R1 = {r3, r6}, R2 = {r1, r4, r10}, R3 = {r2, r7}, R4 = {r8}, R6 = {r9}, R7 = {r5}, and R5 = R8 = R9 = R10 = ∅.



158 W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170
5.2. Types of partitioning methods

There are two types of partitioning strategies to split sparse matrices. The first type splits a sparse matrix into various 
sets of row vectors which do not change the original order of rows in A, and the second type uses the technique of 
reordering to split. The algorithm complexity of the first type is relatively low. But the number of non-zero elements in rows 
of a set of row vectors may be unbalanced, because the non-zero element distribution in a sparse matrix can be arbitrary. 
A sparse matrix is firstly reordered and then split into RVS’s in the second type of strategies. The algorithm complexity of 
the second type is relatively high, because the rows in the sparse matrix must be reordered, but the performance of SpMV 
is improved. Our partitioning strategy based on DF belongs to the second type.

The ELL format of a sparse matrix is very suitable for parallel computing, because the lengths of all rows are the same. 
In particular, SpMV based on ELL has good performance on GPU. But some zeros will be padded in the ELL format, leading 
to redundant computation. Improving the density of the non-zero elements can reduce the filling ratio of zero for ELL [31]. 
But the computable scale of blocks for SpMV will go down and the number of blocks will increase, leading to performance 
degradation of the whole SpMV.

5.3. Analysis for parallel execution time

A partition of a sparse matrix A is a set P = {C1, C2, ..., Ck} of disjoint subsets of row vectors of A, where Ci ⊆ A for all 
1 ≤ i ≤ k, Ci ∩ C j = ∅ for all i �= j, and C1 ∪ C2 ∪ · · · ∪ Ck = A.

The processing of SpMV on GPU includes three parts, i.e., transferring data into GPU, computing on GPU, and returning 
result from GPU.

For Ax = y, the sparse matrix A and vector x with N elements are transferred into GPU. The computing results are sent 
back from GPU by vector y with N elements. The transmission time of S elements between CPU and GPU is calculated 
by S/TW , where TW is the bandwidth of PCIe. The transmission arrays includes the Ap, Aj, Av, and right vector if the 
sparse matrix is stored by CSR format. So the number of elements that need to be transmitted should be 2N + 1 + 2NNZ
(approximated as 2N + 2NNZ) if it doesn’t consider datatypes. The total transmission time Tt of SpMV is expressed as

Tt = 2N + 2NNZ

TW
.

Hence, the transmission time is the same for different partitioning schemes. Because the ELL format stores Ci in a dense 
N(Ci)-by-W (Ci) array, the computing amount of Ci is E(Ci). The computing time for Ci on GPU should be E(Ci)/ f p , where 
f p is the computation power of a SM in GPU, because each block is assigned to a SM to process. In addition, there is a lower 
limit L for the number of threads in the block assigned to a SM, which is related to the number of SPs and registers in the 
SM. If the number of threads in the block assigned to the SM is less than L, this means that the SM execution resources 
will likely be underutilized, because there will be fewer warps to schedule around long-latency operations [32]. L is about 
192 for K20c GPU, which is used in our experiments. The number of rows in Ci should be more than L, because each thread 
computes a row data once for the ELL format. For Ci , the computing time Tc(Ci) is calculated as

Tc(Ci) =
{

(W (Ci) × L)/ f p, N(Ci) ≤ L;
E(Ci)/ f p, N(Ci) > L.

To summarize, the total processing time T of SpMV is calculated by

T = Tt +
k∑

i=1

Tc(Ci)/s,

where s is the number of SMs in GPU. It is easily observed that T is largely determined by E(C1) + E(C2) + · · · + E(Ck).

5.4. An optimal partitioning problem

Let us consider the following optimal partitioning problem. Given a sparse matrix A = {r1, r2, ..., rN} with DF f A , find an 
optimal partition P = {C1, C2, ..., Ck} of A, such that

Cost(P) =
k∑

i=1

Tc(Ci)

is minimized. Such an optimal partition yields the minimum T , i.e., the total processing time of SpMV on GPU.
For a fixed k, minimizing Cost(P) is equivalent to minimizing

E(P) = E(C1) + E(C2) + · · · + E(Ck)

if N(Ci) > L for i = 1, 2, ..., k. We prove two theorems which give some important properties of an optimal partition which 
minimizes E(P).

The following theorem states that in an optimal partition, all row vectors of the same RVS must stay in the same Ci .
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Theorem 5.1. For any partition P = {C1, C2, ..., Ck}, there is a partition P ′ = {C ′
1, C

′
2, ..., C

′
k}, such that each RVS Rm is entirely 

included in some C ′
i , i.e., Rm ⊆ C ′

i for some i, where 1 ≤ m ≤ M; and that E(P ′) ≤ E(P).

Proof. Assume that there are two row vectors rn1 , rn2 ∈ Rm , such that rn1 ∈ Ci and rn2 ∈ C j , where W (Ci) ≤ W (C j). Let us 
move rn2 from C j to Ci , and the new partition is

P ′ = {C1, ..., C ′
i, ..., C ′

j, ..., Ck},
where C ′

i = Ci ∪{rn2 } and C ′
j = C j −{rn2 }, which implies that N(C ′

i) = N(Ci) + 1 and N(C ′
j) = N(C j) − 1. The above operation 

does not change the width of Ci , i.e., W (C ′
i) = W (Ci), but may reduce the length of C j (e.g., when NNZ(rn2) = W (C j)), i.e., 

W (C ′
j) ≤ W (C j). It is clear that

E(P ′) − E(P)

= N(C ′
i)W (C ′

i) + N(C ′
j)W (C ′

j) − N(Ci)W (Ci) − N(C j)W (C j)

≤ (N(Ci) + 1)W (Ci) + (N(C j) − 1)W (C j) − N(Ci)W (Ci) − N(C j)W (C j)

= W (Ci) − W (C j).

Since W (Ci) ≤ W (C j), we have E(P ′) ≤ E(P). In fact, if there are p row vectors in C j which belong to Rm , we can move 
all of them from C j to Ci simultaneously, which gives rise to N(C ′

i) = N(Ci) + p and N(C ′
j) = N(C j) − p, and

E(P ′) − E(P) ≤ p(W (Ci) − W (C j)).

By repeating the above operation, we can put all row vectors of Rm into the same Ci for some i, where 1 ≤ m ≤ M , without 
increasing E(P). The theorem is proven. �

The following theorem states that in an optimal partition, each C j is a set of consecutive RVS’s.

Theorem 5.2. For any partition P = {C1, C2, ..., Ck} which satisfies Theorem 5.1, there is a partition P ′ = {C ′
1, C

′
2, ..., C

′
k}, such that 

if Rm1 ⊆ Ci and Rm2 ⊆ C j , where i < j, then m1 < m2; and that E(P ′) ≤ E(P).

Proof. Without loss of generality, we assume that W (C1) < W (C2) < · · · < W (Ck); otherwise, it is only a matter of re-
ordering of C1, C2, ..., Ck . Assume that there are two RVS’s, Rm1 and Rm2 , such that Rm1 ⊆ Ci and Rm2 ⊆ C j , where m2 < m1
and i < j. Let us move Rm2 from C j to Ci , and the new partition is P ′ = {C1, ..., C ′

i, ..., C
′
j, ..., Ck}, where C ′

i = Ci ∪ Rm2 and 
C ′

j = C j − Rm2 . The above operation does not change the width of Ci and C j . It is clear that

E(P ′) − E(P) = bm2(W (Ci) − W (C j)).

Since W (Ci) ≤ W (C j), we have E(P ′) ≤ E(P). By repeating the above operation, we can arrange the RVS’s without increas-
ing E(P), such that if Rm1 ⊆ Ci and Rm2 ⊆ C j , where i < j, then m1 < m2. The theorem is proven. �
5.5. An optimal partitioning algorithm (OPA) based on DF

An immediate consequence of Theorem 5.2 is that for a fixed k, in an optimal partition P = {C1, C2, ..., Ck} which 
minimizes Cost(P), there must exist 0 = M0 < M1 < M2 < · · · < Mk−1 < Mk = M , such that C j = R M j−1+1,M j , for all 1 ≤
j ≤ k. That is, each C j is a set of consecutive RVS’s. Hence, the optimal partitioning problem is to determine k and the 
values of M1, M2, ..., Mk−1, such that

Cost(P) =
k∑

j=1

Tc(C j) =
k∑

j=1

T (R M j−1+1,M j )

is minimized, where T (R M j−1+1,M j ) is the computing time of R M j−1+1,M j .
We define Cost(m, k) to be the Cost(P) of an optimal partition P = {C1, C2, ..., Ck} of R1 ∪ R2 ∪· · ·∪ Rm , where 1 ≤ m ≤ M

and 1 ≤ k ≤ m.
The following theorem provides a dynamic programming formulation of Cost(m, k).

Theorem 5.3. Cost(m, k) satisfies the following recurrence relation:

Cost(m,1) = T (R1,m), 1 ≤ m ≤ M;
Cost(m,k) = min

k−1≤Mk−1≤m−1

{
Cost(Mk−1,k − 1) + T (R Mk−1+1,m)

}
,

2 ≤ k ≤ m ≤ M.
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Algorithm 1: Calculating the optimal cost matrix and the optimal division matrix.
Input: The DF f A of a sparse matrix A.
Output: The optimal cost matrix C[m, k] and the optimal division matrix D[m, k].

1 for m ← 1 to M do
2 C[m, 1] ← T (R1,m);
3 end
4 for k ← 2 to M do
5 for m ← k to M do
6 C[m, k] ← ∞;
7 for j ← k − 1 to m − 1 do
8 q ← C[ j, k − 1] + T (R j+1,m);
9 if q < C[m, k] then

10 C[m, k] ← q;
11 D[m, k] ← j;
12 end
13 end
14 end
15 end

Algorithm 2: Calculating the output of the optimal partitioning problem.
Input: The optimal cost matrix C[m, k] and the optimal division matrix D[m, k].
Output: The values of k and the values of M1, M2, ..., Mk−1.

1 Cost ← ∞;
2 for k′ ← 1 to M do
3 if C[M, k′] < Cost then
4 Cost ← C[M, k′];
5 k ← k′;
6 end
7 end
8 i ← M;
9 j ← k;

10 while j ≥ 2 do
11 M j−1 ← D[i, j];
12 i ← D[i, j];
13 j ← j − 1;
14 end

Proof. The base case when k = 1 is trivial, since the only partition is P = {R1,m}. When k ≥ 2, the possible value of Mk−1 is 
in the range k −1 ≤ Mk−1 ≤ m −1. For each Mk−1, we have Cost(m, k) = Cost(Mk−1, k −1) + T (R Mk−1+1,m). Hence, Cost(m, k)

takes the minimum value of all these possibilities. �
Theorem 5.3 suggests a dynamic programming algorithm to compute Cost(m, k), and thus, solving our optimal partition-

ing problem. Our optimal partitioning algorithm (OPA) is presented in Algorithms 1 and 2. Algorithm 1 (where j stands for 
Mk−1) calculates an array C[m, k] which saves the value of Cost(m, k), and an array D[m, k] which saves the value of Mk−1
that gives the minimum value of Cost(m, k). Such a dynamic programming algorithm can be completed in O (M3) time.

The optimal value of k is obtained by

Cost(M,k) = min
1≤k′≤M

{Cost(M,k′)}.

The optimal value of Mk−1 can be recorded when Cost(m, k) is calculated and recovered after Algorithm 1 is completed. The 
output of the optimal partitioning problem, i.e., the values of k and M1, M2, ..., Mk−1, can be generated by using Algorithm 2.

In fact, if f A(m) = bm = 0, then Rm can be removed from the computation of Algorithms 1 and 2. Assume that the 
number of RVS’s in {Rm| f A(m) �= 0} is M ′ . For a sparse matrix, M ′ is far less than the number of columns M . The computing 
complexity of OPA is actually O ((M ′)3).

However, the processing time of OPA is unbearable if M ′ > 100. For most test cases, the number of RVS’s partitioned 
from the sparse matrices is less than 100. Furthermore, we can observe that the sparse matrices with M ′ > 100 have many 
RVS’s with very few rows. Some RVS’s with similar width should be merged into one RVS. Then, the number of RVS’s can 
be reduced to less than 100 by merging.

5.6. A reordering algorithm

A sparse matrix is split into k partitions C1, C2, ..., Ck defined by M1, M2, ..., Mk−1 using OPA according to the NNZ of the 
rows. The rows of the sparse matrix are assigned to different C j ’s by the NNZ of the rows. The NNZ of the rows in C j are 
about the same. The classic binary search algorithm can be used to find out C j = R M j−1+1,M j such that row ri belongs to C j , 
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Algorithm 3: The reordering algorithm.
Input: The values of k and M0, M1, ..., Mk; the NNZ of N rows: NNZ(r1), NNZ(r2), ..., NNZ(rN ).
Output: The index array Index1, Index2, ..., IndexN , where if Indexi = j, then ri belongs to C j = RM j−1+1,M j , where 1 ≤ j ≤ k.

1 //The beginning and ending indices of the binary search algorithm
2 int indexb, indexe ;
3 for i ← 1 to N do
4 if NNZ(ri) > 0 then
5 indexb ← 0;
6 indexe ← k;
7 repeat
8 middle ← �(indexb + indexe)/2�;
9 if NNZ(ri) = Mmiddle then

10 Indexi ← middle;
11 return;
12 end
13 if NNZ(ri) < Mmiddle then
14 indexe ← middle;
15 end
16 if NNZ(ri) > Mmiddle then
17 indexb ← middle + 1;
18 end
19 until indexb = indexe ;
20 Indexi ← indexb ;
21 end
22 end

Fig. 2. Reordering of rows.

because 0 = M0 < M1 < M2 < · · · < Mk−1 < Mk = M . The reordering algorithm is presented in Algorithm 3. The computing 
complexity of the binary search algorithm is O (log2 k), and k is far less than the number of columns M . So the computing 
complexity of assigning N rows to k partitions is O (N log2 k). The process of rows reordering is to assign these rows to the 
corresponding partitions. So the computing complexity of Algorithm 3 is O (N log2 k).

The reordering step is shown in Fig. 2, where a row r belongs to an interval if the NNZ(r) is in the range of the 
interval. For the sparse matrix A, we have k = 3, M1 = 2, M2 = 4 by partitioning using OPA, and C1 = {r1, r3, r4, r6, r10}, 
C2 = {r2, r7, r8}, and C3 = {r5, r9} by reordering.

Furthermore, the dimension and size of blocks per grid and the dimension and size of threads per block are both impor-
tant factors. Latency hiding and occupancy depend on the number of active warps per SM, which is implicitly determined 
by the execution parameters along with resource (register and shared memory) constraints [33]. When choosing the block 
size, it is important to remember that multiple concurrent blocks can reside on a SM, so occupancy is not determined by 
block size alone. In particular, a larger block size does not imply a higher occupancy. Note that when a thread block allocates 
more registers than those available on a SM, the kernel launch fails, as too much shared memory or too many threads are 
requested [33]. So the blocks obtained by Algorithm 3 should be divided into some sub-blocks if the sizes of them are too 
large. These sub-blocks can be equally partitioned from the blocks, because the rows in the blocks have similar widths.

6. A parallel implementation of SpMV on GPU

6.1. Parallel computing model on GPU

A sparse matrix is usually stored as CSR format before it is processed, and each block partitioned from the sparse matrix 
will be converted to ELL format for SpMV using other formats. Then, the sparse matrix is used to perform SpMV by CUDA 
using OPA, which includes four steps shown in Fig. 3.
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Fig. 3. The computing steps of SpMV using our approach on GPU.

1. Step 1: Construct the DF of the sparse matrix.
2. Step 2: Obtain the boundaries M1, M2, ..., Mk−1 of partitioning by OPA.
3. Step 3: Partition the sparse matrix into collections of RVS’s using the reordering algorithm.
4. Step 4: Execute SpMV.

As shown in Fig. 3, Steps 1 and 2 can be processed by Algorithm 1 on GPU, whose input parameters are array Ap of CSR 
format and the output parameters are the boundary array (M0, M1, ..., Mk) obtained using OPA. Step 3 is processed by the 
Algorithm 2 on GPU, whose input parameters are the output parameters of the Algorithm 1 and arrays Aj and Av of CSR 
format, and the output parameters are RVS’s using the reordering algorithm. Step 4 is processed by the Algorithm 3, whose 
input parameters are the output parameters of the Algorithm 2 and vector x, and the output parameters are the result 
vector y. Each element of array Ap in Step 1 is assigned to a thread of CUDA, which needs to perform atomic addition. 
Then element f A[m] in the array f A obtained by Step 1 is the number of row vectors whose number of non-zero elements 
is m. Assume that the length of array f A is q if all elements with value 0 are removed from f A . Then q is far less then N .

There are some parallel implementations of dynamic programming algorithms on GPU, which have better performance 
compared with that of CPU for Algorithms 1 and 2. Ref. [34] presented a framework for dynamic programming algorithms 
on GPU and reported speedups ranging from 6.1 to 25.8 on a Nvidia GTX 280 through the CUDA libraries. Ref. [35] presented 
an efficient parallel implementation of O(n3)-time dynamic programming algorithm on the GPU, which attained a speedup 
factor of 247.5 on the NVIDIA GeForce GTX 580. Our implementation uses the sliding and mirroring arrangements method 
[35] and is to arrange the temporary data for coalesced access of the global memory in the GPU to minimize the memory 
access overhead, because the sizes of dynamic programming for the test cases are small and can be stored in the global 
memory on GPU.

For the outer loop (lines 3–22) in Algorithm 3, each i is performed on a thread of CUDA. The boundary array 
(M0, M1, ..., Mk) is stored in the shared memory in GPU to reduce the access latency. The optimal partition P =
{C1, C2, ..., Ck} obtained by Algorithm 2 is stored in a blocked ELL format, where Ci , i = 1, 2, ..., k, is stored in ELL for-
mat. The Ci blocks are assigned on a thread block of CUDA to perform SpMV, and each thread block is scheduled on a SM. 
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Fig. 4. Mapping of RVS’s to thread blocks of CUDA.

Fig. 5. The BCE format for the sparse matrix A.

Although the number of rows in Ci may not be the same, imbalance of partitions has little impact on the performance, 
because computing tasks between different SMs are independent and do not need to be synchronized.

6.2. The blocked stored format mixed CSR and ELL (BCE)

An n × n sparse matrix A is partitioned into the optimal partition P = {C1, C2, ..., Ck} by the boundary array 
(M0, M1, ..., Mk) using OPA. Define an array rowNo, which stores the original indices of rows in A. If each block of P
is a submatrix, the optimal partition P = {C1, C2, ..., Ck} can be stored in CSR format, which is shown in Figs. 4 and 5. 
Define an array Ap with k + 1 elements, which stores the number of rows of Ci for i = 1, 2, ..., k. Then Ap[0] = 0 and 
Ap[i] = ∑i

j=1 N(C j) for i = 1, 2, ..., k. The block Ci is stored in two arrays EDatai and Offseti using ELL format, whose 
lengths are E(Ci). The ELL format stores the related block by columns, in order to assure the coalescent access to the data. 
The widths of all blocks are stored in an array Aw with k elements, where Aw[i] = W (Ci) for i = 1, 2, ..., k. Define an array 
blockPos, which stores the start positions of the blocks in the arrays EData and Offset, which are combined with all EDatai

and Offseti for i = 1, 2, ..., k. The length of blockPos is k + 1, where blockPos[0] = 0 and blockPos[i] = ∑i
j=1 E(Ci) for 

i = 1, 2, ..., k.
For the sparse matrix A in Section 5.1, if the boundary array (M1, M2) is (2, 4), then A is split into three blocks 

{C1, C2, C3} using Algorithm 3. Assume that the original indices of rows {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10} in A are 
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10). Moreover, C1, C2, and C3 are {r1, r3, r4, r6, r10}, {r2, r7, r8}, and {r5, r9} respectively using Algo-
rithm 3. rowNo is (1, 3, 4, 6, 10, 2, 7, 8, 5, 9). Aw is (2, 4, 7) and Ap is (0, 5, 8, 10). blockPos, EData, and Offset are shown 
in Fig. 5.

The kernel function based on BCE format on GPU is shown in Algorithm 4.
The index of the row ri , which is computed by the current thread, is obtained in line 1 in Algorithm 4. Variables start

represent the start position of the row ri in the arrays Edata and Offset. SpMV is performed in line 8 for the row ri .
If the block of BCE format is stored by CSR format, the BCE format will become GCSR format. If the sparse matrix 

is not reordered, the BCE format will become BELLPACK and SELLPACK formats. It has been theoretically proved that the 
performance of BCE is better than that of GCSR, BELLPACK, and SELLPACK formats.
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Algorithm 4: The kernel function based on BCE format on GPU.
Input: The arrays blockPos, Ap, Aw, EData, and Offset; the vector x; the number of rows N in the sparse matrix A.
Output: The result vector y.

1 int ri ← Ap[blockIdx.x] + threadIdx.x ;
2 if ri < N then
3 int start ← blockPos[blockIdx.x] + threadIdx.x ;
4 int width ← Aw[blockIdx.x] ;
5 int rownum ← Ap[blockIdx.x + 1] − Ap[blockIdx.x] ;
6 y[ri ] ← 0 ;
7 for i ← 0 to width do
8 int idx ← start+i × rownum ;
9 if |Edata[idx])| > 0 then

10 y[ri ] ← Edata[idx] × x[Offset[idx]] + y[ri ] ;
11 end
12 end
13 end

Table 1
Parameters of the test computer.

Parameters Descriptions Values

Si the size of integer 4 Byte
Ss the size of single 4 Byte
Sd the size of double 8 Byte
C the number of SPs 2496
f s the clock speed of SPs 0.705 GHz
fa the clock speed of the global memory 2.6 GHz
AW the bus width of the global memory 320 bits
TW the bandwidth of PCIe 8 GiB/s
s the number of SMs 13

7. Experimental performance evaluation

7.1. Experiment settings

The following test environment has been used for all benchmarks. The test computer is equipped with two AMD Opteron 
6376 CPUs running at 2.30 GHz and a NVIDIA K20c GPU. Each CPU has 16 cores. The GPU has 2496 CUDA processor cores, 
working on 0.705 GHz clock and 4 GB global memory with 320 bits bandwidth at 2.6 GHz clock, with CUDA compute 
capacity 3.5. The computing power f p of a SM in K20c GPU is about 157.2 Gflop/s for single precision and about 89.4 
Gflop/s for double precision. As for software, the test machine runs the 64bit Windows 7 and NVIDIA CUDA toolkit 7.0. The 
hardware parameters of the testing computer are shown in Table 1.

All benchmarks are chosen from the UF Sparse Matrix Collection [2], whose features are shown in Table 2, where W is 
the maximum width of the sparse matrix. Most of these matrices are derived from scientific computing and real engineering 
applications.

NVIDIA Corporation provides three libraries (cuBLAS, cuSparse, and CUSP) to support matrix computation. All these 
libraries provide CUDA development tools and source codes.

CuBLAS [36] offers three levels of library functions for dense matrices.
CuSparse [37] provides three levels of functions for sparse matrices, with the first level for sparse vector and dense 

vector operations, the second level for sparse matrix and dense vector operations and the third level for sparse matrix and 
dense matrix operations. It includes three functions of SpMV, which use the CSR, BSR, and HYB formats respectively. The 
general BSR format has two parameters, rowBlockDim and colBlockDim. rowBlockDim is number of rows within a block and 
colBlockDim is number of columns within a block. If rowBlockDim = colBlockDim, general BSR format is the same as BSR 
format. If rowBlockDim = colBlockDim = 1, general BSR format is the same as CSR format. There is an analytical procedure 
for the sparse matrix at the beginning of the BSR function of cuSparse library, and the procedure will not be executed 
again after the BSR function is called for the first time for the same sparse matrix. In order to get rid of the analysis 
time in the single version test time, the BSR function is called once in advance, and then the single and double precision 
versions are called. The run time of the single version function does not contain the analysis time in the test to obtain the 
exact computation time of the single version function. HYB is a hybrid format of ELL and COO, such as the corresponding 
function for SpMV has a parameter, which has four values: 0, AUTO, USER, and MAX. The function will automatically select 
a segmentation threshold to divide the sparse matrix into ELL and COO if the parameter is AUTO. The caller must provide 
a segmentation threshold if the parameter is USER. If the threshold is 0, HYB will become COO. If the parameter is MAX, 
HYB will become ELL. The HYB function is tested using AUTO, MAX, and 0 respectively. A sparse matrix stored in the CSR 
format must be loaded into GPU by PCIe bus and the result vector is returned after SpMV has been performed for all stored 
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Table 2
General information of all sparse matrices used in the evaluation.

No. Sparse Matrices N W NNZ

1 Schenk_ISEI/ohne2 181343 3411 11063545
2 Janna/CoupCons3D 416800 76 22322336
3 Oberwolfach/bone010 986703 42 36326514
4 Janna/Serena 1391349 228 32961525
5 Janna/ML_Geer 1504002 74 110879972
6 Schenk_AFE/af_shell10 1508065 251 27090195
7 Janna/Flan_1565 1564794 69 59485419
8 Gleich/wikipedia-20051105 1634989 75547 19753078
9 Janna/Cube_Coup_dt0 2164760 52 64685452

10 Freescale/Freescale1 3428755 25 18920347
11 Rajat/rajat31 4690002 1252 20316253
12 DIMACS10/channel-500x100x100-b050 4802000 12 85362744
13 vanHeukelum/cage15 5154859 47 99199551
14 Freescale/circuit5M 5558326 1290501 59524291
15 DIMACS10/adaptive 6815744 4 27248640
16 DIMACS10/delaunay_n23 8388608 19 50331568
17 DIMACS10/road_central 14081816 8 33866826
18 DIMACS10/hugetrace-00020 16002413 3 47997626
19 DIMACS10/delaunay_n24 16777216 23 100663202
20 DIMACS10/road_usa 23947347 8 57708624

formats. So the transmission time of all stored formats is the same. But CSR format must be converted to the corresponding 
compression formats for HYB, ELL, COO, BSR, and BCE.

NVIDIA provides another library, CUSP [38], to offer SpMV for the GPU platform, which supports a variety of compression 
formats such as COO, DIA, CSR, ELL, and HYB. The COO, CSR, and HYB from CUSP show worse performance than cuSparse. 
But for most test cases, the DIA format cannot be performed, because the diagonal features of the test cases are not obvious.

Intel Math Kernel Library (Intel MKL) accelerates math processing routines that increase application performance and 
reduce development time. Intel MKL includes highly vectorized and threaded Linear Algebra, Fast Fourier Transforms (FFT), 
Vector Math and Statistics functions [39]. MKL has higher performance compared to the other lib functions for most of 
the processors, and they have been parallelized and require no alterations of your application to gain the performance 
enhancements of multiprocessing. We test SpMV using CSR function of MKL with better performance than COO function.

7.2. SpMV tests and performance evaluation

We have performed the following three experiments for comparative performance evaluation.

(1) SpMV is tested using our method and compared to that using BSR, HYB, ELL, CSR, and COO on GPU.
(2) Linear solver is tested using SpMV on GPU.
(3) SpMV is tested using our method on GPU and compared to that using MKL on multi-core CPU.

7.2.1. Test of SpMV on GPU
The process of SpMV includes three steps, which are transmission, pretreatment, and computation. A sparse matrix 

A and a vector x must be loaded into the global memory of GPU by PCIe bus before SpMV is executed on GPU, and 
then a result vector x is returned from GPU after SpMV has been executed. The sparse matrix A is usually stored in CSR 
format before A is processed because of better compression efficiency. So the transmission time is the same for different 
computing methods. The pretreatment process includes matrix partitioning and format conversion for BSR, HYB, ELL, and 
COO functions of cuSparse. The pretreatment process includes matrix partitioning using OPA, reordering using Algorithm 3, 
and format conversion of BCE for our method. But there is no pretreatment process for CSR.

For the 20 test cases, the computing time of SpMV using our method, BSR, HYB, ELL, COO, and CSR are shown in Table 3, 
where BCE represents the computing time of SpMV using our method and NA means that the sparse matrix cannot be 
computed using the format.

For the 20 test cases, the performance improvements in percentage of computing time using our method over BSR, HYB, 
ELL, COO, and CSR are shown in Table 4. The performance improvement in percentage is calculated by (t1 − t2)/t1 × 100, 
where t2 is the computing time of SpMV using our method and t1 is that of BSR, HYB, ELL, COO, or CSR. The test cases 
expect Schenk_AFE/af_shell10 cannot be computed using ELL format for double precision. For all test cases, it is observed 
from Table 4 that the average performance improvements in percentage of single precision are 12.3%, 11.7%, 16.5%, 27.7%, 
and 21.7% using our method compared with BSR, HYB, ELL, COO, and CSR respectively, and those of double precision are 
12.3%, 12.2%, 20.5%, 28.1%, and 21.7% respectively.

For vanHeukelum/cage15, SpMV cannot be processed using BSR, because the storage spaces using BSR are more than 
the memory of GPU. ELL format has poor adaptability for big sparse matrices, because some rows are padded zero ac-
cording to the longest row, leading to the size of data too big to be processed on GPU. The long rows are divided into 
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Table 3
Computing time of SpMV using our method, BSR, HYB, ELL, COO, and CSR (unit: milliseconds).

No. Single Precision Double Precision

BCE BSR HYB ELL COO CSR BCE BSR HYB ELL COO CSR

1 3.2 4.1 3.2 NA 3.9 3.3 3.3 4.8 3.3 NA 4.0 3.4
2 4.5 4.7 4.6 5.1 5.3 5.2 2.8 2.9 4.7 NA 6.0 5.4
3 7.2 7.4 7.2 8.2 11.0 8.4 6.5 6.6 7.4 NA 11.0 8.5
4 7.7 8.9 7.8 10.2 10.8 9.6 8.1 9.6 8.2 NA 11.0 9.9
5 9.0 9.2 13.9 14.9 25.4 15.8 13.2 13.4 14.0 NA 27.0 16.0
6 8.1 8.5 8.5 8.2 21.6 8.9 6.6 6.7 8.6 8.3 31.0 9.1
7 7.1 7.3 11.1 13.1 17.1 13.0 10.3 10.4 11.4 NA 17.3 13.0
8 15.8 27.6 16.5 NA 16.2 33.5 17.1 35.7 17.4 NA 17.7 34.6
9 6.5 6.6 13.8 14.4 19.4 14.1 8.0 8.5 14.0 NA 20.0 15.0

10 11.2 13.8 12.4 12.1 14.7 12.7 12.2 14.1 14.5 NA 15.0 13.2
11 13.3 17.5 17.8 NA 18.5 14.4 15.1 20.6 18.2 NA 19.0 15.2
12 16.8 19.3 17.3 17.7 24.0 19.4 16.9 20.1 17.4 NA 24.0 19.5
13 24.9 29.6 25.1 27.2 59.9 28.9 25.1 NA 27.0 NA 57.0 30.0
14 23.4 45.7 24.4 NA 33.2 353.8 25.2 47.9 25.4 NA 34.8 362.0
15 21.9 23.9 23.8 24.0 22.6 24.2 20.1 20.5 26.0 NA 23.0 24.5
16 27.9 29.3 28.4 31.6 29.6 31.2 29.2 30.2 29.4 NA 29.8 31.8
17 48.0 49.8 56.2 50.1 49.2 49.1 45.1 46.3 53.0 NA 49.5 49.2
18 49.6 51.6 61.0 61.3 55.2 54.6 51.7 52.2 62.3 NA 55.4 55.0
19 55.8 57.9 62.3 59.2 59.4 59.4 57.7 58.4 62.5 NA 59.6 59.6
20 71.3 75.5 72.8 74.0 75.3 72.2 72.5 77.6 73.3 NA 76.0 75.0

Table 4
Performance improvements of SpMV Using our method over BSR, HYB, ELL, COO, and CSR (unit: %).

No. Single Precision Double Precision

BSR HYB ELL COO CSR BSR HYB ELL COO CSR

1 22.0 0.0 NA 17.9 3.0 31.3 0.0 NA 17.5 2.9
2 4.3 2.2 11.8 15.1 13.5 3.4 40.4 NA 53.3 48.1
3 2.7 0.0 12.2 34.5 14.3 1.5 12.2 NA 40.9 23.5
4 13.5 1.3 24.5 28.7 19.8 15.6 1.2 NA 26.4 18.2
5 2.2 35.3 39.6 64.6 43.0 1.5 5.7 NA 51.1 17.5
6 4.7 4.7 1.2 62.5 9.0 1.5 23.3 20.5 78.7 27.5
7 2.7 36.0 45.8 58.5 45.4 1.0 9.6 NA 40.5 20.8
8 42.8 4.2 NA 2.5 52.8 52.1 1.7 NA 3.4 50.6
9 1.5 52.9 54.9 66.5 53.9 5.9 42.9 NA 60.0 46.7

10 18.8 9.7 7.4 23.8 11.8 13.5 15.9 NA 18.7 7.6
11 24.0 25.3 NA 28.1 7.6 26.7 17.0 NA 20.5 0.7
12 13.0 2.9 5.1 30.0 13.4 15.9 2.9 NA 29.6 13.3
13 15.9 0.8 8.5 58.4 13.8 NA 7.0 NA 56.0 16.3
14 48.8 4.1 NA 29.5 93.4 47.4 0.8 NA 27.6 93.0
15 8.4 8.0 8.8 3.1 9.5 2.0 22.7 NA 12.6 18.0
16 4.8 1.8 11.7 5.7 10.6 3.3 0.7 NA 2.0 8.2
17 3.6 14.6 4.2 2.4 2.2 2.6 14.9 NA 8.9 8.3
18 3.9 18.7 19.1 10.1 9.2 1.0 17.0 NA 6.7 6.0
19 3.6 10.4 5.7 6.1 6.1 1.2 7.7 NA 3.2 3.2
20 5.6 2.1 3.6 5.3 1.2 6.6 1.1 NA 4.6 3.3

ELL and COO using HYB format to reduce zero-padded, so HYB has better adaptability than that of ELL. For Rajat/rajat31, 
Schenk_ISEI/ohne2, Gleich/wikipedia-20051105, and Freescale/circuit5M, the performance of our method improves signifi-
cantly compared to that of CSR and BSR, because the NNZ of rows has big deviation, leading to very low parallel efficiency 
of GPU using CSR and BSR, and the performance using HYB is good, because the long rows are divided into ELL and COO to 
reduce deviation.

7.2.2. Test of linear solver using SpMV on GPU
For our method, BSR, HYB, ELL, and COO, there are a pretreatment time in the total processing time, and there is no 

pretreatment time for CSR because it does not need format conversion. However, since the coefficient matrix is fixed in the 
process of solving a sparse linear system, matrix partitioning is processed only once, and SpMV is executed many times for 
solving a large-scale sparse linear system using an iterative method, so it has little impact on solving a large-scale sparse 
linear system using pretreatment technique. The linear equations, whose coefficient matrices are the test cases, are solved 
by the iterative solving algorithms of Lis library [40] in the experiments, and then the numbers of iterations are obtained 
by solving these linear equations. The same initial vector was used for all cases. For the 20 test cases, the numbers Iters
of iterations are shown in Table 5. Assume that the pretreatment time and computing time are represented by T p and Tc

respectively. Then processing time of SpMV for solving the test cases is calculated by T p + Iters × Tc . For the 20 test cases, 
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Table 5
Processing time of SpMV using our method, BSR, HYB, ELL, COO, and CSR for solving linear equations (unit: second).

No. Iters Single Precision Double Precision

BCE BSR HYB ELL COO CSR BCE BSR HYB COO CSR

1 9811 31.1 40.2 31.9 NA 38.7 32.3 32.3 47.3 32.4 39.3 33.2
2 5542 25.1 26.1 25.3 28.5 29.3 28.8 15.4 16.0 25.9 33.4 30.1
3 9554 68.9 70.7 69.0 78.2 105.2 79.9 62.4 63.3 71.0 105.3 81.0
4 3865 29.8 34.4 30.3 39.5 41.9 37.2 31.3 37.2 31.8 42.7 38.2
5 9267 84.2 85.8 128.7 137.9 236.2 146.9 123.5 124.5 129.9 250.8 148.3
6 6902 55.8 58.8 58.6 56.4 149.5 61.6 45.7 46.3 59.3 214.1 62.8
7 10001 70.8 72.9 110.7 131.1 171.1 129.6 103.1 104.0 113.7 173.0 130.0
8 9827 155.35 271.6 162.6 NA 159.7 329.3 168.1 351.4 170.8 174.0 340.2
9 7051 46.3 46.6 97.2 101.4 137.0 99.8 56.8 59.6 98.9 141.4 105.8

10 8670 96.9 120.3 107.2 104.8 127.6 110.2 106.3 122.6 125.4 130.1 114.0
11 4362 58.3 76.5 77.9 NA 80.7 62.7 66.0 89.9 79.6 83.0 66.3
12 5513 93.2 106.5 95.4 97.8 132.3 107.1 93.2 110.7 95.9 132.5 107.8
13 24 1.3 1.4 0.8 0.8 1.9 0.7 1.4 NA 0.9 1.8 0.7
14 7113 167.9 305.0 174.9 NA 237.6 2516.3 181.0 341.9 182.0 249.0 2574.9
15 4998 109.5 119.5 118.9 119.9 112.8 120.7 100.5 102.7 130.1 115.1 122.5
16 6115 170.6 179.3 174.0 193.1 181.0 190.6 178.7 184.7 179.7 182.1 194.3
17 8585 412.18 427.7 482.4 429.9 422.5 421.4 387.2 397.9 455.3 424.9 422.5
18 8006 397.1 413.3 488.6 491.0 442.1 437.2 413.9 418.6 499.1 443.5 440.2
19 10000 558.0 579.2 623.4 592.3 594.7 594.2 577.6 584.4 624.8 596.7 595.7
20 9260 660.3 699.5 674.2 685.8 697.6 668.7 671.4 719.5 679.3 704.1 694.5

Table 6
Performance improvements of SpMV using our method over BSR, HYB, ELL, COO, and CSR for solving linear equations (unit: %).

No. Single Precision Double Precision

BSR HYB ELL COO CSR BSR HYB ELL COO CSR

1 22.6 2.5 NA 19.6 3.7 31.7 0.3 NA 17.8 2.7
2 3.8 0.8 11.9 14.3 12.8 3.8 40.5 NA 53.9 48.8
3 2.5 0.1 11.9 34.5 13.8 1.4 12.1 NA 40.7 23.0
4 13.4 1.7 24.6 28.9 19.9 15.9 1.6 NA 26.7 18.1
5 1.9 34.6 38.9 64.4 42.7 0.8 4.9 NA 50.8 16.7
6 5.1 4.8 1.1 62.7 9.4 1.3 22.9 20.1 78.7 27.2
7 2.9 36.0 46.0 58.6 45.4 0.9 9.3 NA 40.4 20.7
8 42.8 4.5 NA 2.7 52.8 52.2 1.6 NA 3.4 50.6
9 0.6 52.4 54.3 66.2 53.6 4.7 42.6 NA 59.8 46.3

10 19.5 9.6 7.5 24.1 12.1 13.3 15.2 NA 18.3 6.8
11 23.8 25.2 NA 27.8 7.0 26.6 17.1 NA 20.5 0.5
12 12.5 2.3 4.7 29.6 13.0 15.8 2.8 NA 29.7 13.5
13 7.1 −62.5 −62.5 31.6 −85.7 NA −55.6 NA 22.2 −100.0
14 45.0 4.0 NA 29.3 93.3 47.1 0.5 NA 27.3 93.0
15 8.4 7.9 8.7 2.9 9.3 2.1 22.8 NA 12.7 18.0
16 4.9 2.0 11.7 5.7 10.5 3.2 0.6 NA 1.9 8.0
17 3.6 14.6 4.1 2.4 2.2 2.7 15.0 NA 8.9 8.4
18 3.9 18.7 19.1 10.2 9.2 1.1 17.1 NA 6.7 6.0
19 3.7 10.5 5.8 6.2 6.1 1.2 7.6 NA 3.2 3.0
20 5.6 2.1 3.7 5.3 1.3 6.7 1.2 NA 4.6 3.3

the processing time of SpMV for solving the test cases is shown in Table 5, but the solving time using ELL is not listed 
in Table 6 for double precision, because the test cases expect that Schenk_AFE/af_shell10 cannot be computed using ELL 
format for double precision. The solving time of Schenk_AFE/af_shell10 using ELL is 57.2 seconds.

For the 20 test cases, the performance improvements in percentage using our method over BSR, HYB, ELL, COO, and CSR 
for solving the test cases are shown in Table 6. The performance improvement in percentage is calculated by (t1 − t2)/t1 ×
100, where t2 is the processing time of SpMV using our method and t1 is that of BSR, HYB, ELL, COO, or CSR. We have the 
following observations from Table 6.

For the test cases, the average performance of single precision is improved by 11.7% and 26.4% by using our method 
compared with BSR and COO, and that of double precision is improved by 12.2% and 26.4%. The average performance of sin-
gle precision is improved by 12.3% and 22.0% using our method compared with HYB and CSR except vanHeukelum/cage15, 
and that of double precision is improved by 12.4% and 21.8% except vanHeukelum/cage15. The average performance of 
single precision is improved by 16.9% by using our method compared with ELL except Schenk_ISEI/ohne2, Gleich/wikipedia-
2005110, Rajat/rajat31, vanHeukelum/cage15, and Freescale/circuit5M, and that of double precision is improved by 20.1% 
for Schenk_AFE/af_shell10 only. The transformation time of the test cases is shown in Table 7 for SpMV. Although in a 
single SpMV operation, the transformation time occupied a large proportion, it has little impact on the performance of 
solving equations except vanHeukelum/cage15, because the number of iterations is large. For vanHeukelum/cage15, the per-
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Table 7
Transformation time of BCE, BSR, HYB, ELL, COO from CSR (unit: milliseconds).

No. Single Precision Double Precision

BCE BSR HYB ELL COO BCE BSR HYB ELL COO

1 26.2 23.6 25.7 NA 65.9 68.8 66.3 34.0 NA 66.0
2 45.8 15.4 37.1 34.0 27.3 50.2 19.4 41.0 NA 26.0
3 77.9 17.8 71.0 55.6 212.5 54.4 52.1 52.0 NA 204.0
4 87.0 46.4 78.4 53.1 169.5 112.6 106.5 54.0 NA 165.0
5 574.1 564.7 183.0 168.6 637.6 774.1 459.5 140.0 NA 624.0
6 164.3 163.4 51.3 39.4 98.9 173.2 166.9 83.1 63.1 76.1
7 127.1 105.8 111.6 90.7 340.6 74.5 70.3 92.0 NA 330.0
8 338.4 335.7 125.8 NA 122.8 339.2 339.5 126.0 NA 131.0
9 155.0 73.9 120.6 97.4 360.3 135.5 34.0 127.0 NA 367.0

10 66.1 64.7 56.3 39.9 66.9 135.6 111.6 75.0 NA 71.0
11 153.1 143.0 67.9 NA 74.8 212.9 207.1 97.0 NA 82.0
12 127.5 74.4 107.5 70.9 163.0 212.7 201.7 115.0 NA 153.0
13 694.2 643.2 188.0 139.5 418.5 765.1 NA 206.0 NA 465.0
14 1519.2 1272.1 1444.0 NA 1475.3 1561.7 1253.3 1354.0 NA 1417.0
15 98.4 71.0 95.2 72.4 84.4 157.2 146.0 122.0 NA 93.0
16 163.1 119.4 154.6 92.1 128.8 223.8 218.2 177.0 NA 131.0
17 206.7 203.5 192.4 147.4 168.5 311.0 306.4 229.0 NA 179.0
18 244.5 232.8 227.8 161.4 185.0 331.8 326.9 263.0 NA 187.0
19 316.2 244.7 294.0 233.9 282.7 403.8 395.9 280.0 NA 253.0
20 473.5 367.5 434.5 255.9 366.2 506.6 506.6 405.0 NA 318.0

Table 8
Performance comparison of SpMV using our method on GPU over MKL on CPU.

No. Single Precision Double Precision

MKL (s) BCE (s) Improvement (%) MKL (s) BCE (s) Improvement (%)

1 0.194 0.062 68.118 0.219 0.121 44.725
2 0.390 0.114 70.823 0.421 0.151 64.142
3 0.643 0.196 69.520 0.718 0.231 67.844
4 0.564 0.189 66.496 0.640 0.280 56.275
5 2.302 0.891 61.294 2.340 1.268 45.796
6 0.634 0.264 58.438 0.609 0.430 29.450
7 1.047 0.302 71.156 1.123 0.356 68.316
8 0.492 0.436 11.346 0.484 0.475 1.760
9 1.151 0.344 70.122 1.280 0.432 66.289

10 0.377 0.136 64.011 0.406 0.245 39.692
11 0.409 0.231 43.629 0.437 0.336 23.117
12 0.795 0.271 65.893 0.843 0.469 44.394
13 2.206 1.000 54.662 2.277 1.248 45.180
14 1.994 1.814 9.015 1.917 1.877 2.089
15 0.357 0.169 52.705 0.375 0.263 29.765
16 0.548 0.274 50.073 0.593 0.434 26.823
17 0.550 0.372 32.285 0.608 0.516 15.090
18 0.693 0.424 38.755 0.748 0.591 20.999
19 1.115 0.536 51.941 1.186 0.774 34.738
20 0.797 0.660 17.205 0.873 0.811 7.119

formances of HYB, ELL, and CSR are better than that of our method, because its iteration number is less. For Janna/Serena, 
the computing time of HYB is close to that of our method, and the pretreatment time of HYB is half of that of our method. 
So the performance of HYB is better than that of our method for double precision.

7.2.3. Test of SpMV on GPU and CPU
The total processing time of SpMV using our method on GPU is the sum of transmission time, pretreatment time, and 

computing time. But there are no transmission time and pretreatment time using the MKL library on a multi-core CPU. 
Assume that the processing time of using our method and MKL are represented by BCE and MKL respectively. For the 20 
test cases, BCE and MKL are shown in Table 8. Then BCE and MKL are calculated by Tt + T p + Tc , where Tt , T p , and Tc are 
the transmission time, pretreatment time, and computing time respectively. The performance improvement in percentage is 
calculated by (MKL − BCE)/MKL × 100.

For all test cases, it is observed from Table 8 that the average performance improvement in percentage of single precision 
using our method on GPU is 51.374% for MKL on CPU, and that of double precision is 36.680%.
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8. Conclusions

In this paper, we use a DF to build an optimal partitioning strategy and a reordering algorithm for sparse matrices. This 
method has wide adaptability for different types of sparse matrices, and is different from existing methods which only 
adapt to some particular sparse matrices. Our partitioning strategy and reordering algorithm are based on the distribution 
characteristics of non-zeros in a sparse matrix. We propose a blocked stored format mixing CSR and ELL for a sparse matrix. 
Although the sizes of the blocks partitioned from the sparse matrix may be different, the storage spaces using BCE format 
have better compression effect, because the widths of rows in the same block are the similar. According to the experimental 
results, it is found that the average performance improvements in percentage of single precision are 12.3%, 11.7%, 16.5%, 
27.7%, and 21.7% using our method compared with BSR, HYB, ELL, COO, and CSR respectively, and those of double precision 
are 12.3%, 12.2%, 20.5%, 28.1%, and 21.7% respectively. In future work, we will explore the new solving methods based on 
SpMV for large scale sparse linear systems of equations.
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