
Journal of Computer and System Sciences 92 (2018) 152–170
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

A parallel computing method using blocked format

with optimal partitioning for SpMV on GPU

Wangdong Yang a,b,∗, Kenli Li a,c,∗, Keqin Li a,d

a College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
b College of Information Science and Engineering, Hunan City University, Yiyang, Hunan 413000, China
c The National Supercomputing Center in Changsha, Changsha, Hunan 410082, China
d Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 January 2016
Received in revised form 9 June 2017
Accepted 26 September 2017
Available online 16 October 2017

Keywords:
Blocked format
CPU/GPU
Dynamic programming
Heterogeneous parallel computing
Partitioning
Reordering
Sparse matrix–vector multiplication

For large-scale sparse matrices, SpMV cannot be processed on GPU using the common
storage formats because of the memory limitation. In addition, the parallel effect is poor
using general formats for the sparse matrices with extremely uneven distribution of non-
zero elements, which leads to performance deterioration. This paper presents an optimal
partitioning strategy based on the distribution of non-zero elements in a sparse matrix to
improve the performance of SpMV, and uses a hybrid format, which mixes CSR and ELL
formats, to store the blocks partitioned from the sparse matrix. The hybrid blocked format
has better compression effect and more uniform distribution of non-zero elements, which
can be suitable for more types of sparse matrices. Our partitioning strategy is proven to be
optimal, which can yield the minimum parallel execution time on GPU.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

In recent years, accelerator-based computing using accelerators, such as the IBM Cell synergistic processing unit (SPU),
field programmable gate array (FPGA), graphics processing unit (GPU), and application specific integrated circuit (ASIC),
has achieved clear performance gains compared to CPUs. Among the accelerators, GPUs have occupied a prominent place
due to their low cost and high performance-per-watt ratio along with powerful programming models. However, as CPU
architectures also evolve and address challenges such as the power wall and the memory wall, and compete with these
accelerators, it is imperative that CPUs should also be included in computations. It is further observed by [1] that several
irregular applications such as sparse matrix–vector multiplication (SpMV) can benefit from heterogeneous algorithms that
run on a CPU and GPU based heterogeneous computing platform.

SpMV is an essential operation in solving linear systems and partial differential equations. SpMV faces two challenges,
which are large scales and irregular distributions of non-zero elements. With the increasing scale of sparse matrices,
the sparse matrix of SpMV cannot be loaded into the GPU once to be computed. So a large-scale sparse matrix must be
split into some submatrices to be computed separately. It is a challenging issue to adopt an appropriate method to split a

* Corresponding authors.
E-mail addresses: yangwangdong@163.com (W. Yang), lkl@hnu.edu.cn (K. Li).
https://doi.org/10.1016/j.jcss.2017.09.010
0022-0000/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2017.09.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:yangwangdong@163.com
mailto:lkl@hnu.edu.cn
https://doi.org/10.1016/j.jcss.2017.09.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2017.09.010&domain=pdf

W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170 153
sparse matrix. In addition, load imbalance of parallel computing on GPU are generated, because of irregular distribution of
non-zero elements in a sparse matrix, which leads to parallel efficiency decrease. The ELL format is a regular compression
format for a sparse matrix, which has the same length of rows, and can avoid load imbalance. But the significant difference
between the numbers of non-zero elements in rows will lead to more filling of zeroes. So those rows with similar numbers
of non-zero elements are grouped into the same block from a sparse matrix to improve the effect of compression of ELL. It
is also a challenging issue to determine the size of a block. If the size of the block is too large, there are more zeros to fill
in the block. On the contrary, if the size of the block is too small, the number of blocks is too much, leading to an increased
number of computing tasks.

How to make full use of computing resources to maximize parallel computing ability is the key to improve the per-
formance of SpMV. Firstly, load balancing between the threads is the basis of improving performance for streaming
multiprocessor (SM) on GPU. Secondly, improving the efficiency of data access is very important to improve the parallel
efficiency of GPU.

1.2. Our contributions

The present paper makes the following unique contributions to parallel computation of SpMV on GPU and CPU.

• We develop an optimal partitioning strategy based on dynamic programming and a distribution function (DF) of non-
zero elements to improve the performance of SpMV.

• We present a reordering algorithm in which the time complexity is only O (N log2 k), where k is the number of partitions
and far less than the number of rows. However, the time complexity of a general method is O (N log2 N).

• We employ a hybrid format to store a blocked sparse matrix partitioned by our optimal partitioning strategy.

Our partitioning strategy is proven to be optimal, which can yield the minimum parallel execution time on GPU. Our
partitioning strategy is based on the DF, which characterizes the distribution of non-zero elements in a sparse matrix. Our
partitioning strategy consists of three steps, i.e., building the DF of a sparse matrix, partitioning the rows using dynamic
programming, and reordering the rows. Firstly, the DF of a target sparse matrix is constructed according to the analysis of
the distribution of non-zero elements per row. Secondly, the intervals of partitioning are determined by our partitioning
algorithm based on the DF. Thirdly, these blocks for SpMV are segmented from the sparse matrix by a reordering algorithm.
Furthermore, these blocks are stored in a hybrid format to obtain further performance gain.

In this paper, 20 sparse matrices, which are obtained from [2], are tested on NVIDIA K20c GPU and AMD Opteron
6376 CPU. The performance improvement of our algorithm is very effective according to our experiments. Our partitioning
strategy has the best performance, which can partition for sparse matrices according to the minimum parallel processing
time. According to our experiments on 20 test cases, the performance of SpMV is significantly improved when a sparse
matrix is partitioned into blocks by our method, and improvement of our reordering algorithm is also effective.

This paper extends our previous work [3,4]. The current paper presents a new partitioning strategy based on processing
time and using DF, and proposes a hybrid storage format and a kernel function for SpMV on GPU.

The remainder of the paper is organized as follows. In Section 2, we review related research on SpMV. In Section 3, we
review the programming model of GPU and the storage formats of sparse matrices. In Section 4, we present the DF for
sparse matrices. In Section 5, we analyze the parallel processing time of SpMV to develop our optimal partitioning strategy.
In Section 6, we describe the implementation of SpMV in parallel using our method on GPU. In Section 7, we demonstrate
our extensive experimental performance comparison results. In Section 8, we conclude the paper.

2. Related work

2.1. Parallel implementation of SpMV on GPU and partitioning strategies

Bolz et al. [5] proposed one of the first SpMV CUDA kernel implementations. [6] designed a new HYB format for SpMV
in CUDA, representing the matrix in ELLPACK format (ELL) and coordinate format (COO) portions, to combine the speed of
ELL and the flexibility of COO. Lee et al. [1] discussed optimization techniques for both CPU and GPU, and analyzed what
architecture features contribute to performance differences between the two architectures. Stanimire et al. [7] presented a
set of techniques that can be used to develop efficient dense linear algebra algorithms for hybrid multicore + GPU systems,
and used asynchronous techniques to reduce the amount of communication between the hybrid components.

In large-scale scientific and engineering calculations, some very big sparse matrices are produced. These sparse matrices
are too big to compute by one GPU once. So they should be partitioned into small blocks to be processed multiple times
on GPU. But due to various distributions of non-zero elements in sparse matrices, there is no general partitioning method
to adapt to all kinds of sparse matrices.

For the blocked compressed sparse row (BCSR) format [8] and the row-grouped CSR (GCSR) format [9], which the rows
in a sparse matrix are split into blocks. For the blocked ELLPACK (BELLPACK) format [10] and the sliced ELLPACK (SELLPACK)
format [11], a sparse matrix is partitioned into blocks after it is compressed by the ELL format. For segmented interleave

154 W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170
combination (SIC) format [12], and compressed sparse blocks (CSB) format [13], a sparse matrix is partitioned into subma-
trices according to the distribution of non-zero elements. The padded jagged diagonals storage (pJDS) format [14] is suitable
for diagonal matrices. A sparse matrix is partitioned using the above partitioning algorithms in accordance with the original
order.

Other strategies partition sparse matrices according to the configuration of a computing environment, such as the cache
scale of processors [15,12], the computing power of processors [16,17], and the data transmission bandwidth [13]. Further-
more, other strategies partition sparse matrices according to the characteristics of a sparse matrix, such as the proportion
of non-zero elements in the sparse matrix [18], the compression effect of different formats [19], and dense blocks in the
sparse matrix [20].

Refs. [21,22] proposed to perform three-way and multi-way split approaches to break down a matrix–vector product
into some matrix–vector products with smaller sizes. The partitioning strategies based on the original order are sensitive
to sparse distribution and cannot achieve satisfactory compression effect in most cases. The partitioning strategies based on
the characteristics of a sparse matrix need an effective analysis method to analyze quantitatively the sparse characteristics
results in computing complexity. In addition, a row may be split into different submatrices by a partitioning strategy, leading
to the need of accumulation of calculation results [16,10], which adds extra time overhead.

2.2. Reordering techniques of sparse matrices for SpMV

Reordering techniques have been a successful approach to improving the performance of SpMV. These techniques eval-
uate the sparsity pattern of a matrix to find an appropriate permutation of rows and columns of the original matrix. The
traditional reordering techniques mainly include approximate minimum degree (AMD) [23], distance function [24], reverse
Cuthill–McKee (RCM) [25], and nested dissection [26]. All the ordering techniques try to reduce the fill-in, but each one uses
a different approach. The objective of AMD is to find a permutation of the original matrix that reduces the fill-in. Distance
function allows to permute individual rows/columns of the original matrix or sets of consecutive rows/columns. RCM algo-
rithm is the same algorithm as the original one but with the resulting index numbers reversed. METIS [27] included in the
library computes fill-reducing orderings using a particular implementation of nested dissection algorithm, which can only
be applied to matrices with symmetric pattern.

A sparse matrix should be reordered in order to make the calculated loads of the segmented blocks more balanced.
The rows with similar numbers of non-zero elements should be allocated in the same block, which is suitable for parallel
processing. All the rows in CSR are reordered according to their lengths in the process of some reordering [12,14], leading
to calculation amount increase, whose time complexity is O (N log2 N). Ref. [28] discussed three reordering methods: CRS
block order, ACRS block order, and ZZ-CCS block order. The ZZ-CCS block order is superior to the ACRS block order, which
in turn is better than the CRS block order. Ref. [29] discussed a Hilbert-ordering on the non-zeroes of a sparse matrix and
found a perfectly balanced partitioning based on this ordering, which is equivalent to partitioning into equally-sized parts.

3. CUDA and storage of sparse matrices

3.1. An introduction to CUDA

The modern GPUs have evolved from a fixed-function graphics pipeline to a programmable parallel processor with com-
puting power exceeding that of multicore CPUs. The basic computing unit of a GPU is SM. As a component at the bottom
of the independent hardware structure, SM can be seen as a single instruction multiple data (SIMD) processing unit. Each
SM contains some scalar processors (SP) and special function units (SFU). In addition, each SM contains the shared memory
for threads to share data or communications in the block. Using the model explicitly to access memory, the accessed speed
of the shared memory is close to that of register without bank conflict. SM contains some registers, which are allocated by
each thread in the execution. All SMs share the global memory [30]. For GPU architectures, CUDA (Compute Unified Device
Architecture) was provided from NVIDIA to improve the efficiency of programming on GPU. CUDA is a complete general
purpose graphics processing units (GPGPU) solution that provides direct access to the hardware interface, rather than the
traditional approach that must rely on the graphical interface API. A heterogeneous parallel computing system based on CPU
and GPU can be built using CUDA, as shown in Fig. 1.

The number of threads used in CUDA is decided by the programmer to be executed. A collection of threads (called a
block) runs on a SM at a given time. Multiple blocks can be assigned to a single SM and their execution is time-shared.
Warp is a group of threads which are issued and scheduled as a basic unit on Nvidia GPUs. Currently, the size of a warp is
32, so 32 threads are issued and scheduled at the same time by a SM.

3.2. Storage formats of sparse matrices

The 4-by-4 sparse matrix A shown below is used as a running example in this section:

W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170 155
Fig. 1. A heterogeneous parallel computing system based on CUDA.

A =

⎛
⎜⎜⎝

1 0 2 0
0 0 7 0
4 5 0 8
0 1 0 3

⎞
⎟⎟⎠ .

3.2.1. Storage space of CSR
The compressed sparse row (CSR) format is a popular and general-purpose sparse matrix representation scheme. CSR

explicitly stores column indices and non-zero values in arrays Aj and Av. The third array Ap represents the starting position
of each row in the array Aj. For an N-by-M matrix, Ap has length N + 1 and stores the offset of the ith row in Ap[i]. The
value of the last element is the number of non-zeros (NNZ). For the example sparse matrix S , we have

Aj = (
1 3 3 1 2 4 2 4

)
,

Av = (
1 2 7 4 5 8 1 3

)
,

Ap = (
0 2 3 6 8

)
.

3.2.2. Storage space of ELL
Another storage scheme that is well-suited to vector architectures is the ELL format. For an N-by-M matrix with a

maximum of K non-zeros per row, the ELL format stores the non-zero values in a dense N-by-K array EData, and rows
with fewer than K non-zeros are zero-padded. Similarly, the corresponding column indices are stored in Offset, again with
some sentinel value used for padding. For the example sparse matrix A, we have

EData =

⎛
⎜⎜⎝

1 2 0
7 0 0
4 5 8
1 3 0

⎞
⎟⎟⎠ , Offset =

⎛
⎜⎜⎝

1 3 ∗
3 ∗ ∗
1 2 4
2 4 ∗

⎞
⎟⎟⎠ .

3.2.3. Storage space of COO
The coordinate (COO) format is a particularly simple storage scheme of triples (row, column, value). The arrays row,

column, and value store the row indices, column indices, and values of the non-zero elements in matrix respectively. For
the example sparse matrix A, we have

156 W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170
row = (
1 1 2 3 3 3 4 4

)
,

column = (
1 3 3 1 2 4 2 4

)
,

value = (
1 2 7 4 5 8 1 3

)
.

3.2.4. Storage space of HYB
HYB is a hybrid format of ELL and COO. Given a threshold K , the part of rows with more than K non-zeros is extracted

to be stored by COO and the other part is stored by ELL with little zero-padded in ELL. A sparse matrix can be divided into
two parts: COO and ELL. For the example sparse matrix A, we have

COO :
⎧⎨
⎩

row = (
3

)
column = (

4
)

value = (
8

) ELL :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EData =

⎛
⎜⎜⎝

1 2
7 0
4 5
1 3

⎞
⎟⎟⎠

Offset =

⎛
⎜⎜⎝

1 3
3 ∗
1 2
2 4

⎞
⎟⎟⎠

.

While the ELL format is well-suited to vector architectures, its efficiency rapidly degrades when the number of non-
zeroes per matrix row varies. In contrast, the storage efficiency of COO is invariant to the distribution of non-zeros per row.
HYB stores the majority of matrix entries in ELL and the remaining entries in COO.

The non-zeros in rows with no more than K non-zeros are stored in ELL and the remaining entries in COO. ELL stores
an N-by-K dense matrix.

3.2.5. Storage space of BSR
The only difference between the CSR and BSR formats is the format of the storage element. The former stores primitive

data types whereas the latter stores a two-dimensional square block of primitive data types. The dimension of the square
block is blockDim. An m × n sparse matrix A is equivalent to a block sparse matrix Ab with mb = m+blockDim−1

blockDim block rows
and nb = n+blockDim−1

blockDim block columns. If m or n is not multiple of blockDim, then zeros are filled into Ab .
As with CSR format, (row, column) indices of BSR are stored in row-major order. The index arrays are first sorted by

row indices and then within the same row by column indices. For the example sparse matrix A, if blockDim is 2, then mb
and nb are 2, and matrix A is split into 2 × 2 block matrix Ab . Based on one-based indexing, the block-wise view can be
represented as follows:

Ab =
(

A11 A12
A21 A22

)
,

A11 =
(

1 0
0 0

)
, A12 =

(
2 0
7 0

)
, A21 =

(
4 5
0 1

)
, A22 =

(
0 8
0 3

)
.

4. Distribution of non-zero elements in a sparse matrix

Taking into consideration the structure of a sparse matrix can dramatically improve the performance of SpMV. However,
sparse matrices arise from different domains and have distinct distribution patterns of non-zero elements. Adopting a suit-
able storage format according to the distribution pattern of a sparse matrix is very helpful to improve the performance of
SpMV. We can accurately describe the distribution pattern of a sparse matrix by a DF, and get numerical characteristics of
sparsity distribution from the DF. The suitable blocks can be partitioned from the sparse matrix by numerical characteristics
of sparsity distribution.

4.1. The DF of sparse matrices

Let A be a sparse matrix with N rows and M columns. A can be viewed as a sequence of M-dimensional rows, i.e.,
A = (rT

1 , rT
2 , ..., rT

N)T . For convenience, we also treat A as a multiset in which members are allowed to appear more than
once, i.e., A = {r1, r2, ..., rN}, since some row vectors may be identical. Without loss of generality, we assume that there is
no zero-vector (i.e., all components of a vector are zero) in A; otherwise, we can simply remove the zero-vectors from A,
and add corresponding zeros to the result vector of SpMV.

Let Rm represent the multiset of row vectors in A, in which all vectors have m non-zero components, where 1 ≤ m ≤ M .
Thus, we have A = R1 ∪ R2 ∪ · · · ∪ R M . We call R1, R2, ..., R M as row vector sets (RVS). Define the DF of A as

f A : {1,2, ..., M} → {0,1,2, ..., N},
where f A(m) = |Rm| = bm is the number of row vectors in Rm . It is clear that b1 +b2 +· · ·+bM = N . Also, Rm = ∅ if bm = 0.

W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170 157
4.2. The characteristics of the DF

Let C = {rn1 , rn2 , ..., rnb } be any set of row vectors. The number of row vectors in C is

N(C) = |C | = b.

The width of C is expressed as

W (C) = max{NNZ(rn1),NNZ(rn2), ...,NNZ(rnb)},
where NNZ(r) is the number of non-zero elements in a row vector r. The number of non-zero elements in C is

NNZ(C) = NNZ(rn1) + NNZ(rn2) + · · · + NNZ(rnb).

The total number of elements in a minimum dense matrix (i.e., in the ELL format) that includes C is

E(C) = N(C) × W (C).

The density of C is the proportion of non-zero elements in E(C), expressed as

D(C) = NNZ(C)

E(C)
.

As a special case, we use R M1,M2 to denote the union R M1 ∪ R M1+1 ∪ · · · ∪ R M2 . Hence, we have

N(R M1,M2) =
M2∑

m=M1

bm,

and

W (R M1,M2) = max
M1≤m≤M2

{m (bm �= 0)},
and

NNZ(R M1,M2) =
M2∑

m=M1

mbm,

and

E(R M1,M2) = N(R M1,M2) × W (R M1,M2),

and

D(R M1,M2) = NNZ(R M1,M2)

E(R M1,M2)
.

5. An optimal partitioning algorithm

5.1. Construction of DF

The number of non-zero elements in each row are scanned to store the number of rows with the same NNZ by the
array B , which has the length M . The B[m] = bm will be added 1 if a row has m non-zero elements. The number of
scanning will be N if the storage format of the sparse matrix is CSR. For the following 10 × 10 sparse matrix A,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 1 0 0 0 0 0
0 0 9 −1 0 0 7 0 0 0
0 4 0 0 0 0 0 0 0 0
0 0 0 12 3 0 0 0 0 0

−1 8 0 2 0 5 0 2 7 9
0 0 0 0 0 0 −6 0 0 0
0 0 6 4 0 0 0 3 0 0
0 2 0 5 0 0 8 0 1 0
2 1 0 5 0 3 7 0 0 4
0 0 3 0 0 7 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we have A = {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10} and

B = [b1,b2,b3,b4,b5,b6,b7,b8,b9,b10] = [2,3,2,1,0,1,1,0,0,0].
The RVS’s are R1 = {r3, r6}, R2 = {r1, r4, r10}, R3 = {r2, r7}, R4 = {r8}, R6 = {r9}, R7 = {r5}, and R5 = R8 = R9 = R10 = ∅.

158 W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170
5.2. Types of partitioning methods

There are two types of partitioning strategies to split sparse matrices. The first type splits a sparse matrix into various
sets of row vectors which do not change the original order of rows in A, and the second type uses the technique of
reordering to split. The algorithm complexity of the first type is relatively low. But the number of non-zero elements in rows
of a set of row vectors may be unbalanced, because the non-zero element distribution in a sparse matrix can be arbitrary.
A sparse matrix is firstly reordered and then split into RVS’s in the second type of strategies. The algorithm complexity of
the second type is relatively high, because the rows in the sparse matrix must be reordered, but the performance of SpMV
is improved. Our partitioning strategy based on DF belongs to the second type.

The ELL format of a sparse matrix is very suitable for parallel computing, because the lengths of all rows are the same.
In particular, SpMV based on ELL has good performance on GPU. But some zeros will be padded in the ELL format, leading
to redundant computation. Improving the density of the non-zero elements can reduce the filling ratio of zero for ELL [31].
But the computable scale of blocks for SpMV will go down and the number of blocks will increase, leading to performance
degradation of the whole SpMV.

5.3. Analysis for parallel execution time

A partition of a sparse matrix A is a set P = {C1, C2, ..., Ck} of disjoint subsets of row vectors of A, where Ci ⊆ A for all
1 ≤ i ≤ k, Ci ∩ C j = ∅ for all i �= j, and C1 ∪ C2 ∪ · · · ∪ Ck = A.

The processing of SpMV on GPU includes three parts, i.e., transferring data into GPU, computing on GPU, and returning
result from GPU.

For Ax = y, the sparse matrix A and vector x with N elements are transferred into GPU. The computing results are sent
back from GPU by vector y with N elements. The transmission time of S elements between CPU and GPU is calculated
by S/TW , where TW is the bandwidth of PCIe. The transmission arrays includes the Ap, Aj, Av, and right vector if the
sparse matrix is stored by CSR format. So the number of elements that need to be transmitted should be 2N + 1 + 2NNZ
(approximated as 2N + 2NNZ) if it doesn’t consider datatypes. The total transmission time Tt of SpMV is expressed as

Tt = 2N + 2NNZ

TW
.

Hence, the transmission time is the same for different partitioning schemes. Because the ELL format stores Ci in a dense
N(Ci)-by-W (Ci) array, the computing amount of Ci is E(Ci). The computing time for Ci on GPU should be E(Ci)/ f p , where
f p is the computation power of a SM in GPU, because each block is assigned to a SM to process. In addition, there is a lower
limit L for the number of threads in the block assigned to a SM, which is related to the number of SPs and registers in the
SM. If the number of threads in the block assigned to the SM is less than L, this means that the SM execution resources
will likely be underutilized, because there will be fewer warps to schedule around long-latency operations [32]. L is about
192 for K20c GPU, which is used in our experiments. The number of rows in Ci should be more than L, because each thread
computes a row data once for the ELL format. For Ci , the computing time Tc(Ci) is calculated as

Tc(Ci) =
{

(W (Ci) × L)/ f p, N(Ci) ≤ L;
E(Ci)/ f p, N(Ci) > L.

To summarize, the total processing time T of SpMV is calculated by

T = Tt +
k∑

i=1

Tc(Ci)/s,

where s is the number of SMs in GPU. It is easily observed that T is largely determined by E(C1) + E(C2) + · · · + E(Ck).

5.4. An optimal partitioning problem

Let us consider the following optimal partitioning problem. Given a sparse matrix A = {r1, r2, ..., rN} with DF f A , find an
optimal partition P = {C1, C2, ..., Ck} of A, such that

Cost(P) =
k∑

i=1

Tc(Ci)

is minimized. Such an optimal partition yields the minimum T , i.e., the total processing time of SpMV on GPU.
For a fixed k, minimizing Cost(P) is equivalent to minimizing

E(P) = E(C1) + E(C2) + · · · + E(Ck)

if N(Ci) > L for i = 1, 2, ..., k. We prove two theorems which give some important properties of an optimal partition which
minimizes E(P).

The following theorem states that in an optimal partition, all row vectors of the same RVS must stay in the same Ci .

W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170 159
Theorem 5.1. For any partition P = {C1, C2, ..., Ck}, there is a partition P ′ = {C ′
1, C

′
2, ..., C

′
k}, such that each RVS Rm is entirely

included in some C ′
i , i.e., Rm ⊆ C ′

i for some i, where 1 ≤ m ≤ M; and that E(P ′) ≤ E(P).

Proof. Assume that there are two row vectors rn1 , rn2 ∈ Rm , such that rn1 ∈ Ci and rn2 ∈ C j , where W (Ci) ≤ W (C j). Let us
move rn2 from C j to Ci , and the new partition is

P ′ = {C1, ..., C ′
i, ..., C ′

j, ..., Ck},
where C ′

i = Ci ∪{rn2 } and C ′
j = C j −{rn2 }, which implies that N(C ′

i) = N(Ci) + 1 and N(C ′
j) = N(C j) − 1. The above operation

does not change the width of Ci , i.e., W (C ′
i) = W (Ci), but may reduce the length of C j (e.g., when NNZ(rn2) = W (C j)), i.e.,

W (C ′
j) ≤ W (C j). It is clear that

E(P ′) − E(P)

= N(C ′
i)W (C ′

i) + N(C ′
j)W (C ′

j) − N(Ci)W (Ci) − N(C j)W (C j)

≤ (N(Ci) + 1)W (Ci) + (N(C j) − 1)W (C j) − N(Ci)W (Ci) − N(C j)W (C j)

= W (Ci) − W (C j).

Since W (Ci) ≤ W (C j), we have E(P ′) ≤ E(P). In fact, if there are p row vectors in C j which belong to Rm , we can move
all of them from C j to Ci simultaneously, which gives rise to N(C ′

i) = N(Ci) + p and N(C ′
j) = N(C j) − p, and

E(P ′) − E(P) ≤ p(W (Ci) − W (C j)).

By repeating the above operation, we can put all row vectors of Rm into the same Ci for some i, where 1 ≤ m ≤ M , without
increasing E(P). The theorem is proven. �

The following theorem states that in an optimal partition, each C j is a set of consecutive RVS’s.

Theorem 5.2. For any partition P = {C1, C2, ..., Ck} which satisfies Theorem 5.1, there is a partition P ′ = {C ′
1, C

′
2, ..., C

′
k}, such that

if Rm1 ⊆ Ci and Rm2 ⊆ C j , where i < j, then m1 < m2; and that E(P ′) ≤ E(P).

Proof. Without loss of generality, we assume that W (C1) < W (C2) < · · · < W (Ck); otherwise, it is only a matter of re-
ordering of C1, C2, ..., Ck . Assume that there are two RVS’s, Rm1 and Rm2 , such that Rm1 ⊆ Ci and Rm2 ⊆ C j , where m2 < m1
and i < j. Let us move Rm2 from C j to Ci , and the new partition is P ′ = {C1, ..., C ′

i, ..., C
′
j, ..., Ck}, where C ′

i = Ci ∪ Rm2 and
C ′

j = C j − Rm2 . The above operation does not change the width of Ci and C j . It is clear that

E(P ′) − E(P) = bm2(W (Ci) − W (C j)).

Since W (Ci) ≤ W (C j), we have E(P ′) ≤ E(P). By repeating the above operation, we can arrange the RVS’s without increas-
ing E(P), such that if Rm1 ⊆ Ci and Rm2 ⊆ C j , where i < j, then m1 < m2. The theorem is proven. �
5.5. An optimal partitioning algorithm (OPA) based on DF

An immediate consequence of Theorem 5.2 is that for a fixed k, in an optimal partition P = {C1, C2, ..., Ck} which
minimizes Cost(P), there must exist 0 = M0 < M1 < M2 < · · · < Mk−1 < Mk = M , such that C j = R M j−1+1,M j , for all 1 ≤
j ≤ k. That is, each C j is a set of consecutive RVS’s. Hence, the optimal partitioning problem is to determine k and the
values of M1, M2, ..., Mk−1, such that

Cost(P) =
k∑

j=1

Tc(C j) =
k∑

j=1

T (R M j−1+1,M j)

is minimized, where T (R M j−1+1,M j) is the computing time of R M j−1+1,M j .
We define Cost(m, k) to be the Cost(P) of an optimal partition P = {C1, C2, ..., Ck} of R1 ∪ R2 ∪· · ·∪ Rm , where 1 ≤ m ≤ M

and 1 ≤ k ≤ m.
The following theorem provides a dynamic programming formulation of Cost(m, k).

Theorem 5.3. Cost(m, k) satisfies the following recurrence relation:

Cost(m,1) = T (R1,m), 1 ≤ m ≤ M;
Cost(m,k) = min

k−1≤Mk−1≤m−1

{
Cost(Mk−1,k − 1) + T (R Mk−1+1,m)

}
,

2 ≤ k ≤ m ≤ M.

160 W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170
Algorithm 1: Calculating the optimal cost matrix and the optimal division matrix.
Input: The DF f A of a sparse matrix A.
Output: The optimal cost matrix C[m, k] and the optimal division matrix D[m, k].

1 for m ← 1 to M do
2 C[m, 1] ← T (R1,m);
3 end
4 for k ← 2 to M do
5 for m ← k to M do
6 C[m, k] ← ∞;
7 for j ← k − 1 to m − 1 do
8 q ← C[j, k − 1] + T (R j+1,m);
9 if q < C[m, k] then

10 C[m, k] ← q;
11 D[m, k] ← j;
12 end
13 end
14 end
15 end

Algorithm 2: Calculating the output of the optimal partitioning problem.
Input: The optimal cost matrix C[m, k] and the optimal division matrix D[m, k].
Output: The values of k and the values of M1, M2, ..., Mk−1.

1 Cost ← ∞;
2 for k′ ← 1 to M do
3 if C[M, k′] < Cost then
4 Cost ← C[M, k′];
5 k ← k′;
6 end
7 end
8 i ← M;
9 j ← k;

10 while j ≥ 2 do
11 M j−1 ← D[i, j];
12 i ← D[i, j];
13 j ← j − 1;
14 end

Proof. The base case when k = 1 is trivial, since the only partition is P = {R1,m}. When k ≥ 2, the possible value of Mk−1 is
in the range k −1 ≤ Mk−1 ≤ m −1. For each Mk−1, we have Cost(m, k) = Cost(Mk−1, k −1) + T (R Mk−1+1,m). Hence, Cost(m, k)

takes the minimum value of all these possibilities. �
Theorem 5.3 suggests a dynamic programming algorithm to compute Cost(m, k), and thus, solving our optimal partition-

ing problem. Our optimal partitioning algorithm (OPA) is presented in Algorithms 1 and 2. Algorithm 1 (where j stands for
Mk−1) calculates an array C[m, k] which saves the value of Cost(m, k), and an array D[m, k] which saves the value of Mk−1
that gives the minimum value of Cost(m, k). Such a dynamic programming algorithm can be completed in O (M3) time.

The optimal value of k is obtained by

Cost(M,k) = min
1≤k′≤M

{Cost(M,k′)}.

The optimal value of Mk−1 can be recorded when Cost(m, k) is calculated and recovered after Algorithm 1 is completed. The
output of the optimal partitioning problem, i.e., the values of k and M1, M2, ..., Mk−1, can be generated by using Algorithm 2.

In fact, if f A(m) = bm = 0, then Rm can be removed from the computation of Algorithms 1 and 2. Assume that the
number of RVS’s in {Rm| f A(m) �= 0} is M ′ . For a sparse matrix, M ′ is far less than the number of columns M . The computing
complexity of OPA is actually O ((M ′)3).

However, the processing time of OPA is unbearable if M ′ > 100. For most test cases, the number of RVS’s partitioned
from the sparse matrices is less than 100. Furthermore, we can observe that the sparse matrices with M ′ > 100 have many
RVS’s with very few rows. Some RVS’s with similar width should be merged into one RVS. Then, the number of RVS’s can
be reduced to less than 100 by merging.

5.6. A reordering algorithm

A sparse matrix is split into k partitions C1, C2, ..., Ck defined by M1, M2, ..., Mk−1 using OPA according to the NNZ of the
rows. The rows of the sparse matrix are assigned to different C j ’s by the NNZ of the rows. The NNZ of the rows in C j are
about the same. The classic binary search algorithm can be used to find out C j = R M j−1+1,M j such that row ri belongs to C j ,

W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170 161
Algorithm 3: The reordering algorithm.
Input: The values of k and M0, M1, ..., Mk; the NNZ of N rows: NNZ(r1), NNZ(r2), ..., NNZ(rN).
Output: The index array Index1, Index2, ..., IndexN , where if Indexi = j, then ri belongs to C j = RM j−1+1,M j , where 1 ≤ j ≤ k.

1 //The beginning and ending indices of the binary search algorithm
2 int indexb, indexe ;
3 for i ← 1 to N do
4 if NNZ(ri) > 0 then
5 indexb ← 0;
6 indexe ← k;
7 repeat
8 middle ← �(indexb + indexe)/2�;
9 if NNZ(ri) = Mmiddle then

10 Indexi ← middle;
11 return;
12 end
13 if NNZ(ri) < Mmiddle then
14 indexe ← middle;
15 end
16 if NNZ(ri) > Mmiddle then
17 indexb ← middle + 1;
18 end
19 until indexb = indexe ;
20 Indexi ← indexb ;
21 end
22 end

Fig. 2. Reordering of rows.

because 0 = M0 < M1 < M2 < · · · < Mk−1 < Mk = M . The reordering algorithm is presented in Algorithm 3. The computing
complexity of the binary search algorithm is O (log2 k), and k is far less than the number of columns M . So the computing
complexity of assigning N rows to k partitions is O (N log2 k). The process of rows reordering is to assign these rows to the
corresponding partitions. So the computing complexity of Algorithm 3 is O (N log2 k).

The reordering step is shown in Fig. 2, where a row r belongs to an interval if the NNZ(r) is in the range of the
interval. For the sparse matrix A, we have k = 3, M1 = 2, M2 = 4 by partitioning using OPA, and C1 = {r1, r3, r4, r6, r10},
C2 = {r2, r7, r8}, and C3 = {r5, r9} by reordering.

Furthermore, the dimension and size of blocks per grid and the dimension and size of threads per block are both impor-
tant factors. Latency hiding and occupancy depend on the number of active warps per SM, which is implicitly determined
by the execution parameters along with resource (register and shared memory) constraints [33]. When choosing the block
size, it is important to remember that multiple concurrent blocks can reside on a SM, so occupancy is not determined by
block size alone. In particular, a larger block size does not imply a higher occupancy. Note that when a thread block allocates
more registers than those available on a SM, the kernel launch fails, as too much shared memory or too many threads are
requested [33]. So the blocks obtained by Algorithm 3 should be divided into some sub-blocks if the sizes of them are too
large. These sub-blocks can be equally partitioned from the blocks, because the rows in the blocks have similar widths.

6. A parallel implementation of SpMV on GPU

6.1. Parallel computing model on GPU

A sparse matrix is usually stored as CSR format before it is processed, and each block partitioned from the sparse matrix
will be converted to ELL format for SpMV using other formats. Then, the sparse matrix is used to perform SpMV by CUDA
using OPA, which includes four steps shown in Fig. 3.

162 W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170
Fig. 3. The computing steps of SpMV using our approach on GPU.

1. Step 1: Construct the DF of the sparse matrix.
2. Step 2: Obtain the boundaries M1, M2, ..., Mk−1 of partitioning by OPA.
3. Step 3: Partition the sparse matrix into collections of RVS’s using the reordering algorithm.
4. Step 4: Execute SpMV.

As shown in Fig. 3, Steps 1 and 2 can be processed by Algorithm 1 on GPU, whose input parameters are array Ap of CSR
format and the output parameters are the boundary array (M0, M1, ..., Mk) obtained using OPA. Step 3 is processed by the
Algorithm 2 on GPU, whose input parameters are the output parameters of the Algorithm 1 and arrays Aj and Av of CSR
format, and the output parameters are RVS’s using the reordering algorithm. Step 4 is processed by the Algorithm 3, whose
input parameters are the output parameters of the Algorithm 2 and vector x, and the output parameters are the result
vector y. Each element of array Ap in Step 1 is assigned to a thread of CUDA, which needs to perform atomic addition.
Then element f A[m] in the array f A obtained by Step 1 is the number of row vectors whose number of non-zero elements
is m. Assume that the length of array f A is q if all elements with value 0 are removed from f A . Then q is far less then N .

There are some parallel implementations of dynamic programming algorithms on GPU, which have better performance
compared with that of CPU for Algorithms 1 and 2. Ref. [34] presented a framework for dynamic programming algorithms
on GPU and reported speedups ranging from 6.1 to 25.8 on a Nvidia GTX 280 through the CUDA libraries. Ref. [35] presented
an efficient parallel implementation of O(n3)-time dynamic programming algorithm on the GPU, which attained a speedup
factor of 247.5 on the NVIDIA GeForce GTX 580. Our implementation uses the sliding and mirroring arrangements method
[35] and is to arrange the temporary data for coalesced access of the global memory in the GPU to minimize the memory
access overhead, because the sizes of dynamic programming for the test cases are small and can be stored in the global
memory on GPU.

For the outer loop (lines 3–22) in Algorithm 3, each i is performed on a thread of CUDA. The boundary array
(M0, M1, ..., Mk) is stored in the shared memory in GPU to reduce the access latency. The optimal partition P =
{C1, C2, ..., Ck} obtained by Algorithm 2 is stored in a blocked ELL format, where Ci , i = 1, 2, ..., k, is stored in ELL for-
mat. The Ci blocks are assigned on a thread block of CUDA to perform SpMV, and each thread block is scheduled on a SM.

W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170 163
Fig. 4. Mapping of RVS’s to thread blocks of CUDA.

Fig. 5. The BCE format for the sparse matrix A.

Although the number of rows in Ci may not be the same, imbalance of partitions has little impact on the performance,
because computing tasks between different SMs are independent and do not need to be synchronized.

6.2. The blocked stored format mixed CSR and ELL (BCE)

An n × n sparse matrix A is partitioned into the optimal partition P = {C1, C2, ..., Ck} by the boundary array
(M0, M1, ..., Mk) using OPA. Define an array rowNo, which stores the original indices of rows in A. If each block of P
is a submatrix, the optimal partition P = {C1, C2, ..., Ck} can be stored in CSR format, which is shown in Figs. 4 and 5.
Define an array Ap with k + 1 elements, which stores the number of rows of Ci for i = 1, 2, ..., k. Then Ap[0] = 0 and
Ap[i] = ∑i

j=1 N(C j) for i = 1, 2, ..., k. The block Ci is stored in two arrays EDatai and Offseti using ELL format, whose
lengths are E(Ci). The ELL format stores the related block by columns, in order to assure the coalescent access to the data.
The widths of all blocks are stored in an array Aw with k elements, where Aw[i] = W (Ci) for i = 1, 2, ..., k. Define an array
blockPos, which stores the start positions of the blocks in the arrays EData and Offset, which are combined with all EDatai

and Offseti for i = 1, 2, ..., k. The length of blockPos is k + 1, where blockPos[0] = 0 and blockPos[i] = ∑i
j=1 E(Ci) for

i = 1, 2, ..., k.
For the sparse matrix A in Section 5.1, if the boundary array (M1, M2) is (2, 4), then A is split into three blocks

{C1, C2, C3} using Algorithm 3. Assume that the original indices of rows {r1, r2, r3, r4, r5, r6, r7, r8, r9, r10} in A are
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10). Moreover, C1, C2, and C3 are {r1, r3, r4, r6, r10}, {r2, r7, r8}, and {r5, r9} respectively using Algo-
rithm 3. rowNo is (1, 3, 4, 6, 10, 2, 7, 8, 5, 9). Aw is (2, 4, 7) and Ap is (0, 5, 8, 10). blockPos, EData, and Offset are shown
in Fig. 5.

The kernel function based on BCE format on GPU is shown in Algorithm 4.
The index of the row ri , which is computed by the current thread, is obtained in line 1 in Algorithm 4. Variables start

represent the start position of the row ri in the arrays Edata and Offset. SpMV is performed in line 8 for the row ri .
If the block of BCE format is stored by CSR format, the BCE format will become GCSR format. If the sparse matrix

is not reordered, the BCE format will become BELLPACK and SELLPACK formats. It has been theoretically proved that the
performance of BCE is better than that of GCSR, BELLPACK, and SELLPACK formats.

164 W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170
Algorithm 4: The kernel function based on BCE format on GPU.
Input: The arrays blockPos, Ap, Aw, EData, and Offset; the vector x; the number of rows N in the sparse matrix A.
Output: The result vector y.

1 int ri ← Ap[blockIdx.x] + threadIdx.x ;
2 if ri < N then
3 int start ← blockPos[blockIdx.x] + threadIdx.x ;
4 int width ← Aw[blockIdx.x] ;
5 int rownum ← Ap[blockIdx.x + 1] − Ap[blockIdx.x] ;
6 y[ri] ← 0 ;
7 for i ← 0 to width do
8 int idx ← start+i × rownum ;
9 if |Edata[idx])| > 0 then

10 y[ri] ← Edata[idx] × x[Offset[idx]] + y[ri] ;
11 end
12 end
13 end

Table 1
Parameters of the test computer.

Parameters Descriptions Values

Si the size of integer 4 Byte
Ss the size of single 4 Byte
Sd the size of double 8 Byte
C the number of SPs 2496
f s the clock speed of SPs 0.705 GHz
fa the clock speed of the global memory 2.6 GHz
AW the bus width of the global memory 320 bits
TW the bandwidth of PCIe 8 GiB/s
s the number of SMs 13

7. Experimental performance evaluation

7.1. Experiment settings

The following test environment has been used for all benchmarks. The test computer is equipped with two AMD Opteron
6376 CPUs running at 2.30 GHz and a NVIDIA K20c GPU. Each CPU has 16 cores. The GPU has 2496 CUDA processor cores,
working on 0.705 GHz clock and 4 GB global memory with 320 bits bandwidth at 2.6 GHz clock, with CUDA compute
capacity 3.5. The computing power f p of a SM in K20c GPU is about 157.2 Gflop/s for single precision and about 89.4
Gflop/s for double precision. As for software, the test machine runs the 64bit Windows 7 and NVIDIA CUDA toolkit 7.0. The
hardware parameters of the testing computer are shown in Table 1.

All benchmarks are chosen from the UF Sparse Matrix Collection [2], whose features are shown in Table 2, where W is
the maximum width of the sparse matrix. Most of these matrices are derived from scientific computing and real engineering
applications.

NVIDIA Corporation provides three libraries (cuBLAS, cuSparse, and CUSP) to support matrix computation. All these
libraries provide CUDA development tools and source codes.

CuBLAS [36] offers three levels of library functions for dense matrices.
CuSparse [37] provides three levels of functions for sparse matrices, with the first level for sparse vector and dense

vector operations, the second level for sparse matrix and dense vector operations and the third level for sparse matrix and
dense matrix operations. It includes three functions of SpMV, which use the CSR, BSR, and HYB formats respectively. The
general BSR format has two parameters, rowBlockDim and colBlockDim. rowBlockDim is number of rows within a block and
colBlockDim is number of columns within a block. If rowBlockDim = colBlockDim, general BSR format is the same as BSR
format. If rowBlockDim = colBlockDim = 1, general BSR format is the same as CSR format. There is an analytical procedure
for the sparse matrix at the beginning of the BSR function of cuSparse library, and the procedure will not be executed
again after the BSR function is called for the first time for the same sparse matrix. In order to get rid of the analysis
time in the single version test time, the BSR function is called once in advance, and then the single and double precision
versions are called. The run time of the single version function does not contain the analysis time in the test to obtain the
exact computation time of the single version function. HYB is a hybrid format of ELL and COO, such as the corresponding
function for SpMV has a parameter, which has four values: 0, AUTO, USER, and MAX. The function will automatically select
a segmentation threshold to divide the sparse matrix into ELL and COO if the parameter is AUTO. The caller must provide
a segmentation threshold if the parameter is USER. If the threshold is 0, HYB will become COO. If the parameter is MAX,
HYB will become ELL. The HYB function is tested using AUTO, MAX, and 0 respectively. A sparse matrix stored in the CSR
format must be loaded into GPU by PCIe bus and the result vector is returned after SpMV has been performed for all stored

W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170 165
Table 2
General information of all sparse matrices used in the evaluation.

No. Sparse Matrices N W NNZ

1 Schenk_ISEI/ohne2 181343 3411 11063545
2 Janna/CoupCons3D 416800 76 22322336
3 Oberwolfach/bone010 986703 42 36326514
4 Janna/Serena 1391349 228 32961525
5 Janna/ML_Geer 1504002 74 110879972
6 Schenk_AFE/af_shell10 1508065 251 27090195
7 Janna/Flan_1565 1564794 69 59485419
8 Gleich/wikipedia-20051105 1634989 75547 19753078
9 Janna/Cube_Coup_dt0 2164760 52 64685452

10 Freescale/Freescale1 3428755 25 18920347
11 Rajat/rajat31 4690002 1252 20316253
12 DIMACS10/channel-500x100x100-b050 4802000 12 85362744
13 vanHeukelum/cage15 5154859 47 99199551
14 Freescale/circuit5M 5558326 1290501 59524291
15 DIMACS10/adaptive 6815744 4 27248640
16 DIMACS10/delaunay_n23 8388608 19 50331568
17 DIMACS10/road_central 14081816 8 33866826
18 DIMACS10/hugetrace-00020 16002413 3 47997626
19 DIMACS10/delaunay_n24 16777216 23 100663202
20 DIMACS10/road_usa 23947347 8 57708624

formats. So the transmission time of all stored formats is the same. But CSR format must be converted to the corresponding
compression formats for HYB, ELL, COO, BSR, and BCE.

NVIDIA provides another library, CUSP [38], to offer SpMV for the GPU platform, which supports a variety of compression
formats such as COO, DIA, CSR, ELL, and HYB. The COO, CSR, and HYB from CUSP show worse performance than cuSparse.
But for most test cases, the DIA format cannot be performed, because the diagonal features of the test cases are not obvious.

Intel Math Kernel Library (Intel MKL) accelerates math processing routines that increase application performance and
reduce development time. Intel MKL includes highly vectorized and threaded Linear Algebra, Fast Fourier Transforms (FFT),
Vector Math and Statistics functions [39]. MKL has higher performance compared to the other lib functions for most of
the processors, and they have been parallelized and require no alterations of your application to gain the performance
enhancements of multiprocessing. We test SpMV using CSR function of MKL with better performance than COO function.

7.2. SpMV tests and performance evaluation

We have performed the following three experiments for comparative performance evaluation.

(1) SpMV is tested using our method and compared to that using BSR, HYB, ELL, CSR, and COO on GPU.
(2) Linear solver is tested using SpMV on GPU.
(3) SpMV is tested using our method on GPU and compared to that using MKL on multi-core CPU.

7.2.1. Test of SpMV on GPU
The process of SpMV includes three steps, which are transmission, pretreatment, and computation. A sparse matrix

A and a vector x must be loaded into the global memory of GPU by PCIe bus before SpMV is executed on GPU, and
then a result vector x is returned from GPU after SpMV has been executed. The sparse matrix A is usually stored in CSR
format before A is processed because of better compression efficiency. So the transmission time is the same for different
computing methods. The pretreatment process includes matrix partitioning and format conversion for BSR, HYB, ELL, and
COO functions of cuSparse. The pretreatment process includes matrix partitioning using OPA, reordering using Algorithm 3,
and format conversion of BCE for our method. But there is no pretreatment process for CSR.

For the 20 test cases, the computing time of SpMV using our method, BSR, HYB, ELL, COO, and CSR are shown in Table 3,
where BCE represents the computing time of SpMV using our method and NA means that the sparse matrix cannot be
computed using the format.

For the 20 test cases, the performance improvements in percentage of computing time using our method over BSR, HYB,
ELL, COO, and CSR are shown in Table 4. The performance improvement in percentage is calculated by (t1 − t2)/t1 × 100,
where t2 is the computing time of SpMV using our method and t1 is that of BSR, HYB, ELL, COO, or CSR. The test cases
expect Schenk_AFE/af_shell10 cannot be computed using ELL format for double precision. For all test cases, it is observed
from Table 4 that the average performance improvements in percentage of single precision are 12.3%, 11.7%, 16.5%, 27.7%,
and 21.7% using our method compared with BSR, HYB, ELL, COO, and CSR respectively, and those of double precision are
12.3%, 12.2%, 20.5%, 28.1%, and 21.7% respectively.

For vanHeukelum/cage15, SpMV cannot be processed using BSR, because the storage spaces using BSR are more than
the memory of GPU. ELL format has poor adaptability for big sparse matrices, because some rows are padded zero ac-
cording to the longest row, leading to the size of data too big to be processed on GPU. The long rows are divided into

166 W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170
Table 3
Computing time of SpMV using our method, BSR, HYB, ELL, COO, and CSR (unit: milliseconds).

No. Single Precision Double Precision

BCE BSR HYB ELL COO CSR BCE BSR HYB ELL COO CSR

1 3.2 4.1 3.2 NA 3.9 3.3 3.3 4.8 3.3 NA 4.0 3.4
2 4.5 4.7 4.6 5.1 5.3 5.2 2.8 2.9 4.7 NA 6.0 5.4
3 7.2 7.4 7.2 8.2 11.0 8.4 6.5 6.6 7.4 NA 11.0 8.5
4 7.7 8.9 7.8 10.2 10.8 9.6 8.1 9.6 8.2 NA 11.0 9.9
5 9.0 9.2 13.9 14.9 25.4 15.8 13.2 13.4 14.0 NA 27.0 16.0
6 8.1 8.5 8.5 8.2 21.6 8.9 6.6 6.7 8.6 8.3 31.0 9.1
7 7.1 7.3 11.1 13.1 17.1 13.0 10.3 10.4 11.4 NA 17.3 13.0
8 15.8 27.6 16.5 NA 16.2 33.5 17.1 35.7 17.4 NA 17.7 34.6
9 6.5 6.6 13.8 14.4 19.4 14.1 8.0 8.5 14.0 NA 20.0 15.0

10 11.2 13.8 12.4 12.1 14.7 12.7 12.2 14.1 14.5 NA 15.0 13.2
11 13.3 17.5 17.8 NA 18.5 14.4 15.1 20.6 18.2 NA 19.0 15.2
12 16.8 19.3 17.3 17.7 24.0 19.4 16.9 20.1 17.4 NA 24.0 19.5
13 24.9 29.6 25.1 27.2 59.9 28.9 25.1 NA 27.0 NA 57.0 30.0
14 23.4 45.7 24.4 NA 33.2 353.8 25.2 47.9 25.4 NA 34.8 362.0
15 21.9 23.9 23.8 24.0 22.6 24.2 20.1 20.5 26.0 NA 23.0 24.5
16 27.9 29.3 28.4 31.6 29.6 31.2 29.2 30.2 29.4 NA 29.8 31.8
17 48.0 49.8 56.2 50.1 49.2 49.1 45.1 46.3 53.0 NA 49.5 49.2
18 49.6 51.6 61.0 61.3 55.2 54.6 51.7 52.2 62.3 NA 55.4 55.0
19 55.8 57.9 62.3 59.2 59.4 59.4 57.7 58.4 62.5 NA 59.6 59.6
20 71.3 75.5 72.8 74.0 75.3 72.2 72.5 77.6 73.3 NA 76.0 75.0

Table 4
Performance improvements of SpMV Using our method over BSR, HYB, ELL, COO, and CSR (unit: %).

No. Single Precision Double Precision

BSR HYB ELL COO CSR BSR HYB ELL COO CSR

1 22.0 0.0 NA 17.9 3.0 31.3 0.0 NA 17.5 2.9
2 4.3 2.2 11.8 15.1 13.5 3.4 40.4 NA 53.3 48.1
3 2.7 0.0 12.2 34.5 14.3 1.5 12.2 NA 40.9 23.5
4 13.5 1.3 24.5 28.7 19.8 15.6 1.2 NA 26.4 18.2
5 2.2 35.3 39.6 64.6 43.0 1.5 5.7 NA 51.1 17.5
6 4.7 4.7 1.2 62.5 9.0 1.5 23.3 20.5 78.7 27.5
7 2.7 36.0 45.8 58.5 45.4 1.0 9.6 NA 40.5 20.8
8 42.8 4.2 NA 2.5 52.8 52.1 1.7 NA 3.4 50.6
9 1.5 52.9 54.9 66.5 53.9 5.9 42.9 NA 60.0 46.7

10 18.8 9.7 7.4 23.8 11.8 13.5 15.9 NA 18.7 7.6
11 24.0 25.3 NA 28.1 7.6 26.7 17.0 NA 20.5 0.7
12 13.0 2.9 5.1 30.0 13.4 15.9 2.9 NA 29.6 13.3
13 15.9 0.8 8.5 58.4 13.8 NA 7.0 NA 56.0 16.3
14 48.8 4.1 NA 29.5 93.4 47.4 0.8 NA 27.6 93.0
15 8.4 8.0 8.8 3.1 9.5 2.0 22.7 NA 12.6 18.0
16 4.8 1.8 11.7 5.7 10.6 3.3 0.7 NA 2.0 8.2
17 3.6 14.6 4.2 2.4 2.2 2.6 14.9 NA 8.9 8.3
18 3.9 18.7 19.1 10.1 9.2 1.0 17.0 NA 6.7 6.0
19 3.6 10.4 5.7 6.1 6.1 1.2 7.7 NA 3.2 3.2
20 5.6 2.1 3.6 5.3 1.2 6.6 1.1 NA 4.6 3.3

ELL and COO using HYB format to reduce zero-padded, so HYB has better adaptability than that of ELL. For Rajat/rajat31,
Schenk_ISEI/ohne2, Gleich/wikipedia-20051105, and Freescale/circuit5M, the performance of our method improves signifi-
cantly compared to that of CSR and BSR, because the NNZ of rows has big deviation, leading to very low parallel efficiency
of GPU using CSR and BSR, and the performance using HYB is good, because the long rows are divided into ELL and COO to
reduce deviation.

7.2.2. Test of linear solver using SpMV on GPU
For our method, BSR, HYB, ELL, and COO, there are a pretreatment time in the total processing time, and there is no

pretreatment time for CSR because it does not need format conversion. However, since the coefficient matrix is fixed in the
process of solving a sparse linear system, matrix partitioning is processed only once, and SpMV is executed many times for
solving a large-scale sparse linear system using an iterative method, so it has little impact on solving a large-scale sparse
linear system using pretreatment technique. The linear equations, whose coefficient matrices are the test cases, are solved
by the iterative solving algorithms of Lis library [40] in the experiments, and then the numbers of iterations are obtained
by solving these linear equations. The same initial vector was used for all cases. For the 20 test cases, the numbers Iters
of iterations are shown in Table 5. Assume that the pretreatment time and computing time are represented by T p and Tc

respectively. Then processing time of SpMV for solving the test cases is calculated by T p + Iters × Tc . For the 20 test cases,

W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170 167
Table 5
Processing time of SpMV using our method, BSR, HYB, ELL, COO, and CSR for solving linear equations (unit: second).

No. Iters Single Precision Double Precision

BCE BSR HYB ELL COO CSR BCE BSR HYB COO CSR

1 9811 31.1 40.2 31.9 NA 38.7 32.3 32.3 47.3 32.4 39.3 33.2
2 5542 25.1 26.1 25.3 28.5 29.3 28.8 15.4 16.0 25.9 33.4 30.1
3 9554 68.9 70.7 69.0 78.2 105.2 79.9 62.4 63.3 71.0 105.3 81.0
4 3865 29.8 34.4 30.3 39.5 41.9 37.2 31.3 37.2 31.8 42.7 38.2
5 9267 84.2 85.8 128.7 137.9 236.2 146.9 123.5 124.5 129.9 250.8 148.3
6 6902 55.8 58.8 58.6 56.4 149.5 61.6 45.7 46.3 59.3 214.1 62.8
7 10001 70.8 72.9 110.7 131.1 171.1 129.6 103.1 104.0 113.7 173.0 130.0
8 9827 155.35 271.6 162.6 NA 159.7 329.3 168.1 351.4 170.8 174.0 340.2
9 7051 46.3 46.6 97.2 101.4 137.0 99.8 56.8 59.6 98.9 141.4 105.8

10 8670 96.9 120.3 107.2 104.8 127.6 110.2 106.3 122.6 125.4 130.1 114.0
11 4362 58.3 76.5 77.9 NA 80.7 62.7 66.0 89.9 79.6 83.0 66.3
12 5513 93.2 106.5 95.4 97.8 132.3 107.1 93.2 110.7 95.9 132.5 107.8
13 24 1.3 1.4 0.8 0.8 1.9 0.7 1.4 NA 0.9 1.8 0.7
14 7113 167.9 305.0 174.9 NA 237.6 2516.3 181.0 341.9 182.0 249.0 2574.9
15 4998 109.5 119.5 118.9 119.9 112.8 120.7 100.5 102.7 130.1 115.1 122.5
16 6115 170.6 179.3 174.0 193.1 181.0 190.6 178.7 184.7 179.7 182.1 194.3
17 8585 412.18 427.7 482.4 429.9 422.5 421.4 387.2 397.9 455.3 424.9 422.5
18 8006 397.1 413.3 488.6 491.0 442.1 437.2 413.9 418.6 499.1 443.5 440.2
19 10000 558.0 579.2 623.4 592.3 594.7 594.2 577.6 584.4 624.8 596.7 595.7
20 9260 660.3 699.5 674.2 685.8 697.6 668.7 671.4 719.5 679.3 704.1 694.5

Table 6
Performance improvements of SpMV using our method over BSR, HYB, ELL, COO, and CSR for solving linear equations (unit: %).

No. Single Precision Double Precision

BSR HYB ELL COO CSR BSR HYB ELL COO CSR

1 22.6 2.5 NA 19.6 3.7 31.7 0.3 NA 17.8 2.7
2 3.8 0.8 11.9 14.3 12.8 3.8 40.5 NA 53.9 48.8
3 2.5 0.1 11.9 34.5 13.8 1.4 12.1 NA 40.7 23.0
4 13.4 1.7 24.6 28.9 19.9 15.9 1.6 NA 26.7 18.1
5 1.9 34.6 38.9 64.4 42.7 0.8 4.9 NA 50.8 16.7
6 5.1 4.8 1.1 62.7 9.4 1.3 22.9 20.1 78.7 27.2
7 2.9 36.0 46.0 58.6 45.4 0.9 9.3 NA 40.4 20.7
8 42.8 4.5 NA 2.7 52.8 52.2 1.6 NA 3.4 50.6
9 0.6 52.4 54.3 66.2 53.6 4.7 42.6 NA 59.8 46.3

10 19.5 9.6 7.5 24.1 12.1 13.3 15.2 NA 18.3 6.8
11 23.8 25.2 NA 27.8 7.0 26.6 17.1 NA 20.5 0.5
12 12.5 2.3 4.7 29.6 13.0 15.8 2.8 NA 29.7 13.5
13 7.1 −62.5 −62.5 31.6 −85.7 NA −55.6 NA 22.2 −100.0
14 45.0 4.0 NA 29.3 93.3 47.1 0.5 NA 27.3 93.0
15 8.4 7.9 8.7 2.9 9.3 2.1 22.8 NA 12.7 18.0
16 4.9 2.0 11.7 5.7 10.5 3.2 0.6 NA 1.9 8.0
17 3.6 14.6 4.1 2.4 2.2 2.7 15.0 NA 8.9 8.4
18 3.9 18.7 19.1 10.2 9.2 1.1 17.1 NA 6.7 6.0
19 3.7 10.5 5.8 6.2 6.1 1.2 7.6 NA 3.2 3.0
20 5.6 2.1 3.7 5.3 1.3 6.7 1.2 NA 4.6 3.3

the processing time of SpMV for solving the test cases is shown in Table 5, but the solving time using ELL is not listed
in Table 6 for double precision, because the test cases expect that Schenk_AFE/af_shell10 cannot be computed using ELL
format for double precision. The solving time of Schenk_AFE/af_shell10 using ELL is 57.2 seconds.

For the 20 test cases, the performance improvements in percentage using our method over BSR, HYB, ELL, COO, and CSR
for solving the test cases are shown in Table 6. The performance improvement in percentage is calculated by (t1 − t2)/t1 ×
100, where t2 is the processing time of SpMV using our method and t1 is that of BSR, HYB, ELL, COO, or CSR. We have the
following observations from Table 6.

For the test cases, the average performance of single precision is improved by 11.7% and 26.4% by using our method
compared with BSR and COO, and that of double precision is improved by 12.2% and 26.4%. The average performance of sin-
gle precision is improved by 12.3% and 22.0% using our method compared with HYB and CSR except vanHeukelum/cage15,
and that of double precision is improved by 12.4% and 21.8% except vanHeukelum/cage15. The average performance of
single precision is improved by 16.9% by using our method compared with ELL except Schenk_ISEI/ohne2, Gleich/wikipedia-
2005110, Rajat/rajat31, vanHeukelum/cage15, and Freescale/circuit5M, and that of double precision is improved by 20.1%
for Schenk_AFE/af_shell10 only. The transformation time of the test cases is shown in Table 7 for SpMV. Although in a
single SpMV operation, the transformation time occupied a large proportion, it has little impact on the performance of
solving equations except vanHeukelum/cage15, because the number of iterations is large. For vanHeukelum/cage15, the per-

168 W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170
Table 7
Transformation time of BCE, BSR, HYB, ELL, COO from CSR (unit: milliseconds).

No. Single Precision Double Precision

BCE BSR HYB ELL COO BCE BSR HYB ELL COO

1 26.2 23.6 25.7 NA 65.9 68.8 66.3 34.0 NA 66.0
2 45.8 15.4 37.1 34.0 27.3 50.2 19.4 41.0 NA 26.0
3 77.9 17.8 71.0 55.6 212.5 54.4 52.1 52.0 NA 204.0
4 87.0 46.4 78.4 53.1 169.5 112.6 106.5 54.0 NA 165.0
5 574.1 564.7 183.0 168.6 637.6 774.1 459.5 140.0 NA 624.0
6 164.3 163.4 51.3 39.4 98.9 173.2 166.9 83.1 63.1 76.1
7 127.1 105.8 111.6 90.7 340.6 74.5 70.3 92.0 NA 330.0
8 338.4 335.7 125.8 NA 122.8 339.2 339.5 126.0 NA 131.0
9 155.0 73.9 120.6 97.4 360.3 135.5 34.0 127.0 NA 367.0

10 66.1 64.7 56.3 39.9 66.9 135.6 111.6 75.0 NA 71.0
11 153.1 143.0 67.9 NA 74.8 212.9 207.1 97.0 NA 82.0
12 127.5 74.4 107.5 70.9 163.0 212.7 201.7 115.0 NA 153.0
13 694.2 643.2 188.0 139.5 418.5 765.1 NA 206.0 NA 465.0
14 1519.2 1272.1 1444.0 NA 1475.3 1561.7 1253.3 1354.0 NA 1417.0
15 98.4 71.0 95.2 72.4 84.4 157.2 146.0 122.0 NA 93.0
16 163.1 119.4 154.6 92.1 128.8 223.8 218.2 177.0 NA 131.0
17 206.7 203.5 192.4 147.4 168.5 311.0 306.4 229.0 NA 179.0
18 244.5 232.8 227.8 161.4 185.0 331.8 326.9 263.0 NA 187.0
19 316.2 244.7 294.0 233.9 282.7 403.8 395.9 280.0 NA 253.0
20 473.5 367.5 434.5 255.9 366.2 506.6 506.6 405.0 NA 318.0

Table 8
Performance comparison of SpMV using our method on GPU over MKL on CPU.

No. Single Precision Double Precision

MKL (s) BCE (s) Improvement (%) MKL (s) BCE (s) Improvement (%)

1 0.194 0.062 68.118 0.219 0.121 44.725
2 0.390 0.114 70.823 0.421 0.151 64.142
3 0.643 0.196 69.520 0.718 0.231 67.844
4 0.564 0.189 66.496 0.640 0.280 56.275
5 2.302 0.891 61.294 2.340 1.268 45.796
6 0.634 0.264 58.438 0.609 0.430 29.450
7 1.047 0.302 71.156 1.123 0.356 68.316
8 0.492 0.436 11.346 0.484 0.475 1.760
9 1.151 0.344 70.122 1.280 0.432 66.289

10 0.377 0.136 64.011 0.406 0.245 39.692
11 0.409 0.231 43.629 0.437 0.336 23.117
12 0.795 0.271 65.893 0.843 0.469 44.394
13 2.206 1.000 54.662 2.277 1.248 45.180
14 1.994 1.814 9.015 1.917 1.877 2.089
15 0.357 0.169 52.705 0.375 0.263 29.765
16 0.548 0.274 50.073 0.593 0.434 26.823
17 0.550 0.372 32.285 0.608 0.516 15.090
18 0.693 0.424 38.755 0.748 0.591 20.999
19 1.115 0.536 51.941 1.186 0.774 34.738
20 0.797 0.660 17.205 0.873 0.811 7.119

formances of HYB, ELL, and CSR are better than that of our method, because its iteration number is less. For Janna/Serena,
the computing time of HYB is close to that of our method, and the pretreatment time of HYB is half of that of our method.
So the performance of HYB is better than that of our method for double precision.

7.2.3. Test of SpMV on GPU and CPU
The total processing time of SpMV using our method on GPU is the sum of transmission time, pretreatment time, and

computing time. But there are no transmission time and pretreatment time using the MKL library on a multi-core CPU.
Assume that the processing time of using our method and MKL are represented by BCE and MKL respectively. For the 20
test cases, BCE and MKL are shown in Table 8. Then BCE and MKL are calculated by Tt + T p + Tc , where Tt , T p , and Tc are
the transmission time, pretreatment time, and computing time respectively. The performance improvement in percentage is
calculated by (MKL − BCE)/MKL × 100.

For all test cases, it is observed from Table 8 that the average performance improvement in percentage of single precision
using our method on GPU is 51.374% for MKL on CPU, and that of double precision is 36.680%.

W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170 169
8. Conclusions

In this paper, we use a DF to build an optimal partitioning strategy and a reordering algorithm for sparse matrices. This
method has wide adaptability for different types of sparse matrices, and is different from existing methods which only
adapt to some particular sparse matrices. Our partitioning strategy and reordering algorithm are based on the distribution
characteristics of non-zeros in a sparse matrix. We propose a blocked stored format mixing CSR and ELL for a sparse matrix.
Although the sizes of the blocks partitioned from the sparse matrix may be different, the storage spaces using BCE format
have better compression effect, because the widths of rows in the same block are the similar. According to the experimental
results, it is found that the average performance improvements in percentage of single precision are 12.3%, 11.7%, 16.5%,
27.7%, and 21.7% using our method compared with BSR, HYB, ELL, COO, and CSR respectively, and those of double precision
are 12.3%, 12.2%, 20.5%, 28.1%, and 21.7% respectively. In future work, we will explore the new solving methods based on
SpMV for large scale sparse linear systems of equations.

Acknowledgments

The research was partially funded by the National Natural Science Foundation of China (Grant Nos. 61572175, 61370095,
61472124), and the Key Program of National Natural Science Foundation of China (Grant No. 61432005), and the Na-
tional Outstanding Youth Science Program of National Natural Science Foundation of China (Grant No. 61625202), and the
International (Regional) Cooperation and Exchange Program of National Natural Science Foundation of China (Grant No.
61661146006).

References

[1] V.W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A.D. Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, P. Dubey,
Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU, in: Proceedings of the 37rd. International Symposium
on Computer Architecture, ISCA ’10, IEEE Press, Saint-Malo, France, 2010.

[2] T. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Softw. 38 (1) (2011) 1–25.
[3] W. Yang, K. Li, Y. Liu, L. Shi, C. Wang, Optimization of quasi diagonal matrix–vector multiplication on GPU, Int. J. High Perform. Comput. Appl. 28 (2)

(2014) 181–193.
[4] K. Li, W. Yang, K. Li, Performance analysis and optimization for SpMV on GPU using probabilistic modeling, IEEE Trans. Parallel Distrib. Syst. 26 (1)

(2015) 196–205.
[5] J. Bolz, I. Farmer, E. Grinspun, P. Schroder, Sparse matrix solvers on the GPU: conjugate gradients and multigrid, ACM Trans. Graph. 22 (3) (2003)

917–924.
[6] N. Bell, M. Garland, Implementing sparse matrix–vector multiplication on throughput-oriented processors, in: Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis, ACM, 2009, p. 18.
[7] T. Stanimire, J. Dongarra, M. Baboulin, Towards dense linear algebra for hybrid GPU accelerated manycore systems, Parallel Comput. 36 (5) (2010)

232–240.
[8] E.-J. Im, K. Yelick, R. Vuduc, Sparsity: optimization framework for sparse matrix kernels, Int. J. High Perform. Comput. Appl. 18 (1) (2004) 135–158.
[9] B.C. Lee, R.W. Vuduc, J.W. Demmel, K.A. Yelick, Performance models for evaluation and automatic tuning of symmetric sparse matrix–vector multiply,

in: Parallel Processing, 2004, International Conference on, ICPP 2004, IEEE, 2004, pp. 169–176.
[10] J.W. Choi, A. Singh, R.W. Vuduc, Model-driven autotuning of sparse matrix vector multiply on GPUs, in: Proceedings of the 15th ACM SIGPLAN Sympo-

sium on Principles and Practice of Parallel Programming, PPoPP ’10, ACM, 2010, pp. 115–126.
[11] A. Monakov, A. Lokhmotov, A. Avetisyan, Automatically Tuning Sparse Matrix-Vector Multiplication for GPU Architectures, DBLP, 2010.
[12] X. Feng, H. Jin, R. Zheng, K. Hu, J. Zeng, Z. Shao, Optimization of sparse matrix vector multiplication with variant CSR on GPUs, in: Proceedings of the

IEEE 17th International Conference on Parallel and Distributed Systems, ICPADS ’11, IEEE, 2011, pp. 165–172.
[13] A. Buluc, S. Williams, L. Oliker, J. Demmel, Reduced-bandwidth multithreaded algorithms for sparse matrix–vector multiplication, in: Parallel and

Distributed Processing Symposium, IPDPS ’11, IEEE, 2011, pp. 721–733.
[14] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. Basermann, A.R. Bishop, Sparse matrix vector multiplication on GPGPU clusters: a new storage format

and a scalable implementation, in: Proceedings of the IEEE 26th International in Parallel and Distributed Processing Symposium Workshops and PhD
Forum, IPDPSW ’12, IEEE, 2012, pp. 1696–1702.

[15] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J. Demmel, Optimization of sparse matrix vector multiplication on emerging multicore platforms,
Parallel Comput. 35 (3) (2009) 178–194.

[16] B. Boyer, J.G. Dumas, P. Giorgi, Exact sparse matrix vector multiplication on GPU’s and multicore architectures, in: Proceedings of the 4th International
Workshop on Parallel and Symbolic Computation, IPSC ’10, ACM, 2010, pp. 80–88.

[17] P. Guo, L. Wang, P. Chen, A performance modeling and optimization analysis tool for sparse matrix vector multiplication on GPUs, IEEE Trans. Parallel
Distrib. Syst. 25 (5) (2014) 1112–1123.

[18] J.C. Pichel, F.F. Rivera, Sparse matrix–vector multiplication on the single-chip cloud computer many-core processor, J. Parallel Distrib. Comput. 73 (12)
(2013) 1539–1550.

[19] V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas, N. Koziris, An extended compression format for the optimization of sparse matrix vector multipli-
cation, IEEE Trans. Parallel Distrib. Syst. 24 (10) (2013) 1930–1940.

[20] B. Schmidt, H. Aribowo, H.V. Dang, Iterative sparse matrix vector multiplication for accelerating the block Wiedemann algorithm over GF(2) on multi-
graphics processing unit systems, Concurr. Comput., Pract. Exp. 25 (4) (2013) 586–603.

[21] M. Cenk, C. Nègre, M.A. Hasan, Improved three-way split formulas for binary polynomial and Toeplitz matrix vector products, IEEE Trans. Comput.
62 (7) (2013) 1345–1361.

[22] M.A. Hasan, C. Nègre, Multiway splitting method for Toeplitz matrix vector product, IEEE Trans. Comput. 62 (7) (2013) 1467–1471.
[23] P.R. Amestoy, T.A. Davis, I.S. Duff, An approximate minimum degree ordering algorithm, SIAM J. Matrix Anal. Appl. 17 (4) (1996) 886–905.
[24] J.C. Pichel, D.E. Singh, J. Carretero, Reordering algorithms for increasing locality on multicore processors, in: Proc. of the IEEE Int. Conf. on High

Performance Computing and Communications, HPCC ’08, IEEE, 2008, pp. 123–130.
[25] E. Cuthill, Several Strategies for Reducing the Bandwidth of Matrices, 1972.

http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4C6565s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4C6565s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4C6565s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4461766973s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib57616E67646F6E67s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib57616E67646F6E67s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4B656E6C69s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4B656E6C69s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib426F6C7As1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib426F6C7As1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib42656C6C32303039s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib42656C6C32303039s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib546F6D6F76s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib546F6D6F76s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib696D32303034s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib6C656532303034s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib6C656532303034s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib43686F69s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib43686F69s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4D6F6E616B6F76s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib46656E67s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib46656E67s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib42756C7563s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib42756C7563s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4B726575747A6572s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4B726575747A6572s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4B726575747A6572s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib57696C6C69616D73s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib57696C6C69616D73s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib426F796572s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib426F796572s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib47756Fs1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib47756Fs1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib50696368656C32303133s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib50696368656C32303133s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4B6172616B61736973s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4B6172616B61736973s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib5363686D696474s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib5363686D696474s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib43656E6Bs1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib43656E6Bs1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib486173616Es1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib416D6573746F79s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib50696368656Cs1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib50696368656Cs1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib43757468696C6Cs1

170 W. Yang et al. / Journal of Computer and System Sciences 92 (2018) 152–170
[26] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal. 10 (2) (1973) 345–363.
[27] G. Karypis, V. Kumar, METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of

Sparse Matrices, Tech. rep., Minneapolis, USA, 1998.
[28] A.N. Yzelman, R.H. Bisseling, Two-dimensional cache-oblivious sparse matrix vector multiplication, Parallel Comput. 37 (12) (2011) 806–819.
[29] A.N. Yzelman, D. Roose, High-level strategies for parallel shared-memory sparse matrix vector multiplication, IEEE Trans. Parallel Distrib. Syst. 25 (1)

(2014) 116–125.
[30] NVIDIA, Nvidia cuda c programming guide, Tech. rep., 2013.
[31] W. Yang, K. Li, Z. Mo, K. Li, Performance optimization using partitioned SPMV on GPUs and multicore CPUs, IEEE Trans. Comput. 64 (9) (2015)

2623–2636.
[32] K. David, H. Wen-mei, Programming Massively Parallel Processors: A Hands-on Approach, vol. 11, Morgan Kaufmann of Elsevier, 2013.
[33] NVIDIA, Cuda c best practices guide, Tech. rep., March 2015.
[34] P. Steffen, R. Giegerich, M. Giraud, GPU parallelization of algebraic dynamic programming, in: International Conference on Parallel Processing and

Applied Mathematics, 2009, pp. 290–299.
[35] K. Nishida, K. Nakano, Y. Ito, Accelerating the dynamic programming for the optimal polygon triangulation on the GPU, in: Algorithms and Architectures

for Parallel Processing, 2012.
[36] NVIDIA, cuBLAS library, Tech. rep., March 2015.
[37] NVIDIA, cuSPARSE library, Tech. rep., March 2015.
[38] NVIDIA, CUSP library, Tech. rep., 2014.
[39] Intel, Intel Math Kernel Library, Tech. rep., March 2007.
[40] A. Nishida, Experience in Developing an Open Source Scalable Software Infrastructure in Japan, Springer, Berlin, Heidelberg, 2010.

http://refhub.elsevier.com/S0022-0000(17)30158-7/bib47656F726765313937334E6573746564s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4B617279706973s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4B617279706973s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib597A656C6D616Es1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib597A656C6D616E32303133s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib597A656C6D616E32303133s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib43554441s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib59616E6732303135506572666F726D616E6365s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib59616E6732303135506572666F726D616E6365s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4B69726B32303133s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4355444142657374s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib414450s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib414450s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib416363656C65726174696E674450s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib416363656C65726174696E674450s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib6375424C4153s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib6375537061727365s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib63757370s1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4D4B4Cs1
http://refhub.elsevier.com/S0022-0000(17)30158-7/bib4C697332303130s1

	A parallel computing method using blocked format with optimal partitioning for SpMV on GPU
	1 Introduction
	1.1 Motivation
	1.2 Our contributions

	2 Related work
	2.1 Parallel implementation of SpMV on GPU and partitioning strategies
	2.2 Reordering techniques of sparse matrices for SpMV

	3 CUDA and storage of sparse matrices
	3.1 An introduction to CUDA
	3.2 Storage formats of sparse matrices
	3.2.1 Storage space of CSR
	3.2.2 Storage space of ELL
	3.2.3 Storage space of COO
	3.2.4 Storage space of HYB
	3.2.5 Storage space of BSR

	4 Distribution of non-zero elements in a sparse matrix
	4.1 The DF of sparse matrices
	4.2 The characteristics of the DF

	5 An optimal partitioning algorithm
	5.1 Construction of DF
	5.2 Types of partitioning methods
	5.3 Analysis for parallel execution time
	5.4 An optimal partitioning problem
	5.5 An optimal partitioning algorithm (OPA) based on DF
	5.6 A reordering algorithm

	6 A parallel implementation of SpMV on GPU
	6.1 Parallel computing model on GPU
	6.2 The blocked stored format mixed CSR and ELL (BCE)

	7 Experimental performance evaluation
	7.1 Experiment settings
	7.2 SpMV tests and performance evaluation
	7.2.1 Test of SpMV on GPU
	7.2.2 Test of linear solver using SpMV on GPU
	7.2.3 Test of SpMV on GPU and CPU

	8 Conclusions
	Acknowledgments
	References

