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A Hybrid Parallel Solving Algorithm on GPU for
Quasi-Tridiagonal System of Linear Equations
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Abstract—There are some quasi-tridiagonal system of linear equations arising from numerical simulations, and some solving
algorithms encounter great challenge on solving quasi-tridiagonal system of linear equations with more than millions of dimensions as
the scale of problems increases. We present a solving method which mixes direct and iterative methods, and our method needs less
storage space in a computing process. A quasi-tridiagonal matrix is split into a tridiagonal matrix and a sparse matrix using our method
and then the tridiagonal equation can be solved by the direct methods in the iteration processes. Because the approximate solutions
obtained by the direct methods are closer to the exact solutions, the convergence speed of solving the quasi-tridiagonal system of
linear equations can be improved. Furthermore, we present an improved cyclic reduction algorithm using a partition strategy to solve
tridiagonal equations on GPU, and the intermediate data in computing are stored in shared memory so as to significantly reduce the
latency of memory access. According to our experiments on 10 test cases, the average number of iterations is reduced significantly
by using our method compared with Jacobi, GS, GMRES, and BiCG respectively, and close to those of BICGSTAB, BICRSTAB, and
TFQMR. For parallel mode, the parallel computing efficiency of our method is raised by partition strategy, and the performance using

our method is better than those of the commonly used iterative and direct methods because of less amount of calculation in an iteration.

Index Terms—Execution time, GPU, hybrid parallel algorithm, linear equation, quasi-tridiagonal matrix
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1.1 Motivation
THE tridiagonal solver is an important core tool in wide
range of engineering and scientific applications, such as
computer graphics, fluid dynamics, Poisson solvers, cubic
spline calculation, and semi-coarsening for multi-grid
method [1]. How to solve tridiagonal systems is a very com-
mon task in numerical simulations for many science and
engineering problems [2]. Some non-zero elements in a
matrix may distribute outside the diagonals if the data grid
has an irregular boundary, and the coefficient matrices are
termed quasi-tridiagonal matrices, which have the charac-
teristic of diagonal dominance. The quasi-tridiagonal matri-
ces are sparse and their majorities of non-zero elements
concentrate in the three diagonals.

With the expansion of the scale of problems, the dimen-
sions of the equations are also increased dramatically. Thus,
many commonly used algorithms encounter great challenge
for solving quasi-tridiagonal system of linear equations
with more than millions of dimensions. There are two main
approaches to solving the quasi-tridiagonal system of linear
equations, which are direct and iterative methods. The
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direct methods include Gauss elimination, LU, Thomas,
and cyclic reduction (CR), etc. Gauss elimination is not well
suited to sparse matrices because some zero elements may
become non-zero elements in the process of elimination for
sparse matrices. Some LU methods can employ some good
ordering strategies to keep the L and U factors sparse for
the sparse matrices, such as KLU solver [3]; however the
ordering strategies may produce a lot of zero-padded which
increase density rapidly for some quasi-tridiagonal matri-
ces. If the scale of a sparse matrix is very big, the perfor-
mance of the direct methods will deteriorate rapidly,
because they do not take into account the sparse characteris-
tic of the matrix. Although Thomas and CR have stable per-
formance, they are only suitable for tridiagonal equations.
The iterative methods are suitable for large sparse matrices,
such as Jacobi, Gauss-Seidel (GS), GMRES, and BiConjugate
gradient (BiCG), etc. But these iterative methods do not use
the tridiagonal characteristics of quasi-tridiagonal system of
linear equations to improve the solving performance. So a
new solving method which mixes direct methods and itera-
tive methods should be explored, which can overcome the
limitations of the direct and iterative methods.

In recent years, accelerator-based computing using accel-
erators such as the IBM Cell SPUs, FPGAs, GPUs, and ASICs
has achieved clear performance gains compared to CPUs.
Among the accelerators, GPUs have occupied a prominent
place due to their low cost and high performance-per-watt
ratio along with powerful programming models. So a new
parallel scheme using GPUs should be explored to accelerate
the process of solving the quasi-tridiagonal system of linear
equations.

1.2 Our Contributions

For quasi-tridiagonal system of linear equations, we present
a solving method which mixes direct and iterative methods.
Our method generates a sequence of approximate solutions
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{z*} in the same way as the conventional iteration methods,
where 2" expresses the approximate solutions of kth itera-
tion. The conventional iteration methods essentially involve
a matrix A only in the context of matrix-vector multiplica-
tion and do not make full use of tridiagonal characteristics
of quasi-tridiagonal matrices, so as to result in slow conver-
gence. In our method, a quasi-tridiagonal matrix is split into
a tridiagonal matrix and a sparse matrix, and then the tri-
diagonal equation is solved by the direct methods in the
iteration processes. Because the approximate solutions
obtained by the direct methods are closer to the exact
solutions, the convergence speed of solving the quasi-
tridiagonal system of linear equations can be improved.
Some direct methods have good performance in solving tri-
diagonal equations, such as Thomas and CR. We present an
improved CR algorithm using a partition strategy to solve
tridiagonal equations on GPU, and the intermediate data in
computing are stored in shared memory, so as to signifi-
cantly reduce the latency of memory access. So the compu-
tational complexity of the hybrid method is not increased
and the convergence speed can be accelerated.

According to our experiments on 10 test cases, the perfor-
mance improvement using our algorithm is very effective
and noticeable. The average number of iterations is reduced
by 69.23, 15.79, 39.22, and 47.42 percent by using our
method compared with Jacobi, GS, GMRES (5), and BiCG of
Lis library respectively, and the performance using our
method is better than those of the commonly used iterative
and direct methods because of less amount of calculation in
an iteration and fast convergence speed.

The remainder of the paper is organized as follows. In
Section 2, we review related research on solving quasi-
tridiagonal system of linear equations. In Section 3, we pres-
ent an introduction to CUDA. In Section 4, we develop the
method of solution for solving quasi-tridiagonal matrices.
In Section 5, we describe parallel implementation of our
method on GPU. In Section 6, we demonstrate the perfor-
mance comparison results in our extensive experiments. In
Section 7, we conclude the paper.

2 RELATED WORK

One of the best known algorithms for solving tridiagonal
systems is the Thomas algorithm [4]. It is a simplified ver-
sion of Gaussian elimination without pivoting to solve dom-
inant diagonal systems of equations in O(n) steps by
performing an LU decomposition. Unfortunately, this algo-
rithm is not well suited to parallel and vector architectures,
such as multi-cores and many-cores processers. Ref. [2] ana-
lyzed the projection of four known parallel tridiagonal sys-
tem solvers: cyclic reduction [5], [6], recursive doubling [7],
Bondeli’s divide and conquer algorithm [8], and Wang’s
partition method [9]. Cyclic reduction and recursive dou-
bling focus on a line grain of parallelism, where each pro-
cessor computes only one equation of the system. Ref. [9]
developed a partition method with a coarser grain of paral-
lelism. Ref. [8] had also made efforts in this direction includ-
ing divide and conquer approximations.

GPUs are widely used in parallel numerical computing,
such as parallel accelerating for matrix-matrix multiplica-
tion [10] and solvers of linear systems [11], [12]. The solution
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of tridiagonal systems on the GPU is a problem which has
been studied in the literatures recently. Ref. [11] presented
the first GPU implementation of the alternating direction
implicit tridiagonal solver (ADI-TRIDI) based on shading
languages. Ref. [13] presented the application of the split-
and-merge technique to the following parallel tridiagonal
system solvers on GPU: cyclic reduction and recursive dou-
bling, which could efficiently exploit the memory hierarchy
of GPU. More recently, a methodology for reducing commu-
nication on the GPU for algorithms with a down sweep pat-
tern was applied to cyclic reduction [14]. Ref. [12] presented
a new implementation of cyclic reduction for the parallel
solution of tridiagonal systems and employed this scheme
as a line relaxation smoother in the GPU-based multigrid
solver. Some parallelization approaches are based on cyclic
reduction in [6], [7], [15]. Recently, Ref. [16] discussed the
applicability of these algorithms on modern GPUs. They
concluded that cyclic reduction suffers from bank conflicts
of shared memory and poor thread utilization in lower
stages of the solution process, while parallel cyclic reduction
is not asymptotically optimal, and recursive doubling is not
optimal and additionally exhibits numerical stability issues.

Currently, Krylov subspace methods are considered to be
among the most important iterative techniques available for
solving large sparse linear systems. These techniques are
based on projection processes, both orthogonal and oblique,
onto Krylov subspaces [17]. Many iterative solving algo-
rithms based on Krylov subspace have been proposed for
various sparse linear systems, such as Generalized Minimum
Residual Method (GMRES), Conjugate Gradient algorithm
(GC), biconjugate gradient algorithm (BiCG), biconjugate
gradient stabilized algorithm (BiCGSTAB), transpose-free
quasi-minimal residual algorithm (TFQMR), and stabilized
biconjugate residual method (BiCRSTAB). BiCGSTAB,
TFQMR, and BiCRSTAB have better adaptability and stabil-
ity, so that they are widely used in numerical simulations.

There are three main types of operations for the iterative
algorithms, which are sparse matrix-vector multiplication
(SpMV), vector inner product, and scalar and vector multi-
plication. SpMV occupies about half of the total amount of
calculation. Many parallel methods of SpMV on GPU or
multi-core CPU have been proposed to improve the perfor-
mance [18], [19], [20], [21]. Furthermore, both efficiency and
robustness of iterative techniques can be improved by pre-
conditioning. Ref. [22] investigated the convergence charac-
teristics of effective preconditioners and pursued the
performance of some preconditioners such as IC and sym-
metric Gauss-Seidel (SGS). Ref. [23] presented numerical
results with a variable block multilevel incomplete LU fac-
torization preconditioner for solving sparse linear systems.
Ref. [24] proposed a parallel conjugate gradient method
and a parallel square root method with preconditioners
for solving SLAE with block-tridiagonal matrices arising
from geoelectric problems on Intel multi-core processors
and NVIDIA graphics processors. Furthermore, high-
performance heterogeneous computers that employ field
programmable gate arrays (FPGAs) as computational ele-
ments are known as high-performance reconfigurable com-
puters (HPRCs). Ref. [25] illustrated some of the issues ass-
ociated with mapping floating-point kernels onto HPRCs,
but the performance is not better than that of GPUs.
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Fig. 1. The CUDA execution model.

Recently, for quasi-diagonal matrices, Ref. [26] presented
a new diagonal storage format, which mixes the diagonal
format (DLA) and the compressed sparse row format (CSR),
and overcomes the inefficiency of DLA in storing irregular
matrices and the imbalance of CSR in storing non-zero ele-
ments. Furthermore, there is much interest in hybrid solvers
with some combination features mixing direct and iterative
methods. Typically, they partially factor a matrix using
direct and iterative methods on the remaining Schur com-
plement [27], such as HIPS [28], MaPhys [29], and PDSLin
[30]. Ref. [31] presented ShyLU, a hybrid-hybrid solver for
general sparse linear systems, that is hybrid in two ways.
First, it combines direct and iterative methods. Second, the
solver uses two-level parallelism via hybrid programming
(MPI+threads) in the shared memory environments and on
largely parallel computers with distributed memory.

3 AN INTRODUCTION TO CUDA

GPUs are provided by NVIDIA, which provides CUDA
(Compute Unified Device Architecture) for improving the
efficiency of developing parallel program [32]. The CUDA
execution model shown in Fig. 1 includes a collection of
threads running in parallel. The number of threads to be
executed is decided by programmers. A collection of
threads (called a thread block) runs on a multiprocessor at a
given time. Multiple blocks can be assigned to a single mul-
tiprocessor and their execution is time-shared. For heteroge-
neous computing systems with CPUs and GPUs, each core
of CPU can independently perform its instructions and
access its data, which is called the MIMD model. If there are
no dependencies, the threads on different cores of CPU do
not need to be synchronized. For multi-core CPUs, each
core can be scheduled independently to perform threads.
But the basic computing unit of a GPU is called streaming
multiprocessor (SM). As a component at the bottom of the
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independent hardware structure, SM can be seen as an
SIMD processing unit. Each SM contains some scalar pro-
cessors (SP) and special function units (SFU). The threads in
the same SM need to be synchronized. So the inequality of
the load of different threads will have larger impact on
performance.

4 THE METHOD OF SOLUTION FOR
QUASI-TRIDIAGONAL MATRICES

A quasi-tridiagonal matrix A is shown below:

d1 Uy *
ly dy up
I3 d U *
A= ’ . ’ . ’ )
lpr dpor Up—
* ln d’fl

Matrix A has three diagonals, which are ly,0s,...,1,, di,
d,...,d, and uy,ug,...,u,—1. The * represents a non-zero
element outside the diagonals.

4.1 Division of Quasi-Tridiagonal Matrices

Matrix A is divided into two parts, which are the tridiagonal
matrix 7" and another sparse matrix S with non-zero ele-
ments outside the three diagonals, as follows:

A=T+S
b1 C1
as b2 Co

a3 by c3

bnfl

QAp—1 Cn—1
a, by,
0 0 *
0 0 O *
0 0 O *
+ .
* 0 0 0
* 0 0

The three diagonals of the tridiagonal matrix 7" are stored in
three arrays L, D and U, where L= (l,l3,...,l,), D=
(di,dy,...,d,), and U = (uy, ug, ..., u,—1). The sparse matrix
S is stored as a compressed format, such as COO or CSR.
The storage space used as dense matrix format is more than
the space of T" and S, because the non-zero elements out-
side the diagonals are very sparse.

4.2 Hybrid lterative Solving Algorithm (HISA)
When A is partitioned into 7" and S, the quasi-tridiagnoal
equation

Az =1 (1)
is given by (T'+ S)x =b, and we have Tx =b — Sz. Let
b =b— Sz. Then,

Tr=1. (2)
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For the tridiagonal equations, there are some solution algo-

rithms with good performance, such as CR and Thomas. So

Eq. (2) can be solved quickly by direct methods to get the

approximate solutions of Eq. (1) if Sz = .Sj, where j is the

eigenvector of A. Because it is difficult to get the eigenvector

of A, jneeds to be approached using an iterative method.
Define the iteration as

Tt =b— Sz, zy=0. 3)

The iterative solving algorithm is shown as Algorithm 1.
The tridiagonal equation 7™ =V’ is solved using a direct
method in Algorithm 1. Thomas has better performance if
the tridiagonal matrix has diagonal dominance, and the tri-
diagonal equation can be solved in parallel using CR also.
The solution z™ of Tx™ =b— Sz™ ! can be used as an
approximation to that of 7z™ = b — Sx™ if B approaches 0
using Algorithm 1. So «™ is the solution of Eq. (3) if 8 =0,
and 2™ is that of Eq. (1) also.

Algorithm 1. The Iterative Solving Algorithm for Quasi-
Tridiagonal System of Linear Equations.

Require: A tridiagnoal matrix and a sparse matrix partitioned
from A, i.e., T and S; the vector b.
Ensure: The solution z™.
1: 2% «0;
2: 0 — by
3: form — 1,2,3,..., until convergence do
4:  //The tridiagonal equation is solved by a direct method,
such as CR or Thomas;

5. Solving Tz =V/;
6: bV —0b—Sa™;
7 :8 — Hl.m _ xm—l”[.
8: if § = 0then
9: Stop;
10:  end if
11: end for
4.3 Iteration Convergence Analysis

Lemma 1. Assume Az = b, and A =T + S, where A is a non-
singular matrix and T is a nonsingular tridiagonal matrix.
The necessary and sufficient condition of convergence for solv-
ing Az =b using Algorithm 1 is p(T~'S) < 1, where
o(T~1S) is the spectral radius of T~*S.

Lemma 2. The solving process of Ax = b using Algorithm 1 is
convergent, if A is a diagonally dominant matrix.

Due to space limitation, the proofs of Lemmas 1 and 2
are provided in the supplementary file, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2016.2516988.

4.4 Computational Complexity Analysis

For solving linear equations, the main operation is vector-
vector multiplication. For two vectors with n elements, there
are n multiplication operations and n — 1 addition opera-
tions respectively. Furthermore, there are multiple adding
and multiplying units in a processor, such as CPU and
GPU, and addition and multiplication operations can be
executed in parallel. So the performance of solving linear
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TABLE 1
The Number of Operations Using the lterative
Algorithms in an Iteration Process

HISA Jacobi GS GMRES
NNZ+2n  NNZ+2n  NNZ+2n NNZ+(2j+1)n
BiCG BiCGSTAB TFQMR BiCRSTAB
2NNZ +8n  2NNZ +11ln 2NNZ + 8n 3NNZ + 11n

equations mainly depends on the number of multiplication
operations. Assume that the number of iterations for solving
Eq. (1) using Algorithm 1 is m, and Eq. (2) is solved using
Thomas. The number of operations belonging to Thomas is
5n — 4. Assume that the number of non-zero elements of A
is NNZ, and the number of non-zero elements of S is
NNZ — 3n + 2. So the number of operations belonging to Sx
is NNZ —3n+ 2. The sum of operations of solving can
approximately be calculated as

((bn—4)+ (NNZ —3n+2)) x m = (NNZ+2n+2) xm
= NNZ x m-+2n x m -+ 2m.

Assume that the number of iterations for solving Eq. (1)
using Jacobi is m ;. Then, the number of operations of solv-
ing approximately is (NNZ + 2n) x m;, because there are
one SpMV and two scalar and vector multiplications in an
iteration process. The number of operations using Gauss-
Seidel is close to that of Jacobi, but its convergence speed is
usually faster than that of Jacobi. The number of operations
of HISA is similar to those of Jacobi and Gauss-Seidel and
its convergence speed is usually faster than those of Jacobi
and Gauss-Seidel.

There are one SpMV, j vector inner products, and j+ 1
scalar and vector multiplications in an iteration process for
GMRES algorithm [17], where j is increased as the number of
iterations increases. There are two SpMVs, three vector inner
products, and five scalar and vector multiplications in an iter-
ation process for BiCG algorithm [17]. There are two SpMVs,
five vector inner products, and six scalar and vector multipli-
cations in an iteration process for BICGSTAB algorithm [17].
There are two SpMVs, two vector inner products, and six sca-
lar and vector multiplications in an iteration process for
TFQMR algorithm [17]. There are three SpMVs, five vector
inner products, and six scalar and vector multiplications in
an iteration process for BICRSTAB [33]. The number of opera-
tions using the iterative algorithms are shown in Table 1.

The NNZ is between 4n and 6n in most cases, because
the non-zero elements outside three diagonals are very
sparse for the quasi-tridiagonal matrix, and the mean 5n is
chosen to calculate. Because m is far less than n, the compu-
tational complexity of HISA is approximately 7nm, and that
of Jacobi is approximately 7nm , and that of Gauss-Seidel is
approximately 7nmg, where mg is the number of iterations
for solving Eq. (1) using Gauss-Seidel. The computational
complexities of the iterative methods largely depend on the
number of iterations, and the convergence speeds of HISA,
BiCG, BiCGSTAB, TFQMR, and BiCRSTAB are usually
faster than those of Jacobi and Gauss-Seidel.

The computational complexities of the iterative algo-
rithms are shown in Table 2, where m is the number of
iterations.
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TABLE 2
The Computational Complexities
of the Iterative Algorithms

HISA Jacobi GS GMRES
Tmn Tmn mn (6mn 4+ m?n)
BiCG BiCGSTAB TFQMR BiCRSTAB
18mn 21mn 18mn 26mn

4.5 Storage Analysis

T is stored in three arrays and S is stored as CSR format.
CSR explicitly stores column indices and non-zero values in
arrays Aj and Av, and the starting position of each row in
the array Aj is stored in the third array Ap. So the storage
space of S using CSR is (NNZ —-3n+2)x2+n+1. In
addition, three vectors, i.e., z'T!, 2/, and b, need to be stored

in the iteration process. So the amount of storage using
HISA is

3n—2+(NNZ—-3n+2)x2+(n+1)+3n
=2NNZ +n+3~2NNZ + n.

For Jacobi, the iteration matrix needs to be stored using CSR
format whose storage requirement is 2NNZ +n+1. In
addition, three vectors z'*!, 27, and b need to be stored in
the iteration process also. So the storage requirement using
Jacobi is

2NNZ +n+14+3n=2NNZ+4n+ 1~ 2NNZ + 4n.
The storage space using Gauss-Seidel is
2NNZ 4+n+142n=2NNZ+3n+1~2NNZ + 3n,

because 2" and 2’ can share the same array.

The storage requirements of GMRES, BiCG, BiCG-
STAB, TFQMR, and BiCRSTAB are approximately
NNZ +2mn+ m?+1, NNZ+8n, NNZ +Tn, NNZ + Tn,
and NNZ + Tn respectively [17], [33]. The storage require-
ments of the iterative algorithms are shown in Table 3 if
the sparse matrix is stored as CSR format, where m is the
number of iterations. For BiCG and BiCRSTAB, more
swap spaces should be occupied, because there is a trans-
posed operation of the iteration matrix in the iteration
process.

5 PARALLEL IMPLEMENTATION USING CR
FOR HISA

Thomas algorithm has fewer operations and better perfor-
mance for serial computing mode, but it is not suitable for
parallel processing. We require a parallel algorithm for
quasi-tridiagonal system of linear equations to realize
parallel processing. There are some parallel algorithms
for solving tridiagonal equations, such as cyclic reduction
and recursive doubling, and CR algorithm has good per-
formance for parallel algorithms of tridiagonal equations.
But they cannot be adapted to solve quasi-tridiagonal sys-
tem of linear equations. The main computing process of
iterative algorithms is SpMV, and the solving process
can be computed in parallel by the parallel algorithms
of SpMV. But the tridiagonal characteristics of the
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TABLE 3
The Storage Requirements of the Iterative Algorithms
HISA Jacobi GS GMRES
2NNZ+n  2NNZ+4n 2NNZ+3n 2NNZ + 2mn + m?
BiCG BiCGSTAB TFQMR BiCRSTAB
2NNZ +8n 2NNZ+Tn 2NNZ +Tn 2NNZ +Tn

tridiagonal matrices have not been fully considered to
accelerate the convergence speed for some iterative algo-
rithms. Gauss-Seidel cannot be processed in parallel,
because ! must be computed synchronously and can-
not be obtained in the same iteration process.

5.1 Cyclic Reduction

Cyclic reduction is a divide-and-conquer algorithm,
which was proposed in [6]. Cyclic reduction mainly has
two phases, which are forward reduction and backward
substitution. After a forward reduction, all odd-indexed
unknowns are eliminated while even-indexed ones
remain. Then, a new tridiagonal equation can be obtained,
which has half of the size of the previous equation. The
odd-indexed unknowns in the reduced system of equa-
tions are then recursively eliminated until an equation
with 1 unknowns is obtained. The last equation can be
directly solved. For backward substitution, we plug the
solved values into the tridiagonal equations from last to
first and obtain the solutions of remaining unknowns in
these equations.

For a tridiagonal linear system T = b, these tridiagonal
equations can be written as Eq? i + dixy + uirie = by
(t=1,2,...,n), where [; and u, are 0. Assume that a group
of equations includes three consecutive equations of the sys-
tem as follows:

lyio1 doio1 Uz bai—1
Ly dy; U2j €T = boi s
lois1 d21¢+1 U2j+1 bai 1

where & = (919, Toi_1, Tai, Toir1, Toira) - Toioy and @y are
eliminated by multiplying equation Eg), | by —Is;/do; 1,
equation qui 11 by —ug;i/dsiy1, and then adding them to
equation Eq);. After that, a new equation Eq; is obtained:

(1},0,d},0,ul )z = b} 4)

et b

But there are only two equations as shown in the following
in the last group of equations if n is an even number:

lnfl dnfl Up—1 _ bnfl
hoodo )T b )

After the elimination, the last equation Eqin /o) can be
obtained as (zhn_zw,o, dinm,O)x = bin/ﬂ‘ After all odd-
indexed unknowns x9;_; are eliminated for each i from 1 to
[n/2], a new tridiagonal system of linear equations can be
formed as follows:



The last reduction

Solve 1 unknown

The first backward

The penultimate
backward

Fig. 2. The solving process of the cyclic reduction for the tridiagonal sys-
tem containing equations labeled Fq! to Eq’. The segments in the boxes
represent equations with unknowns, and the segments in the circles rep-
resent equations with the resolved variables.

11
di To
1 1 1
Lo d Usy Ty
1 1 1
l3 dy Uz T

1 1 1
g digo g [ | 22y
1 1 n
g T2l
bi
b}
by
1
bigj-1
bl

5]

If there are K equations before the ith reduction, the num-
ber of equations is |4 | after the K equations are reduced.
There is only one equation when the reduction process is
completed. So the total number N, of equations in the pro-
cess of reduction can be calculated by Eq. (5):

n

N,, = {
q n+2

J+“§J+~-~+1z2(n—1). (5)
N, is about 2(n — 1) according to geometric series summa-
tion. For the sake of simplicity, we diagrammatize the solv-
ing process of this tridiagonal system. Fig. 2 shows the
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solving pattern of the algorithm. The figure can be parti-
tioned into two portions. The upper half portion of the
figure is forward reduction, and the lower half portion is
backward substitution.

There are two steps in CR, which are the forward reduc-
tion and backward substitution. The forward reduction is
processed only once in the iteration processes if the quasi-
tridiagonal system of linear equations are solved by the iter-
ative algorithms, and the vector b must be recalculated in
each iteration process. So CR can be split into three steps:

1) (Step D reduction of consecutive
equations.
2)  (Step 2) Calculation of the vector b in reduction.
3) (Step 3) Backward substitution.
For Step 1, there are 4 multiplications when three conse-
cutive equations are reduced into an equation. The number

of operations of Step 1 can be calculated as

4(EJ + {%J +-~+1> — 4(N,y —n) ~ 4n.

Coefficient

In Step 2, there are 2 multiplications when three consecutive
equations are reduced into an equation. The number of
operations of Step 2 is 2(N,, — n) &~ 2n. In Step 3, there are 2
multiplications and 1 division in the process of a backward
substitution. The number of operations of Step 3 is about
3n. On a parallel computer with n/2 processors, the cyclic
reduction algorithm only requires 9|log,n| steps for the
solving process using CR. Algorithm 2 is an iterative
algorithm using CR for quasi-tridiagonal system of linear
equations. Step 1 is processed only once for the whole
solving process, and Steps 2 and 3 must be processed in
each iteration process.

Algorithm 2. The Iterative Solving Algorithm for Quasi-
Tridiagonal System of Linear Equations Using CR.

Require: A tridiagnoal matrix and a sparse matrix partitioned
from A, i.e., T and S; the vector b.
Ensure: The solution 2.

1: 20 —0;
2: 0 «—b;
3: Eqs « coefficient_reduction(T);
4: form — 1,2,3,..., until convergence do
5:  bs « calculated_reduction_b(Egs,b');
6: 1™ «— backward_substitution(Egs,bs);
7: b —0b-—Sz™;
8 p [ —am ||
9: if =0 then

10: Stop;

11:  endif

12: end for

Assume that the number of iterations using Algorithm 2
is m. The total number of operations using Algorithm 2 can
be calculated as

dn+m(2n+3n+ (NNZ - 3n +2))
= NNZ xm+2n x m-+4n + 2m.

The coefficients and vector b of all equations in the pro-
cess of reduction are stored in Egs and bs respectively.
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The number of elements in Egs is V., which can be calcu-
lated by Eq. (5).

Define Egs = 9 0 el

{e, €, el el el,... e in/ZJ’ el
elos2ny tand bs = {80,00,..., b0, bl B, ...,

1
bbl/QJ,b%, . ’bi(m/ﬂ)/%"”’ b%og?nj}. The elements ¢!, ¢Y, ...,
el are (I, di,u1), (lo,do,us),...,(In,dy,u,) in T and
b0 are by, by, ..., b, in b of Eq. (1). The elements e}

b6, ... b0
in Egs is a triple (I} d1 ) where !, d!,u! are the coeffi-

cients of z9;_2, T2, T2i12 in Eq. (4), and b} of bs is b} in Eq. (4).
For double precision, the storage spaces S, of Egs and bs

can be calculated by Eq. (6):

7L7

2
ldns2n/2) o

Seg = Ney X (3 x 8 +8) = 32N, ~ 64n(bytes).  (6)

Each group of equations is reduced by a thread of
CUDA if CR is processed on GPU. All threads need to
access Fqs and bs frequently, which cannot be accessed
in alignment, because Egs and bs are irregular data set.
If Egs and bs are stored in the global memory, the per-
formance of CR will decline because of the access latency
of global memory. The tridiagonal is partitioned into
some blocks and each block is processed by a thread
block of CUDA. Then FEgs and bs of a block can be
stored in the shared memory of the thread block, and it
has little impact on the performance of CR, because the
shared memory has very little access latency.

5.2 HISA Based on Blocks (BHISA)
The quasi-tridiagonal matrix A is shown as follows:

A:
bl C1 *
a9 bg Cy
Q. bk Cl *
* Af+1 bi+1 Ck+1
*
¥ agnk bk Cg-nk
* -kt bk Sk
k
* Qg bqk

The tridiagonal in A can be partitioned into ¢ blocks and
each block has k rows. So the quasi-tridiagonal matrix A is
partitioned into ¢ tridiagonal submatrices and a matrix
without tridiagonal. Define 7; to be the ith tridiagonal sub-

matrix fori =1,2,...,q.Fori=1,...,q—1,T;is
b(i—l)k+1 Cli-1)k+1
ai-vrr2  Dinrr2 Cl-1)ke2
T, = )
Ai-1yhth—1 Dl-kih1  Cli—1)hih-1
ajy, bir,

2801
T is
by—Dkr1  Clg=1)k+1
k2 bg-vki2  C-Drr2
T, = )
A kik-1 g 1kth-1  Clg-Dkrh1
Ak bqk

Define S to be a submatrix of A without tridiagonal, which
is shown as follows:

0 0 *
0 0 0
0 0 Ck *
* A1 0 0
S = .
* .
* 0 0 Clg—1)k
* (—Dk+1 0 0
* 0 0
And A can be expressed as follows:
i
T
A= + 5.
Ty
T

q

Define z; and b; for j = 1,2,..., ¢ to be the sub-vectors of
x and b respectlvely z; 1nc1udes the ((j—1) x k)th to
(j x k)th elements of z and b; includes the ((j — 1) x k)th to
(J x k)th elements of b. So the iteration equation for the jth
block is

I}x;-“:bijxﬂx?:Qj:1,2,...,q. ()]

Eq. (7) is an independent computing task for each j, and can
be executed in parallel. The iterative solving algorithm using
CR based on blocks for the quasi-tridiagonal equation is
expressed as Algorithm 3, which can be processed in parallel.

In lines 7 to 9 of Algorithm 3, each 7}, j =1,2,...,q, is
assigned into a block of thread grid in CUDA and each
block is solved in parallel in the thread block using CR algo-
rithm. Each thread solves an odd-indexed equation in Egs
of T} to get the solution of the unknowns z by backward
substltutlon The solving process of CR on GPU is shown in

Fig. 3, where Eq/ expresses the equation e/z = b/, and ¢/ and
b] are stored in Eqgs and bs respectively.

5.3 Optimization of Parallel Algorithm on GPU

The Eqs and bs of a block can be stored in the shared mem-
ory of the corresponding thread block, because the threads
of the block do not access the Egs and bs in the other blocks.
x; should be accessed frequently in lines 9 and 10 of Algo-
rithm 3, and z; is not accessed by the threads of the other
blocks, so x; of the block can be stored in the shared mem-
ory also. Lines 13 to 15 are implemented by sum reduction
on GPU. The main operations of line 20 are sparse matrix
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Fig. 3. The solving process of the cyclic reduction on GPU. Each thread
of the block processes three consecutive equations using a new = to get
a new b according to Eq. (4) in each reduction of Step 2. Then an
unknown is solved by a thread of the block according to backward
substitution in Step 3.

vector multiplication, which can be implemented by SpMV
function on GPU.

Algorithm 3. The Iterative Solving Algorithm Using CR
Based on Partition for Quasi-Tridiagonal System of Lin-
ear Equations.

Require: The blocks partitioned from A4, i.e., 11,75, ..
S; the vector b.
Ensure: The solution x,,.
1: 20 —0; 0 — b;
2: forj«— 1togdo
3 Eqs; « coefficient_reduction(7});
4: end for
5: fori «+ 1,2,3,..., until convergence do
6
7
8

., T, and

for j — 1togdo
bs; « calculated_reduction_b(Egs;,b.);
xz «— backward_substitution(Egs;,bs;);

9 B |ai—ai L]
10:  end for
11: B~ 0;

12: forj <« 1togdo
13: B—p+ ﬂj;
14:  end for

15:  if =0 then

16: m «— i; Stop;

17:  endif
18: U «—b— Sx%;
19: end for
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The convergence speed of HISA may decline using parti-
tion strategy, because the non-zero elements of S will
increase. The bigger the size of blocks is, the less the non-
zero elements of S increase, and the less the convergence
speed decreases. But the proportion of the increased num-
ber of iterations is very little. The bigger the size of blocks is,
the more the storage spaces of the Egs and bs of blocks
need. The Egs and bs cannot be loaded into the shared mem-
ory if the sum of the Egs and bs is beyond the limit of the
shared memory of thread block. Furthermore, if the number
of threads in the block is too large, more threads will be idle
in the process of reduction. Assume that the number of
rows in 7" is n and the size of the block is k. Then a threads
block resides at least |k/2] threads, because we can find
from Fig. 3 that the number of threads residing in the
threads block should be half of the size of T;. The number of
reductions in Step 2 and backwards in Step 3 is [log, k.
The number of available computing time units in the thread
block is 2| k/2]|log, k]|, and the number of used computing
time units is 2(|k/2] — 1) + k according to Eq. (5). So the
number of idle time units in Steps 2 and 3 of solving Eq. (7)
using CR can be calculated as

e (o v~ ()9
zn(logz""*%)'

With the increase of the size of blocks, we can find that the
number of idle time units will increase also, leading to the
efficiency decrement in parallel computing.

The threads are loaded into an SM on GPU to be proc-
essed in accordance with warp unit. The size of thread block
should be multiple of 32, because the number of threads in a
warp is 32. The size of T} is at least 64 because the number of
threads in one block is at least 32; otherwise, some threads
will be idle.

There are few non-zero elements in the sparse matrix S
divided from A. We observe that the number of non-zero
elements in some rows of S divided from benchmarks is
less than 2. The performance of SpMV of S using CSR or
ELL directly is poor, because some threads in the grid have
very low load, so as to waste computing resources. The per-
formance analysis method using partition in [19], [20] for
SpMV can be used and S can be partitioned into some
blocks with similar number of non-zero elements. These
blocks can be split into some groups according to the size of
thread blocks of CUDA, and these groups processed by the
same thread block have similar number of non-zero ele-
ments. So the loads of these threads in the same block are
more balanced and fuller.

6 EXPERIMENTAL EVALUATION

6.1 Experiment Settings

The following test environment has been used for all bench-
marks. The test computer is equipped with two AMD
Opteron 6,376 CPUs running at 2.30 GHz and a NVIDIA
Tesla K20c GPUs. Each CPU has 16 cores. The GPU has
2,496 CUDA processor cores, working at 0.705 GHz
clock, and possessing 4 GB global memory with 320 bits
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TABLE 4
Parameters of the Test Computer

Parameters Description Values
S; the size of integer 4 Byte
S, the size of single 4 Byte
S the size of double 8 Byte
C the number of stream processor 2,496
fs the clock speed of SP 0.705 GHz
fa the clock speed of the global memory 2.6 GHz
AW the bus width of the global memory 320 bits
™ the bandwidth of PCle 8 GiB/s

bandwidth at 2.6 GHz clock, and the CUDA compute capac-
ity is 3.5. As for software, the test machine runs the 64 bit
Windows 7 and NVIDIA CUDA toolkit 7.0. The hardware
parameters of the testing computer are shown in Table 4.
The tested matrices are derived from some scientific com-
puting applications, such as gas discharges. The ten tested
matrices shown in Table 5 are the quasi-tridiagonal matri-
ces, which have nonpositive definite, asymmetric, and diag-
onally dominant characteristics. Further characteristics of
these matrices are given in the supplementary file, available
online.

For the test using HISA on CPU, the tridiagonal matrix
partitioned from the coefficient matrix is solved by Thomas
algorithm, because it has better performance for serial algo-
rithms. For the test using BHISA on GPU, the tridiagonal
matrix partitioned from the coefficient matrix is solved by
our parallel CR algorithm. The solving functions of KLU
library [3] are used to solve the test cases for LU algorithm,
and AMD reordering technique [34] is used in the solving
functions on CPU. But KLU function does not support par-
allel mode on multi-core CPU. SuiteSparse library provides
a sparse direct solver SuiteSparseQR for GPU [35], [36], but
the performance of SuiteSparseQR is worse than that of cuS-
parse provided by CUDA tools [37]. The solving functions
of Lis library [38] are used to solve the test cases for iterative
algorithms, such as Jacobi, GS, GMRES(m), BiCG, BICG-
STAB, BiCRSTAB, and TFQMR, and these iterative algo-
rithms of Lis library are tested using both serial mode
and parallel mode. The storage spaces of GMRES are more
than those of the other iterative algorithms in an iteration
process from Table 2. So Gas10000000a, Gas10000000b, and
Gas10000000c cannot be solved using GMRES, because too
much storage spaces are occupied, leading to memory over-
flow. So we tested restarted version GMRES(m) for parallel
mode and serial mode, where m is 5. The last three matrices
can be solved by GMRES(5). The cases are tested on single
core of multi-core CPU for the serial mode and they are
tested on all cores of multi-core CPU using openMP for the
parallel mode. The cuSparse library provided by CUDA
tools includes three sparse direct solvers, which use BSR,
CSR, and HYB storage formats respectively [37], and the
solver using HYB format has better performance, so the
HYB solver is used in our experiments on GPU. Further-
more, two preconditioners are provided by cuSparse,
which are the incomplete-Cholesky factorization and the
incomplete-LU factorization. The incomplete-Cholesky fac-
torization is sutable for Hermitian/symmetric positive defi-
nite sparse matrix. But the tesed cases are nonpositive
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TABLE 5
General Information of the Quasi-Tridiagonal
Matrices used in the Evaluation

Quasi- Ratios NNZ
tridiagonal n NNZ of NNZ  outside
Matrices overn tridiagonals
Gas2000 2,000 9,989 4.9945 3,991
Gas10000a 10,000 49997 4.9997 19,999
Gas10000b 10,000 59,989 5.9989 29,991
Gas100000a 100,000 499,991 4.9999 199,993
Gas100000b 100,000 599,976 5.9998 299,978
Gas1000000a 1,000,000 3,999,997  4.0000 999,999
Gas1000000b 1,000,000 4,999,972  5.0000 1,999,974
Gas10000000a 10,000,000 39,999,997  4.0000 9,999,999
Gas10000000b 10,000,000 49,999,707  4.9999 19,999,709
Gas10000000c 10,000,000 59,999,104 5.9999 29,999,106

definite sparse matrices. So the incomplete-LU factorization
is used in the HYB solver. Furthermore, CUDA tools also
provide cuSolver library, which is a high-level package
based on the cuBLAS and cuSPARSE libraries [39]. The
cuSolverSP of cuSolver library provides a new set of sparse
routines based on a sparse QR factorization. But cuSolverSP
cannot solve the test cases except Gas2000 matrix. Some
zero entries will become non-zero entries when a sparse
matrix is factorized. For QR factorization, non-zero ele-
ments will increase sharply because of irregular distribu-
tions of non-zero elements. The processing of QR facto-
rization need more storage spaces, exceeding the limits of
the memory on GPU for large sparse matrices. So the sparse
matrices bigger than Gas2000 cannot be factorized on GPU
because of the limits of the memory on GPU. So the
cuSolver library is not used in experiments. The cases were
solved using the iterative solvers of PARALUTION library
for parallel and serial mode on CPUs and GPU [40], which
used restart version GMRES(5) and BiCGSTAB methods.

The convergence tolerance is set to 0.0000001 for the iter-
ative algorithms in the test. The performance of the iterative
algorithms depends on two factors, which are the conver-
gence speed and the number of operations in each iteration
process. The number of operations in each iteration process
is analyzed in Section 4.4, and the convergence speeds are
tested for the iterative algorithms before the performance
analysis. The cases are solved by the tested algorithms using
double precision.

6.2 Convergence Test

The number of iterations for solving the test cases is shown
in Table 6, where No represents that the case cannot be
solved using the algorithm and Percentage represents the
reduction percentage of the number of iterations using
HISA compared with other iterative methods. We have the
following observations from Table 6.

(1)  The convergence speed of iterative method depends
on the degree of diagonally dominant characteristics
for the sparse matrix, which is defined |a;| >
Z];ﬂ @i The blgger |(L”| — Z];ﬁ |(I7J| iS, the more
obvious the diagonally dominant characteristics is. If
the number of non-zeros (NNZ) outside tridiagonal
is greater, > ., a; will be bigger, leading the
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TABLE 6
The Number of Iterations for Solving the Cases using lterative Algorithms
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Quasi-tridiagonal HISA BHISA

Lis lib

PARALUTION lib

Matrices Jacobi GS GMRES(5) BiCG BiCGSTAB TFQMR BiCRSTAB GMRES(5) BiCGSTAB
Gas2000 11 11 31 13 18 19 11 10 11 10 10
Gas10000a 11 12 31 13 18 19 11 11 11 10 10
Gas10000b 12 13 49 13 19 22 11 12 12 11 10
Gas100000a 11 11 31 13 18 20 11 11 11 10 10
Gas100000b 12 13 49 14 20 21 11 11 11 11 11
Gas1000000a 10 11 24 12 17 20 10 10 11 11 10
Gas1000000b 11 11 33 13 19 22 11 11 11 12 11
Gas10000000a 10 11 25 13 18 21 11 11 11 10 10
Gas10000000b 11 11 35 14 20 23 11 11 11 11 11
Gas10000000c 13 13 56 15 23 26 12 12 12 12 12
Percentage(%) —4.27 —69.23 —15.79 -39.22 4742 1.82 0 1.82 3.57 6.25

)

3)

diagonally dominant characteristics less obvious. So
the convergence speed of iterative method may not
be reduced when the size of matrix increases, and
the convergence speed may be reduced in general
when the NNZ outside diagonal increases.

For Lis library, the convergence speeds of HISA are
faster than those of Jacobi, Gauss-Seidel, GMRES(5)
and BiCG. The convergence speeds of Gauss-Seidel
and HISA are faster than that of Jacobi, and the num-
ber of iterations using HISA and BHISA is very close
to those of BICGSTAB, BiCRSTAB, and TFQMR, and
the deviation of the average number of iterations is
1.82, 0, and 1.82 percent by using HISA compared
with BiICGSTAB, BiCRSTAB, and TFQMR. For the 10
test cases, the average number of iterations is
reduced by 69.23, 15.79, 39.22, and 47.42 percent
by using HISA compared with Jacobi, GS, GMRES
(5), and BiCG. The convergence speeds of GMRES
(5) and BiCGSTAB of PARALUTION library are
faster than those of Lis library and HISA, but the
number of iterations using HISA is very close to
those of GMRES(5) and BiCGSTAB of PARALU-
TION library, and the deviation of the average
number of iterations is 3.57 and 6.25 percent by
using HISA compared with GMRES(5) and BiCG-
STAB of PARALUTION library.

The number of iterations using BHSIA is similar to
that of HISA, and the average number of iterations

of BHISA is increased by 4.27 percent compared
with that of HISA for the test cases.

6.3 Performance Evaluation

6.3.1

Test on Serial Mode

We have the following observations from Table 7.

)

2

TABLE 7
The Performance of Solving the Cases on Serial Mode (Unit: Second)

For Gas10000a, Gas10000b, Gas100000a, and Gas100-
000Db, the performance using iterative algorithms is far
better than that of KLU, because the padded-zeros are
too much, resulting in the performance of KLU deteri-
orated sharply. Especially Gas1000000a, Gas1000000b,
Gas10000000a, Gas10000000b, and Gas10000000c¢ can-
not be solved using KLU, because the sizes of the
matrices are too big. But for Gas2000, KLU has good
performance because of its small data size.

Although the number of iterations using Jacobi is
more than those of the other iterative algorithms, the
performance of Jacobi is close to those of the other
iterative algorithms, because the number of opera-
tions in each iteration process is fewer. But the per-
formance of Jacobi will decline rapidly when the size
of matrix increases. Furthermore, the process of solv-
ing includes pretreatment, computing, and data
access. For Jacobi and GS, although the computing
complexity of GS is less than that of Jacobi, the time
of pretreatment of GS is more than that Jacobi. For
small matrices, the pretreatment has more influence

Lis lib

PARALUTION lib

Quasi-tridiagonal HISA KLU
Matrices Jacobi GS GMRES(5) BiCG BiCGSTAB TFQMR BiCRSTAB GMRES(5) BiCGSTAB

Gas2000 031 1.88 351 243 3.26 4.85 3.87 3.27 0.34 0.35 1.00
Gas10000a 058 191 3.61 3.19 3.32 4.49 4.07 3.07 0.55 0.56 98.35
Gas10000b 092 284 453 2.98 3.81 4.90 4.81 3.50 0.66 0.66 182.86
Gas100000a 123 247 575 3.05 4.23 491 4.58 3.68 1.38 1.37 1,526.05
Gas100000b 156 3.69 6.11 3.78 4.44 5.14 5.05 3.72 1.64 1.62 2,214.83
Gas1000000a 1.69 3.67 753 3.54 7.78 7.23 7.00 5.75 1.92 1.74 No
Gas1000000b 1.89 548 8.49 4.08 9.59 8.03 8.35 6.21 2.55 2.03 No
Gas10000000a 16.86 24.59 24.04 27.25 50.25 27.92 28.47 27.89 20.53 18.66 No
Gas10000000b 20.01 44.09 31.29 36.82 70.83 35.72 38.94 35.94 30.02 27.78 No
Gas10000000c¢ 25.92 85.87 39.06 48.30 98.43 41.97 65.14 44.10 42.74 34.15 No
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TABLE 8
The Performance Improvement of Solving Using HISA on Serial Mode ()

Quasi-tridiagonal Lis lib PARALUTION lib KLU
Matrices Jacobi GS  GMRES() BiCG BiCGSTAB TFQMR BiCRSTAB GMRES(5) BiCGSTAB
Gas2000 83.43 91.11 87.16 90.43 93.56 91.94 90.47 8.23 10.85 68.92
Gas10000a 69.79  84.06 81.96 82.63 87.17 85.86 81.23 —4.72 —2.85 99.41
Gas10000b 67.63  79.68 69.08 75.84 81.19 80.85 73.65 —39.54 —39.54 99.50
Gas100000a 50.19 78.61 59.63 70.92 74.96 73.17 66.59 10.87 10.22 99.92
Gas100000b 57.69 74.46 58.73 64.83 69.66 69.09 58.11 4.88 3.70 99.93
Gas1000000a 54.06 77.60 52.29 78.30 76.64 75.87 70.62 14.31 2.99 No
Gas1000000b 6549 7774 53.72 80.29 76.47 77.35 69.57 25.88 6.90 No
Gas10000000a 31.46  29.89 38.15 66.46 39.63 40.79 39.57 17.90 9.67 No
Gas10000000b 54.63 36.07 45.67 71.76 43.99 48.62 44.33 33.36 27.99 No
Gas10000000c 69.81 33.64 46.33 73.66 38.23 60.20 41.22 39.35 24.09 No

on the overall performance, but the pretreatment has
less influence for big matrices. So the performance of
Jacobi is better than that of GS for small matrices,
and is poorer than that of GS for big matrices.

The performance improvement precentages by using HISA
compared with Jacobi, GS, GMRES(5), BiCG, BiCGSTAB,
TFQMR, BiCRSTAB of Lis library, GMRES(5) and BiCGSTAB
of PARALUTION library, and KLU in Table 8 are calculate by
(Ti —Tw)/T; x 100 (i = 1,2,3,4,5,6,7,8,9,10), where Ty, T»,
T3,Ty, Ty, T4, T7, Ty, Ty, and T} are the performance of Jacobi,
GS, GMRES(5), BiCG, BiCGSTAB, TFQMR, BiCRSTAB of Lis
library, GMRES(5) and BiCGSTAB of PARALUTION library,
and KLU respectively and T is the performance of HISA. It is
observed from Table 8 that the average execution time of
HISA reduces by 60.42, 66.29, 59.27, 75.51, 68.15, 70.37, 63.54,
and 93.54 percent by using HISA compared with Jacobi, GS,
GMRES(5), BiCG, BiCGSTAB, TFQMR, BiCRSTAB of Lis
library, and KLU respectively. The performance of PARALU-
TION library is better than that of Lis library for all test cases.
Furthermore, the performance of PARALUTION library is
better than that of HISA for Gas10000a and Gas10000b, but
the performance of PARALUTION library is worse than that
of HISA for other matrices. The average performance
improvements using HISA are 11.05 and 5.40 percent com-
pared with GMRES(5) and BiCGSTAB of PARALUTION
library.

6.3.2 Teston Parallel Mode

The size and number of blocks have influence on the perfor-
mance of solving using BHISA. For K20c GPU used in the

experiments, the size of blocks is at least 64 in order to make
full use of computing power of the SMs. The total storage
spaces of Igs, bs, and x; of each data block will be 4,096
bytes according to Eq. (6) if the size of each block is 64. The
limit of available shared memory of each thread block is
49,152 bytes for K20c GPU. So we choose 64 to test all the
cases, and each block is 64 x 64 tridiagonal sub-matrix.
The block numbers of all the cases are calculated by
n/(blocksize), where n is the number of rows in the
matrix and blocksize is 64. So the block numbers of
Gas2000, Gas10000a, Gas10000b, Gas100000a, Gas100000b,
Gas1000000a, Gas1000000b, Gas1000000a, Gas1000000b, and
Gas10000000c are 32, 157, 157, 1,563, 1,563, 15,625, 15,625,
156,250, 156,250, and 156,250. The test cases are solved using
OpenMP and CUDA for BHISA method on multi-core
CPUs and GPUs. Each block is processed on a threads block
of CUDA and each block is processed on a thread of
openMP because the number of threads of CPU is far less
than that of GPU.

The performance of solving the test cases using openMP
and CUDA are shown in Tables 9 and 11 respectively,
where No represents that the case cannot be solved using
the algorithm.

We analyzed the two implementations for BiCG and
BiCRSTAB in Lis library and found that they are not thread-
safe for parallel mode. There are memory access conflicts
for large-scale data operation. So some large matrices can-
not be solved by BiCG and BiCRSTAB methods of Lis
library for parallel mode. However, there is a thread-safe
implementation in Lis library for BiCG algorithm, which is

TABLE 9
The Performance of Solving the Cases on Multi-Core CPUs (Unit: Second)
Quasi-tridiagonal BHISA Lis lib PARALUTION lib
Matrices Jacobi GS GMRES() BiCGSafe BiCGSTAB TFQMR BiCRSTAB GMRES(5) BiCGSTAB
Gas2000 0.025 0.11  0.112 1.463 2.768 1.403 2.93 2.77 0.046 0.047
Gas10000a 0.053 0.11 0.124 2219 3.889 2.801 2.94 2.60 0.050 0.058
Gas10000b 0.062 0.17 0.142 2.264 3.547 3.074 4.00 2.95 0.055 0.060
Gas100000a 0.121 0.15 0.166 2.206 2.988 2.795 10.68 2.85 0.136 0.158
Gas100000b 0.146 024 0.182 3.511 3.555 2.968 11.79 2.81 0.146 0.176
Gas1000000a 1.274 1.37 1.63 3.983 3.946 3.990 1.51 4.21 1.747 1.693
Gas1000000b 1.732 2.37 2.07 4773 4,907 4.675 12.72 4.79 1.902 1.795
Gas10000000a 11914 1559 13.84 16.090 16.767 16.620 24.20 No 13.846 12.806
Gas10000000b 16.572 33.35 36.27 23.428 25.156 25.441 34.40 No 23.025 21.760
Gas10000000c 22175 7240 32.82 34.625 30.989 32.921 41.55 No 34.249 30.500
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TABLE 10
The Performance Improvement of Solving the Cases Using BHISA on Multi-Core CPUs (%)
Quasi-tridiagonal Lis lib PARALUTION lib
Matrices Jacobi GS GMRES() BiCGSafe BiCGSTAB TFQMR BiCRSTAB GMRES(5) BiCGSTAB
Gas2000 7741  78.04 98.32 99.11 98.25 99.16 99.11 45.96 47.43
Gas10000a 51.64  56.90 97.58 98.62 98.08 98.17 97.94 —6.89 7.96
Gas10000b 63.46  56.28 97.25 98.24 97.97 98.44 97.89 -12.86 —4.05
Gas100000a 21.66 2749 94.52 95.95 95.67 98.87 95.75 11.20 23.69
Gas100000b 39.24  20.21 95.85 95.90 95.09 98.76 94.82 0.24 17.29
Gas1000000a 7.17 21.70 68.01 67.71 68.07 15.58 68.74 27.08 24.73
Gas1000000b 2692 16.16 63.71 64.70 62.94 86.38 63.84 8.92 3.47
Gas10000000a 2356 13.96 25.95 28.86 28.32 50.76 No 13.95 6.96
Gas10000000b 50.30 54.31 29.27 34.12 34.86 51.82 No 28.03 23.84
Gas10000000c 69.37 3245 35.96 38.38 32.64 46.63 No 35.44 27.05
TABLE 11
The Performance of Solving the Cases on GPU
Quasi-tridiagonal BHISA PARALUTION lib cuSparse
Matrices GMRES(5) BiCGSTAB
Time(s) Improvement(%) Time(s) Improvement(%) Time(s) Improvement(%)
Gas2000 0.021 0.034 39.33 0.034 38.48 0.035 40.86
Gas10000a 0.031 0.049 37.21 0.045 31.55 0.078 60.26
Gas10000b 0.046 0.052 11.28 0.047 2.07 0.063 26.98
Gas100000a 0.103 No No No No 0.812 87.32
Gas100000b 0.107 No No No No 0.842 87.29
Gas1000000a 1.220 No No No No 7.831 84.42
Gas1000000b 1.306 No No No No 7.519 82.63
Gas10000000a 8.166 No No No No 78.811 89.64
Gas10000000b 10.640 No No No No 79.622 86.64
Gas10000000c 12.939 No No No No 80.059 83.84

BiCGSafe. We tested all the cases using BiCGSafe for paral-
lel mode, whose flexibility is better than that of BiCG.

The performance of Jacobi and GS are close to those of
the other iterative algorithms, because the number of opera-
tions in each iteration process is fewer. But the performance
improvement rates of Jacobi and GS will be less than those
of the other iterative algorithms with faster convergence
speeds when the compute nodes increase. The operations in
the same iteration process can be relatively easy to be com-
puted in parallel, and the operations in different iterations
cannot be computed in parallel.

For the matrices without very large sizes, the performance
of cuSparse is better than that of most iterative algorithms,
because the solver of cuSparse is a direct solving algorithm
and it is suitable for small linear systems, such as Gas2000,
Gas10000a, Gas10000b, Gas100000a, and Gas100000b. The
performance of the direct solving algorithm deteriorates
sharply when the sizes of linear systems increase rapidly.
So the performance of cuSparse is worse than those of
the iterative algorithms for Gas1000000a, Gas1000000b,
Gas10000000a, Gas10000000b, and Gas10000000c.

GMRES(5) and BiCGSTAB of PARALUTION library
have good performance for parallel mode, but have poor
robustness, because matrices with large sizes are not com-
puted using CUDA.

The performance improvement precentages by using
BHISA on multi-core CPUs compared with Jacobi, GS,
GMRES(5), BiCGSafe, BiCGSTAB, TFQMR, BiCRSTAB of

Lis library, GMRES(5) and BiCGSTAB of PARALUTION
library in Table 10 are calculate by (7; —Ty)/T; x 100
(i=1,2,3,4,5,6,7,8,9), where T\, To, Ty, Ty, T, Ts, T, T
and Ty are the performance of Jacobi, G5, GMRES(5), BiCG-
Safe, BICGSTAB, TFQMR, BiCRSTAB of Lis library, GMRES
(5) and BiCGSTAB of PARALUTION library respectively
and Ty is the performance of BHISA.

It is observed from Table 10 that the average execution
time of BHISA on multi-core CPUs is reduced by 43.07,

= HISA m BHISA(CPUs) BHISA(GPU)
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Fig. 4. The performance of using HISA, BHISA on multi-core CPUs, and
BHISA on K20c GPU.
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Fig. 5. The speedups using BHISA on multi-core CPU and K20c GPU
compared with HISA.

37.75, 70.64, 72.16, 71.19, 74.46, 88.44, 15.11, and 17.84 per-
cent by using BHISA compared with Jacobi, GS, GMRES(5),
BiCGSafe, BICGSTAB, TFQMR, BiCRSTAB of Lis library,
and GMRES(5) and BiCGSTAB of PARALUTION library on
multi-core CPUs.

It is observed from Table 11 that the average execution
time of BHISA on K20c is reduced by 29.28, 24.03, and 72.99
percent by using BHISA compared with GMRES(5) and
BiCGSTAB of PARALUTION library, and cuSparse on K20c.

Parallel computation efficiency of solving the quasi-tri-
diagonal system of linear equations is not high because of
the irregularity of matrices and data dependencies between
the iterative processes, and we found from Tables 7, 9, and
11 that performance improvements using iterative methods
are not very prominent for parallel mode. The performance
of using HISA, BHISA on multi-core CPUs, and BHISA on
K20c GPU is shown in Fig. 4. It is observed from Fig. 5 that
the average speedups of BHISA on multi-core CPUs and
K20c GPU are 6.52 and 8.90 respectively compared with
HISA on serial mode.

7 CONCLUSION

In this paper, a parallel hybrid solving algorithm is pro-
posed for quasi-tridiagonal system of linear equations,
whose performance is better than those of the other iterative
algorithms and direct algorithms, and the storage space of
the hybrid algorithm is less than those of the other solving
algorithms. Furthermore, we implement the parallel CR
algorithm on GPU using partitioning strategy so as to signif-
icantly reduce the latency of memory access. The computing
performance of some numerical simulations problems can
be improved by using our method. Other sparse linear sys-
tems arising from numerical simulation may be quasi-
block-diagonals equations, and how to solve them quickly
will be our next step of investigation.
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