196 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.1,

JANUARY 2015

Performance Analysis and Optimization
for SpMV on GPU Using Probabilistic Modeling

Kenli Li, Wangdong Yang, and Keqin Li, Senior Member, IEEE

Abstract—This paper presents a unique method of performance analysis and optimization for sparse matrix-vector multiplication
(SpMV) on GPU. This method has wide adaptability for different types of sparse matrices and is different from existing methods which
only adapt to some particular sparse matrices. In addition, our method does not need additional benchmarks to get optimized
parameters, which are calculated directly through the probability mass function (PMF). We make the following contributions. (1) We
present a PMF to analyze precisely the distribution pattern of non-zero elements in a sparse matrix. The PMF can provide theoretical
basis for the compression of a sparse matrix. (2) Compression efficiency of COO, CSR, ELL, and HYB can be analyzed precisely
through the PMF, and combined with the hardware parameters of GPU, the performance of SpMV based on COO, CSR, ELL, and HYB
can be estimated. Furthermore, the most appropriate format for SpMV can be selected according to estimated value of the
performance. Experiments prove that the theoretical estimated values and the tested values have high consistency. (3) For HYB, the
optimal segmentation threshold can be found through the PMF to achieve the optimal performance for SpMV. Our performance
modeling and analysis are very accurate. The order of magnitude of the estimated speedup and that of the tested speedup for each of
the ten tested sparse matrices based on the three formats COO, CSR, and ELL are the same. The percentage of relative difference
between an estimated value and a tested value is less than 20 percent for over 80 percent cases. The performance improvement of our
algorithm is also effective. The average performance improvement of the optimal solution for HYB is over 15 percent compared with

that of the automatic solution provided by CUSPARSE lib.

Index Terms—GPU, performance modeling, probability mass function, sparse matrix-vector multiplication

1 INTRODUCTION

SPARSE matrix-vector multiplication (SpMV) is an essential
operation in solving linear systems and partial differen-
tial equations. For many scientific and engineering applica-
tions, the matrices can be very large and sparse, and these
sparse matrices may have various sparsity characteristics. It
is a challenging issue to adopt an appropriate algorithm to
implement and optimize SpMV. This paper addresses this
challenge by presenting a performance modeling and analy-
sis method to estimate and optimize SpMV performance on
GPU using a probabilistic model.

Bell and Garland [1] proposed and implemented SpMV
CUDA kernels for some storage formats, including coordi-
nate format (COO), compressed sparse row format (CSR),
ELLPACK format (ELL), and hybrid format (HYB). Based on
our experiments using cuSPARSE lib [2], which is developed
by NVIDIA, COO is the most intuitive storage format and
usually has worse performance than other formats; but is not
sensitive to the distribution of non-zero elements per row.

e K. Liand W. Yang are with the College of Information Science and Engi-
neering, Hunan University, Changsha, Hunan 410082, P.R. China, and
the National Supercomputing Center in Changsha, Changsha, Hunan
410082, P.R. China. E-mail: Ikl@hnu.edu.cn, yangwangdong@163.com.

e K. Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561, the College of Information Science and
Engineering, Hunan University, Changsha, Hunan 410082, P.R. China,
and the National Supercomputing Center in Changsha, Changsha, Hunan
410082, P.R. China. E-mail: lik@newpaltz.edu.

Manuscript received 4 Oct. 2013; revised 16 Jan. 2014, accepted 19 Feb. 2014.
Date of publication 24 Feb. 2014; date of current version 5 Dec. 2014.
Recommended for acceptance by G. Wang.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2014.2308221

CSR usually has good performance for sparse matrices with
large numbers of non-zero elements; but is sensitive to the
distribution of non-zero elements per row. ELL is usually
good for a sparse matrix with nearly equal and small number
of non-zero elements per row. HYB has better performance
when the matrix has small number of non-zero elements per
row, and most rows are nearly equal but there may be a few
irregular rows with much more non-zero elements, where
the matrix is split into two parts, i.e.,, ELL and COO, such
that the most rows which are nearly equal are stored by ELL
and the other few irregular rows with much more non-zero
elements are stored by COO. We observed that different
matrices may have their own most appropriate storage for-
mats to achieve the best performance. Besides, we also notice
that the performance of HYB is effected by the proportion of
the two parts. All these observations motivate us to build a
mathematical model to analyze the distribution characteris-
tics of non-zero elements in a sparse matrix and to estimate
the execution times of multiple SpMV kernels, and further-
more, to help choose an optimal SpMYV solution (i.e., storage
format and storage strategy) for a target sparse matrix.

The present paper makes the following unique contri-
butions to performance analysis and optimization for
SpMV on GPU. (1) We present a probability mass func-
tion (PMF) to analyze precisely the distribution pattern of
non-zero elements in a sparse matrix. The PMF can pro-
vide theoretical basis for the compression of a sparse
matrix. (2) Compression efficiency of COO, CSR, ELL,
and HYB can be analyzed precisely through the PMF,
and combined with the hardware parameters of GPU, the
performance of SpMV based on COO, CSR, ELL, and
HYB can be estimated. Furthermore, the most appropriate

1045-9219 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LI ET AL.: PERFORMANCE ANALYSIS AND OPTIMIZATION FOR SPMV ON GPU USING PROBABILISTIC MODELING 197

format for SpMV can be selected according to the esti-
mated values of performance. Experiments prove that the
theoretical estimated values and the tested values have
high consistency. (3) For HYB, the optimal segmentation
threshold can be found through the PMF to achieve the
optimal performance for SpMV.

Our performance modeling is based on PMF, which fully
reflects the distribution characteristics of non-zero elements
in a sparse matrix and does not need any benchmark matri-
ces to get the properties and parameters for SpMV. Our per-
formance modeling consists of three steps, i.e., probability
analysis, performance estimation, and strategy optimiza-
tion. Firstly, the PMF for the target matrix is built according
to the analysis of the distribution of non-zero elements per
row. Secondly, the performance estimation formulas of
COO, CSR, ELL, and HYB can be established according to
the PMF for the target matrix and the storage structures of
these formats. Lastly, the performance of SpMV using these
formats can be estimated using the estimated formulas
through the input hardware parameters of GPU. For COQO,
CSR, and ELL, the format with the smallest estimate will be
selected for SpMV to get the best performance. For HYB, the
optimal segmentation threshold can be found through per-
formance estimation. The target matrix is split into COO
and ELL by the optimal segmentation threshold to get the
best performance for SpMV.

We use a probabilistic method to analyze the performance
of SpMV. This method has wide adaptability for different
types of sparse matrices and is different from existing meth-
ods which only adapt to some particular sparse matrices. In
addition, our method does not need additional benchmarks
to get optimized parameters, which are calculated directly
through the PMF. Some methods also use some distribution
characteristics of a sparse matrix to analyze the performance
of SpMV, such as the number of non-zeros (NNZ). However,
these methods do not combine various storage formats for
comprehensive analysis of the performance of SpMV due to
lack of quantitative techniques.

In this paper, we use SpMV CUDA kernels developed by
NVIDIA [2] and NVIDIA GTX 645M for our performance
modeling and experiments. According to our experiments
on 10 representative matrices (totally 58 test cases), our per-
formance modeling and analysis is very accurate. The order
of magnitude of the estimated speedup and that of the
tested speedup for each sparse matrix based on the three
formats COO, CSR, and ELL are the same. The percentage
of relative difference between an estimated value and a
tested value is less than 20 percent for over 80 percent cases.
The optimal SpMV solutions of the 10 matrices are reported
by our optimal solutions for HYB. Specifically, the perfor-
mance improvement of our algorithm is very effective. The
average performance improvement of the optimal solution
for HYB is over 15 percent compared with that of the auto-
matic solution provided by CUSPARSE lib.

2 RELATED WORK

In this section, we review related research in implementa-
tion of SpMV for different formats, optimization of SpMV
on GPU, and performance modeling and prediction. Due to
space limitation, this section is moved to Section 2 of the

supplementary material, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputerso-
ciety.org/10.1109/TPDS.2014.2308221.

3 OvVERVIEW OF GPU AnD CUDA

In this section, we provide an overview of the GPU comput-
ing architecture and parallel programming with CUDA,
which is moved to Section 3 of the supplementary material,
available online.

4 SpPMV PERFORMANCE MODELING

Sparse matrices arise form various domains and their distri-
bution patterns of non-zero elements can be very specific.
Taking into consideration the structure of a sparse matrix
can dramatically improve the performance of SpMV. How-
ever, there is no general storage format that is efficient for
all kinds of sparse matrices. Adopting a suitable storage for-
mat according to the distribution pattern of a sparse matrix
is very helpful to improve the performance of SpMV. We
can accurately describe the distribution pattern of a sparse
matrix by a probability mass function, and get numerical
characteristics of sparsity distribution by a probabilistic
method. The suitable storage format can be selected by
numerical characteristics of a sparsity distribution.

4.1 PMF of Sparse Matrices
A PMF is a function that gives the probability that a discrete
random variable is exactly equal to some value [34].

4.1.1 Definition of Probability Mass Function

A is a sparse matrix. NV is the number of rows in A and M is
the number of columns in A. The discrete random variable
X represents the number of non-zeros of one row in A. The
range of values of the discrete random variable X is Ox =
{0,1,2,...,M}. For each i =0,1,2,..., M, when the value
of X is i, it represents the event {X = ¢}. Define another set
B = {by,b1,bs,...,by}. Each b;, 1 = 0,1,2, ..., M, represents
the number of rows, each of which contains ¢ non-zeros
exactly. For each ¢ = 0,1,2,..., M, p; = b;/ N is the probabil-
ity of the event {X = i}. Define the probability mass func-
tion of discrete random variable X as P, which is
mathematically characterized by the following expression:

P(X=i)=p; =b/N, i=0,1,2,..
(i)pi >0,i=0,1,2,..., M;

., M, where

M

M M
(i)Y “pi=> (b/N) = %Zb =N/N=1. (1)
1=0 =0

=0

X = 0 represents the event that there is no non-zero in one
row. p = 0 represents that the row with k non-zeros does
not exist in the sparse matrix A.

4.1.2 Relevant Probability and Numerical
Characteristics

The probability of X < K is equal to the probability of

0 < X < K. The probability of X > K is equal to the

probability of M > X > K. The probabilities are

expressed by

198 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.1,

P(X<K)=Y p, (2)

> i 3)

The conditional probabilities are expressed as

K
pk/zpi, kSK;. (4)

i=0
0, k> K;

P(X =KX <K)=

/Zp“k:>K (5)

1=K+1
0, k< K.

PX=FkX>K)=

E(X) is the expectation operator. o is the standard devia-
tion. y is the skewness of random variable X. The eigenval-
ues are expressed by

E(X) = Z(Z X pi), (6)

B(X|X < K) = ZA: (i x p;)/P(X < K), (7)
=0

M

E(X|X > K)= Y (ixp)/P(X > K), (8)
i=K+1
o=/ B(X - E(X))%, 9)

«; is the ith fractile of W-fractiles for X if «; satisfies

P(X <o) =i/W. (11)

The number of all non-zeros in the sparse matrix A is
expressed as

NNZ = E(X) x N. (12)
NNZ(X < K) represents the total number of non-zeros of
the rows whose numbers of non-zeros are less than or equal
to K:

NNZ(X<K)=EX|X<K)xNxPX<K). (13
NNZ(X > K) represents the total number of non-zeros of
the rows whose numbers of non-zeros are greater than K
NNZ(X > K)=FE(X|X > K)x Nx P(X > K). (14)
4.2 Storage Space Analysis
In this section, we analyze S;,,, Sesr, Seir, and Sy, i.e., the
storage space used by four storage formats COO, CSR,
ELL, and HYB, which is moved to Section 4 of the

JANUARY 2015

supplementary material, available online. In the following,
we list the main results:

Seoo = Ss X NNZ +2 x S; x NNZ. (15)
Sesr = Ss X NNZ + S; x NNZ + S; x (N +1). (16)
Sy =9 x Nx K+5; x NxK. (17)
Syt =S X Nex K+ 8; x N, x K+ S; X N,. (18)

Seo = (NNZ(X > K) — K x P(X > K) x N) x S,
+(NNZ(X > K)—KxP(X > K)xN)x2xS;.
(19)

Shyp = Seoo + Sein
= NNZ(X > K) x (S, +25;)
— K xP(X > K)x N x (Ss+28;)
+ S X Ne x K+ 8; x N, x K+ S; X N,.

(20)

4.3 Performance Analysis for SpMV

The performance of SpMV on GPU depends on two parts,
i.e., data transfer time (D77) and computing time (CT). The
execution time 7" of SpMV on GPU can be expressed as

T = DIT + CT. (21)

DTT contains two parts, i.e., from host to device and from
device to host. The sparse matrix and vector are transferred
from host to device and the result vector is returned from
device. DIT is expressed as

size of data
DIT = —5
where B is the transfer bandwidth of PCle, which con-
nects CPU and GPU. CT also contains two parts, i.e., the
computing time on cores (CTC) and access memory time
(AM), including read and write, which mainly considers
access global memory time. The computing time on cores
contains two parts, i.e., multiplication (C1C,,) and addi-
tion (CTC,). The rate of multiplication and addition on
stream processor (SP) can be considered to be the same,
because SP can execute a multiplication and an addition
operation with the same time. F' is the rate of multiplica-
tion or addition on SP. F' is divided into three types: F;
(integer), I (single-precision), and F; (double-precision),
depending on the data type.

Access global memory also contains two parts, i.e., read
the sparse matrix and read and write vectors. BWW is the bus
width of the global memory on GPU. The global memory
can read once for continuous data with bus width length. If
the data set is continuous, the latency of access to the global
memory can be hidden. The access time to the global mem-
ory of a thread can be calculated by Eq. (23):

(22)

size of DS-‘ 1 (23)

A.Af[: !> RW Xﬁ,

where DS is the data set stored in the global memory, which
is read from the global memory once; RW is the length of

LI ET AL.: PERFORMANCE ANALYSIS AND OPTIMIZATION FOR SPMV ON GPU USING PROBABILISTIC MODELING 199

TABLE 1

Variables and Definitions
Variable | Description
T DTT + CT, execution time of SpMV
DTT Data transfer time between host and device
B The bandwidth of PCle
cT CTC + AM, computing time on SMs
cTC CTCm + CTCy, computing time on cores
CTCn, Computing time of multiplication on cores
CTCq Computing time of addition on cores
F The rate of multiplication or addition on SP
F; The rate of x or + on SP for integers
Fy The rate of x or + on SP for single-precision
Fy The rate of x or + on SP for double-precision
AM Access memory time
BW The bus width of the global memory
CR The clock rate of the global memory
C The number of stream processors (SP)
w The number of threads per warp
BS The number of threads per block
Si The size of an integer
Ss The size of a single-precision floating point number
Sq The size of a double-precision floating point number

the continuous data and RW should not exceed BW; and
CR is the clock rate of the global memory.

C'is the number of stream processor. W is the number of
threads per warp. BS is the number of threads per block.
The shared memory can be used in warp to reduce the
access latency of the global memory. Some data can be read
into the shared memory and can be accessed by each thread
in the block.

All variables are described in Table 1.

4.3.1 Performance Analysis for COO

The data transferred from host to device contains three
arrays of COO and the vector, whose total size is Sy, +
S, x N. The size of the vector returned from device is
Sy x N. Thus, the DIT for SpMV using COO is expressed
by Eq. (24) according to Eq. (22):

Seoo +2 %X Sy x N
B .

According to Eq. (15), DTT for SpMV using COO can be
expressed as

DIT =

(24)

Ss+2x8;)x NNZ+2x S, x N

(
DIT =
B

(25)

The three arrays of COO can be read only one element
each time in a thread, because each non-zero is assigned to
a thread when SpMV is computed on GPU, leading to inap-
propriate use of the shared memory. The data accessed in
each thread contains two parts, i.e., one element from each
of the three arrays of COO and the corresponding element
in the vector, where the size of each element is S;, S;, S,,
and S. So, RW = S; or RW = S, is the size of one element.
The GPU has C threads to compute at the same time,
because GPU has C cores. Thus, there are NNZ/C rounds
of parallel computing for SpMV on GPU. AM is expressed
by Eq. (26) according to Eq. (23):

AM =

NNZ (2><S,; (26)

n 2 xS,
C CRxS; CRxS,)

Each thread only performs one multiplication with com-
puting time 1/F, (for single-precision). The total time of
multiplication is given by Eq. (27), because GPU has
NNZ/C rounds of parallel computing for SpMV:

NNZ
CxFy’

The results of the above computing need to be summa-
rized per row. The results of one row is summed by one
warp. The number of warps which can perform at the same
time on GPU is C/W, and there are N x W/C rounds of
parallel summation on GPU. Because the number of non-
zeros in a row is unknown, the mean F(X) of the number of
non-zeros in a row is used for the length of summation per
row when the rows are summed. The parallel reduction
algorithm is used when the summation of a row is calcu-
lated. Hence, C'TC, is expressed as

CTC,, = (27)

C1C, = = W X —. (28)

_NxW {E(X)] 1
F

Finally, CT for SpMV using COO is given by

CT = AM + C1C,, + CTC,
NNZ 2 xS, 2 x Sy
= ¢ (CRxSfCRxSS)
L NNZ NxW {E(X)] L
C x F, C w F,

4.3.2 Performance Analysis for CSR
The data transferred from host to device contains three
arrays of CSR and the vector, whose total size is
Sesr+Ss X N. The size of the vector returned from device is

Ss x N. Therefore, the DIT for SpMV using CSR is
expressed by Eq. (30) according to Eq. (22):

(29)

Sesr +2x Sy x N

DIT =
B

(30)

According to Eq. (16), DIT' for SpMV using CSR can be
expressed as

Ss+ S;) X NNZ+8S; x (N+1)+2x 85, x N

(
DIT =
B

31)

Each row is assigned to a thread when SpMYV is com-
puted on GPU using the CSR format, and there are N/C
rounds of parallel computing for SpMV on GPU. Because
the length of a row is a random variable, the computing
time of a warp is the maximum computing time of the
threads in the warp, which is determined by the longest
row in the warp. We define set) as

Q = {X|X € W-fractile of X}. (32)

The W-fractiles of X are break points of X, which are evenly
divided into W subsets. The mean E(Q) is used as the
length of a row when we estimate the computing time.
Hence, the computing time of multiplication in a thread is
E(Q)/F, (for single-precision), and the total computing
time of multiplication is expressed by

200 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.1,

(33)

The results of multiplication must be accumulated to a
value in each thread. Notice that one more addition must be
performed, because the position of columns and values
must be calculated by the index of rows array. We need to
increase the time by E(Q)/F;, because the index of the array
is an integer. Thus, the total computing time of addition is
expressed as

CTCu:Ex<

BQ) , EQ
o (252,

4
. TR (34)

The data set of the value and column index arrays can
be read in BW length data once, because the arrays can be
continuously accessible in a thread. So the access time of
the two arrays is (S‘Eﬁ l+ E Eﬁ 1) X z5 in a thread
according to Eq. (23). However, the vector X cannot be
continuously accessible in a thread and RW is the size of
one element. Thus, the access time is S&X%E g@ according to
Eq. (23). An element is read only from the array of row
indices in a thread and the access time is CR 5+ Similarly,
the write time of the vector is 772 ‘- The effect of using
the shared memory is not obvious, because the length of
each row is different and access to the location of the vec-
tor X is random. Hence, the total access memory time is

expressed by

w2 ([(580

(35)
+ 57 + Ss + Ss X E(Q)
CRxS; CRxS, OCRxS, |
Finally, CT for SpMV using CSR is given by
CT = AM + CTC,, + C1C,
_N(([8:XEQ)] , [SxEQTY, L
- C BW BW CR (36)

2 Ss x E(Q)

CR CR xS,

#@x(7+5))

4.3.3 Performance Analysis for ELL

The data transferred from host to device contains three
arrays of ELL and the vector, whose total size is S.;+Ss x N.
The size of the vector returned from device is S, x N.
Hence, the DTT for SpMV using ELL is expressed as

St +2x 8, x N

DIT =
B

(37)
According to Eq. (18), DIT for SpMV using ELL can be
express as

P(X>0)x Nx K x (Ss+5;)
B
Six P(X >0)xN+2x8,xN
+ B .

DIT =

(38)

JANUARY 2015

Each row is also assigned to a thread when SpMYV is
calculated on GPU using the ELL format, and there are
P(X > 0) x N/C rounds of parallel computing for SpMV
on GPU. The computing mode of ELL is the same as that
of CSR. So, the access time of two arrays of values and
columns is (fSBEAW + [%257]) x &5 according to Eq. (23).
The vector X cannot be continuously accessible in a
thread and RW is the size of one element. However, the
data set with the length of a block can be read into
the shared memory from the global memory to reduce
the time to access the global memory. Therefore, the
access time is % according to Eq. (23). An element
is read only from the array of row indices in a thread and
the access time is C}f 5+ The write time of the vector is
Hence, AM is expressed by

(‘RxS‘
_P(X>0)xN Six K Ss x K 1
AM = c X(({MV1+[BWW)X5§
Ss X (K — BS) Sl i Sl
CR x S, CRxS; CRxS;

(39)

The mean E(Q) is used as the length of a row in the
same way as that of CSR. Thus, the computing time of
multiplication in a thread is E(Q)/F, (for single-preci-
sion), and the total computing time of multiplication is
expressed as

P(X>0)xN EQ)

c1c,, = c X T

(40)

The results of multiplication must be accumulated to a
value in each thread. However, the position of values must
not be calculated in a thread, because two arrays of columns
and values are one-to-one. Hence, CTC, for SpMV using
ELL is expressed as

P(X>0)x N E@Q)

CIC=—""¢ 7

(41)

Finally, CT for SpMV using ELL is given by

CT =AM + CTCm + C1C,

P(X > 0 S X K Ssx K " 1
BW CR
Ss (K BS) l 2 x BE(Q) (42)
CR x S CR F, ‘
4.3.4 Performance Analysis for HYB
The DIT for SpMV using HYB is expressed by
prr = S £ 2X 5 X N (43)

B

Since HYB contains COO and ELL, the above DTT can be
expressed as

Seoo + St +2 x5, x N

DIT =
B

(44)

LI ET AL.: PERFORMANCE ANALYSIS AND OPTIMIZATION FOR SPMV ON GPU USING PROBABILISTIC MODELING 201

According to Eq. (20), we have

DIT
_ (NNZ(X > K) — K x P(X > K) x N) x
- B
(Ss+S;)) x P(X >0)x Nx K
* B
+S¢><P(X>O)><N+2><SS><N

B

(Ss +25;)

(45)

The CT of HYB is made up of two parts: CT" of COO and

CT of ELL. Notice that N, NNZ, and E(X) in Eq. (29) are

replaced by P(X > K)x N, NNZ(X > K)— K x P(X >

K)x N, and E(X|X > K)—- K. CT,, can be calculated
according to the Eq. (29) as follows:

NNZ(X > K) - KxP(X > K)xN (4 1
T = . (CR+F>
LPX > K)x N W [E(X\X > K)—K] L
c W F,
(46)

The E(Q) in the Eq. (42) is replaced by E(X|X < K), and
CT,; can be calculated as follows:

CTu

:+P(X>CO) (([suﬂ PxKDX%

N {s x (K — BS)W 1 2E(X|X < K)>.(47)

BV CRTCR C’R F.

CT of HYB can be expressed as
CT' = CTepo + CTy. (48)

According to the Eqs. (46) and (47), CT'is

cr
_ NNZ(X > K) - K x P(X > K)><N>< i+i
- C CR L
+P(X > K)><N><W>< EX|X > K)-K xi
c w F;
P(X >0)xN SixK+S><K L
C BW BW
L[Sx(E-BS)] 1 2 2BE(XX<K)
BW CR CR
Finally, T" can be calculated according to the Eq. (21):
T =DDT + CT,,, + CTy. (50)

5 PERFORMANCE OPTIMIZING FOR SPMV

The appropriate storage format can be selected according
to the distribution pattern of a sparse matrix through the
above performance analysis. The performance optimiza-
tion workflow for SpMV using CSR, ELL, and COO con-
sists of two steps, i.e., establishment of a probability

w »| Build probability function of sparse matriz

Calculate probability and numerical
characteristics

A

Estimate the titne of computing for SpvV

GPU hardware
parameters

A

Select the format of the sparse matrix

y
SphV on GPU

Fig. 1. The optimization workflow for SpMV using COO, CSR, and ELL.

model and estimation of performance. The optimization
method is to choose the format with the smallest esti-
mated execution time for SpMV. The optimization work-
flow for SpMV using COO, CSR, and ELL is shown in
Fig. 1. The performance estimation based on single-preci-
sion or double-precision for SpMV can be calculated by
entering different parameters. The appropriate storage
format can be selected by comparing the different esti-
mates. The format with the minimum estimation value is
the best suited storage format for the sparse matrix. The
actual computing time and the estimated value are con-
sistent to be shown in Figs. 3, 4, 5, and 6 . Generally, the
original sparse matrices are stored in the COO format.
The performance estimation for COO, CSR, and ELL,
which are described by Egs. (25), (29), (31), (36), (38), and
(42), can be obtained through Algorithm 1.

Algorithm 1 Performance Estimation for SpMV.

Require: Three arrays of COO: row, column, value;
the numbers of rows and columns: N and M; the
number of non-zeros: NNZ; the parameters of GPU:
B, F, BW,CR,C, W, BS, S;, Ss, S4.

Ensure: The performance estimation values of COO,
CSR, and ELL: Typ0, Tesr, Toy.

1: int * num_nonzeros_row; //Store the number of
NON-zeros per row.

2: int * sum_num_row; //Store the number of rows
with the same number of non-zeros.

3: Get_num_nonzeros(rows, num_nonzeros_row, N,
NNZ); //Get the number of non-zeros per row and
stored in num_nonzeros_row.

4: Sum_num_row (num_nonzeros_row, sSum_num_row,
M); //Sum the number of rows with the same
number of non-zeros and stored in sum_num_row.

5: Tpoo = Get_estimate_coo(sum_num_row, B, F, BW,
CR, C, W, BS, S;, Ss, Sq);

6: T,.sr = Get_estimate_csr(sum_num_row, B, F, BW,
CR, C, W, BS, S;, Ss, Sq);

7: Tey = Get_estimate_ell(sum_num_row, B, F, BW,
CR, C, W, BS, S;, Ss, Sq);

8: return T,..0, Trsr, Teir-

202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.1, JANUARY 2015
LM_.‘ Build probability function of sparse matrixz 35
‘ 30
25
Calculate probability and numerical 5 20 B o0
characteristics by threshold K E M EWCSE
e O ELL

l

N
GPU hardware '| Estimate the time of computing for SphV
parameters l

[Select threshold K of the sparse matrix

}

‘ Split the sparse matrix by threshold K

I

[SphdV on GPU

Fig. 2. The optimization workflow for SpMV using HYB.

The performance optimizing workflow for SpMV using
HYB consists of three steps, i.e., establishment of a probabil-
ity model, split of the sparse matrix into COO and ELL by a
threshold K, and estimation of the performance of SpMV
under different thresholds K. The optimization workflow
for SpMV using HYB is shown in Fig. 2. If a sparse matrix A
is stored in HYB, A should be split into COO and ELL for-
mats. A parameter K should be provided when splitting.
The choice of parameter K can affect the performance of
SpMV using HYB. The optimal value of K can minimize the
value of Eq. (50). Hence, the optimal solution of K can be
found by solving Eq. (50). The method for finding the opti-
mal value of K is presented in Algorithm 2. The optimiza-
tion method is to choose the threshold K with the smallest
estimate to split the sparse matrix for HYB.

Algorithm 2 Performance Optimization for HYB.

Require: Three arrays of COO: row, column, value;
the numbers of rows and columns: N and M; the
number of non-zeros: NNZ; the parameters of GPU:
B, F, BW,CR,C, W, BS, S;, S, Sa.

Ensure: The optimal solution of the threshold K.

1: int T= MAX; //T takes a larger number.

: int * num_non — zeros_row;

- int * sum_num_row;

Get_num_nonzeros(rows,num_nonzeros_row,N,NNZ);

: Sum_num_row(num_nonzeros_row,sum_num_row,M);

: for each ¢ in [E(X).. max{i| P(X =14) > 0}] do

Thyy = Get_estimate_hyb(sum_num_row, B, F,

BW,CR, C, W, BS, S;, Ss, Sa, 1);

8: if Thyb < T then

N Ak »N

9: K =1
10: T = Thyb;
11: end if
12: end for;

13: return K.

6 EXPERIMENTAL EVALUATION

6.1 Experiment Settings

The following test environment has been used for all bench-
marks. A personal computer is equipped with one Intel
Core i5-3230M running at 2.6 GHz and a NVIDIA Geforce
GT 645M GPU. The CPU has two cores with four threads.

=il
=

Chebyshewd
twotone
scircuit
PROZR

otk

raef syl
raefshyd
rmal

TSOPF_RS_b300_c3

Fig. 3. Estimated speedup (single-precision).

The GPU has 384 CUDA processor cores, working on
0.78 GHz clock rate and 2 GB global memory with 128 bits
bandwidth and 0.9 GHz clock rate, with CUDA compute
capacity 3. As for software, the test machine ran the 64-bit
Windows 8 and NVIDIA CUDA toolkit 5.0. All the evalua-
tion results are averaged after running 100 times.

All benchmarks are chosen from the UF Sparse Matrix
Collection [35], whose features are shown in Table 1 of Sec-
tion 5.1 of the supplementary material, available online.
Most of these matrices are derived from scientific comput-
ing and real engineering applications. The probability dis-
tributions of these sparse matrices are shown in Table 2 of
Section 5.1 of the supplementary material, available online.

NVIDIA Corporation provides two libraries (CUBLAS
and CUSPARSE) to support matrix computation. Both
libraries provide CUDA development tools and source
codes [5]. CUBLAS offers three levels of library functions,
where the second level supports SpMV of dense matrices.

CUSPARSE also provides three levels of functions for
sparse matrices, with the first level for ADD operation,
second for MUL operation of SpMV [2], and the third
level for MUL operation of sparse matrices. It uses both
the CSR and HYB formats. HYB is a hybrid format of ELL
and COO. ELL decides the column width of data matrix
according to the maximum number of non-zero elements
in each row, which means that ELL’s efficiency of com-
pression will be reduced by the negative effect of the
sparse matrix. A HYB function for SpMV has a parameter,
which has tree values: AUTO, USER, MAX. A function
automatically selects a threshold segmentation if the
parameter is AUTO. The caller must provide a segmenta-
tion threshold if the parameter is USER. If the threshold

35
30
25

'320

ﬁo 15
10
5
i}

B Co0
W CSR
OO ELL

z 8 % = o oy = o
§E:EE B EE R E G2
= £ g g & ¥ % - 8

5 g I -

Fig. 4. Tested speedup (single-precision).

LI ET AL.: PERFORMANCE ANALYSIS AND OPTIMIZATION FOR SPMV ON GPU USING PROBABILISTIC MODELING 203

_E‘ 15 = Falu]
§’ BCSR
L%}

10 OELL
s
o

bimat
Chebyshewd
twotone
seircuit
FROZR

prtk
rasfshyd
raefskyd
rmall

T30PF_R5_b300_c3

Fig. 5. Estimated speedup (double-precision).

is 0, HYB will become COO. If the parameter is MAX, the
threshold will be max{i|P(X =4) > 0} and HYB will
become ELL. Due to the official and high-performance
features of the CUSPARSE, the library is widely used in
linear system solving. We test SpMV based on COO, CSR,
ELL, and HYB by CUSPARSE functions.

6.2 Performance Estimation and Test

We adopt the following steps in our experiments. 1) Build a
probability model for each sparse matrix. 2) Estimate the
performance of SpMV using COO, CSR, ELL, and HYB for-
mats for each sparse matrix. 3) Test the actual performance
of SpMV using COO, CSR, ELL, and HYB functions of CUS-
PARSE for each sparse matrix. 4) Assess the consistency of
estimates and actual tested values.

The sparse matrix computation time varies greatly
because of scale disparities. The computation time is pro-
portional to the scale of the computation. We define speedup
as the ratio of computing scale to computing time. The scale
of the computation for SpMV is NNZ. We adopt speedup to
describe the performance, because the computing time of
SpMV based on various sparse matrices has a relatively
wide range and is not suitable for comparison in the charts.
The speedup is calculated by NNZ/T x 1075. The estimates
of speedup using the COO, CSR, and ELL formats can be cal-
culated according to the parameters in Table 2. The results
are shown in Fig. 3 for single-precision floating point num-
bers and Fig. 5 for double-precision. Fig. 4 gives the results
of tested data for single-precision floating point numbers,
and Fig. 6 gives the results for double-precision.

The percentage of relative difference between an esti-
mated value and its tested value is calculated by (EV —1V)/

_é‘ @mcoo
H ECSR
& 10 DELL

bimat
twotons
seircuit
PROZR
mtk
raef iyl
raef skyd
nalll

Chelwsh

TS0PF_RS_b300_c3

Fig. 6. Tested speedup (double-precision).

TABLE 2

Parameter Table
Parameter | Description | Value
S The size of an integer 4 bytes
Ss The size of single-precision number 4 bytes
Sa The size of double-precision number | 8 bytes
B The bandwidth of PCle 16 GB/s
F The clock rate of SP 0.76 Gflop/s
BW The bus width of the global memory | 128 bits
CR The clock rate of the global memory | 900 MHz
C The number of stream processors 384
w The number of threads per warp 32

TV x 100, which EV is the estimated value and TV is the
tested value. A positive percentage of relative difference
indicates that the estimated value is greater than the tested
value. On the contrary, it means that the estimated value is
less than the tested value.

We have the following important observations from our
experimental data.

1) Itis observed from Table 3 that the estimated values
and tested values have good consistency, with the
absolute value of the percentage of relative differ-
ence between an estimated value and its tested value
to be less than 20 percent for 47/58 = 81 percent
cases. The order of magnitude of estimated speedup
and that of tested speedup for each sparse matrix
based on the three formats (COO, CSR, and ELL) are
the same according to Figs. 3, 4, 5, and 6.

2) As can be seen from Table 3, in most (48 out of 58)
cases, the tested speedup is higher than the estima-
tion, because the data access for SpMV on GPU can
be optimized by the shared memory and the texture
memory. However, in some (10 out of 58) cases, the
estimated speedup is higher than the tested speedup
due to the uneven distribution of non-zero elements,
in particular for the CSR format.

3) The performance of parallel computing on GPU is
closely related to the utilization of the threads. The
load balance between threads can improve the utili-
zation of GPU. The performance of SpMV using the
ELL format is usually (for seven out of 10 matrices)
better than that of SpMV using COO and CSR,
because the size of the data set assigned to each
thread in the ELL format is the same. However,

TABLE 3
Percentage of Relative Difference between Estimated
Value and Tested Value

Sparse COO(%) CSR(%) ELL(%)
matrix | Single | Double | Single | Double | Single | Double
bbmat -6.93 -12.40 24.59 18.71 -3.95 -11.34
Cheby_ | -8.32 -12.50 18.00 -2.80 -15.78 -6.02
shev4

twotone | -25.35 | -35.83 | -21.62 | -10.38 | -10.04 | -11.52
scircuit | -3822 | -21.06 | -39.05 | -27.88 | -37.28 | -18.82
PRO2R -9.75 -12.56 11.29 14.85 -7.25 -16.62
pwtk -2.93 -5.50 -2.74 9.78 -11.22 -17.73
raefsky3| -9.40 -14.07 -5.92 -2.53 -14.49 -14.10
raefsky5| 28.46 15.88 -3.40 34.29 -5.22 -8.40
rmal0 -6.52 -10.10 13.78 14.33 -11.99 -10.46
TSOPF_| -10.69 | -13.81 | -11.44 | -11.34 NA NA
RS_

b300_c3

204 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.1,

the estimation for the sparse matrix TSOPF/
TSOPF_RS b300 c3 is far worse than that of COO
and CSR, because max{i | P(X =1i) > 0} of TSOPE/
TSOPF_RS_b300_c3 is far greater than E(X). So, the
dense matrix of ELL must be filled with a large num-
ber of zeros, leading to the computed data size
increasing sharply. The SpMV for TSOPF/
TSOPF_RS b300_c3 using the ELL format cannot be
computed on GPU in the actual test, illustrating that
it is inappropriate to adopt the ELL format.

4) The performance of SpMV using the CSR format
is usually better than that of SpMV using COO
(except ATandT/twotone and Hamm/scircuit) for
single-precision data, as shown in Figs. 3 and 4. The
performance bottleneck of SpMV is data access for
single-precision data, because the computing speed
of single-precision data on GPU is very fast. Each
thread of SpMV using the COO format reads respec-
tively an element from three arrays (row, column,
value), whose length is NNZ. The SpMV using the
COOQO format must read more data from memory than
that using the CSR format, and the SpMV using the
CSR format can read continuous multiple data by bus
bandwidth, because a row of CSR format is read
sequentially in one thread. However, for ATandT/
twotone and Hamm/scircuit, the skewness of proba-
bility distribution is too large relative to the mean,
leading to non-zeros to be extremely uneven between
rows. Such extremely imbalanced loads between
threads make the performance of SpMV using the
CSR format degrade.

5) The performance of SpMV using the CSR format is
usually worse than that of SpMV using COO (except
TSOPF/TSOPF_RS b300_c3) for double-precision
data, as shown in Figs. 5 and 6. The performance
bottleneck of SpMV is computing for double-preci-
sion data, because the computing speed of double-
precision data on GPU is slow. The imbalance of
computing between threads has great influence on
performance of SpMV using the CSR format. How-
ever, for TSOPF/TSOPF_RS b300_c3, the perfor-
mance of the accumulative reduction algorithm for
SpMV using the COO format will be affected, because
the skewness of probability distribution is large.

Additional performance data are demonstrated and

analyzed in Section 5.2 of the supplementary material,
available online.

7 CONCLUSIONS

In this paper, we use a probabilistic model to analyze and
optimize the performance of SpMV. This method has wide
adaptability for different types of sparse matrices, and is
different from existing methods which only adapt to some
particular sparse matrices. In addition, our method does
not need additional benchmarks to get optimized parame-
ters. Our performance modeling is based on the probability
mass function, which fully reflects the distribution charac-
teristics of non-zeros in a sparse matrix, and does not need
benchmark matrices to get the properties and parameters
for SpMV. Our performance modeling consists of three

JANUARY 2015

steps, i.e., probability analysis, performance estimation,
and performance optimization. The proposed approach in
this paper is general, and is neither limited by any GPU
programming language nor restricted to any specific GPU
architecture, because it is based on a mathematical and
analytical model. In future work, we will extend the cur-
rent SpMV performance modeling to handle SpMV kernels
on multi-GPUs and CPU-GPU clusters.

ACKNOWLEDGMENTS

The authors would like to express their sincere gratitude to
all the reviewers for their valuable and constructive com-
ments. The research was partially funded by the Key Pro-
gram of National Natural Science Foundation of China
(Grant No. 61133005), and the National Natural Science
Foundation of China (Grant Nos. 90715029, 61070057,
60603053, 61370095).

REFERENCES

[1] N. Bell and M. Garland, “Implementing Sparse Matrix-Vector
Multiplication on Throughput-Oriented Processors,” Proc. Conf.
High Performance Computing Networking, Storage and Analysis,
pp- 1-11, 2009

[2] The NVIDIA CUDA Sparse Matrix Library (cuSPARSE), second ed.,
NVIDIA, http://docs.nvidia.com/cuda/cusparse/index.html,
2012.

[3] W.Yang, K. Li, Y. Liu, L. Shi, and C. Wang, Optimization of Quasi
Diagonal Matrix-Vector Multiplication on GPU, Int'l]. High Perfor-
mance Computing Applications, first published on September 2,
2013, doi:10.1177/1094342013501126, http://hpc.sagepub.com/
content/early/2013/09/02/1094342013501126.full.pdf

[4]]. Bolz, I. Farmer, E. Grinspun, and P. Schroder, “Sparse Matrix
Solvers on the GPU: Conjugate Gradients and Multigrid,” ACM
Trans. Graphics, vol. 22, no. 3, pp. 917-924, July 2003.

[5] NVIDIA CUDA C Programming Guide, Version 5.0, May 2012.

[6] F. Vazquez, G. Ortega,]J. Fernandez, and E.M. Garzon,
“Improving the Performance of the Sparse Matrix Vector Product
with GPUs,” Proc. IEEE 10th Int’l Conf. Computer and Information
Technology (CIT '10), pp. 1146-1151, 2010.

[7] D. Grewe and A. Lokhmotov, “Automatically Generating and
Tuning GPU Code for Sparse Matrix-Vector Multiplication from a
High-Level Representation,” Proc. Fourth Workshop General Purpose
Processing on Graphics Processing Units (GPGPU-4), article 12, 2011.

[8] J.C. Pichel, F.F. Rivera, M. Fernandez, and A. Rodriguez,
“Optimization of Sparse Matrix-Vector Multiplication Using Reor-
dering Techniques on GPUs,” Microprocessors and Microsystems,
vol. 36, no. 2, pp. 65-77, 2012.

[9] T.Oberhuber, A. Suzuki, and J. Vacata, “New Row-Grouped CSR

Format for Storing the Sparse Matrices on GPU with Implementa-

tion in CUDA,” arXiv preprint arXiv:1012.2270, 2010.

A-].N. Yzelman and D. Roose, “High-Level Strategies for Parallel

Shared-Memory Sparse Matrix-Vector Multiplication,” IEEE Trans.

Parallel and Distributed Systems, vol. 25, no. 1, pp. 116-125, http://

doi.ieeecomputersociety.org/10.1109/TPDS.2013.31, Jan. 2014.

J.W. Choi, A. Singh, and R.W. Vuduc, “Model-Driven Autotuning

of Sparse Matrix-Vector Multiply on GPUs,” Proc. 15th ACM SIG-

PLAN Symp. Principles and Practice of Parallel Programming (PPoPP

"10), pp. 115-126, 2010.

V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas, and N.

Koziris, “An Extended Compression Format for the Optimization

of Sparse Matrix-Vector Multiplication,” IEEE Trans. Parallel and

Distributed Systems, vol. 24, no. 10, pp. 1930-1940, Sept. 2013.

J. Kurzak, W. Alvaro, and J. Dongarra, “Optimizing Matrix Multi-

plication for a Short-Vector SIMD Architecture-Cell Processor,”

Parallel Computing, vol. 35, no. 3, pp. 138-150, 2009.

E.-]. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization Frame-

work for Sparse Matrix Kernels,” Int’l |. High Performance Comput-

ing Applications, vol. 18, no. 1, pp. 135-158, 2004.

M.M. Baskaran and R. Bordawekar, “Optimizing Sparse Matrix-

Vector Multiplication on GPUs,”Technical Report RC24704 IBM

TJ Watson Research Center, Dec. 2008.

[10]

[11]

[12]

[13]

[14]

[15]

LI ET AL.: PERFORMANCE ANALYSIS AND OPTIMIZATION FOR SPMV ON GPU USING PROBABILISTIC MODELING 205

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R.
C.W.R. Vuduc, and K. Yelick, “Self-Adapting Linear Algebra
Algorithms and Software,” Proc. IEEE, vol. 93, no. 2, pp. 293-
312, Feb. 2005.

A. Monakov, A. Lokhmotov, and A. Avetisyan, “Automatically
Tuning Sparse Matrix-Vector ~Multiplication for GPU
Architectures,” Proc. Fifth Int’l Conf. High Performance Embedded
Architectures and Compilers, pp. 111-125, 2010.

Z. Wang, X. Xu, W. Zhao, Y. Zhang, and S. He, “Optimizing
Sparse Matrix-Vector Multiplication on CUDA,” Proc. Second Int’l
Conf. Education Technology and Computer (ICETC), vol. 4, pp. V4-
109-V4-113, June 2010.

X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast Sparse
Matrix-Vector Multiplication on GPUs: Implications for Graph
Mining,” Proc. VLDB Endowment, vol. 4, no. 4, pp. 231-242, Jan.
2011.

A.H.El Zein and A.P. Rendell, “Generating Optimal CUDA Sparse
Matrix-Vector Product Implementations for Evolving GPU
Hardware,” Concurrency and Computation: Practice and Experience,
vol. 24, no. 1, pp. 3-13, 2012.

Y. Kubota and D. Takahashi, “Optimization of Sparse Matrix-Vec-
tor Multiplication by Auto Selecting Storage Schemes on GPU,”
Proc. Int’l Conf. Computational Science and Its Applications (ICCSA
'11), pp. 547-561, 2011.

S. Ryoo, C.I. Rodrigues, S.S. Stone, S.S. Baghsorkhi, S.-Z. Ueng, J.
A. Stratton, and W.-m.W. Hwu, “Program Optimization Space
Pruning for a Multithreaded GPU,” Proc. Sixth Ann. IEEEJACM
Int’l Symp. Code Generation and Optimization (CGO '08), pp. 195-
204, 2008.

Y. Zhang and J. Owens, “A Quantitative Performance Analysis
Model for GPU Architectures,” Proc. IEEE 17th Int'l Symp. High
Performance Computer Architecture (HPCA '11), pp. 382-393, Feb.
2011.

H. Pabst, B. Bachmayer, and M. Klemm, “Performance of a Struc-
ture-Detecting SpMV Using the CSR Matrix Representation,”
Proc. IEEE 11th Int’l Symp. Parallel and Distributed Computing
(ISPDC), pp. 3-10, 2012.

M.M. Dehnavi, D. Fernandez, and].L. Gaudiot, “Parallel Sparse
Approximate Inverse Preconditioning on Graphic Processing Uni-
ts,” IEEE Trans. Parallel and Distributed Systems, vol. 24, no. 9,
pp. 1852-1862, Sept. 2013.

S.S. Baghsorkhi, M. Delahaye, S.J. Patel, W.D. Gropp, and W.-m.
W. Hwu, “An Adaptive Performance Modeling Tool for GPU
Architectures,” Proc. 15th ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming (PPoPP '10), pp. 105-114, 2010.

S. Hong and H. Kim, “An Analytical Model for a GPU Architec-
ture with Memory-Level and Thread-Level Parallelism
Awareness,” Proc. 36th Ann. Int’l Symp. Computer Architecture
(ISCA'09), pp. 152-163, 2009.

K. Kothapalli, R. Mukherjee, M. Rehman, S. Patidar, P.
Narayanan, and K. Srinathan, “A Performance Prediction
Model for the CUDA GPGPU Platform,” Proc. Int’l Conf.
High Performance Computing (HiPC), pp. 463-472, Dec. 2009.

J. Li, G. Tan, M. Chen, and N. Sun, “SMAT: An Input Adaptive
Auto-Tuner for Sparse Matrix-Vector Multiplication,” Proc. 34th
ACM SIGPLAN Conf. Programming Language Design and Implemen-
tation, pp. 117-126, 2013.

D. Schaa and D. Kaeli, “Exploring the Multiple-GPU Design
Space,” Proc. IEEE Int’l Parallel and Distributed Processing Symp.
(IPDPS 09), pp. 1-12, May 2009.

P. Guo, L. Wang, and P. Chen, “A Performance Modeling and
Optimization Analysis Tool for Sparse Matrix-Vector Multipli-
cation on GPUs,” IEEE Trans. Parallel and Distributed Systems,
vol. 25, no. 5, pp. 1112-1123, 2014.

J.C. Pichel and F.F. Rivera, “Sparse Matrix Vector Multiplication
on the Single-Chip Cloud Computer Many-Core Processor,”].
Parallel and Distributed Computing, vol. 73, no. 12, pp. 1539-1550,
2013.

S.B. Indarapu, M. Maramreddy, and K. Kothapalli, “Architecture-
and Workload-Aware Heterogeneous Algorithms for Sparse
Matrix Vector Multiplication,” Proc. Int’l Conf. Parallel and
Distributed Systems (ICPADS), Dec. 2013, http://cstar.iiit.ac.in/
~kkishore/spmv2.pdf.

N.L. Johnson, S. Kotz, and A. Kemp, Univariate Discrete Distribu-
tions, second ed., p. 36, John Wiley & Sons, 1993.

T.A. Davis and Y. Hu, University of Florida Sparse Matrix Collec-
tion, 2009.

Kenli Li received the PhD degree in computer
science from the Huazhong University of Science
and Technology, China, in 2003. He was a visit-
ing scholar at the University of lllinois at Urbana-
Champaign from 2004 to 2005. He is currently a
full professor of computer science and technol-
ogy at Hunan University and an associate direc-
tor of National Supercomputing Center in
Changsha. His major research includes parallel
computing, grid and cloud computing, and DNA
computing. He has published more than 90
papers in international conferences and journals, such as IEEE Transac-
tions on Computers, IEEE Transactions on Parallel and Distributed Sys-
tems, ICPP, and CCGirid. He is an outstanding member of CCF.

Wangdong Yang received the MS degree from
Central South University, China, in 2006. He is
currently working toward the PhD degree at
Hunan University, China. He is a professor of
computer science and technology at Hunan City
University. His research interests include model-
ing and programming for distributed computing
systems, parallel algorithms, and grid and cloud
computing.

Keqin Li is a SUNY distinguished professor of
computer science. He is also an Intellectual Ven-
tures endowed visiting chair professor at Tsing-
hua University, China. His research interests
mainly include design and analysis of algorithms,
parallel and distributed computing, and computer
networking. He has more than 290 refereed
research publications. He is currently or has
served on the editorial board of |IEEE Transac-
tions on Parallel and Distributed Systems, IEEE
Transactions on Computers, IEEE Transactions
on Cloud Computing, Journal of Parallel and Distributed Computing,
International Journal of Parallel, Emergent and Distributed Systems,
International Journal of High Performance Computing and Networking,
International Journal of Big Data Intelligence, and Optimization Letters.
He is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

