
1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2308221, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Performance Analysis and Optimization for
SpMV on GPU Using Probabilistic Modeling

Kenli Li, Wangdong Yang, and Keqin Li, Senior Member, IEEE

Abstract—This paper presents a unique method of performance analysis and optimization for sparse matrix-vector multiplication
(SpMV) on GPU. This method has wide adaptability for different types of sparse matrices and is different from existing methods
which only adapt to some particular sparse matrices. In addition, our method does not need additional benchmarks to get optimized
parameters, which are calculated directly through the probability mass function (PMF). We make the following contributions. (1) We
present a PMF to analyze precisely the distribution pattern of non-zero elements in a sparse matrix. The PMF can provide theoretical
basis for the compression of a sparse matrix. (2) Compression efficiency of COO, CSR, ELL, and HYB can be analyzed precisely
through the PMF, and combined with the hardware parameters of GPU, the performance of SpMV based on COO, CSR, ELL, and
HYB can be estimated. Furthermore, the most appropriate format for SpMV can be selected according to estimated value of the
performance. Experiments prove that the theoretical estimated values and the tested values have high consistency. (3) For HYB,
the optimal segmentation threshold can be found through the PMF to achieve the optimal performance for SpMV. Our performance
modeling and analysis are very accurate. The order of magnitude of the estimated speedup and that of the tested speedup for each of
the ten tested sparse matrices based on the three formats COO, CSR, and ELL are the same. The percentage of relative difference
between an estimated value and a tested value is less than 20% for over 80% cases. The performance improvement of our algorithm is
also effective. The average performance improvement of the optimal solution for HYB is over 15% compared with that of the automatic
solution provided by CUSPARSE lib.

Index Terms—GPU, performance modeling, probability mass function, sparse matrix-vector multiplication.

F

1 INTRODUCTION

S PARSE matrix-vector multiplication (SpMV) is an
essential operation in solving linear systems and

partial differential equations. For many scientific and
engineering applications, the matrices can be very large
and sparse, and these sparse matrices may have various
sparsity characteristics. It is a challenging issue to adopt
an appropriate algorithm to implement and optimize
SpMV. This paper addresses this challenge by presenting
a performance modeling and analysis method to esti-
mate and optimize SpMV performance on GPU using a
probabilistic model.

N. Bell and M. Garland [1] proposed and implemented
SpMV CUDA kernels for some storage formats, includ-
ing COO (coordinate format), CSR (compressed sparse
row format), ELL (ELLPACK format), and HYB (hybrid
format). Based on our experiments using cuSPARSE
lib [2], which is developed by NVIDIA, COO is the
most intuitive storage format and usually has worse
performance than other formats; but is not sensitive
to the distribution of non-zero elements per row. CSR

• Kenli Li, Wangdong Yang, and Keqin Li are with the College of Information
Science and Engineering, Hunan University, Changsha, Hunan 410082,
China; and the National Supercomputing Center in Changsha, Changsha,
Hunan 410082, China.
E-mail: lkl@hnu.edu.cn; yangwangdong@163.com; likq@hnu.edu.cn.

• Keqin Li is also with the Department of Computer Science, State Univer-
sity of New York, New Paltz, New York 12561, USA.
E-mail: lik@newpaltz.edu.

Manuscript received Month Day, 2013; revised Month Day, 2014.

usually has good performance for sparse matrices with
large numbers of non-zero elements; but is sensitive to
the distribution of non-zero elements per row. ELL is
usually good for a sparse matrix with nearly equal and
small number of non-zero elements per row. HYB has
better performance when the matrix has small number
of non-zero elements per row, and most rows are near-
ly equal but there may be a few irregular rows with
much more non-zero elements, where the matrix is split
into two parts, i.e., ELL and COO, such that the most
rows which are nearly equal are stored by ELL and
the other few irregular rows with much more non-zero
elements are stored by COO. We observed that different
matrices may have their own most appropriate storage
formats to achieve the best performance. Besides, we
also notice that the performance of HYB is effected by
the proportion of the two parts. All these observations
motivate us to build a mathematical model to analyze
the distribution characteristics of non-zero elements in
a sparse matrix and to estimate the execution times
of multiple SpMV kernels, and furthermore, to help
choose an optimal SpMV solution (i.e., storage format
and storage strategy) for a target sparse matrix.

The present paper makes the following unique con-
tributions to performance analysis and optimization for
SpMV on GPU. (1) We present a probability mass func-
tion (PMF) to analyze precisely the distribution pattern
of non-zero elements in a sparse matrix. The PMF can
provide theoretical basis for the compression of a sparse
matrix. (2) Compression efficiency of COO, CSR, ELL,



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2308221, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

and HYB can be analyzed precisely through the PMF,
and combined with the hardware parameters of GPU,
the performance of SpMV based on COO, CSR, ELL,
and HYB can be estimated. Furthermore, the most ap-
propriate format for SpMV can be selected according
to the estimated values of performance. Experiments
prove that the theoretical estimated values and the tested
values have high consistency. (3) For HYB, the optimal
segmentation threshold can be found through the PMF
to achieve the optimal performance for SpMV.

Our performance modeling is based on PMF, which
fully reflects the distribution characteristics of non-zero
elements in a sparse matrix and does not need any
benchmark matrices to get the properties and parameters
for SpMV. Our performance modeling consists of three
steps, i.e., probability analysis, performance estimation,
and strategy optimization. Firstly, the PMF for the target
matrix is built according to the analysis of the dis-
tribution of non-zero elements per row. Secondly, the
performance estimation formulas of COO, CSR, ELL,
and HYB can be established according to the PMF for the
target matrix and the storage structures of these formats.
Lastly, the performance of SpMV using these formats
can be estimated using the estimated formulas through
the input hardware parameters of GPU. For COO, CSR,
and ELL, the format with the smallest estimate will
be selected for SpMV to get the best performance. For
HYB, the optimal segmentation threshold can be found
through performance estimation. The target matrix is
split into COO and ELL by the optimal segmentation
threshold to get the best performance for SpMV.

We use a probabilistic method to analyze the perfor-
mance of SpMV. This method has wide adaptability for
different types of sparse matrices and is different from
existing methods which only adapt to some particular
sparse matrices. In addition, our method does not need
additional benchmarks to get optimized parameters,
which are calculated directly through the PMF. Some
methods also use some distribution characteristics of a
sparse matrix to analyze the performance of SpMV, such
as the number of non-zeros. However, these methods do
not combine various storage formats for comprehensive
analysis of the performance of SpMV due to lack of
quantitative techniques.

In this paper, we use SpMV CUDA kernels devel-
oped by NVIDIA [2] and NVIDIA GTX 645M for our
performance modeling and experiments. According to
our experiments on 10 representative matrices (totally
58 test cases), our performance modeling and analysis is
very accurate. The order of magnitude of the estimated
speedup and that of the tested speedup for each sparse
matrix based on the three formats COO, CSR, and ELL
are the same. The percentage of relative difference be-
tween an estimated value and a tested value is less than
20% for over 80% cases. The optimal SpMV solutions of
the 10 matrices are reported by our optimal solutions for
HYB. Specifically, the performance improvement of our
algorithm is very effective. The average performance im-

provement of the optimal solution for HYB is over 15%
compared with that of the automatic solution provided
by CUSPARSE lib.

2 RELATED WORK

In this section, we review related research in imple-
mentation of SpMV for different formats, optimization
of SpMV on GPU, and performance modeling and pre-
diction. Due to space limitation, this section is moved to
Section 2 of the supplementary material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/00.0000/TPDS.2014.000.

3 OVERVIEW OF GPU AND CUDA

In this section, we provide an overview of the GPU
computing architecture and parallel programming with
CUDA, which is moved to Section 3 of the supplemen-
tary material, available online.

4 SPMV PERFORMANCE MODELING

Sparse matrices arise form various domains and their
distribution patterns of non-zero elements can be very
specific. Taking into consideration the structure of a
sparse matrix can dramatically improve the performance
of SpMV. However, there is no general storage format
that is efficient for all kinds of sparse matrices. Adopting
a suitable storage format according to the distribution
pattern of a sparse matrix is very helpful to improve the
performance of SpMV. We can accurately describe the
distribution pattern of a sparse matrix by a probability
mass function (PMF), and get numerical characteristics
of sparsity distribution by a probabilistic method. The
suitable storage format can be selected by numerical
characteristics of a sparsity distribution.

4.1 PMF of Sparse Matrices

A PMF is a function that gives the probability that a
discrete random variable is exactly equal to some value
[34].

4.1.1 Definition of Probability Mass Function

A is a sparse matrix. N is the number of rows in A
and M is the number of columns in A. The discrete
random variable X represents the number of non-zeros
of one row in A. The range of values of the discrete
random variable X is ΩX = {0, 1, 2, ...,M}. For each i =
0, 1, 2, ...,M , when the value of X is i, it represents the
event {X = i}. Define another set B = {b0, b1, b2, ..., bM}.
Each bi, i = 0, 1, 2, ...,M , represents the number of rows,
each of which contains i non-zeros exactly. For each
i = 0, 1, 2, ...,M , pi = bi/N is the probability of the event



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2308221, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

{X = i}. Define the probability mass function of dis-
crete random variable X as P , which is mathematically
characterized by the following expression:

P (X = i) = pi = bi/N, i = 0, 1, 2, ...,M,where
(i) pi ≥ 0, i = 0, 1, 2, ...,M ;

(ii)

M∑
i=0

pi =

M∑
i=0

(bi/N) =
1

N

M∑
i=0

bi = N/N = 1.

(1)

X = 0 represents the event that there is no non-zero in
one row. pk = 0 represents that the row with k non-zeros
does not exist in the sparse matrix A.

4.1.2 Relevant Probability and Numerical Characteris-
tics

The probability of X ≤ K is equal to the probability
of 0 ≤ X ≤ K. The probability of X > K is equal to
the probability of M ≥ X > K. The probabilities are
expressed by

P (X ≤ K) =
K∑
i=0

pi, (2)

P (X > K) =

M∑
i=K+1

pi. (3)

The conditional probabilities are expressed as

P (X = k|X ≤ K) =

{
pk/

∑K
i=0 pi, k ≤ K;

0, k > K;
(4)

P (X = k|X > K) =

{
pk/

∑M
i=K+1 pi, k > K;

0, k ≤ K.
(5)

E(X) is the expectation operator. σ is the standard
deviation. γ is the skewness of random variable X . The
eigenvalues are expressed by

E(X) =
M∑
i=0

(i× pi), (6)

E(X|X ≤ K) =

K∑
i=0

(i× pi)/P (X ≤ K), (7)

E(X|X > K) =
M∑

i=K+1

(i× pi)/P (X > K), (8)

σ =
√

E(X − E(X))2, (9)

γ =
E(X − E(X))3

σ3
. (10)

αi is the ith fractile of W -fractiles for X if αi satisfies

P (X ≤ αi) = i/W. (11)

The number of all non-zeros (NNZ) in the sparse
matrix A is expressed as

NNZ = E(X)×N. (12)

NNZ(X ≤ K) represents the total number of non-zeros
of the rows whose numbers of non-zeros are less than
or equal to K:

NNZ(X ≤ K) = E(X|X ≤ K)×N × P (X ≤ K). (13)

NNZ(X > K) represents the total number of non-zeros
of the rows whose numbers of non-zeros are greater than
K:

NNZ(X > K) = E(X|X > K)×N × P (X > K). (14)

4.2 Storage Space Analysis
In this section, we analyze Scoo, Scsr, Sell, and Shyb,

i.e., the storage space used by four storage formats
COO, CSR, ELL, and HYB, which is moved to Section
4 of the supplementary material, available online. In the
following, we list the main results.

Scoo = Ss × NNZ + 2× Si × NNZ. (15)

Scsr = Ss × NNZ + Si × NNZ + Si × (N + 1). (16)

Sell = Ss ×N ×K + Si ×N ×K. (17)

Sell = Ss ×Ne ×K + Si ×Ne ×K + Si ×Ne. (18)

Scoo = (NNZ(X > K)−K × P (X > K)×N)× Ss

+ (NNZ(X > K)−K × P (X > K)×N)× 2× Si.
(19)

Shyb = Scoo + Sell

= NNZ(X > K)× (Ss + 2Si)

−K × P (X > K)×N × (Ss + 2Si)

+ Ss ×Ne ×K + Si ×Ne ×K + Si ×Ne.

(20)

4.3 Performance Analysis for SpMV
The performance of SpMV on GPU depends on two

parts, i.e., data transfer time (DTT ) and computing time
(CT ). The execution time T of SpMV on GPU can be
expressed as

T = DTT + CT. (21)

DTT contains two parts, i.e., from host to device and
from device to host. The sparse matrix and vector are
transferred from host to device and the result vector is
returned from device. DTT is expressed as

DTT =
size of data

B
, (22)

where B is the transfer bandwidth of PCIe, which con-
nects CPU and GPU. CT also contains two parts, i.e., the
computing time on cores (CTC) and access memory time
(AM ), including read and write, which mainly considers
access global memory time. The computing time on
cores contains two parts, i.e., multiplication (CTCm) and
addition (CTCa). The rate of multiplication and addition
on SP can be considered to be the same, because SP can



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2308221, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

TABLE 1
Variables and Definitions

Variable Description

T DTT + CT , execution time of SpMV
DTT Data transfer time between host and device
B The bandwidth of PCIe
CT CTC +AM , computing time on SMs
CTC CTCm + CTCa, computing time on cores
CTCm Computing time of multiplication on cores
CTCa Computing time of addition on cores
F The rate of multiplication or addition on SP
Fi The rate of × or + on SP for integers
Fs The rate of × or + on SP for single-precision
Fd The rate of × or + on SP for double-precision
AM Access memory time
BW The bus width of the global memory
CR The clock rate of the global memory
C The number of stream processors (SP)
W The number of threads per warp
BS The number of threads per block
Si The size of an integer
Ss The size of a single-precision floating point number
Sd The size of a double-precision floating point number

execute a multiplication and an addition operation with
the same time. F is the rate of multiplication or addition
on SP. F is divided into three types: Fi (integer), Fs

(single-precision), and Fd (double-precision), depending
on the data type.

Access global memory also contains two parts, i.e.,
read the sparse matrix and read and write vectors. BW is
the bus width of the global memory on GPU. The global
memory can read once for continuous data with bus
width length. If the data set is continuous, the latency of
access to the global memory can be hidden. The access
time to the global memory of a thread can be calculated
by Eq. (23):

AM =

⌈
size of DS

RW

⌉
× 1

CR
, (23)

where DS is the data set stored in the global memory,
which is read from the global memory once; RW is the
length of the continuous data and RW should not exceed
BW ; and CR is the clock rate of the global memory.
C is the number of stream processor (SP). W is the

number of threads per warp. BS is the number of
threads per block. The shared memory can be used in
warp to reduce the access latency of the global memory.
Some data can be read into the shared memory and can
be accessed by each thread in the block.

All variables are described in Table 1.

4.3.1 Performance Analysis for COO
The data transferred from host to device contains three

arrays of COO and the vector, whose total size is Scoo +
Ss × N . The size of the vector returned from device is
Ss×N . Thus, the DTT for SpMV using COO is expressed
by Eq. (24) according to Eq. (22):

DTT =
Scoo + 2× Ss ×N

B
. (24)

According to Eq. (15), DTT for SpMV using COO can
be expressed as

DTT =
(Ss + 2× Si)× NNZ + 2× Ss ×N

B
. (25)

The three arrays of COO can be read only one element
each time in a thread, because each non-zero is assigned
to a thread when SpMV is computed on GPU, leading
to inappropriate use of the shared memory. The data
accessed in each thread contains two parts, i.e., one
element from each of the three arrays of COO and the
corresponding element in the vector, where the size of
each element is Si, Si, Ss, and Ss. So, RW = Si or
RW = Ss is the size of one element. The GPU has
C threads to compute at the same time, because GPU
has C cores. Thus, there are NNZ/C rounds of parallel
computing for SpMV on GPU. AM is expressed by Eq.
(26) according to Eq. (23):

AM =
NNZ
C

×
(

2× Si

CR× Si
+

2× Ss

CR× Ss

)
. (26)

Each thread only performs one multiplication with
computing time 1/Fs (for single-precision). The total
time of multiplication is given by Eq. (27), because GPU
has NNZ/C rounds of parallel computing for SpMV:

CTCm =
NNZ
C × Fs

. (27)

The results of the above computing need to be sum-
marized per row. The results of one row is summed by
one warp. The number of warps which can perform at
the same time on GPU is C/W , and there are N ×W/C
rounds of parallel summation on GPU. Because the
number of non-zeros in a row is unknown, the mean
E(X) of the number of non-zeros in a row is used for
the length of summation per row when the rows are
summed. The parallel reduction algorithm is used when
the summation of a row is calculated. Hence, CTCa is
expressed as

CTCa =
N ×W

C
×
⌈
E(X)

W

⌉
× 1

Fs
. (28)

Finally, CT for SpMV using COO is given by

CT = AM + CTCm + CTCa

=
NNZ
C

×
(

2× Si

CR× Si
+

2× Ss

CR× Ss

)
(29)

+
NNZ
C × Fs

+
N ×W

C
×
⌈
E(X)

W

⌉
× 1

Fs
.

4.3.2 Performance Analysis for CSR
The data transferred from host to device contains

three arrays of CSR and the vector, whose total size is
Scsr+Ss×N . The size of the vector returned from device
is Ss × N . Therefore, the DTT for SpMV using CSR is
expressed by Eq. (30) according to Eq. (22):

DTT =
Scsr + 2× Ss ×N

B
. (30)



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2308221, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

According to Eq. (16), DTT for SpMV using CSR can be
expressed as

DTT =
(Ss + Si)× NNZ + Si × (N + 1) + 2× Ss ×N

B
. (31)

Each row is assigned to a thread when SpMV is
computed on GPU using the CSR format, and there are
N/C rounds of parallel computing for SpMV on GPU.
Because the length of a row is a random variable, the
computing time of a warp is the maximum computing
time of the threads in the warp, which is determined by
the longest row in the warp. We define set Q as

Q = {X|X ∈ W -fractile ofX}. (32)

The W -fractiles of X are break points of X , which are
evenly divided into W subsets. The mean E(Q) is used
as the length of a row when we estimate the computing
time. Hence, the computing time of multiplication in a
thread is E(Q)/Fs (for single-precision), and the total
computing time of multiplication is expressed by

CTCm =
N

C
× E(Q)

Fs
. (33)

The results of multiplication must be accumulated to
a value in each thread. Notice that one more addition
must be performed, because the position of columns and
values must be calculated by the index of rows array. We
need to increase the time by E(Q)/Fi, because the index
of the array is an integer. Thus, the total computing time
of addition is expressed as

CTCa =
N

C
×
(
E(Q)

Fs
+

E(Q)

Fi

)
. (34)

The data set of the value and column index arrays
can be read in BW length data once, because the arrays
can be continuously accessible in a thread. So, the access
time of the two arrays is

(⌈
Ss×E(Q)

BW

⌉
+
⌈
Si×E(Q)

BW

⌉)
× 1

CR

in a thread according to Eq. (23). However, the vector X
cannot be continuously accessible in a thread and RW is
the size of one element. Thus, the access time is Ss×E(Q)

CR×Ss

according to Eq. (23). An element is read only from the
array of row indices in a thread and the access time is

Si

CR×Si
. Similarly, the write time of the vector is Ss

CR×Ss
.

The effect of using the shared memory is not obvious,
because the length of each row is different and access to
the location of the vector X is random. Hence, the total
access memory time is expressed by

AM =
N

C

((⌈
Ss × E(Q)

BW

⌉
+

⌈
Si × E(Q)

BW

⌉)
× 1

CR

+
Si

CR× Si
+

Ss

CR× Ss
+

Ss × E(Q)

CR× Ss

)
.

(35)

Finally, CT for SpMV using CSR is given by

CT = AM + CTCm + CTCa

=
N

C

((⌈
Ss × E(Q)

BW

⌉
+

⌈
Si × E(Q)

BW

⌉)
× 1

CR

+
2

CR
+

Ss × E(Q)

CR× Ss
+ E(Q)×

(
2

Fs
+

1

Fi

))
.

(36)

4.3.3 Performance Analysis for ELL
The data transferred from host to device contains three

arrays of ELL and the vector, whose total size is Sell+Ss×
N . The size of the vector returned from device is Ss×N .
Hence, the DTT for SpMV using ELL is expressed as

DTT =
Sell + 2× Ss ×N

B
. (37)

According to Eq. (18), DTT for SpMV using ELL can be
express as

DTT =
P (X > 0)×N ×K × (Ss + Si)

B

+
Si × P (X > 0)×N + 2× Ss ×N

B
.

(38)

Each row is also assigned to a thread when SpMV is
calculated on GPU using the ELL format, and there are
P (X > 0)×N/C rounds of parallel computing for SpMV
on GPU. The computing mode of ELL is the same as that
of CSR. So, the access time of two arrays of values and
columns is

(⌈
Si×K
BW

⌉
+
⌈
Ss×K
BW

⌉)
× 1

CR according to Eq.
(23). The vector X cannot be continuously accessible in a
thread and RW is the size of one element. However, the
data set with the length of a block can be read into the
shared memory from the global memory to reduce the
time to access the global memory. Therefore, the access
time is Ss×(K−BS)

CR×Ss
according to Eq. (23). An element is

read only from the array of row indices in a thread and
the access time is Si

CR×Si
. The write time of the vector is

Ss

CR×Ss
. Hence, AM is expressed by

AM =
P (X > 0)×N

C
×((⌈

Si ×K

BW

⌉
+

⌈
Ss ×K

BW

⌉)
× 1

CR
(39)

+
Ss × (K −BS)

CR× Ss
+

Si

CR× Si
+

Si

CR× Si

)
.

The mean E(Q) is used as the length of a row in the
same way as that of CSR. Thus, the computing time
of multiplication in a thread is E(Q)/Fs (for single-
precision), and the total computing time of multiplica-
tion is expressed as

CTCm =
P (X > 0)×N

C
× E(Q)

Fs
. (40)

The results of multiplication must be accumulated to a
value in each thread. However, the position of values
must not be calculated in a thread, because two arrays



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2308221, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

of columns and values are one-to-one. Hence, CTCa for
SpMV using ELL is expressed as

CTCa =
P (X > 0)×N

C
× E(Q)

Fs
. (41)

Finally, CT for SpMV using ELL is given by

CT = AM + CTCm + CTCa

=
P (X > 0)×N

C
×((⌈

Si ×K

BW

⌉
+

⌈
Ss ×K

BW

⌉)
× 1

CR
(42)

+
Ss × (K −BS)

CR× Ss
+

2

CR
+

2× E(Q)

Fs

)
.

4.3.4 Performance Analysis for HYB
The DTT for SpMV using HYB is expressed by

DTT =
Shyb + 2× Ss ×N

B
. (43)

Since HYB contains COO and ELL, the above DTT can
be expressed as

DTT =
Scoo + Sell + 2× Ss ×N

B
. (44)

According to Eq. (20), we have

DTT =

(NNZ(X > K)−K × P (X > K)×N)× (Ss + 2Si)

B

+
(Ss + Si)× P (X > 0)×N ×K

B

+
Si × P (X > 0)×N + 2× Ss ×N

B
.

(45)

The CT of HYB is made up of two parts: CT of COO
and CT of ELL. Notice that N , NNZ, and E(X) in Eq.
(29) are replaced by P (X > K) × N , NNZ(X > K) −
K × P (X > K) × N , and E(X|X > K) −K. CTcoo can
be calculated according to the Eq. (29) as follows:

CTcoo =

NNZ(X > K)−K × P (X > K)×N

C
×
(

4

CR
+

1

Fs

)
+

P (X > K)×N ×W

C
×
⌈
E(X|X > K)−K

W

⌉
× 1

Fs
.

(46)

The E(Q) in the Eq. (42) is replaced by E(X|X ≤ K),
and CTell can be calculated as follows:

CTell =

+
P (X > 0)×N

C

((⌈
Si ×K

BW

⌉
+

⌈
Ss ×K

BW

⌉)
× 1

CR

+

⌈
Ss × (K −BS)

BW

⌉
× 1

CR
+

2

CR
+

2E(X|X ≤ K)

Fs

)
.

(47)

CT of HYB can be expressed as

CT = CTcoo + CTell. (48)

According to the Eqs. (46) and (47), CT is

CT =

NNZ(X > K)−K × P (X > K)×N

C
×
(

4

CR
+

1

Fs

)
+

P (X > K)×N ×W

C
×
⌈
E(X|X > K)−K

W

⌉
× 1

Fs

+
P (X > 0)×N

C

((⌈
Si ×K

BW

⌉
+

⌈
Ss ×K

BW

⌉)
× 1

CR

+

⌈
Ss × (K −BS)

BW

⌉
× 1

CR
+

2

CR
+

2E(X|X ≤ K)

Fs

)
.

(49)

Finally, T can be calculated according to the Eq. (21):

T = DDT + CTcoo + CTell. (50)

5 PERFORMANCE OPTIMIZING FOR SPMV

The appropriate storage format can be selected ac-
cording to the distribution pattern of a sparse matrix
through the above performance analysis. The perfor-
mance optimization workflow for SpMV using CSR,
ELL, and COO consists of two steps, i.e., establishment
of a probability model and estimation of performance.
The optimization method is to choose the format with
the smallest estimated execution time for SpMV. The
optimization workflow for SpMV using COO, CSR, and
ELL is shown in Fig. 1. The performance estimation
based on single-precision or double-precision for SpMV
can be calculated by entering different parameters. The
appropriate storage format can be selected by comparing
the different estimates. The format with the minimum
estimation value is the best suited storage format for
the sparse matrix. The actual computing time and the
estimated value are consistent to be shown in Figs. 3, 4, 5,
and 6. Generally, the original sparse matrices are stored
in the COO format. The performance estimation for
COO, CSR, and ELL, which are described by Eqs. (25),
(29), (31), (36), (38), and (42), can be obtained through
Algorithm 1.

The performance optimizing workflow for SpMV us-
ing HYB consists of three steps, i.e., establishment of
a probability model, split of the sparse matrix into
COO and ELL by a threshold K, and estimation of the
performance of SpMV under different thresholds K. The
optimization workflow for SpMV using HYB is shown in
Fig. 2. If a sparse matrix A is stored in HYB, A should be
split into COO and ELL formats. A parameter K should
be provided when splitting. The choice of parameter K
can affect the performance of SpMV using HYB. The
optimal value of K can minimize the value of Eq. (50).
Hence, the optimal solution of K can be found by solving
Eq. (50). The method for finding the optimal value of K
is presented in Algorithm 2. The optimization method is
to choose the threshold K with the smallest estimate to
split the sparse matrix for HYB.



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2308221, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

Fig. 1. The optimization workflow for SpMV using COO,
CSR, and ELL.

Algorithm 1 Performance Estimation for SpMV.
Require: Three arrays of COO: row, column,value;

the numbers of rows and columns: N and M ; the
number of non-zeros: NNZ; the parameters of GPU:
B, F , BW , CR, C, W , BS, Si, Ss, Sd.

Ensure: The performance estimation values of COO,
CSR, and ELL: Tcoo, Tcsr, Tell.

1: int * num nonzeros row; //Store the number of
non-zeros per row.

2: int * sum num row; //Store the number of rows
with the same number of non-zeros.

3: Get num nonzeros(rows, num nonzeros row, N ,
NNZ); //Get the number of non-zeros per row and
stored in num nonzeros row.

4: Sum num row(num nonzeros row, sum num row,
M ); //Sum the number of rows with the same
number of non-zeros and stored in sum num row.

5: Tcoo = Get estimate coo(sum num row, B, F , BW ,
CR, C, W , BS, Si, Ss, Sd);

6: Tcsr = Get estimate csr(sum num row, B, F , BW ,
CR, C, W , BS, Si, Ss, Sd);

7: Tell = Get estimate ell(sum num row, B, F , BW ,
CR, C, W , BS, Si, Ss, Sd);

8: return Tcoo, Tcsr, Tell.

6 EXPERIMENTAL EVALUATION

6.1 Experiment Settings
The following test environment has been used for all

benchmarks. A personal computer is equipped with one
Intel Core i5-3230M running at 2.6 GHz and a NVIDIA
Geforce GT 645M GPU. The CPU has 2 cores with
4 threads. The GPU has 384 CUDA processor cores,
working on 0.78 GHz clock rate and 2 GB global memory
with 128 bits bandwidth and 0.9 GHz clock rate, with
CUDA compute capacity 3. As for software, the test
machine ran the 64-bit Windows 8 and NVIDIA CUDA
toolkit 5.0. All the evaluation results are averaged after

Fig. 2. The optimization workflow for SpMV using HYB.

Algorithm 2 Performance Optimization for HYB.
Require: Three arrays of COO: row, column,value;

the numbers of rows and columns: N and M ; the
number of non-zeros: NNZ; the parameters of GPU:
B, F , BW , CR, C, W , BS, Si, Ss, Sd.

Ensure: The optimal solution of the threshold K.
1: int T = MAX ; //T takes a larger number.
2: int * num non− zeros row;
3: int * sum num row;
4: Get num nonzeros(rows,num nonzeros row,N ,NNZ);
5: Sum num row(num nonzeros row,sum num row,M );
6: for each i in [E(X)..max{i |P (X = i) > 0}] do
7: Thyb = Get estimate hyb(sum num row, B, F ,

BW , CR, C, W , BS, Si, Ss, Sd, i);
8: if Thyb < T then
9: K = i;

10: T = Thyb;
11: end if
12: end for;
13: return K.

running 100 times.
All benchmarks are chosen from the UF Sparse Matrix

Collection [35], whose features are shown in Table 1 of
Section 5.1 of the supplementary material. Most of these
matrices are derived from scientific computing and real
engineering applications. The probability distributions of
these sparse matrices are shown in Table 2 of Section 5.1
of the supplementary material.

NVIDIA Corporation provides two libraries (CUBLAS
and CUSPARSE) to support matrix computation. Both
libraries provide CUDA development tools and source
codes [5]. CUBLAS offers three levels of library func-
tions, where the second level supports SpMV of dense
matrices.

CUSPARSE also provides three levels of functions for
sparse matrices, with the first level for ADD operation,
second for MUL operation of SpMV [2], and the third



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2308221, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

TABLE 2
Parameter Table

Parameter Description Value

Si The size of an integer 4 bytes
Ss The size of single-precision number 4 bytes
Sd The size of double-precision number 8 bytes
B The bandwidth of PCIe 16 GB/s
F The clock rate of SP 0.76 Gflop/s
BW The bus width of the global memory 128 bits
CR The clock rate of the global memory 900 MHz
C The number of stream processors 384
W The number of threads per warp 32

level for MUL operation of sparse matrices. It uses both
the CSR and HYB formats. HYB is a hybrid format of
ELL and COO. ELL decides the column width of data
matrix according to the maximum number of non-zero
elements in each row, which means that ELL’s efficiency
of compression will be reduced by the negative effect
of the sparse matrix. A HYB function for SpMV has a
parameter, which has tree values: AUTO, USER, MAX. A
function automatically selects a threshold segmentation
if the parameter is AUTO. The caller must provide a
segmentation threshold if the parameter is USER. If the
threshold is 0, HYB will become COO. If the parameter
is MAX, the threshold will be max{i |P (X = i) > 0}
and HYB will become ELL. Due to the official and high-
performance features of the CUSPARSE, the library is
widely used in linear system solving. We test SpMV
based on COO, CSR, ELL, and HYB by CUSPARSE
functions.

6.2 Performance Estimation and Test

We adopt the following steps in our experiments. (1)
Build a probability model for each sparse matrix. (2)
Estimate the performance of SpMV using COO, CSR,
ELL, and HYB formats for each sparse matrix. (3) Test
the actual performance of SpMV using COO, CSR, ELL,
and HYB functions of CUSPARSE for each sparse matrix.
(4) Assess the consistency of estimates and actual tested
values.

The sparse matrix computation time varies greatly
because of scale disparities. The computation time is
proportional to the scale of the computation. We define
speedup as the ratio of computing scale to computing
time. The scale of the computation for SpMV is NNZ.
We adopt speedup to describe the performance, because
the computing time of SpMV based on various sparse
matrices has a relatively wide range and is not suitable
for comparison in the charts. The speedup is calculated by
NNZ/T ×10−6. The estimates of speedup using the COO,
CSR, and ELL formats can be calculated according to
the parameters in Table 2. The results are shown in Fig.
3 for single-precision floating point numbers and Fig.
5 for double-precision. Fig. 4 gives the results of tested

TABLE 3
Percentage of Relative Difference between Estimated

Value and Tested Value

Sparse
matrix

COO(%) CSR(%) ELL(%)
Single Double Single Double Single Double

bbmat -6.93 -12.40 24.59 18.71 -3.95 -11.34
Cheby
shev4

-8.32 -12.50 18.00 -2.80 -15.78 -6.02

twotone -25.35 -35.83 -21.62 -10.38 -10.04 -11.52
scircuit -38.22 -21.06 -39.05 -27.88 -37.28 -18.82
PR02R -9.75 -12.56 11.29 14.85 -7.25 -16.62
pwtk -2.93 -5.50 -2.74 9.78 -11.22 -17.73
raefsky3 -9.40 -14.07 -5.92 -2.53 -14.49 -14.10
raefsky5 28.46 15.88 -3.40 34.29 -5.22 -8.40
rma10 -6.52 -10.10 13.78 14.33 -11.99 -10.46
TSOPF
RS
b300 c3

-10.69 -13.81 -11.44 -11.34 NA NA

data for single-precision floating point numbers, and Fig.
6 gives the results for double-precision.

The percentage of relative difference between an es-
timated value and its tested value is calculated by
(EV − TV )/TV × 100, which EV is the estimated value
and TV is the tested value. A positive percentage of
relative difference indicates that the estimated value is
greater than the tested value. On the contrary, it means
that the estimated value is less than the tested value.

We have the following important observations from
our experimental data.

(1) It is observed from Table 3 that the estimated
values and tested values have good consistency, with the
absolute value of the percentage of relative difference
between an estimated value and its tested value to be
less than 20% for 47/58=81% cases. The order of mag-
nitude of estimated speedup and that of tested speedup
for each sparse matrix based on the three formats (COO,
CSR, and ELL) are the same according to Figs. 3, 4, 5,
and 6.

(2) As can be seen from Table 3, in most (48 out of 58)
cases, the tested speedup is higher than the estimation,
because the data access for SpMV on GPU can be opti-
mized by the shared memory and the texture memory.
However, in some (10 out of 58) cases, the estimated
speedup is higher than the tested speedup due to the
uneven distribution of non-zero elements, in particular
for the CSR format.

(3) The performance of parallel computing on GPU is
closely related to the utilization of the threads. The load
balance between threads can improve the utilization of
GPU. The performance of SpMV using the ELL format
is usually (for 7 out of 10 matrices) better than that
of SpMV using COO and CSR, because the size of the
data set assigned to each thread in the ELL format
is the same. However, the estimation for the sparse
matrix TSOPF/TSOPF RS b300 c3 is far worse than that
of COO and CSR, because max{i |P (X = i) > 0} of
TSOPF/TSOPF RS b300 c3 is far greater than E(X). So,
the dense matrix of ELL must be filled with a large num-



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2308221, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

Fig. 3. Estimated speedup (single-precision).

Fig. 4. Tested speedup (single-precision).

ber of zeros, leading to the computed data size increas-
ing sharply. The SpMV for TSOPF/TSOPF RS b300 c3
using the ELL format cannot be computed on GPU in the
actual test, illustrating that it is inappropriate to adopt
the ELL format.

(4) The performance of SpMV using the CSR format
is usually better than that of SpMV using COO (ex-
cept ATandT/twotone and Hamm/scircuit) for single-
precision data, as shown in Figs. 3–4. The performance
bottleneck of SpMV is data access for single-precision
data, because the computing speed of single-precision
data on GPU is very fast. Each thread of SpMV using
the COO format reads respectively an element from
three arrays (row, column,value), whose length is NNZ.
The SpMV using the COO format must read more data
from memory than that using the CSR format, and
the SpMV using the CSR format can read continuous
multiple data by bus bandwidth, because a row of CSR
format is read sequentially in one thread. However, for
ATandT/twotone and Hamm/scircuit, the skewness of
probability distribution is too large relative to the mean,
leading to non-zeros to be extremely uneven between
rows. Such extremely imbalanced loads between threads
make the performance of SpMV using the CSR format
degrade.

(5) The performance of SpMV using the CSR format
is usually worse than that of SpMV using COO (except
TSOPF/TSOPF RS b300 c3) for double-precision data,
as shown in Figs. 5–6. The performance bottleneck of

SpMV is computing for double-precision data, because
the computing speed of double-precision data on GPU is
slow. The imbalance of computing between threads has
great influence on performance of SpMV using the CSR
format. However, for TSOPF/TSOPF RS b300 c3, the
performance of the accumulative reduction algorithm for
SpMV using the COO format will be affected, because
the skewness of probability distribution is large.

Fig. 5. Estimated speedup (double-precision).

Fig. 6. Tested speedup (double-precision).

Additional performance data are demonstrated and
analyzed in 5.2 of the supplementary material.

7 CONCLUSIONS

In this paper, we use a probabilistic model to analyze
and optimize the performance of SpMV. This method has
wide adaptability for different types of sparse matrices,
and is different from existing methods which only adapt
to some particular sparse matrices. In addition, our
method does not need additional benchmarks to get op-
timized parameters. Our performance modeling is based
on the probability mass function, which fully reflects
the distribution characteristics of non-zeros in a sparse
matrix, and does not need benchmark matrices to get the
properties and parameters for SpMV. Our performance
modeling consists of three steps, i.e., probability analysis,
performance estimation, and performance optimization.
The proposed approach in this paper is general, and is



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2308221, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

neither limited by any GPU programming language nor
restricted to any specific GPU architecture, because it is
based on a mathematical and analytical model. In future
work, we will extend the current SpMV performance
modeling to handle SpMV kernels on multi-GPUs and
CPU-GPU clusters.

ACKNOWLEDGMENTS

The authors would like to express their sincere grati-
tude to all the reviewers for their valuable and construc-
tive comments. The research was partially funded by the
Key Program of National Natural Science Foundation
of China (Grant No. 61133005), and the National Natu-
ral Science Foundation of China (Grant Nos. 90715029,
61070057, 60603053, 61370095).

REFERENCES
[1] N. Bell and M. Garland, Implementing sparse matrix-vector mul-

tiplication on throughput-oriented processors. Proceedings of the
Conference on High Performance Computing Networking, Storage
and Analysis. ACM, 2009, pp. 1-11.

[2] The NVIDIA CUDA Sparse Matrix library
(cuSPARSE), 2nd ed, NVIDIA, 2012. [On-
line].http://docs.nvidia.com/cuda/cusparse/index.html.

[3] W. Yang, K. Li, Y. Liu, L. Shi, and C. Wang, Optimization of Quasi
Diagonal Matrix-Vector Multiplication on GPU, International Jour-
nal of High Performance Computing Applications. 2013(In press,
doi:10.1177/1094342013501126 ).

[4] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder, ”Sparse matrix
solvers on the GPU: conjugate gradients and multigrid, ACM
Trans. Graph., vol. 22, no. 3, 2003, pp. 917-924.

[5] NVIDIA CUDA C Programming Guide, Version 5.0, May 2012.
[6] F. Vazquez, G. Ortega, J. J. Fernandez, and E. M. Garzon, Improving

the performance of the sparse matrix vector product with GPUs,
in Proceedings of the 2010 10th IEEE International Conference on
Computer and Information Technology, ser. CIT 10. IEEE Comput-
er Society, 2010, pp. 1146-1151.

[7] D. Grewe and A. Lokhmotov, Automatically generating and tuning
gpu code for sparse matrix-vector multiplication from a high-level
representation, in Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, ser. GPGPU-4.
ACM, 2011, pp. 12:1-12:8.

[8] J. C. Pichel, F. F. Rivera, M. Fernandez, and A. Rodriguez, Opti-
mization of sparse matrix-vector multiplication using reordering
techniques on GPUs, Microprocessors and Microsystems, vol. 36,
no. 2, 2012, pp. 65-77.

[9] T. Oberhuber, A. Suzuki, and J. Vacata, New row-grouped csr for-
mat for storing the sparse matrices on GPU with implementation
in CUDA. arXiv preprint arXiv:1012.2270 (2010).

[10] A. N. Yzelman and D. Roose, High-Level Strategies for Parallel
Shared-Memory Sparse Matrix-Vector Multiplication. IEEE Trans-
actions on Parallel and Distributed Systems (2013),(In press, doi:
http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.31 ).

[11] J. W. Choi, A. Singh, and R. W. Vuduc, Model-driven autotuning
of sparse matrix-vector multiply on GPUs, in PPoPP 10: Proceed-
ings of the 15th ACM SIGPLAN symposium on Principles and
practice of parallel programming, 2010, pp. 115-126.

[12] V. Karakasis, T. Gkountouvas, K. Kourtis, G. Goumas, and N.
Koziris. An Extended Compression Format for the Optimization of
Sparse Matrix-Vector Multiplication. IEEE Transactions on Parallel
and Distributed Systems Sept. vol. 24, no. 10, 2013, pp. 1930-1940.

[13] J. Kurzak, W. Alvaro, and J. Dongarra, Optimizing matrix multi-
plication for a short-vector simd architecture-cell processor, Parallel
Comput., vol. 35, no. 3, 2009, pp. 138-150.

[14] E.-J. Im, K. Yelick, and R. Vuduc, Sparsity: Optimization frame-
work for sparse matrix kernels, Int. J. High Perform. Comput.
Appl., vol. 18, no. 1, 2004, pp. 135-158.

[15] M. M. Baskaran and R. Bordawekar, Optimizing sparse matrixvec-
tor multiplication on GPUs, Research Report RC24704, IBM TJ
Watson Research Center, Tech. Rep., Dec. 2008.

[16] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. C.W.
R. Vuduc, and K. Yelick, Self-adapting linear algebra algorithms
and software, Proceedings of the IEEE, vol. 93, no. 2, 2005, pp.
293-312.

[17] A. Monakov, A. Lokhmotov, and A. Avetisyan, Automatically tun-
ing sparse matrix-vector multiplication for GPU architectures. High
Performance Embedded Architectures and Compilers. Springer
Berlin Heidelberg, 2010, p.111-125.

[18] Z. Wang, X. Xu, W. Zhao, Y. Zhang, and S. He, Optimizing sparse
matrix-vector multiplication on CUDA, in Education Technology
and Computer (ICETC), 2010 2nd International Conference on, vol.
4, June 2010, pp. V4-109 -V4-113.

[19] X. Yang, S. Parthasarathy, and P. Sadayappan, Fast sparse ma-
trixvector multiplication on GPUs: implications for graph mining,
Proc. VLDB Endow., vol. 4, no. 4, Jan. 2011, pp. 231-242.

[20] A. H. El Zein and A. P. Rendell, Generating optimal CUDA
sparse matrix-vector product implementations for evolving GPU
hardware. Concurrency and Computation: Practice and Experience
24.1 (2012): 3-13.

[21] Y. Kubota and D. Takahashi, Optimization of sparse matrix-
vector multiplication by auto selecting storage schemes on GPU.
Computational Science and Its Applications-ICCSA 2011. Springer
Berlin Heidelberg, 2011. 547-561.

[22] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z.
Ueng, J. A. Stratton, and W.-m. W. Hwu, Program optimization
space pruning for a multithreaded GPU, in Proceedings of the 6th
annual IEEE/ACM international symposium on Code generation
and optimization, ser. CGO 08. ACM, 2008, pp. 195-204.

[23] Y. Zhang and J. Owens, A quantitative performance analysis
model for GPU architectures, in Proceedings of the 2011 IEEE
17th International Symposium on High Performance Computer
Architecture, ser. HPCA 11, Feb. 2011, pp. 382-393.

[24] H. Pabst, B. Bachmayer, and M. Klemm, Performance of a
Structure-detecting SpMV using the CSR Matrix Representation.
Parallel and Distributed Computing (ISPDC), 2012 11th Interna-
tional Symposium on. IEEE, 2012, pp. 3-10.

[25] M. M. Dehnavi, D. Fernandez, and J. L. Gaudiot, Parallel Sparse
Approximate Inverse Preconditioning on Graphic Processing Unit-
s. IEEE Transactions on Parallel and Distributed Systems Sept. vol.
24, no. 9, 2013, pp. 1852-1862.

[26] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m.
W. Hwu, An adaptive performance modeling tool for GPU archi-
tectures, in Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP 10.
ACM, 2010, pp. 105-114.

[27] S. Hong and H. Kim, An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness, in Pro-
ceedings of the 36th annual international symposium on Computer
architecture, ser. ISCA 09. ACM, 2009, pp. 152-163.

[28] K. Kothapalli, R. Mukherjee, M. Rehman, S. Patidar, P. Narayanan,
and K. Srinathan, A performance prediction model for the CUDA
GPGPU platform, in 2009 International Conference on High Per-
formance Computing (HiPC), Dec. 2009, pp. 463-472.

[29] J. Li, G. Tan, M. Chen, and N. Sun, SMAT: an input adaptive
auto-tuner for sparse matrix-vector multiplication. Proceedings of
the 34th ACM SIGPLAN conference on Programming language
design and implementation. ACM, 2013, pp. 117-126.

[30] D. Schaa and D. Kaeli, Exploring the multiple-GPU design space,
in Proceedings of the 2009 IEEE International Parallel & Distribut-
ed Processing Symposium, ser. IPDPS 09, May 2009, pp. 1-12.

[31] P. Guo, L. Wang, and P. Chen. A Performance Modeling
and Optimization Analysis Tool for Sparse Matrix-
Vector Multiplication on GPUs. IEEE Transactions on
Parallel and Distributed Systems 99.1 (2013)(In press, doi:
http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.123).

[32] J. C. Pichel and F. F. Rivera. Sparse matrix vector multiplication
on the Single-Chip Cloud Computer many-core processor. Journal
of Parallel and Distributed Computing, 2013, 73(12): 1539-1550.

[33] S. B. Indarapu, M. Maramreddy, and K. Kothapalli. Architecture-
and Workload-Aware Heterogeneous Algorithms for Sparse Matrix
Vector Multiplication. in Proc. ICPADS 13, Dec. 2013 (In press).

[34] N.L. Johnson, S. Kotz, A. Kemp, (1993) Univariate Discrete Dis-
tributions (2nd Edition). Wiley. ISBN 0-471-54897-9 (p. 36)

[35] T. A. Davis and Y. Hu University of Florida sparse matrix collec-
tion. 2009.



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2308221, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Kenli Li received the Ph.D. degree in computer science from Huazhong
University of Science and Technology, China, in 2003. He was a visiting
scholar at University of Illinois at Urbana-Champaign from 2004 to 2005.
He is currently a full professor of computer science and technology at
Hunan University and associate director of National Supercomputing
Center in Changsha. His major research includes parallel computing,
grid and cloud computing, and DNA computing. He has published more
than 90 papers in international conferences and journals, such as IEEE-
TC, IEEE-TPDS, JPDC, ICPP, CCGrid. He is an outstanding member of
CCF.

Wangdong Yang received the M.S. degree from Central South Univer-
sity, China, in 2006. He is currently working toward the Ph.D. degree
at Hunan University, China. He is a professor of computer science
and technology at Hunan City University, China. His research interests
include modeling and programming for distributed computing systems,
parallel algorithms, grid and cloud computing.

Keqin Li is a SUNY Distinguished Professor of computer science. He
was an Intellectual Ventures endowed visiting chair professor (2011–
2013) at Tsinghua University, China. His research interests are mainly
in design and analysis of algorithms, parallel and distributed computing,
and computer networking. He has over 280 refereed research publi-
cations. He is currently or has served on the editorial board of IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on
Computers, Journal of Parallel and Distributed Computing, International
Journal of Parallel, Emergent and Distributed Systems, International
Journal of High Performance Computing and Networking, International
Journal of Big Data Intelligence, and Optimization Letters.


