
Reinforcement learning-based task scheduling for heterogeneous
computing in end-edge-cloud environment

Wangbo Shen1 • Weiwei Lin1,2 • Wentai Wu3 • Haijie Wu1 • Keqin Li4

Received: 12 June 2024 / Revised: 28 September 2024 / Accepted: 16 October 2024
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
The End-Edge-Cloud (EEC) computing framework can offer low-latency, high-quality services to users of diverse

demands by leveraging pervasive resources. However, the inherent disparities in task requirements and the strong

heterogeneity of computational resources in these systems make it non-trivial for scheduler design, particularly in high load

scenarios (e.g. burst of tasks). This also complicates the adaptation of traditional cloud-oriented schedulers considering

their limited support of heterogeneous processors and accelerators (e.g., CPUs, GPUs and NPUs). In light of this, we first

present a system framework for task scheduling in the EEC architecture. In the framework we adopt a reinforcement

learning (RL)-based scheduler tailored for reducing task completion time and waiting time. Our method integrates task

characteristics and environmental constraints within matrices, based on which an adapted Q-Learning agent is employed

for decision making. We then introduce the implementation of our framework that features Kubernetes and Rancher-based

coordination with extended support for heterogeneous processing units. Experimentally we built a real-world EEC testbed

comprising PC, Atlas 200 DK, and Raspberry PI devices. Evaluation results of our algorithm demonstrate a 271%

enhancement in performance compared to existing algorithms in the context of burst-arrival task queues, which under-

scores the efficacy of our solution in realistic scenarios.

Keywords End-Edge-Cloud computing framework � Heterogeneous computing � Machine learning � Reinforcement

learning

1 Introduction

THE advent of the End-Edge-Cloud (EEC) computing

framework, propelled by advancements in the Industrial

Internet of Things (IIoT) and 5G technologies, holds the

promise of transforming computing services and elevating

Artificial Intelligence (AI) applications in terms of effi-

ciency and user experience. Nonetheless, the inherent

complexity of EEC systems poses significant challenges,

particularly in task scheduling-a critical aspect for maxi-

mizing system performance amidst diverse hardware

architectures and computational capacities [1–3].

The heterogeneity of computational resources presents a

primary challenge in the EEC computing framework. The

diversity of hardware architectures, including general-

purpose processors and specialized AI accelerators,

alongside varying task requirements and computational

capacities, complicates unified resource management

essential for efficient system collaboration. Task schedul-

ing, aiming to match tasks with appropriate resources to

enhance system performance, becomes critically complex

in this context [4].

Despite this complexity, current scheduling methods

frequently fail to account for the distinct demands of tasks,

particularly those in AI applications with strong device

affinity. For example, Zhou et al. [5] addressed task

scheduling within a space-air-ground integrated network

& Weiwei Lin

linww@scut.edu.cn

1 School of Computer Science and Engineering, South China

University of Technology, Guangzhou 510006, China

2 Pengcheng Laboratory, Shenzhen 518000, China

3 Department of Computer Science, College of Information

Science and Technology, Jinan University,

Guangzhou 510632, China

4 Department of Computer Science, State University of New

York, New York 12561, USA

123

Cluster Computing (2025) 28:179
https://doi.org/10.1007/s10586-024-04828-2(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04828-2&domain=pdf
https://doi.org/10.1007/s10586-024-04828-2

for IoT services, developing a policy to reduce task

offloading and computation delays while considering

energy constraints of UAVs. Furthermore, the application

of metaheuristic approaches, like the whale optimization

algorithm to cloud task scheduling [6], underscores efforts

to adapt to specific computing environments. Nevertheless,

such methods often do not fully embrace the unique intri-

cacies of AI tasks, a gap highlighted in comprehensive

reviews of scheduling techniques [7].

Mainstream research has not adequately addressed the

heterogeneity of computing resources, a gap that is par-

ticularly apparent when considering the disparate compu-

tational strengths of various computing chips such as

CPUs, GPUs, and NPUs. Innovative attempts have been

made, such as the multi-queue scheduling method for

managing temporal disparities in hybrid clouds with

heterogeneous tasks [8], and efforts to enhance security

quality in heterogeneous multiprocessor systems within

IoT frameworks [9]. These endeavors are discussed in a

comprehensive review [10], which highlights a critical

need for advanced scheduling research in this area.

This urgency is compounded by the practical challenges

in designing and implementing a scheduling system that

can manage a myriad of server clusters, each with its own

set of heterogeneous computing devices for EEC applica-

tions. Current state-of-the-art cloud platforms, like

Kubernetes, are tailored predominantly for single-server

cluster management and do not support the intricate task

distribution and resource management needed for multi-

cluster EEC scenarios. Furthermore, the ability to oversee a

diverse range of computing resources beyond CPUs-such

as GPUs, NPUs, and FPGAs-is conspicuously absent,

posing a significant barrier to the effective allocation and

management of computational tasks within EEC infras-

tructures. This deficiency calls for a substantial enhance-

ment in cloud computing management platforms and a

reimagined approach to heterogeneous resource control in

research.

Considering the importance of real-time task scheduling

for EEC systems that prioritize service response time,

another main challenge for scheduler design is how to

make online decisions in a vast decision space. To address

this, we propose a novel reinforcement learning-based

strategy tailored for real-time EEC scheduling capable of

handling the heterogeneity of computing resources. Our

method employs an adaptive Q-learning algorithm for

immediate resource allocation, prioritizing urgent tasks via

an intelligent queuing system. It takes into account varied

compute capabilities and network conditions, aiming to

optimize task distribution and minimize delays.

We conducted experiments in a testbed where we

implemented our EEC framework and the scheduler over

commercial devices including PC/Atlas 200 DK/Raspberry

PI. The also system was build upon Kubernetes and Ran-

cher. The results show that our method outperforms

mainstream task scheduling algorithms especially in the

case of dense task arrivals (performance improvement by

271%), which manifests the capability of our solution in

handling bursts of tasks in EEC systems.

In summary, we make the following key contributions:

1. We propose an easy-to-implement, RL-based schedul-

ing algorithm specifically designed to effectively

utilize heterogeneous resources (e.g., AI accelerators)

within EEC systems. Our algorithm is optimized for

minimizing task completion time and waiting time.

2. We developed an EEC system framework, namely

EECRL, based on extended Kubernetes and Rancher

platforms. The proposed algorithm serves as the

scheduler in our framework to empower resource-

efficient coordination within the EEC architecture.

3. Through experiments on a real-world testbed we

demonstrate that our RL-based scheduling algorithm

outperforms existing approaches under different set-

tings of task arrival rate.

The remainder of this paper is structured as follows: Sect. 2

provides background information, introducing the task

scheduling framework, heterogeneous computing task

scheduling problem, and research on reinforcement learn-

ing in related fields. The proposed model is detailed in

Sects. 3, 4, and 5. Section 6 conducts experiments and

analyzes performance. Finally, Sect. 7 concludes the paper.

2 Background and related work

2.1 Orchestration frameworks

Kubernetes, like other mainstream cloud computing tech-

nologies, is a leading orchestration platform widely used

for resource monitoring and task scheduling due to its high-

performance, fairness-based schedulers. However, it has

two critical limitations in EEC scenarios [11]:

1. Single-Cluster Scheduling: Kubernetes is designed

for single-cluster scheduling, which is suitable for

cloud server or edge server cluster scenarios. However,

EEC environments involve multiple clusters (end,

edge, cloud), requiring cross-cluster task scheduling

and monitoring. This limitation makes Kubernetes less

effective for EEC scenarios.

2. Limited Resource Support: The default Kubernetes

schedulers only support monitoring and scheduling of

CPU resources. Even with third-party support, it

currently only handles CPU and GPU resources. EEC

architectures include various heterogeneous computing

 179 Page 2 of 19 Cluster Computing (2025) 28:179

123

resources such as CPUs, GPUs, NPUs, TPUs, and

FPGAs, which Kubernetes’ default scheduling algo-

rithms cannot efficiently manage and coordinate.

To address these challenges, this paper employs the Ran-

cher platform [12], which supports cross-cluster task

scheduling and resource management through APIs.

Additionally, it uses direct socket communication with

nodes and driver commands like npu-smi and nvidia-

smi to monitor various heterogeneous computing resour-

ces, compensating for Kubernetes’ limitations in managing

heterogeneous resources.

2.2 Heterogeneous task scheduling in EEC
systems

In the EEC scenario, beyond establishing a framework

capable of cross-cluster task scheduling and monitoring

heterogeneous computing resources, designing an efficient

scheduling algorithm is a crucial component for effectively

completing computational tasks. Currently, several excel-

lent scheduling algorithms have been developed for edge

computing, cloud computing, and similar scenarios. For

instance, [13] introduced Gavel, a heterogeneity-aware

scheduler that generalizes existing scheduling policies into

optimization problems and transforms them into hetero-

geneity-aware versions. Additionally, [14] studied a two-

month workload trace from a production MLaaS cluster at

Alibaba with over 6000 GPUs, highlighting the challenges

in cluster scheduling. [15] proposed a framework for

heterogeneous computation and resource allocation to

effectively implement FL, aiming to minimize energy

consumption and maximize energy harvesting for smart

devices by considering multiple controls. Similarly, [16]

proposed a strategy for cost-efficient container orchestra-

tion through heterogeneous task allocation, focusing on

resource utilization optimization and elastic instance pric-

ing. Furthermore, [17] introduced a KNN-based scheduler

that starts with speculative prefetching, performs KNN

clustering on the intermediate map output, and then directs

it to the reducer for final processing.

These studies have addressed the heterogeneity of

devices and tasks, using advanced algorithms and machine

learning models to predict resource usage patterns and

facilitate real-time scheduling decisions. However, EEC

scenarios differ from edge computing in that heterogeneity

is not only present in computing chips and tasks but also in

the computing capabilities of devices across the end, edge,

and cloud layers. This aspect is often overlooked in current

research, leading to significant computational power waste

in the EEC framework, as shown in Fig. 1. Therefore, this

paper comprehensively considers the heterogeneity in

devices, chips, and computational power within the EEC

architecture to design Reinforcement Learning-based

Scheduling algorithms that achieve unified scheduling of

computational power and efficient completion of hetero-

geneous tasks.

2.3 Reinforcement learning-based scheduling

Over the past few years, reinforcement learning (RL), a

subset of machine learning, has proven to be effective for

enhancing scheduling algorithms [18]. RL enables an agent

to interact with its environment, receive rewards for

actions, and learn from these interactions. This approach

has been successfully applied in various fields, including

gaming, robotics, and resource management [19].

Applied to scheduling, RL can dynamically adjust

scheduling policies based on system state changes, leading

to more efficient resource use and improved system

performance.

Many studies have explored RL in scheduling algo-

rithms. For example, researchers have developed RL-based

scheduling for cloud computing to reduce makespan or

balance loads across servers. RL has also been used for task

scheduling in heterogeneous computing systems to maxi-

mize resource utilization or minimize energy consumption.

Notable contributions include [20], which developed an RL

model for task scheduling in a cloud-based Spark cluster

considering SLA objectives, [21], which proposed an ML

job feature-based scheduling system (MLFS) for ML

clusters, and [22], which introduced RLScheduler, an

automated HPC batch job scheduler using RL.

However, current RL models for scheduling are mostly

focused on cloud and edge computing, with few studies

addressing EEC scenarios. Additionally, there is a lack of

training environment design for EEC. This paper intro-

duces a reinforcement learning interactive environment and

model specifically designed for EEC scenarios.

Fig. 1 EEC scenarios differ from edge computing in that hetero-

geneity is not only present in computing chips and tasks but also in

the computing capabilities of devices across the end, edge, and cloud

layers

Cluster Computing (2025) 28:179 Page 3 of 19 179

123

3 Problem formulation

In our EEC architecture, the hierarchical system is orga-

nized in clusters and each cluster typically encompasses a

variety of heterogeneous compute resources that differ in

compute power, architecture, and chip models. Formally,

we represent the features of each node in each cluster as

E ¼ ½Ck;Cm;Gk;Gm;Nk;Nm; . . .;Disk;Net� where

Ck;Gk; . . . denote the number of available cores for

heterogeneous processors/accelerators such as CPUs,

GPUs, etc. Cm;Gm; . . . represent the available memory for

the corresponding modules. Disk refers to the available

storage space, and Net is the device’s network communi-

cation capacity.

Based on resource requirements, tasks in the system are

manually grouped into six categories during the prepro-

cessing stage: AI-intensive, memory-intensive, network-

intensive, storage-intensive, I/O-intensive, and CPU-in-

tensive. This classification is done ahead of time by system

administrators or developers based on the specific charac-

teristics and resource needs of each task. For instance, AI-

intensive tasks typically require specialized accelerators

(e.g., GPUs and NPUs), and are modeled in a unified way

to ensure efficient scheduling. By manually categorizing

tasks during preprocessing, the system can optimize

resource allocation and ensure that each task is assigned to

the most appropriate resources within the heterogeneous

environment.

In heterogeneous computing, the main complexity lies

in the fact that an AI-intensive task may be able to run on

different types of computational units and the resulting

performance can differ a lot. For instance, a CNN model

training and inference task for image recognition can be

run solely on CPU, CPU combined with high-performance

chips like GPU, NPU and TPU, or using FPGA for opti-

mized parallel computation. The required computational

resources and execution efficiency for each option can vary

significantly due to the difference in compute power and

their compatibility with the task. To cover these factors, we

represent the set of tasks as T ¼ \T1; T2; . . .; Tk [, where

Ti ¼ ½Ci
rk;C

i
rm;G

i
rk;G

i
rm;N

i
rk;N

i
rm; ::;Disk

i
r;Runtimei�. In

this context, k represents the type of heterogeneous

resource that not only depends on processor or accelerator

class (e.g., NPU, GPU, TPU) but also on their models such

as Nvidia 1080ti, 3090, among others. And Ci
rk;G

i
rk; . . .

represent the estimated core requirements on heteroge-

neous chips like GPUs, NPUs, and FPGAs. For GPUs,

cores are managed using CUDA’s grids and blocks; NPUs

use tensors to handle data flow and parallelism; and FPGAs

utilize LUTs and DSP units to set parallelism and resource

usage. Ci
rm;G

i
rm; . . . represent the estimated memory

required for these tasks on these types of chips. Diskir refers

to the estimated storage space needed for the computational

task, and Runtimei denotes the estimated duration for the

task to run on the current node, given the current execution

method. This matrix provides a detailed description of the

computational requirements of task T and its potential

execution methods.

Assume the EEC system consists of a total ofM clusters,

each comprising N nodes. We use a decision variable x to

denote the allocation of task T to node D. This variable is

constrained to be an integer within the range 0� x\k,

where k represents the number of heterogeneous compu-

tational units present within the cluster, with each value

corresponding to a specific execution strategy on the node.

A task allocation plan across all clusters can thus be

encapsulated within the following matrix representation:

TD ¼

Cluster1 Cluster2 . . . ClusterM

x11 x21 . . . xM1
x12 x22 . . . xM2

..

. ..
. . .

. ..
.

x1N x2N . . . xMN

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

: ð1Þ

If clusters are of different sizes, the matrix can be aug-

mented by filling the positions of unavailable chip types

with zeros. Using this representation, the assignment of

task T to node D can be expressed as TD
x . This indicates that

the final output of our scheduling algorithm is the identi-

fication of the appropriate cluster and node for the current

task, along with the designated execution strategy x.

For every task assignment to a node, the embeddings of

both the task and the node are updated. Let Ei and Ti denote

the i-th element of the node and task embeddings tuples

respectively. The updated embeddings after the assignment

can be represented as E0
i and T 0

i . The update rules can then

be defined as follows:

E0
i ¼Ei � Neti ð2Þ

T 0
i ¼Ti � Runtimei ð3Þ

With the constraint that for each i, the updated task

embedding must be less than or equal to the updated node

embedding:

T 0
i �E0

i ð4Þ

For the average waiting and completion times, we retain

the summation across all tasks, but now with explicit

indexing to denote the summation is over individual tasks:

Avgwait ¼
1

c

Xc

i¼1

Twait;i ð5Þ

 179 Page 4 of 19 Cluster Computing (2025) 28:179

123

Avgcomplete ¼
1

c

Xc

i¼1

ðTRuntime;i þ Twait;iÞ ð6Þ

Here, c still denotes the count of tasks. The optimization

objective becomes:

min a� Avgcomplete þ ð1� aÞ � Avgwait

� �
ð7Þ

where a is a parameter between 0 and 1 that balances the

completion time and waiting time in the objective function.

Our study prioritizes both average waiting time and com-

pletion time as key metrics, recognizing their importance

from the perspectives of both users and system managers.

While users are primarily concerned with completion time,

when the task is finished and results are available, waiting

time plays a critical role from the system manager’s

viewpoint. Efficient management of waiting time is

essential for optimizing task allocation and maintaining

load balancing across heterogeneous devices. By carefully

minimizing waiting times, the system can maximize

resource utilization, ensuring smooth operation and dis-

tributing workloads evenly across the available hardware.

Therefore, we emphasize both metrics to strike a balance

between user experience and overall system performance

and efficiency.

Recognizing that the optimization of task scheduling is

classified as Mixed Integer Linear Programming (MILP)

and is inherently a non-convex NP-hard problem, as

identified in the literature [20], precise estimation of the

actual completion time for each computational task

becomes a critical prerequisite for effective scheduling.

The challenges are amplified in heterogeneous computing

environments, where the scheduling demands considera-

tion of additional data dimensions to accommodate diverse

resource types, thereby increasing the scheduler’s com-

plexity. While heuristic algorithms and reinforcement

learning offer viable solutions, their application to such

multi-dimensional and intricate problems requires strategic

tailoring to navigate these complexities successfully.

4 Architecting the heterogeneous EEC
scheduling system

As illustrated in Fig. 2, the proposed framework is

designed specifically for task scheduling in EEC systems,

aiming to optimize the management of heterogeneous

computing resources in server clusters. We base our

framework on Kubernetes to provide the central orches-

tration capabilities and integrate lightweight Kubernetes

distributions, such as K3S and KubeEdge, to enable more

efficient resource management at the network edge.

In the top layer of our framework we utilize Rancher, a

higher-level container management platform similar to

Kubernetes Federation (KubeFed). While Kubernetes

handles the deployment and management of containers

within each cluster, Rancher provides the user interface,

access control, and additional services that simplify cluster

administration. This hierarchical approach allows for

cohesive and coordinated management of multiple Kuber-

netes clusters across the end-edge-cloud continuum.

The native modules within Kubernetes and Rancher can

only monitor basic metrics such as the utilization of CPU,

memory, and disk. However, extra support of data acqui-

sition is needed for the EEC environment to manage

heterogeneous compute resources including GPUs, TPUs,

NPUs, and FPGAs, which are pivotal for AI workloads. To

address this gap, we integrated monitoring modules on

each node to collect real-time data using low-level libraries

like PyCUDA and GPUtil, as well as device-specific

toolkits (e.g., npu-smi for the Huawei Ascend-310 NPU

to monitor NPU utilization and map memory metrics Nk

and Nm in E). In our framework the collection of these

metrics are then aggregated to the scheduler using a Socket

connection.

Finally, based on Docker we built environment images

for each type of node (according to their processor/accel-

erator class) in the system. This allows the scheduler to pull

and launch the corresponding environment images (such as

GPU, NPU, etc.) directly via the Kubernetes API to exe-

cute the distributed tasks. The scheduler distributes tasks in

JSON format through the Rancher API, guiding the

deployment of pods on each node of every cluster for the

Fig. 2 Schematic of our scheduling framework for Heterogeneous

EEC System Architecture. The first layer encapsulates heterogeneous

computing resources, the second layer realizes cluster node manage-

ment based on Kubernetes, and the third layer implements cross-

cluster management and task distribution based on Rancher

Cluster Computing (2025) 28:179 Page 5 of 19 179

123

specified tasks. This implementation achieves high-per-

formance and resource-aware scheduling within the EEC

framework.

5 Constructing RL-based scheduling
strategy

We employ a RL agent as the core of our scheduler. The

agent interacts with the environment that encapsulates the

server conditions and task details at each time point. The

assignment of tasks, denoted as at, is considered an action

following a policy pðatjstÞ to learn. The learning process

targets at the maximization of the total reward R ¼ Rr in

the form of environment feedbacks.

The proposed RL-based scheduler makes scheduling

decisions subject to the resource requirements of all

scheduled tasks and the capacity constraints of the avail-

able resources. The RL agent constantly observes the

computational capabilities of nodes, inter-device commu-

nication costs, and the demands of incoming tasks.

As depicted in Fig. 3, the task queue, the clock (which

also serves as a timer recording time steps), and the EEC’s

heterogeneous computing resources collectively constitute

the environment for our task scheduler to observe. The task

queue primarily provides information (Task info) that

includes the computational resources required by different

computational methods of the task and an approximate

computation time. The clock primarily provides the current

system time point t, recording the time each task arrives, is

queued, assigned for execution, and finally completed.

Lastly, the EEC’s heterogeneous computing resources

primarily provide information (Env info), including the

basic information of each cluster, such as available

computational resources, network environment, and the

number of completed tasks.

The scheduler takes two types of actions based on the

current environment after observing it. One action directly

outputs the cluster and node number where the current task

is assigned, along with T execution method

\Cluster;Node; T [. The other action allows the current

task to wait for a while P, in addition to the

\Cluster;Node; T [information.

Upon the agent’s action, the reward generator in the

figure evaluates the computational reward resulting from

the action at the current time. It is important to note that in

the RL environment, the rewards given to the agent are

always external. However, RL algorithms can have their

internal reward (or parameter) calculations, which they

continuously update to discover superior strategies.

5.1 Fundamental design

In the following we introduce the key elements in the

design of our RL-based scheduler.

State space: The state space is one of the fundamental

concepts in the RL model, typically representing a set of all

possibilities that the agent can observe in the environment.

In the system designed in this paper, it is mainly divided

into three parts:

• Env info: This primarily includes E ¼
½Ck;Cm;Gk;Gm;Nk;Nm; . . .;Disk;Net� mentioned in

Sect. 3. The only difference is that the Envinfo men-

tioned here is a set of E corresponding to all nodes in all

clusters in the system, which can be represented as

Envinfo ¼ fE1;E2; . . .;Elg, where l represents the num-

ber of all nodes.

• t: This represents the built-in time step of the system. It

records the step distance the system has walked from

the start of scheduling the first task to the present. It is

worth noting that when there is no task to be scheduled

in the system, or all computing resources are idle, this

t value will be reset to zero until the next task arrives

and the timing restarts.

• Task info: This mainly includes

T ¼ \T1; T2; . . .; Tk [, where Ti ¼ ½Ci
rk;C

i
rm;

Gi
rk;G

i
rm;N

i
rk;N

i
rm; ::;Disk

i
r;Runtimei� mentioned in

Sect. 3. The only difference is that the Taskinfo
mentioned here is the computing task being scheduled

in the system; the tasks currently waiting for scheduling

and their waiting time can be represented as

Taskinfo ¼ fT 0
1; T

0
2; . . .; T

0
xg, where x represents the num-

ber of tasks, T 0
i ¼ Ti þ P, and P is the waiting time of

the task.

Fig. 3 Conceptual diagram of the reinforcement learning model

proposed in this research

 179 Page 6 of 19 Cluster Computing (2025) 28:179

123

Consequently, in the scheduling problem addressed in this

paper, the state space expands solely with the increase in

cluster size (total number of virtual machines) and the

length of the task waiting queue rather than depending on

the total number of jobs. This implies that the complexity

of the optimization problem is directly proportional to the

scale of heterogeneous computing resources in the system

and fundamentally unrelated to the size and quantity of

tasks.

Action Space: The scheduler’s decision-making pro-

cess, encapsulated as actions within the system, influences

the state of the environment by determining task allocation.

The action space consists of two principal decision types

that the scheduling agent can opt for. The first type is an

immediate scheduling action, where the scheduler outputs a

direct strategy for task allocation and execution on a

specified cluster and node. The second type involves a

delayed scheduling action, where the scheduler decides to

wait for P seconds before task execution. These decisions

can be formally represented by the tuple

Strategy ¼ \Cluster;Node; T;P[.

To elaborate:

• The choice between these two scheduling actions is

determined by the output of a reinforcement learning-

based scheduling agent. Depending on the state of the

system and the task requirements, the agent may choose

to immediately allocate the task to a node (the first type)

or delay the task by P seconds before scheduling (the

second type).

• The decision-making process is an online, single-task

scheduling method, reflecting real-time task assign-

ments. The execution of this process aligns with

Equation (1), which enumerates all potential scheduling

scenarios for a single task within the system.

• The parameter P, representing the wait time before

scheduling, is also determined by the scheduling agent

based on the reinforcement learning model. The value

of P is within a range from 0 to max time, allowing for

dynamic adjustment based on immediate system con-

ditions and task priorities.

Given a system with l nodes and the inclusion of k possible

execution methods outlined in Sect. 3, the action space is

quantified as lþ k þ 1 discrete actions. Each action cor-

responds to a unique scheduling decision, either instanta-

neously placing a task on a node or imposing a calculated

delay, enhancing the adaptability of the scheduling system.

Reward: The reward represents the quality of the

feedback the environment gives for each action the

scheduler takes with respect to the optimization objective.

In this paper, the reward is designed with two primary

cases. One is �1, which indicates that the current action

has not changed the environment (i.e., the task is assigned

to wait rather than execute immediately). The other is a

positive number greater than zero, representing the degree

to which the action optimizes the objective. This positive

reward is proportional to the quality of the task assignment

in terms of minimizing both task completion time and

waiting time.

Since reinforcement learning accumulates rewards over

time, each individual reward contributes to the overall

long-term optimization. The reward for each action serves

as a learning signal in the RL model, guiding future task

allocations.

Overall, the reinforcement learning process is illustrated

in Fig. 4. The paper concludes with an explanation of the

reward calculation for each action. The reward for each

action, with respect to a given task, is formalized as:

RewardðtÞ ¼
�1 if wait

RðtÞ if distribute

�

ð8Þ

where the function R(t) is defined as:

CTC ¼ a

P
TRuntime

c
þ TRuntimeðtÞ

� �

;

WTC ¼ ð1� aÞ
P

TP
c

þ TPðtÞ
� �

;

RðtÞ ¼ cþ 1

CTC þWTC
:

ð9Þ

where
P

TRuntime and TRuntimeðtÞ represent the total runtime

of all tasks completed up to the current time and the esti-

mated runtime for task t, respectively. Similarly,
P

TP and

TPðtÞ denote the total waiting time for all completed tasks

and the estimated waiting time for task t, respectively. The

variable c denotes the count of tasks that have been

completed.

In practical reinforcement learning scenarios, the

objective function is typically maximized. However, in our

scheduling context, the objective is to minimize both task

completion and waiting times. Consequently, the recipro-

cals of these times are incorporated into the reward func-

tion to align with the minimization goal.

The success of RL-based scheduling heavily relies on the

reward function. In our design, a controls the trade-off

between completion time and waiting time, allowing the

scheduler to adapt to different system needs. We acknowl-

edge that mis-specification or suboptimal task allocation

may occur in complex heterogeneous environments. How-

ever, by adjusting a, the system can balance short-term and

long-term objectives, optimizing task distribution.

By design the Runtime attribute represents the esti-

mated running time required for each task when executed

on a specific node. A naı̈ve way is to maintain a lookup

table for any specific device, but this is very time-con-

suming and hard to extendable. For instance, in [23], the

Cluster Computing (2025) 28:179 Page 7 of 19 179

123

authors measured the average inference latency of 5000

sample DNNs and constructed a latency lookup table for that

specific device. However, Lu et al. [24] found that building a

latency predictor for each operator’s single device could take

over 27 h, assuming an ideal case of 20 s per measurement

and uninterrupted measurements. To this end, they further

proposed an efficient proxy adaptation technique that sig-

nificantly improved the monotonicity of latency, enabling

the discovery of Pareto-optimal architectures almost iden-

tical to those of existing single-device NASwhile only using

a proxy device, thus avoiding the high cost of building pre-

dictors for each device. However, considering the current

EEC scenario, with the rapid updates of devices and com-

puting architectures on the market, the wide variety of

heterogeneous computing chips, and the absence of a unified

protocol to manage them [25], building such predictors still

consumes a lot of time and resources.

For task Runtime estimation, we have observed a

pattern as we continue to run different AI-intensive tasks

on various heterogeneous computing resources. A specific

multiplicative relationship exists in computing power

between different versions of the same type of heteroge-

neous processing units (Fig. 5).

Figure 5 shows the time consumed by 100 CNN models

automatically trained through a Neural architecture search

(NAS) [26] model to infer 10,000 MNIST handwritten

images (batch = 1) on different heterogeneous chips. The

vertical axis in the figure, from top to bottom, represents

chips including the Tesla T4 GPU (16 G), Nvidia Geforce

GTX 1060 GPU (8 G), Davinci AI core NPU (8 G), ARM

cortex-A72@1.5GHz with Broadcom VideoCore

VI@500MHz CPU(4 G), Intel(R) Core(TM) i7-6700HQ

CPU @2.60GHz(8 G), and A55 Arm core@1.6GHz(8 G)

CPU. The figure shows that a particular multiplicative

relationship exists between the same type of chips, such as

GPUs and CPUs, though different types of computing chips

produce significant differences in computation time when

running the same AI computation task. Therefore, in the

calculation of the Runtime attribute of the tasks in this

paper, we establish a computation latency lookup

table based on one of the chip model and then calculate the

power multiples between different versions of the same

type of chip to expand the lookup table, based on a large

amount of historical data from heterogeneous computing

devices, instead of conducting experiments to establish a

lookup table on each device. Empirical evidence shows

Fig. 4 The internal working of

the proposed RL-based

scheduler. With our reward

design, the scheduler (agent)

learns to minimize both the task

completion time and the waiting

time

Fig. 5 Inference latency of the 100 CNN models run on different

devices

 179 Page 8 of 19 Cluster Computing (2025) 28:179

123

that this method significantly reduces the workload and

provides relatively accurate predictions of the actual run-

ning time of tasks.

5.2 Strategy optimization

In the context of an EEC system, the scheduler needs to

perceive the state of heterogeneous computing resources on

each node in the cluster, take scheduling actions of task

allocation, and learn from the experience of these iterative

interactions given the environment feedbacks (rewards).

Q-learning, a form of dynamic programming, tradi-

tionally uses a two-dimensional matrix to represent the Q-

function, which contains values for each state-action pair.

However, this tabular approach becomes impractical in

high-dimensional spaces due to the exponential growth of

state-action pairs. To address this, Deep Q-Learning

(DQN) is widely adopted where a neural network with

parameters u is used to approximate the Q-values, denoted

as Qðs; a; uÞ � Q�ðs; aÞ. We employ the DQN algorithm as

an optimization method within the reinforcement learning

framework. Empirical studies have shown that DQN can

learn the availability of heterogeneous computing resour-

ces and the demand constraints of heterogeneous comput-

ing tasks pertinent to the scheduling problem discussed in

this study [20]. Consequently, it can complete the corre-

sponding reinforcement learning episodes for accumulated

reward maximization.

In our implement of DQN, the neural network is trained

to minimize the following loss at each step i:

LiðuiÞ ¼ Es;a;r;s0 ðr þ cmax
a0

Qðs0; a0; ui�1Þ � Qðs; a; uiÞÞ2

ð10Þ

In this equation, r represents the distribution over transi-

tions fs; a; r; s0g sampled from the environment. The term

r þ cmaxa0 Qðs0; a0; ui�1Þ is known as the Temporal Dif-

ference (TD) target, and the difference between the TD

target and the Q-value is the TD error.

In the proposed reinforcement learning based scheduler,

the agent employs an �-greedy policy, which balances the

trade-off between exploration and exploitation. The agent’s

memory, a vital component of the Experience Replay

mechanism, stores past transitions and uses them in batches

to update the Q-values. This batch update approach

enhances the stability and efficiency of the learning pro-

cess. The agent’s Q-values are approximated using a neural

network trained to minimize the Mean Squared Error

(MSE) loss, as defined in the equation above. The agent

uses a separate target network to ensure stable learning,

providing more consistent update targets. The entire algo-

rithm is shown in Algorithm 1.

Algorithm 1 Training Algorithm

Cluster Computing (2025) 28:179 Page 9 of 19 179

123

6 Evaluation

In this section, we detail the setup of our experimental

environment, which is a heterogeneous EEC computing

testbed consisting of clusters at the end, edge, and cloud

layers. We then evaluate the performance of the proposed

scheduler by comparing it with several baseline scheduling

algorithms.

6.1 Experimental setup

Cluster resources. In this study, an real-world testbed was

built as a prototype EEC system following our framework.

The hardware configurations for the cloud, edge, and end

devices are as follows:

• Cloud server cluster: One server equipped with 8 Intel

(R) Xeon (R) E5-2620 v4@2.10GHz CPU (64 G) and 2

Nvidia Tesla T4 GPU (16 G); 1 TB disk capacity.

• Edge server cluster: Three Atlas 200 DK equipped

with 2 A55 Arm core@1.6GHz CPU (8 G) and 2

Davinci AI core NPU (8 G); 50GB disk capacity.

• End device cluster: Four Raspberry Pi equipped with 4

ARM cortex-A72@1.5GHz CPU (8 G) and Broadcom

VideoCore VI@500MHz (4 G); 59GB disk capacity.

In this context, K3S is responsible for managing the

cloud server and end-side device clusters, while KubeEdge

handles the management of the edge server cluster. Ulti-

mately, all three clusters are centrally managed by the

Rancher tool. It is worth mentioning that, for both the cloud

server and Atlas 200 DK devices, we have created corre-

sponding Docker images containing the necessary drivers

and library functions for their AI chips (GPU, NPU). This

allows us to execute tasks based on scheduling and exe-

cution policies tailored to different AI chips.

Task information. Next, we focus on task selection and

the generation of task queues. As mentioned in Sect. 3, to

better simulate the industrial EEC environment, we selec-

ted several common computing tasks from practical

applications: AI-intensive tasks (inference of 10,000

MNIST images using 10 CNN models with a batch size of

1), memory-intensive tasks (continuously adding data to a

list in the program to increase runtime memory), and

storage-intensive tasks (repeatedly copying a program that

consumes a large amount of storage memory). The task

information matrix T for each type of task is shown in

Table 1.

In generating task queues to better simulate task distri-

bution in a real EEC scenario, this study introduces two

approaches. The first approach is the standard task queue

generation mode, where 100 random tasks arrive at arbi-

trary times within the initial 1000s, termed the ‘‘Stable-

Arrival Task Queue’’. For example, in a power grid sce-

nario, an end-to-end camera captures photos during routine

inspections. The second approach involves the arrival of

1000 random tasks at random times within a 1000-second

interval, termed the ‘‘Burst-Arrival Task Queue’’, similar

to computing tasks centrally updated by AI models in a

power grid scenario.

Reinforcement learning parameters. Finally, the basic

settings of the reinforcement learning parameters utilized

in the experiments are displayed in Table 2. It is worth

noting that during the training process of reinforcement

learning, we adopted an early stopping strategy to prevent

model overfitting and save a significant amount of training

time. Specifically, the training is halted if the maximum

reward does not increase for 80 consecutive iterations.

Table 1 Resource Consumption Metrics for AI-intensive, Memory-intensive, and Storage-intensive Tasks Across Devices and Computational

Modes

Task Type Device Mode Crk Crm/MB Grk Grm/MB Nrk Nrm/MB Disk/MB Runtime/s

AI-intensive Cloud CPU 0.49 1770 0 0 0 0 32 74

GPU 0.10 1017 0.30 2048 0.00 0 12 14

Edge CPU 0.98 900 0.00 0 0.00 0 32 534

NPU 0.10 1024 0 0 0.30 1024 10 114

End CPU 0.98 900 0.00 0 0.00 0 32 534

Memory-intensive Cloud CPU 0.11 1942 0.00 0 0.00 0 23 12

Edge CPU 0.17 1955 0.00 0 0.00 0 20 37

End CPU 0.41 1966 0.00 0 0.00 0 20 26

Storage-intensive Cloud CPU 0.11 143 0.00 0 0.00 0 1987 12

Edge CPU 0.14 40 0.00 0 0.00 0 1964 134

End CPU 0.34 87 0.00 0 0.00 0 1969 47

 179 Page 10 of 19 Cluster Computing (2025) 28:179

123

Baseline scheduling algorithms. In this study, we

conducted performance comparison experiments using four

scheduling algorithms and the reinforcement learning

method proposed in this paper, which is hereafter referred

to as EECRL.

DRL- Based algorithm [20]: This reinforcement

learning method was proposed by Muhammed Tawfiqul

Islam et al. in 2022 for the Spark cloud computing envi-

ronment. It can reduce task completion time and decrease

server wear by nearly 30%. However, since its algorithm

and reward function design mainly target server wear and

homogeneous computing resources and tasks, we set the

reward function consistent with our study during the

replication process. Meanwhile, [20] uses Q-learning and

REINFORCE as agents. Since we adopted Q-learning in

our study, we replaced it with the PPO method. Finally,

other reinforcement learning parameters are consistent with

the settings in [20].

S-P-GWO [27]: A hybrid optimization algorithm that

combines a support vector machine (SVM) to classify

virtual machines with a particle swarm optimization (PSO)

algorithm to find the optimal virtual machine. Finally, the

Grey wolf optimizer (GWO) is applied to determine the

scheduling strategy with the shortest execution time.

GA-GWO [28]: A hybrid optimization algorithm that

integrates the GWO and Genetic Algorithm (GA),

enhancing the optimization capability of GWO to improve

global search efficiency in solving scheduling problems.

Sigmoid-PSO [29]: This is a particle swarm algorithm

that uses a sigmoid function for inertia weight

optimization.

First Fit (FF): This is a classic scheduling strategy that

executes tasks on a first-come, first-served basis. It is a

greedy algorithm that always considers the maximum

reward that can be obtained during task arrival. During the

initial phase of training in the RL-based scheduler, the FF

strategy serve as a baseline policy to explore the action

space efficiently.

It is worth noting that when conducting experiments

with the Burst-Arrival Task Queue, the scheduling process

of the aforementioned heuristic scheduling models is sig-

nificantly delayed due to the requirement for a global

solution. This substantially impacts their overall perfor-

mance. Therefore, in this part of the experiment, we

adjusted the scheduling interval of the heuristic learning

models, setting it to perform scheduling once every 100

tasks.

Since the built-in scheduling algorithm of Kubernetes

only supports the scheduling of computing resources and

tasks within the cluster, it cannot be directly compared in

the EEC scenario. Ultimately, we chose the three most

commonly used algorithms in the task retrieval scenario for

comparison, namely reinforcement learning, heuristic

learning, and the greedy algorithm, to analyze the perfor-

mance advantages of the method proposed in this paper as

comprehensively as possible.

6.2 Parameter Study and Convergence
Evaluation of EECRL

We train the EECRL model for both the Stable-Arrival

Task Queue and the Burst-Arrival Task Queue and set a to

1.0, 0.75, 0.5, 0.25, and 0.0, respectively, to observe the

impact of a on the training process, as shown in Fig. 6.

The value of a affects whether the EECRL model is

more inclined to optimize the average completion time of

tasks or the average waiting time of tasks. Therefore,

several obvious phenomena can be found in Fig. 6:

1. The optimization effect of EECRL on the Burst-Arrival

Task Queue is much higher than that on the Stable-

Arrival Task Queue.

2. EECRL is better and faster at optimizing the waiting

time of tasks in the queue than optimizing the

completion time of tasks in the queue.

3. Compared with the FF algorithm, EECRL has a

significant performance improvement.

Firstly, regarding the first phenomenon, it is evident from

Fig. 6 that the convergence curves of the first row are

significantly inferior to those of the second row. Mainly,

when performing multi-objective optimization on the

Stable-Arrival Task Queue, overfitting is prone to occur.

However, for the Burst-Arrival Task Queue, when a is

0.25, 0.5, 0.75, and 1.0, the performance is improved by

10.77%, 14.44%, 15.45%, and 13.63%, respectively,

compared to the FF algorithm. The reason is relatively

straightforward. The task release of the Stable-Arrival Task

Queue is more dispersed on the timeline. Under such cir-

cumstances, apart from the randomly assigned task

scheduling strategy, most tasks will experience minimal

waiting time and will be directly assigned to the most

suitable node at the current time point. Therefore, no

matter how many times reinforcement learning is

Table 2 Reinforcement Learning Parameters

Parameter Value

Gamma (c) 0.91

Initial Epsilon (�initial) 1.0

Minimum Epsilon (�min) 0.01

Epsilon decay 0.995

Batch size 64

Learning rate (lr) 0.001

Cluster Computing (2025) 28:179 Page 11 of 19 179

123

performed, it cannot learn better knowledge. Moreover, the

training data and sample space in this situation are limited,

which often leads to overfitting.

Secondly, the second phenomenon can be seen from the

data in Fig. 6. When EECRL focuses only on optimizing

the task waiting time (a ¼ 0:0), it improves by 2632.96%

and 243.64% for the Stable-Arrival Task Queue and Burst-

Arrival Task Queue, respectively. Compared to other sit-

uations, the performance improvement of EECRL over the

FF algorithm is at least 20 times higher. The reasons for

this phenomenon are analyzed as follows: (1) The task

waiting time is a single indicator; at least only one time

period needs to be recorded in the calculation process, so it

is a single-objective optimization problem in the opti-

mization process. (2) The task completion time is influ-

enced by many factors, such as task execution time, task

waiting time, model inference time, network latency, etc.

Therefore, even if we only consider the task completion

time, we consider data from multiple dimensions. There-

fore, compared to optimizing task waiting time, it is more

challenging to take task completion time as the optimiza-

tion target, which leads to better optimization performance

in that dimension.

Regarding the third phenomenon, it is a feature of

reinforcement learning. Reinforcement learning will

improve performance through continuous attempts based

on a fixed algorithm. Therefore, the reinforcement learning

model built based on the FF algorithm is expected to

improve specific performance after training.

6.3 Evaluating average task completion time

In this section, we mainly evaluate the optimization ability

of EECRL on the average completion time of the task

queue. By analyzing the comparative experiments of the

EECRL algorithm and the four benchmark scheduling

algorithms proposed in this chapter, we draw the corre-

sponding conclusions.

In the comparative experiment design of this chapter,

experiments were also conducted for the Burst-Arrival

Task Queue and Stable-Arrival Task Queue environments,

as shown in Fig. 7. From the figures, we can also find

several phenomena:

1. For the Stable-Arrival Task Queue, the heuristic

learning training method is better than the reinforce-

ment learning effect. However, when it comes to the

Burst-Arrival Task Queue, reinforcement learning

shows excellent performance.

2. In the EEC reinforcement learning environment

designed in this paper, the differences brought about

by different reinforcement learning iteration algorithms

are not particularly obvious.

Regarding the first phenomenon, as shown in Fig. 7, the

GA-GWO heuristic learning algorithm demonstrates the

best performance when handling the Stable-Arrival Task

Queue. The average task completion time is only 16.67 s,

which is 13.45 s better than the average value of all

algorithms. This includes both the S-P-GWO and Sigmoid-

PSO algorithms, which also outperform the reinforcement

Fig. 6 Evaluation of the Training Process and Convergence Performance of EECRL for both Stable-Arrival Task Queue (first row) and Burst-

Arrival Task Queue (second row)

 179 Page 12 of 19 Cluster Computing (2025) 28:179

123

learning algorithms. The primary reason for this lies in the

dispersion of task distribution. Although not explicitly

shown in the paper, it is worth mentioning that heuristic

learning algorithms, particularly GA-GWO, exhibit their

greatest advantage when the number of tasks ranges

between 20 and 40. In such an environment, tasks do not

require long waiting times, and the search space for the

algorithm is limited and well-defined. As a result, the

optimization upper bound is fixed and easy to identify.

At the same time, with only 100 tasks, the knowledge

learned by reinforcement learning is insufficient, increasing

the likelihood of overfitting. In contrast, heuristic learning

is more likely to find the optimal solution in this scenario.

However, when dealing with the Burst-Arrival Task

Queue, the presence of 1000 tasks provides a much larger

search space, enabling reinforcement learning algorithms

to perform better. EECRL achieves the shortest average

task completion time of 24.29 s when a ¼ 1:0, ranking the

best among all algorithms. In this more complex task queue

scenario, the heuristic learning algorithms fall short, with

the lowest task completion time of 90.13 s, which is

271.06% higher than the optimization achieved by rein-

forcement learning. Additionally, the portability and online

scheduling capabilities of heuristic learning are far inferior

to those of models trained via reinforcement learning,

which is largely attributable to the significantly longer

runtime of heuristic scheduling algorithms.

Regarding the second phenomenon, it can also be seen

from Fig. 7 that the EECRL using Q-Learning and the

DRL-based algorithm using PPO and REINFORCE

strategies do not have a significant gap in optimization

results; the biggest is only on the Burst-Arrival Task

Queue, with a difference of 8.33s. However, such a gap is

also a comparison of the best one chosen from many

training model results, which is also one of the reasons why

this paper chose Q-Learning as the optimization algorithm.

In the results of many training models at regular times, the

results shown by the models trained by these three algo-

rithms are similar. Generally speaking, the choice among

these three algorithms depends on the characteristics of the

problem at hand. Q-Learning might be the preferred choice

for problems with discrete state and action spaces. For

problems with continuous action spaces, PPO could be

more suitable. Lastly, in situations with a large amount of

sample data and high variance, the REINFORCE algorithm

might be the most appropriate choice. However, these

choices are only suggestions based on the rules and

extensive data analysis learned by AI researchers and can

only be used as a reference. There is no mathematical

formula proof for this, so in actual application, it often

needs to be tried in practice to determine which algorithm

is more suitable. It cannot be said that in the case of a

discrete state and action space, Q-learning can show better

performance.

6.4 Evaluating Average Task Waiting Time

Similarly, this section evaluates the optimization ability of

EECRL on the average task waiting time of the task queue.

By analyzing the comparative experiments of the EECRL

algorithm and the four benchmark scheduling algorithms

proposed in this chapter, as shown in Fig. 8, the corre-

sponding conclusions are drawn.

Fig. 7 EECRL Optimization Performance Evaluation for Average

Completion Time of Task Queue for both Stable-Arrival Task Queue

and Burst-Arrival Task Queue

Cluster Computing (2025) 28:179 Page 13 of 19 179

123

1. Whether in the Stable-Arrival Task Queue or the Burst-

Arrival Task Queue, when only considering the task

waiting time dimension, the reinforcement learning

algorithm that learns only for task waiting time

performs better than heuristic learning and greedy

algorithms.

2. The average waiting time of the FF greedy algorithm is

particularly high.

Regarding the first phenomenon, the main reason is that the

reinforcement learning algorithm learns the optimal strat-

egy through interaction with the environment and can adapt

to environmental changes. Whether it is a Stable-Arrival

Task Queue or a Burst-Arrival Task Queue, the rein-

forcement learning algorithm can adapt to the character-

istics of the task queue by only setting the optimization

goal to reduce the average waiting time of tasks, thereby

optimizing the task waiting time. Secondly, heuristic

learning usually makes decisions based on preset rules or

heuristic information. These rules or heuristic information

may perform well in some specific environments, but they

may need help to get the optimal solution in other envi-

ronments. They usually cannot and are not recommended

to search for an indicator like reinforcement learning,

which leads to no clear goal of optimizing task waiting

time. Especially in the dynamically changing environment

of the Burst-Arrival Task Queue, these algorithms may not

be able to adapt to environmental changes in time, resulting

in more extended task waiting times.

Regarding the second phenomenon, the FF greedy

algorithm only considers the optimal value at the current

time point and does not consider the global gain. Therefore,

it only cares about how the current task can be completed

the fastest and usually waits for several seconds for the best

server, even though there are other slightly worse nodes

idle. At the same time, it will not consider the subsequent

task selection to go to a slightly worse server. In this way,

as more and more subsequent tasks are, the waiting time

will become longer and longer. The later complex com-

puting tasks that need excellent servers have to be assigned

to inferior nodes to run due to the reason of first-come-first-

served because the waiting time is too long, making the

load of the entire cluster more unbalanced. This is also why

the FF algorithm leads to the most average task completion

time.

6.5 Evaluating energy consumption

Finally, to comprehensively evaluate the EECRL model,

this section selects three baseline methods for comparison:

FF, S-P-GWO (chosen because it executes faster, while the

performance difference between the two GWO algorithms

is negligible), and Sigmoid-PSO. The experiment focuses

on a proportionally generated task sequence, consisting of

1000 tasks over a 1000-second period, with tasks being

generated at equal probabilities. The task distribution

resulting from the scheduling strategies of the four models

(EECRL [a ¼ 0:75], FF, GWO, and Sigmoid-PSO) across

different devices was recorded and analyzed, as shown in

Fig. 9. Additionally, the total execution time (in seconds)

of the RL, FF, GWO, and Sigmoid-PSO models across

different devices was recorded and analyzed, as presented

in Fig. 10.

The power consumption for the experimental devices is

as follows: the Cloud server operates at 425 W, the Atlas

devices at 25 W, and the Raspberry Pi devices at 5 W.

The final energy consumption of the scheduling algo-

rithms for the four models is computed as follows:

• RL model:

Fig. 8 EECRL Optimization Performance Evaluation for Average

wait Time of Task Queue for both Stable-Arrival Task Queue and

Burst-Arrival Task Queue

 179 Page 14 of 19 Cluster Computing (2025) 28:179

123

– Cloud Server: Energy = (996 ? 1400) � 425 = 2396

� 425 = 1,018,300 J

– Atlas Devices: Energy = (23,933 ? 25,650) � 25 =

49,583 � 25 = 1,239,575 J

– Raspberry Pi Devices: Energy = 31,441 � 5 =

157,205 J

– Total Energy: 1,018,300 ? 1,239,575 ? 157,205 =

2,415,080 J

• FF model:

– Cloud Server: Energy = (720 ? 2856) � 425 = 3576

� 425 = 1,519,800 J

– Atlas Devices: Energy = (20,475 ? 36,201) � 25 =

56,676 � 25 = 1,416,900 J

– Raspberry Pi Devices: Energy = 65,977.5 � 5 =

329,887.5 J

– Total Energy: 1,519,800 ? 1,416,900 ? 329,887.5 =

3,266,587.5 J

• GWO model:

– Cloud Server: Energy = (564 ? 2842) � 425 = 3406

� 425 = 1,447,550 J

– Atlas Devices: Energy = (38,700 ? 43,560) � 25 =

82,260 � 25 = 2,056,500 J

– Raspberry Pi Devices: N/A (No tasks were

scheduled)

– Total Energy: 1,447,550 ? 2,056,500 = 3,504,050 J

• Sigmoid-PSO Model:

– Cloud Server: Energy = (1440 ? 2100) � 425 =

3540 � 425 = 1,504,500 J

– Atlas Devices: Energy = (10,200 ? 23,940) � 25 =

34,140 � 25 = 853,500 J

Fig. 9 Task distribution of RL,

FF, GWO, and Sigmoid-PSO

models across different devices

Fig. 10 Total execution time (in

seconds) of RL, FF, GWO, and

Sigmoid-PSO models across

different devices

Cluster Computing (2025) 28:179 Page 15 of 19 179

123

– Raspberry Pi Devices: Energy = 18,863 � 5 =

94,315 J

– Total Energy: 1,504,500 ? 853,500 ? 94,315 =

2,452,315 J

As shown, the energy consumption for each model is cal-

culated by multiplying the total execution time on each

device by its corresponding power rating. The total energy

consumption for the RL, FF, GWO, and Sigmoid-PSO

models is the sum of the energy used by the Cloud, Atlas,

and Raspberry Pi devices. From the results, several key

observations can be made:

1. The FF and GWO models exhibit the highest energy

consumption, while the Sigmoid-PSO model consumes

relatively less. The RL model strikes a balance

between performance and energy efficiency across all

devices, making it a viable option for scenarios

requiring both optimization and energy savings.

2. The RL scheduling strategy distributes tasks evenly

across all devices, whereas algorithms like GWO tend

to favor high-performance computing devices, concen-

trating tasks on them.

Firstly, it is quite unexpected that the RL algorithm

achieves the lowest energy consumption. RL is designed

primarily to optimize performance, so it would not be

expected to have an advantage in terms of energy effi-

ciency. However, the experimental results show that both

RL and Sigmoid-PSO algorithms performed similarly, with

RL reaching the lowest energy consumption, even lower by

37, 235 J. The primary reason for this phenomenon lies in

the tendency of task allocation. As seen from Fig. 10, the

GWO model tends to concentrate tasks on high-perfor-

mance Atlas devices, while almost no tasks are assigned to

the more energy-efficient Raspberry Pi devices. This heavy

load on Atlas devices during task execution results in

higher energy consumption. The algorithm prioritizes

completing tasks as quickly as possible in terms of pro-

cessing time, which leads to substantial time being wasted

on high-performance devices waiting for tasks to complete,

thus increasing both the total execution time and energy

consumption.

At the same time, the FF model’s ‘‘first-come, first-

served’’ strategy leads to substantial time wasted in con-

tinuous waiting, as shown in Fig. 8, resulting in the longest

total execution time and the highest energy consumption.

Another factor is the degree of task distribution. The RL

and Sigmoid-PSO models have relatively shorter total

execution times across all devices, and their more balanced

task distribution helps avoid the accumulation of energy

consumption in certain devices, leading to lower overall

energy usage. The RL model, in particular, achieves a

balance between energy efficiency and performance

through an evenly distributed task allocation. This advan-

tage arises from the inherent strength of reinforcement

learning in handling long-term dependencies and optimiz-

ing task allocation over extended periods, ensuring superior

energy efficiency and task performance.

It is important to acknowledge the limitations of the

experimental setup. The cloud service is supported by only

a single server, and the heterogeneous devices are limited

to seven. Therefore, the findings should be seen as pro-

viding guidance rather than definitive conclusions. As the

cloud infrastructure scales and the variety of computational

tasks increases, energy consumption outcomes may differ.

For instance, with more cloud servers and Atlas devices

available or less densely packed tasks, the RL scheduling

strategy could lead to higher energy consumption, similar

to the GWO algorithm, which concentrates tasks on high-

performance servers, causing inefficiencies. Nonetheless,

the experimental results show that EECRL effectively

balances energy consumption in resource-constrained

environments by factoring in task queueing times, enabling

efficient management of limited resources while optimiz-

ing both performance and energy efficiency.

Although the current experiments involve only one type

of AI-intensive task, EECRL’s methodology and archi-

tecture leverage the multiplicative relationship (as shown

in Fig. 5) to quickly generate lookup tables for various

tasks. By adjusting the reward function, EECRL can scale

to larger systems and accommodate diverse task types,

demonstrating potential for future research in more com-

plex and heterogeneous environments.

Finally, the experimental results indicate that EECRL’s

energy consumption performance was not outstanding.

However, there are clear directions for improvement. A

key enhancement would be to incorporate the power con-

sumption data of all devices in the EEC scenario as a

variable in the optimization objective. This would allow

control parameters to be adjusted according to user

requirements, leading to a more dynamic balance between

energy consumption and task execution efficiency. Addi-

tionally, factoring the power ratings of devices into the RL

model’s reward function could help optimize the trade-off

between energy usage and performance, offering a

promising direction for future research.

However, despite these potential trade-offs, the current

results demonstrate the feasibility and potential research

directions for applying reinforcement learning in EEC

scenarios. The findings provide a strong foundation for

further exploration into the balance between performance

and energy efficiency in such complex environments. To

address these challenges, future work could focus on

developing more dynamic scheduling strategies that better

account for task complexity, resource demand, and energy

 179 Page 16 of 19 Cluster Computing (2025) 28:179

123

efficiency, ensuring a more balanced and fair distribution

of tasks across heterogeneous devices.

7 Conclusion and future work

The emergence of heterogeneous computing architectures

and the burst of AI-oriented tasks pose a great challenge to

the coordination in End-Edge-Cloud systems. At the same

time, how to extend traditional cloud computing frame-

works to smoothly fit the EEC environments requires much

practical thinking. In this paper, we present an EEC system

framework to fully utilize the power of heterogeneous

computing across the cloud and the network edge. We first

formulate the task scheduling problem over heterogeneous

computing resources and correspondingly design a

scheduling framework based on extended K8s and Rancher

for EEC environment. Then we propose a reinforcement

learning-based algorithm to solve the optimization problem

and employ it as the core scheduler. In a real-world testbed

we experimentally demonstrate that our scheduler effec-

tively learns to maximize the rewards under various task

settings and, as a result, effectively shortens the completion

time of tasks especially in the case of the Burst-Arrival

Task Queue.

Our method can be extended to multiple optimization

objectives, such as server cost, energy consumption, etc.

How to balance their priorities is a problem that we need to

consider in our future work. In future work, we will expand

the scale of experiments by incorporating a broader range

of devices and task types. This will allow us to study how

different hardware and task complexities affect scheduling

efficiency. Additionally, we will explore the design of

mathematical models and fine-tuning of hyperparameters

to comprehensively optimize the EEC scheduling system

across various dimensions, including task distribution,

energy consumption, and system performance.

Author contributions All authors contribute to paper through either

code, experiments or writing.

Funding This work is supported by National Natural Science Foun-

dation of China (62072187), Guangdong Major Project of Basic and

Applied Basic Research (2019B030302002), Guangzhou Develop-

ment Zone Science and Technology Project (2023GH02) and the

Major Key Project of PCL, China under Grant PCL2023A09.

Data availability Data available on request from the authors.

Declarations

Conflict of interest The authors have no relevant financial or non-

financial interests to disclose.

References

1. Duan, S., Wang, D., Ren, J., Lyu, F., Zhang, Y., Wu, H., Shen,

X.: Distributed artificial intelligence empowered by end-edge-

cloud computing: a survey. IEEE Commun. Surv. Tutor. 25(1),
591–624 (2023). https://doi.org/10.1109/COMST.2022.3218527

2. Jiang, M., Wu, T., Wang, Z., Gong, Y., Zhang, L., Liu, R.P.: A

multi-intersection vehicular cooperative control based on end-

edge-cloud computing. IEEE Trans. Vehicular Technol. 71(3),
2459–2471 (2022). https://doi.org/10.1109/TVT.2022.3143828

3. Ren, J., Jiang, H., Shen, X., et al.: Editorial of ccf transactions on

networking: special issue on intelligence-enabled end-edge-cloud

orchestrated computing. CCF Trans. Netw. 3, 155–157 (2020).

https://doi.org/10.1007/s42045-020-00048-5

4. Ren, J., Zhang, D., He, S., Zhang, Y., Li, T.: A survey on end-

edge-cloud orchestrated network computing paradigms: Trans-

parent computing, mobile edge computing, fog computing, and

cloudlet. ACM Comput. Surv. 52, 1–36 (2019).

5. Zhou, C., Wu, W., He, H., Yang, P., Lyu, F., Cheng, N., Shen, X.:

Deep reinforcement learning for delay-oriented iot task

scheduling in sagin. IEEE Trans. Wirel. Commun. 20(2),
911–925 (2021). https://doi.org/10.1109/TWC.2020.3029143

6. Chen, X., Cheng, L., Liu, C., Liu, Q., Liu, J., Mao, Y., Murphy,

J.: A woa-based optimization approach for task scheduling in

cloud computing systems. IEEE Syst. J. 14(3), 3117–3128

(2020). https://doi.org/10.1109/JSYST.2019.2960088

7. Houssein, E.H., Gad, A.G., Wazery, Y.M., Suganthan, P.N.: Task

scheduling in cloud computing based on meta-heuristics: review

taxonomy open challenges and future trends. Swarm Evol.

Comput. 62, 100841 (2021)

8. Yuan, H., Bi, J., Zhou, M.: Multiqueue scheduling of heteroge-

neous tasks with bounded response time in hybrid green iaas

clouds. IEEE Trans. Ind. Inform. 15(10), 5404–5412 (2019).

https://doi.org/10.1109/TII.2019.2901518

9. Zhou, J., Sun, J., Cong, P., Liu, Z., Zhou, X., Wei, T., Hu, S.:

Security-critical energy-aware task scheduling for heterogeneous

real-time mpsocs in iot. IEEE Trans. Serv. Comput. 13(4),
745–758 (2020). https://doi.org/10.1109/TSC.2019.2963301

10. Hosseinzadeh, M., Azhir, E., Lansky, J., Mildeova, S., Ahmed,

O.H., Malik, M.H., Khan, F.: Task scheduling mechanisms for

fog computing: a systematic survey. IEEE Access (2023). https://

doi.org/10.1109/ACCESS.2023.3277826

11. Carrión, C.: Kubernetes scheduling: taxonomy, ongoing issues

and challenges. ACM Comput. Surv. (2022). https://doi.org/10.

1145/3539606

12. Hardikar, S., Ahirwar, P., Rajan, S.: Containerization: Cloud com-

puting based inspiration technology for adoption through docker and

kubernetes. In: 2021 Second International Conference onElectronics

and Sustainable Communication Systems (ICESC), pp. 1996–2003

(2021). https://doi.org/10.1109/ICESC51422.2021.9532917

13. Narayanan, D., Santhanam, K., Kazhamiaka, F., Phanishayee, A.,

Zaharia, M.: Heterogeneity-aware cluster scheduling policies for

deep learning workloads. In: 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 20),

pp. 481–498. USENIX Association, (2020). https://www.usenix.

org/conference/osdi20/presentation/narayanan-deepak

14. Weng, Q., Xiao, W., Yu, Y., Wang, W., Wang, C., He, J., Li, Y.,

Zhang, L., Lin, W., Ding, Y.: MLaaS in the wild: Workload

analysis and scheduling in Large-Scale heterogeneous GPU

clusters. In: 19th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 22), pp. 945–960. USENIX

Association, Renton, WA (2022). https://www.usenix.org/con

ference/nsdi22/presentation/weng

15. Feng, J., Zhang, W., Pei, Q., Wu, J., Lin, X.: Heterogeneous

computation and resource allocation for wireless powered

Cluster Computing (2025) 28:179 Page 17 of 19 179

123

https://doi.org/10.1109/COMST.2022.3218527
https://doi.org/10.1109/TVT.2022.3143828
https://doi.org/10.1007/s42045-020-00048-5
https://doi.org/10.1109/TWC.2020.3029143
https://doi.org/10.1109/JSYST.2019.2960088
https://doi.org/10.1109/TII.2019.2901518
https://doi.org/10.1109/TSC.2019.2963301
https://doi.org/10.1109/ACCESS.2023.3277826
https://doi.org/10.1109/ACCESS.2023.3277826
https://doi.org/10.1145/3539606
https://doi.org/10.1145/3539606
https://doi.org/10.1109/ICESC51422.2021.9532917
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://www.usenix.org/conference/nsdi22/presentation/weng
https://www.usenix.org/conference/nsdi22/presentation/weng

federated edge learning systems. IEEE Trans. Commun. 70(5),
3220–3233 (2022). https://doi.org/10.1109/TCOMM.2022.

3163439

16. Zhong, Z., Buyya, R.: A cost-efficient container orchestration

strategy in kubernetes-based cloud computing infrastructures

with heterogeneous resources. ACM Trans. Internet Technol.

(2020). https://doi.org/10.1145/3378447

17. Kalia, K., Dixit, S., Kumar, K., Gera, R., Epifantsev, K., John, V.,

Taskaeva, N.: Improving mapreduce heterogeneous performance

using knn fair share scheduling. Robot. Auton. Syst. 157,
104228 (2022)

18. Abdulazeez, D.H., Askar, S.K.: Offloading mechanisms based on

reinforcement learning and deep learning algorithms in the fog

computing environment. IEEE Access 11, 12555–12586 (2023).

https://doi.org/10.1109/ACCESS.2023.3241881

19. Prudencio, R.F., Maximo, M.R.O.A., Colombini, E.L.: A survey

on offline reinforcement learning: taxonomy, review, and open

problems. IEEE Trans. Neural Netw. Learn. Syst. (2023). https://

doi.org/10.1109/TNNLS.2023.3250269

20. Islam, M.T., Karunasekera, S., Buyya, R.: Performance and cost-

efficient spark job scheduling based on deep reinforcement

learning in cloud computing environments. IEEE Trans. Parallel

Distrib. Syst. 33(7), 1695–1710 (2022). https://doi.org/10.1109/

TPDS.2021.3124670

21. Wang, H., Liu, Z., Shen, H.: Job scheduling for large-scale

machine learning clusters. In: Proceedings of the 16th Interna-

tional Conference on Emerging Networking EXperiments and

Technologies. CoNEXT ’20, pp. 108–120. Association for

Computing Machinery, New York, NY, USA (2020).

22. Zhang, D., Dai, D., He, Y., Bao, F.S., Xie, B.: Rlscheduler: An

automated hpc batch job scheduler using reinforcement learning.

In: SC20: International Conference for High Performance Com-

puting, Networking, Storage and Analysis, pp. 1–15 (2020).

23. Cai, H., Zhu, L., Han, S.: ProxylessNAS: Direct neural archi-

tecture search on trget task and Hardware. Preprint at http://

arxiv.org/abs/1812.00332 (2018)

24. Lu, B., Yang, J., Jiang, W., Shi, Y., Ren, S.: One proxy device is

enough for hardware-aware neural architecture search. Proc.

ACM Meas. Anal. Comput. Syst. 5(3), 1–34 (2021). https://doi.

org/10.1145/3491046

25. Wu, C.-J., Brooks, D., Chen, K., Chen, D., Choudhury, S.,

Dukhan, M., Hazelwood, K., Isaac, E., Jia, Y., Jia, B., Leyvand,

T., Lu, H., Lu, Y., Qiao, L., Reagen, B., Spisak, J., Sun, F.,

Tulloch, A., Vajda, P., Wang, X., Wang, Y., Wasti, B., Wu, Y.,

Xian, R., Yoo, S., Zhang, P.: Machine learning at facebook:

understanding inference at the edge. IEEE Int. Symp. High Per-

form. Comput. Archit. (2019). https://doi.org/10.1109/HPCA.

2019.00048

26. Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G.G., Tan, K.C.: A

survey on evolutionary neural architecture search. IEEE Trans.

Neural Netw. Learn. Syst. 34(2), 550–570 (2023). https://doi.org/

10.1109/TNNLS.2021.3100554

27. Khan, M.S.A., Santhosh, R.: Task scheduling in cloud computing

using hybrid optimization algorithm. Soft Comput. 26(23),
13069–13079 (2022). https://doi.org/10.1007/s00500-021-06488-

5

28. Behera, I., Sobhanayak, S.: Task scheduling optimization in

heterogeneous cloud computing environments: a hybrid ga-gwo

approach. J. Parallel Distrib. Comput. 183, 104766 (2024)

29. Huang, X., Li, C., Chen, H., An, D.: Task scheduling in cloud

computing using particle swarm optimization with time varying

inertia weight strategies. Clust. Comput. 23(2), 1137–1147

(2020). https://doi.org/10.1007/s10586-019-02983-5

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Wangbo Shen received the BS

from Changsha University,

Changsha, China in 2012 and

2016, and MS degrees from

Central South University,

Changsha, China in 2016 and

2019 respectively. Currently, he

is working toward the PhD

degree in the School of Com-

puter Science and Engineering,

from the South China Univer-

sity of Technology, Guangzhou,

China supervised by Dr. Weiwei

Lin. His research interests

mainly include Kernel learning,

AutoML and edge computing.

Weiwei Lin (Senior Member,

IEEE) received his B.S. and

M.S. degrees from Nanchang

University in 2001 and 2004,

respectively, and his Ph.D. in

Computer Application from

South China University of

Technology in 2007. Currently,

he is a professor in the School of

Computer Science and Engi-

neering at South China Univer-

sity of Technology. His research

interests include distributed

systems, cloud computing, and

AI application technologies. He

has published more than 150 papers in refereed journals and con-

ference proceedings. He has been a reviewer for many international

journals, including IEEE TPDS, TSC, TCC, TC, TCYB, etc. He is a

distinguished member of CCF and a senior member of the IEEE.

Wentai Wu (Member, IEEE)

received his Bachelor and Mas-

ter degrees in Computer Science

from South China University of

Technology in 2015 and 2018,

respectively. Sponsored by

CSC, he in 2022 received the

degree of Ph.D. in Computer

Science from the University of

Warwick, United Kingdom. His

research interests mainly

include distributed systems,

federated learning, machine

learning, and sustainable

computing.

 179 Page 18 of 19 Cluster Computing (2025) 28:179

123

https://doi.org/10.1109/TCOMM.2022.3163439
https://doi.org/10.1109/TCOMM.2022.3163439
https://doi.org/10.1145/3378447
https://doi.org/10.1109/ACCESS.2023.3241881
https://doi.org/10.1109/TNNLS.2023.3250269
https://doi.org/10.1109/TNNLS.2023.3250269
https://doi.org/10.1109/TPDS.2021.3124670
https://doi.org/10.1109/TPDS.2021.3124670
https://doi.org/10.1145/3491046
https://doi.org/10.1145/3491046
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/TNNLS.2021.3100554
https://doi.org/10.1109/TNNLS.2021.3100554
https://doi.org/10.1007/s00500-021-06488-5
https://doi.org/10.1007/s00500-021-06488-5
https://doi.org/10.1007/s10586-019-02983-5

Haijie Wu is currently working

toward the MS degree in the

School of Computer Science

and Engineering, South China

University of Technology,

Guangzhou, China supervised

by Dr. Weiwei Lin. His research

interests mainly include cloud

edge collaboration, edge com-

puting, and AI algorithms.

Keqin Li (Fellow, IEEE) is a

SUNY Distinguished Professor

of Computer Science with the

State University of New York.

He is also a National Distin-

guished Professor with Hunan

University, China. His current

research interests include, fog

computing and mobile edge

computing, energy-efficient

computing and communication,

embedded systems and cyber-

physical systems, heterogeneous

computing systems, big data

computing, high performance

computing, computer architectures and systems, computer

networking, ML, intelligent and soft computing. He is currently an

associate editor of the ACM Computing Surveys and the CCF

Transactions on High Performance Computing. He has served on the

editorial boards of the IEEE Transactions on Parallel and Distributed

Systems, the IEEE Transactions on Computers, the IEEE Transac-

tions on Cloud Computing, the IEEE Transactions on Services

Computing, and the IEEE Transactions on Sustainable Computing.

He is an IEEE Fellow and an AAIA Fellow. He is also a Member of

Academia Europaea (Academician of the Academy of Europe).

Cluster Computing (2025) 28:179 Page 19 of 19 179

123

	Reinforcement learning-based task scheduling for heterogeneous computing in end-edge-cloud environment
	Abstract
	Introduction
	Background and related work
	Orchestration frameworks
	Heterogeneous task scheduling in EEC systems
	Reinforcement learning-based scheduling

	Problem formulation
	Architecting the heterogeneous EEC scheduling system
	Constructing RL-based scheduling strategy
	Fundamental design
	Strategy optimization

	Evaluation
	Experimental setup
	Parameter Study and Convergence Evaluation of EECRL
	Evaluating average task completion time
	Evaluating Average Task Waiting Time
	Evaluating energy consumption

	Conclusion and future work
	Author contributions
	Data availability
	References

