
Distributed Approaches to Butterfly Analysis
on Large Dynamic Bipartite Graphs

Tongfeng Weng , Xu Zhou , Kenli Li , Senior Member, IEEE,

Kian-Lee Tan, Senior Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract—Tip decomposition has a pivotal role in mining cohesive subgraphs in bipartite graphs by computing the tip number of each

vertex in accordance with the non-trivial motif butterfly ((2,2)-biclique). It has been a popular research topic with applications in

document clustering, spam group detection, and analysis of affiliation networks. In such applications, the graphs are not only large, but

they evolve quickly with new edges being continuously added/deleted. While existing centralized techniques could solve the tip

decomposition problem for static bipartite graphs, they are not efficient for maintaining the tip numbers of vertices on large-scale

graphs. In this paper, we study butterfly analysis problems on bipartite graphs in a distributed environment with the vertex-centric

model. We first extend a centralized butterfly counting algorithm to a distributed version, called DBCA. An ingenious message

aggregation strategy is designed to reduce massive redundant messaging and avoid the memory overflow problem while processing

large-scale graphs. Based on the results of DBCA, we develop a distributed tip decomposition algorithm (DTDA) to get the tip number of

each vertex in parallel. Finally, to maintain the tip numbers of vertices efficiently while graphs evolve over time, we explore a distributed

tip maintenance algorithm (DTMA) along with a novel task-split strategy. Specifically, for an updated edge (insertion/deletion), several

sub-tasks will be generated in line with the topology structure of the original bipartite graph. To our best knowledge, this is the first study

to process the butterfly analysis problems in a distributed environment. In addition, comprehensive experiments have been conducted

on real-world bipartite graphs. The experiment results demonstrate that our proposed algorithms are efficient and scalable.

Index Terms—Bipartite graph, butterfly counting, distributed algorithm, tip decomposition, tip maintenance

Ç

1 INTRODUCTION

IN recent years, there has been an increasing interest in
mining cohesive subgraphs in bipartite graphs [23]. In a

bipartite graph, vertices are decomposed into two disjoint
sets, U and V , and edges can only connect vertices from dif-
ferent sets. The cohesive subgraphs in a bipartite graph con-
sist of vertices in the same set (U or V), i.e. vertices belong
to the same entity. Bipartite graph modeling is important
for a wide range of applications, including document clus-
tering [5], author-paper and user-product relationships
analyses [22], and spam group detection [7]. In such appli-
cations, the graphs have two common properties: they are
large scale and evolve dynamically [1]. In this context, it is

desirable to develop scalable distributed solutions to mine
and maintain analyses results of large-scale dynamic bipar-
tite graphs.

A considerable amount of literature has been published
on uncovering dense structures on unipartite graphs,
including core decomposition and truss decomposition [6],
[8]. Although those off-the-shelf technologies can be utilized
to analyze the projections of bipartite graphs [14], the origi-
nal information is distorted and there are 6 orders of magni-
tude increase in graph size when converting bipartite
graphs to co-occurrence (projection) graphs [17]. Therefore,
it needs to find effective methods that can be applied to the
original bipartite graphs.

In a unipartite graph, the triangle is the underlying struc-
ture that yields cohesive subgraphs. A butterfly is the smallest
cohesive bipartite unit in bipartite graphs. As shown in Fig. 1,
vertices v1, v2, u1, and u2 forma butterfly,which is a (2,2)-bicli-
que, denoted as fflv1;v2;u1;u2 . The number of butterflies that a
vertex u can participate in is defined as the butterfly degree of
u, denoted as duffl. The state-of-the-art vertex-priority-based
algorithm [21] is proposed to calculate dffl for each vertex. It is
not easy to count butterflies in a distributed system. This is
because a vertex cannot access its neighbors directly, and it
is even harder for it to access its 2-hop neighbors. It needs two
rounds of 2-hop message delivery to get common neighbors
of a pair of vertices in the same set. For example, to enumerate
the butterflyfflv1;v2;u1;u2 , two messaging links u1!v1!u2 and
u1!v2!u2 are needed. If we activate all vertices in parallel, it
is inefficient to deal with such an amount of messages and
may lead to the memory overflow problem while processing
large-scale bipartite graphs.

� Tongfeng Weng, Xu Zhou, and Kenli Li are with the College of Computer
Science and Electronic Engineering, Hunan University, Changsha, Hunan
410082, China. E-mail: {wengtongfeng, zhxu, lkl}@hnu.edu.cn.

� Kian-Lee Tan is with the School of Computing, National University of
Singapore, Singapore 119077. E-mail: tankl@comp.nus.edu.sg.

� Keqin Li is with the College of Computer Science and Electronic Engineer-
ing, Hunan University, Changsha, Hunan 410082, China, and also with
the Department of Computer Science, State University of New York, New
Paltz, NY 12561 USA. E-mail: lik@newpaltz.edu.

Manuscript received 14 March 2022; revised 13 September 2022; accepted 8
November 2022. Date of publication 14 November 2022; date of current ver-
sion 19 December 2022.
This work was supported in part by the National Key R&D Program of China
under Grant 2020YFB2104000, in part by NSFC under Grants 62172146,
62172157, and 62102143, in part by the Natural Science Foundation of Hunan
Province under Grant 2022JJ30009, in part by the Open Research Projects of
Zhejiang Lab under Grant 2021KD0AB02, and in part by the Postgraduate Sci-
entific Resarch Innovation Project ofHunan Province under GrantQL20210096.
(Corresponding author: Xu Zhou.)
Recommended for acceptance by J. Zhai.
Digital Object Identifier no. 10.1109/TPDS.2022.3221821

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023 431

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8463-6334
https://orcid.org/0000-0002-8463-6334
https://orcid.org/0000-0002-8463-6334
https://orcid.org/0000-0002-8463-6334
https://orcid.org/0000-0002-8463-6334
https://orcid.org/0000-0002-0764-0620
https://orcid.org/0000-0002-0764-0620
https://orcid.org/0000-0002-0764-0620
https://orcid.org/0000-0002-0764-0620
https://orcid.org/0000-0002-0764-0620
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
mailto:wengtongfeng@hnu.edu.cn
mailto:zhxu@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:tankl@comp.nus.edu.sg
mailto:lik@newpaltz.edu

In [17], k-tip is investigated to measure the intensity of
vertex participations in the butterfly structures and identi-
fies the induced subgraphs with many butterflies. It consists
of vertices that can participate in at least k induced butter-
flies. The tip number of a vertex u is the maximum k such
that there exists a k-tip containing u. On the basis of the but-
terfly counting results, the tip number of each vertex u2U
can be easily obtained by tip decomposition algorithms [10],
[17], [19]. These works are hard to be extended to distrib-
uted systems due to the different storage and computing
models. Although these algorithms can effectively process
the core decomposition over static graphs, the time com-
plexity OðPv2V dðvÞ2Þ [17] is too high to be applied to recal-
culate the tip numbers for each edge updated.

So far, however, there has been no discussion about the
tip maintenance problem on time-evolving bipartite graphs.
For an edge update in a unipartite graph, the endpoint
degrees of the new edge is changed by constant 1 and the
core numbers of all vertices can be changed by at most 1
[16]. Different from the core maintenance problem on uni-
partite graphs, the new edge may change the butterfly
degrees dffl of several vertices by more than 1. As a result,
the existing theory of core maintenance cannot be applied
to maintain tip numbers in bipartite graphs.

Challenges. In this paper, we mainly focus on the prob-
lems of distributed butterfly counting and tip number main-
tenance on large-scale bipartite graphs. According to the
above analysis, the challenges are listed as follows. First, the
massive messages generated during the process of butterfly
counting will lead to inefficiency and the memory overflow
problem. Second, it is difficult to identify the candidate ver-
tices that will change the tip numbers after a graph change
and the exact change value of the tip number of a vertex is
also not easy to be determined.

To address the above challenges, we first design a mes-
sage aggregation strategy to reduce massive redundant
messaging and avoid the memory overflow problem while
processing large-scale graphs. In specific, each vertex main-
tains a message vector according to the priority of neighbors
and sends the message vector to each machine instead of its
neighbors. After that, each machine activates local vertices
and parses butterflies from the received messages. The pro-
posed strategy reduces redundant messaging by avoiding
the message passing between pairs of vertices. Then, a task-
split strategy is conducted to maintain tip numbers when

given bipartite graphs are updated. Specifically, for each
updated edge (u, v), we refer to the task of maintaining the
tip number as the original task (denoted as ori-task in the
rest of the paper). If there exists a pair of vertices u; u0 2 U
that has sharing butterflies changed on account of the edge
update, some sub-tasks (u, u0) will be generated, where the
number of sub-tasks equals the change value of the sharing
butterflies. For each sub-task, we reconstruct a subgraph
consisting of candidate vertices and peel them according to
their 2-hop neighbors’ tip numbers. The remaining vertices
in the reconstructed subgraph increase their tip numbers by
1. When all sub-tasks are completed, the ori-task is also
done (i.e., the tip numbers are maintained.). Last but not
least, a candidate-sharing theory is proved to reduce redun-
dant computation of sub-tasks with two same endpoints.

Contributions. The major contributions of this study are
listed as follows. We

� extend the centralized butterfly counting and tip
decomposition algorithms to distributed versions.
Specially, we conduct a message aggregation strat-
egy to reduce massive redundant messaging and
avoid the memory overflow problem.

� explore a distributed tip maintenance algorithm
(DTMA) along with a novel task-split strategy. To
improve efficiency, a candidate-sharing theory is
developed to reduce redundant computation.

� verify the efficiency and effectiveness of our algo-
rithms through various experiments on real-world
graphs.

Outline. The remaining part of the paper proceeds as fol-
lows. The related work is reported in Section 2. Section 3
gives the preliminaries that formally define the problem.
The distributed butterfly counting algorithm and the mes-
sage aggregation strategy is described in Section 4. Section 5
gives the distributed tip number decomposition and main-
tenance algorithms. The experimental results are presented
in Section 6. Finally, Section 7 concludes this paper.

2 RELATED WORK

In this section, we review the related work about butterfly
analysis on bipartite graphs and distributed graph comput-
ing systems.

2.1 Butterfly Analysis on Bipartite Graphs

In recent years, there has been an increasing interest in min-
ing cohesive subgraphs in bipartite graphs [23]. As a basic
motif in bipartite graphs, a butterfly contains two vertices
on each side and all four possible edges among them (i.e.,
(2,2)-biclique) [20]. We focus on butterfly analysis on bipar-
tite graphs.

A. Butterfly Counting
Chiba et al: [4] proposed an efficient vertex-priority quad-

rangle counting algorithm that traverses wedges with Oð1Þ
work per wedge. Wang et al: [21] further explored a cache
efficient version of the vertex-priority algorithm that reorders
the vertices in decreasing order of degree. We extend the
priority strategy to solve the distributed butterfly counting
problem. In addition, Sanei et al: [15] designed randomized
algorithms that can quickly approximate the number of

Fig. 1. A toy graphG. The edge (u3, v4) is inserted into G.

432 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

butterflies in a graph with a provable guarantee of accuracy.
Sheshbolouki et al: [18] investigated the butterfly approxima-
tion framework on streaming bipartite graphs. A novel core
algorithm is expressed for exact butterfly counting in stream-
ing graph snapshots. It focuses on counting the total number
of butterflies in a bipartite graph rather than considering a
specific vertex, while our proposed algorithm can maintain
the butterfly analysis results for each vertex. Existing work is
constructed for the centralized environment, which is not
scalable for large scale graphs. Therefore, we study the dis-
tributed butterfly counting algorithm in thiswork first.

B. Tip decomposition
k-tip [17] is a fundamental metric in analyzing bipartite

graphs. It has been widely applied in many fields, including
social network analysis [5], [7], [22]. There are several works
that determined the tip number through a peeling-based
method [17], [19]. Lakhotia et al: [10] introduced a parallel
tip-decomposition algorithm by partitioning the vertices into
multiple independent subsets that can be concurrently peeled.
Also, these works are explored in a centralized environment
without considering large scale graphs and dynamic graphs.

However, with the development of Internet information
technology, graphs have been evolving on account of edge/
vertex updates [1], [12]. Although many investigators
explored incremental algorithms for maintaining the results
of graph analysis [1], [2], [8], [25], there is no discussion
about the tip maintenance problem on time-evolving bipar-
tite graphs. To address this issue, we explore methods to
maintain the tip number of vertices while graphs evolve.

2.2 Distributed Graph Computing Systems

Numerous research interests have been shown in designing
distributed graph systems to process big graphs due to the
bottleneck of single machine memory [24]. As shown in
Fig. 2a, in a distributed graph computing system [13], [26], a
superstep is a basic unit that contains three main steps:
receiving messages, computing, and sending messages. In
specific, vertices invoke the computing function to analyze
messages that they have received. Then, after the synchroni-
zation of communication, messages are stored in the mes-
sage buffer of corresponding vertices (Fig. 2b). Due to the
large number of messages generated during the process of
butterfly counting, the memory may overflow while proc-
essing large scale graphs. To analyze large scale bipartite
graphs effectively and efficiently, we research the problems
of butterfly analysis in a distributed environment.

3 PRELIMINARIES

In this section, we introduce some definitions related to tip
decomposition and maintenance on bipartite graphs. Table 1
gives the notations used in this work.

We focus on an unweighted and undirected bipartite
graph G¼ðU; V; EÞ in this paper, where U and V are two dis-
joint vertex sets and E contains all edges with two end-
points belonging to different vertex sets, i.e., U and V .
Specifically, a vertex u2U only has neighbors in V , denoted
as NðuÞ, and dGðuÞ is the degree of u. In general, vertices on
the same side belong to the same category of entities.
Because there’s no direct connection between vertices on
the same side, the concept of butterfly ffl is introduced to
represent their relationship. fflu represents that a butterfly
contains u and the number of butterflies that u can belong to
is denoted as duffl. For two vertices u1 and u2 in the same but-
terfly, we use fflu2

u1
to represent a sharing butterfly and the

number of sharing butterflies can be a metric to measure the
structure tightness between the two vertices.

Definition 1. (Wedge) Given a bipartite graph G¼ðU; V; EÞ, a
wedge consists of three vertices and two edges (i.e., (u, v, u0) or
(v, u, v0)).

Definition 2. (Butterfly) Given a bipartite graph G¼ðU; V; EÞ,
there is a subgraph HðU 0; V 0; E0Þ containing two vertices
u1; u2 in U and two vertices v1; v2 in V . HðU 0; V 0; E0Þ is a but-
terfly if and only if u1 and u2 are the neighbors of both v1 and v2
(i.e., H is a (2-2)-biclique containing two vertices on each side
and all four possible edges among them). Obviously, a butterfly
contains two wedges.

In a bipartite graph, vertices on the same side belong to
the same category of entities but their neighbors are always
on the opposite side. We map u1 to be a neighbor of u2 if the
two vertices are in at least one same butterfly. In this work,
we focus on mining the cohesive structure of vertices inside
U . Based on this, the definition of a k-tip community is
given as follows.

Definition 3. (k-tip) Given a bipartite graph G¼ðU; V; EÞ, a
sub graphHðU 0; V; E0Þ is a k-tip if and only if it satisfies
� Connectivity: each pair of vertices belonging to U 0 are

connected by a series of butterflies.
� Tightness: each vertex u 2 U 0 participates in at least k

butterflies.
� Uniqueness: no other k-tip subsumesH.

Fig. 2. The model of distributed graph computing systems.

TABLE 1
Summary of Notations

Notations Description

G¼ðU; V; EÞ A bipartite graph
NðuÞ The neighbors of vertex u
dGðuÞ The number of neighbors of u
HðU 0; V 0; E0Þ The subgraph of graph G, abbreviated asH
fflu A butterfly contains vertex u
duffl The number of butterflies containing vertex u
fflu2

u1
A sharing butterfly of vertices u1 and u2

uðuÞ The tip number of vertex u
Hu

k The k-tip with maximal k contains vertex u

WENG ETAL.: DISTRIBUTED APPROACHES TO BUTTERFLYANALYSIS ON LARGE DYNAMIC BIPARTITE GRAPHS 433

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

Definition 4. (Tip number) Given a bipartite graph G ¼ ðU; V;
EÞ, the tip number of a vertex u 2 U denoted as uðuÞ is the
maximum k such that there exists a k-tip (denoted as Hu

k) con-
taining u.

Based on these definitions, the problems that will be
studied in this work are shown as follows.

Problem 1. (Butterfly Counting) Given a bipartite graph G ¼
ðU; V;EÞ, for each u 2 U , it aims to count the number of butter-
flies containing u (i.e., duffl).

Problem 2. (Tip Decomposition) Given a bipartite graph G ¼
ðU; V;EÞ, for each u 2 U , tip decomposition is used to obtain
the tip number of u.

Problem 3. (Tip Maintenance) Given a bipartite graph G ¼
ðU; V; EÞ with an edge update, tip maintenance is proposed to
maintain the tip numbers of vertices in U .

Fig. 3 shows the system overview of this work. Given a
bipartite graph, vertices are divided into different parts and
stored in different machines according to the hash values of
their IDs. For the given bipartite graph, butterfly counting is
explored to calculate the butterfly degree of each vertex.
And tip decomposition aims to obtain the tip number of
each vertex on the basis of butterfly counting results. After
that, when an edge update happens, tip maintenance is
explored to maintain the tip numbers of corresponding
vertices.

4 DISTRIBUTED BUTTERFLY COUNTING

To construct the relationship between each pair of vertices
on the same side, we need to enumerate all butterflies in a
bipartite graph (i.e., find fflu2

u1
for all u1 2 U and u2 2 U). In

this section, we study the distributed butterfly counting

algorithm (DBCA) for large-scale bipartite graphs. The sec-
ond stage in in Fig. 3 illustrates the basic idea of distributed
butterfly counting. First, we extend the paradigm proposed
in [21] to define the priority of a vertex according to its
degree and ID (Lemma 1). Then, a priority-based message
passing strategy is introduced to detect butterflies in the
given graph. In specific, the vertex with higher priority will
be selected as start v and sent its ID to vertices middle v,
which are neighbors of start v and have smaller priority.
After that, vertices middle v forward messages to their
neighbors that have priority lower than start v. In this way,
we can get the number of sharing butterflies between each
pair of vertices. And the butterfly degree dffl of each vertex
is calculated by Equations (1) and (2).

4.1 A Basic Algorithm

In a distributed vertex-centric graph computing system (see
Section 6), each vertex just maintains its properties, includ-
ing ID, degree, and neighbor list. If a vertex u2U wants to
access its 2-hop neighbors, it needs to send a message to its
neighbor v 2 NðuÞ 2 V and v forwards the message to u0 2
NðvÞ 2 U (2-hop neighbors of u). As stated in Section 1, to
traverse a wedge in a bipartite graph, we need three super-
steps to access the 2-hop neighbors of a vertex. According to
Definition 2, a butterfly consists of two wedges. Therefore,
the number of wedges that needs to be traversed determines
the performance of DBCA.

The vertex-priority-based paradigm [21] is proposed to
reduce the traversal of wedges when counting butterflies
for each vertex. Specifically, a wedge with three vertices,
denoted as start�v, middle�v and end�v, is traversed if
pðstart�vÞ > pðmiddle�vÞ and pðstart�vÞ > pðend�vÞ,
where p is a priority notion. We extend this notion of prior-
ity into our algorithm as below.

Lemma 1. (Priority) Given a bipartite graph G ¼ ðU; V; EÞ, the
priority pðuÞ of a vertex u is determined by its degree, ID, and
type.

� (vertices in the same set). For pðuÞ > pðu0Þ, if dðuÞ >
dðu0Þ or dðuÞ ¼ dðu0Þ ^ IDðuÞ > IDðu0Þ.

� (vertices in opposite sets). For pðuÞ > pðvÞ, if dðuÞ >
dðvÞ or dðuÞ ¼ dðvÞ ^ u 2 U .

DBCA is developed based on Lemma 1. The main idea is
to find common neighbors of each pair of vertices u and u0

in U . For two vertices u and u0, they can form a butterfly
with two of their common neighbors. Let n be the number
of the common neighbors. The number of the butterflies
containing both u and u0 can be calculated by

B1 ¼ C2
n ¼

n�ðn�1Þ
2

: (1)

Let vertices u and u0 be the start and end vertices of these
butterflies, respectively. The common neighbors of vertices
u and u0 are middle vertices. For each butterfly, it is com-
posed of four vertices, three of which are vertices u, u0 and
w, and the fourth vertex of the butterfly is from the left n�1
common neighbors of u and u0. Hence, there are

B2 ¼ n� 1 (2)

Fig. 3. System overview.

434 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

butterflies containing each common neighbor w, where n is
the number of common neighbors.

As shown in Fig. 1, u2 and u3 have 3 common neighbors,
v1, v2, and v3. According to Equation (1), there are C2

3 ¼ 3
butterflies containing u2 and u3 and 3�1 ¼ 2 butterflies that
v1, v2, and v3 can participate in.

The pseudo-code of DBCA is shown in Algorithm 1.
Given a bipartite graph G¼ðU; V; EÞ, we partition vertices in
the graph to different working machines in a hashing way,
which is the same as Pregel [13]. There are four supersteps
to obtain dffl for each vertex. In the first superstep (Lines 1-
3), all vertices are activated as a start�v to send message
(start�v id, t), where start�v is the start vertex of a wedge
with the highest priority and t is the type (U or V) of the tar-
get vertex. In the second superstep (Lines 4-6), vertices
receive message. The vertices, which we refer to as
middle�v, would then forward message (start�v id, t,
middle�v id) to their neighbors that have priority lower
than the start�v. In the third superstep (Lines 7-12), the 2-
hop neighbors (end�v) of these start�v are accessed to com-
pute the two kinds of result B1 and B2 according to Equa-
tions (1) and (2). In specific, each end�v parses the received
messages to construct a hash�map with key: start�v,
value: middle�v list. The length of the middle�v list is the
number of common neighbors of start�v and end�v. B1 and
B2 can be calculated by the hash�map and the result will be
sent to start�v and middle�v, respectively. In the last super-
step (Lines 13-17), vertices update their dffl from the
received messages.

Algorithm 1. Distributed Butterfly Counting Algorithm

Input: bipartite graph G¼ðU; V; EÞ
Output: butterfly counting result for each vertex u 2 U
1: Superstep 1: (Activate all vertices as start�v)
2: for start�v 2 U[V do
3: Send message (start�v id, t) toNðstart�vÞwith lower pri-

ority (Lemma 1).
4: Superstep 2: (middle�v forwards messages to end�v)
5: for eachmiddle�v do
6: Send message (start�v id, t, middle�v id) to its neighbors

that have priority lower than the start�v.
7: Superstep 3: (end�v calculates B1 and B2)
8: for each end�v do
9: Construct a hash�map: key!start�v, value!middle�v

list from the received messages
10: Calculate B1 and B2 by fomular (1) and (2)
11: end�v: dffl dffl þ B1

12: Send B1 to start�v and B2 tomiddle�v
13: Superstep 4: (start�v and end�v update dffl)
14: for each start�v do
15: dffl dffl þ B1

16: for eachmiddle�v do
17: dffl dffl þ B2

18: return duffl for each vertex u2U

Example. We illustrate the process of DBCA in Fig. 1. We
take vertex u2 as an example. According to Lemma 1, u2 has
higher priority than its neighbor v1 and sends its id to v1.
But there is only one neighbor of v1 having priority less
than start�v u2 (i.e., pðu1Þ < pðu2Þ). Because a butterfly con-
sists of at least two wedges, no butterfly contains u2, in

which u2 has the highest priority. Again considering
Lemma 1, v2 and v3 send their id to neighbors u1 to u4 and
u2 to u5, respectively. Then these neighbors forward the
received message to their neighbors that have smaller prior-
ity than v2 and v3. The wedges traversed above can impact
d
u2ffl are (v2, u1, v1), (v2, u2, v1), (v2, u3, v1), (v3, u2, v1), (v3, u3,

v1), (v3, u2, v2), (v3, u3, v2), and (v3, u4, v2). In these wedges,
u2 plays a middle�v. By Equation (2), v1 and v2 sharing 3
and 2 butterflies with u2, respectively. As a result, the total
number of butterflies that u2 can participate in is 5.

Analysis. There are jEj messages generated in the first
superstep, and the memory cost is about 16� jEj bytes. The
maximal number of messages passed in the second super-
step equals m� ðm� 1Þ=2, where m ¼ minðjU j; jV jÞ, when
the whole bipartite graph is a biclique. The maximal mem-
ory cost is about 24�m� ðm� 1Þ=2 bytes. Here, we use
long int to define the message vector.

4.2 An Advanced Algorithm

It can be observed from the analysis of the basic algorithm
that the number of messages will be too large to get high
efficiency and even lead to the memory overflow problem
while processing large-scale graphs. There is massive
redundant messaging due to the repeated storage of mes-
sages. For example, in the second superstep, vertices u1�3
all need to send (ID(v2), 1, *) to v1. ID(v2) and 1 are obviously
repetitive. In addition, after the synchronization of each
superstep, vertices maintain a message buffer to store the
messages that are sent to themselves (see Fig. 2). As a result,
the size of memory used by messages has been doubled.

To address these issues, we design a message aggrega-
tion strategy to reduce massive redundant messaging and
count the butterflies directly by parsing messages without
storing into message buffers.

Strategy 1. (Message aggregation) Each vertex sorts its neigh-
bors in descending order of their priority. The message sent by a
vertex u consists of three parts.

� ID(u),
� the type of u, to indicate which set (U or V) u belongs

to,
� higher priority neighbor list.

The structure of the aggregated message is shown in
Fig. 4. According to the vertex-priority-based paradigm
[21], there are two kinds of wedges needed to be traversed.
First, the wedge connected by yellow lines. The start�v and
end�v both come from the higher priority neighbor list, but
pðstart�vÞmust be higher than pðend�vÞ. Second, the wedge
connected by green dotted lines. The start�v and end�v are

Fig. 4. Butterfly counting based on the aggregated messages.

WENG ETAL.: DISTRIBUTED APPROACHES TO BUTTERFLYANALYSIS ON LARGE DYNAMIC BIPARTITE GRAPHS 435

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

selected from the higher priority neighbor list and the lower
priority neighbor list, respectively. These lower priority
neighbors are not contained in the aggregated message.
Here, start�v is included in the message and all vertices on
each machine can be activated as end�v if they have neigh-
bors that have been amiddle�v of an aggregated message.

Algorithm 2. Distributed Butterfly Counting Algorithm
Opt

Input: bipartite graph G¼ðU; V; EÞ
Output: butterfly counting result for each vertex u 2 U
1: Superstep 1: (Construct the aggregated message)
2: for u 2 U [V do
3: step 1: Sort NðuÞ according to Lemma 1
4: step 2: Construct message according to Strategy 1
5: step 3: Send the aggregated message to allmachines
6: Synchronize communication message
7: Invoke function ParseðMessageÞ to calculate B1 and B2

8: Send B1 and B2 to corresponding start�v andmiddle�v (see
line 12 of Algorithm 1)

9: Superstep 2: (Update dffl)
10: for each start�v do
11: dffl dffl þ B1

12: for eachmiddle�v do
13: dffl dffl þ B2

14: return duffl for each vertex u2U

Function Parse(Message)

Input: Message
Output: B1 and B2 for related vertices

1: formsg 2Message do
2: Constructmid�hash�map: key!middle�v, value!start�v

list
3: for u 2 U [V do
4: for v 2 NðuÞ do
5: if v is a key inmid�hash�map then
6: Update hash�map: key!start�v, value!middle�v list

according to the two kinds of wedges shown in Fig. 4
7: Calculate B1 and B2 by Equations (1) and (2)
8: return B1, B2 for vertices

In the light of Strategy 1, we can parse the butterfly
counting results more efficiently. The pseudo-code of the
advanced algorithm is stated in Algorithm 2, called DBCA
+. The improvement compared to the basic algorithm is
mainly reflected in two aspects. First, each vertex generates
an aggregated message according to Strategy 1 and sends
the aggregated message to each machine (Lines 1-5). These
start�v vertices are packed and sent to machines, which
avoid messaging among vertices. Second, after the synchro-
nization of the first superstep (Line 6), the function
ParseðMessageÞ is invoked to parse B1 and B2 from the
messages received by each machine. As shown in Function
Parse, a mid�hash�map is constructed according to Mes-
sage (Lines 1-2). Referring to Fig. 4, we take the middle�v as
key and the start�v list (higher priority neighbors) as value
in the map. Since, each vertex u is activated to check if it has
a neighbor v that can be a key of mid�hash�map. If so, u
updates its own hash�map (line 9 of Algorithm 1) according
to mid�hash�map½v� (Lines 3-6). It needs to append v into

hash�map½u0�, where u0 comes from mid�hash�map½v� and
has higher priority than u. Finally, B1 and B2 of related ver-
tices can be obtained and used to update dffl of vertices
(Lines 8-13).

Example. Again, we take the example in Fig. 1 to illustrate
how vertex u2 obtains its dffl by the operations of message
aggregation and parsing. Assume that all vertices are dis-
tributed on two machines using the hash values of their IDs.
According to Strategy 1, u1, u2, u3, and u4 send message (v1,
v2, 1), (v2, v3, 1), (v2, v3, 1), and (v2, v3, 1) to the two machines,
respectively. We parse these messages as follows by Func-
tion Parse. For the message (v1, v2, 1) sent by u1, because v1
and v2 are neighbors of u1 and v2 has higher priority than
v1, v1 puts v2 into the hash�map (i.e., hash�map½v2� ! fu1g).
The other messages are processed in the same way. Finally,
v1 keeps the hash�map as hash�map½v2� ! fu1; u2; u3g,
hash�map½v3� ! fu2; u3gv2 keeps the hash�map as
hash�map½v3� ! fu2; u3; u4g. It can be parsed from the
hash�map that v1 and v2 have 3 common neighbors u1, u2,
and u3. Then B2 can be set as 2 according to Equation (2). v2
and v3 also have 3 common neighbors including u2, so B2

has the same value 2. v1 and v3 have 2 common neighbors
u2 and u3, then B2 equals to 1. As a result, the total number
of butterflies containing u2 is 5. And there are 192 bytes sent
for counting d

u2ffl . It is worth noting that these messages can
also be used to calculate the dffl of other vertices.

Theorem 1. (Correctness.) The butterfly counting results can
be parsed from the aggregated messages correctly.

Proof. Given a bipartite graph G¼ðU; V; EÞ, each butterfly in
G consists of a vertex that has the highest priority and
connects to two vertices with lower priority [21]. For each
vertex u belonging to U[V , it collects its 2-hop neighbors
with higher priority from the aggregated messages (Func-
tion Parse). And in each aggregated message, the
middle�v also has priority lower than these start�v (Strat-
egy 1). As a result, the butterfly found by u always has a
vertex with the highest priority (i.e., the start�v). Obvi-
ously, all butterflies can be found by this paradigm. tu
Analysis. Given a bipartite graph G¼ðU; V;EÞ and a clus-

ter with j machines, maximal memory allocation may hap-
pen at line 5 of Algorithm 2 (i.e., step 3: send the aggregated
message to all machines). For each edge e¼ðu; vÞ2E, there
must be an endpoint vertex with a larger priority according
to Lemma 1. Based on Strategy 1, the vertex with larger pri-
ority will be in the higher priority neighbor list. Hence, there
are jEj vertices in higher priority neighbor lists and j� jEj
integers will be sent. Because all vertices need to send the
aggregated message to all machines, they will put their ID
and the type flag into the aggregated message. For this pur-
pose, j� 2� jV j integers will be sent. In summary, the
space complexity for message passing is Oðj� ð2� jV j þ
jEjÞ, which is linear to the size of the graph and much
smaller than that of Algorithm 1.

5 DISTRIBUTED TIP DECOMPOSITION AND

MAINTENANCE

In this section, we focus on the tip decomposition and main-
tenance problems, especially for those vertices in U (i.e.,

436 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

calculate and maintain the tip number of each vertex u 2 U).
Tip decomposition is a necessary pretreatment to obtain the
initial tip number of each vertex in a static graph, while tip
maintenance is to maintain tip numbers in a dynamic graph.

5.1 Distributed Tip Decomposition

The tip number of a vertex u is the maximum k such that
there exists a k-tip containing u, which can be used to query
k-tip communities. Tip decomposition is to calculate the tip
number of each vertex. According to Definition 4, we can
obtain tip numbers of vertices by peeling vertices in a non-
increasing order of their butterfly degrees dffl. The third
stage in Fig. 3 illustrates the process of distributed tip
decomposition. First, we peel vertices that have the smallest
dffl from the graph. The tip number of a vertex is identified
when it is peeled. Then, for the neighbors of these vertices
that have been peeled, their tip numbers are updated
accordingly. Finally, after peeling all vertices, the tip
decomposition process is completed.

The pseudo-code of DTDA has stated in Algorithm 3.
Each vertex gets its tip number when it is peeled (Line 7).
Especially, considering the parallel computing capability of
distributed systems, we peel the vertices with the minimum
dffl in batch (Lines 5-9). To get these batch vertices effi-
ciently, we construct a hash table called CoreTree to index
vertices with the same tip number. For each leaf in
CoreTree, the key represents the tip number and the value is
a list consisting of the id of vertices with tip number key.
Then, in the second superstep, a vertex v 2 V may receive
messages from neighbors which have been peeled. The mes-
sage sent in this scenario is formed as ðu list; 0Þ, where u list
consists of these peeled vertices that are also neighbors of v,
and 0 indicates this kind of message will be received by a
vertex belonging to U (Lines 10-12). The remaining vertices
update dffl by subtracting sharing butterflies with peeled
vertices (Lines 14-16).

Algorithm 3. Distributed Tip Decomposition Algorithm

Input: bipartite graph G¼ðU; V; EÞ
Output: tip number of each vertex u 2 U
1: Invoke DBCA to get duffl of each u 2 U
2: repeat
3: Superstep 1: (Activate vertices with the minimum dffl)
4: globalMinðdfflÞ MPI�AllreduceðlocalMinðdfflÞÞ
5: for u 2 U do
6: if duffl¼globalMinðdfflÞ then
7: uðuÞ duffl
8: G G n u
9: Send message ðu; 1Þ to neighbors
10: Superstep 2: (Forward messages)
11: for v 2 V do
12: Forward message ðu list; 0Þ to neighbors who have not

been peeled (i.e., 2-hop neighbors of peeled vertices)
13: Superstep 3: (Update dffl)
14: for u 2 U do
15: Calculate B1 according to the received messages
16: duffl duffl � B1

17: until G on each machine is empty;
18: return uðuÞ for each vertex u 2 U

Optimization. It is easy to observe that Algorithm 3 also
encounters the problem of excessive messaging when proc-
essing large-scale graphs. In particular, line 12 will forward
so many messages that lead to low efficiency and the mem-
ory overflow problem. This is because the same message
ðu list; 0Þ needs to be sent to neighbors repeatedly. The
degree of vertices in a dense bipartite graph is always
extremely large. To address this issue, we apply the mes-
sage aggregation strategy proposed in Section 3.2 Strategy 1
to change the mode of message passing. Specifically, we
modify the implementation of Algorithm 3 line 12. Vertex v
sends message ðu list; 0; u0 listÞ to all machines instead of
its neighbors, where u0list consists of v’s neighbors that
have tip number larger than globalMinðdfflÞ. The other oper-
ations remain the same as that of Algorithm 3.

Analysis. Given a bipartite graph G¼ðU; V; EÞ, Algo-
rithm 3 will take at most 3� jU j supersteps to get the tip
numbers of all vertices in U . The time complexity of DTDA
is OðPv2V dðvÞ2Þ [17].

5.2 Distributed Tip Maintenance

In this paper, the main challenge is to solve the problem of
tip maintenance on bipartite graphs in a distributed envi-
ronment. It is time-consuming to recalculate the tip num-
bers of all vertices when a large-scale graph is updated in
real-time. To gain better maintenance performance, we
explore a distributed incremental algorithm for tip mainte-
nance. The fourth stage in Fig. 3 illustrates the process of
distributed tip maintenance. First, a task split strategy
(Strategy 2) is utilized to convert a new edge update task
into several sub-tasks. In the figure, the red dotted line in
the bipartite graph is the new edge. According to Strategy 2,
there are three sub-tasks ft1; t2; t3g generated and marked
as blue dotted lines. Then, for each sub-task, there are two
main operations (i.e., Functions CandidateFind and Candi-
datePeel) invoked to update the tip numbers of vertices in
an incremental way. After all sub-tasks are completed, the
tip numbers of vertices can be updated correctly.

5.2.1 Theoretical Basis

Given a bipartite graph G¼ðU; V; EÞ, there is an edge
e¼ðu; vÞ inserted into or removed from G. Due to the update
of e¼ðu; vÞ, some vertices in U will have their dffl changed,
which in turn may change the tip numbers of some vertices.

Observation 1. Given a bipartite graph G¼ðU; V;EÞ and an
update edge e¼ðu; vÞ, vertices may have their dffl changed are
the vertex u and the neighbors of v.

Proof. The number of sharing butterflies of any two vertices
is determined by their common neighbors. v will be a
neighbor of u after inserting the new edge e¼ðu; vÞ. Then
v is a new common neighbor of u and u02fu[NðvÞg. As a
result, each vertex u 2 fu[NðvÞg may has dffl changed.
The observation is then proved. tu
It is difficult to find the candidate vertices in U whose tip

numbers may be changed due to the following two reasons.
First, for an edge update, there are several pairs of vertices
have sharing butterflies changed. These vertices always
have different tip numbers in the original bipartite graph.

WENG ETAL.: DISTRIBUTED APPROACHES TO BUTTERFLYANALYSIS ON LARGE DYNAMIC BIPARTITE GRAPHS 437

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

Second, for each pair of vertices with sharing butterflies
changing, the change value may be more than 1. Many
researchers have utilized the incremental algorithm to
maintain core numbers in unipartite graphs [16], [25], the
algorithm can only process edge update without weight
(i.e., the edge weight equals 1.) and vertices whose degrees
are changed are the two endpoints of the new edge. There-
fore, we cannot apply it to solve the tip maintenance prob-
lem in bipartite graphs.

In order to facilitate the understanding, we use the pro-
jection graph (Fig. 5a) of Fig. 1 to illustrate our methods in

the following. The weight of each edge represents the

number of sharing butterflies between the two endpoints.

But it should be noted that we cannot analyze bipartite

graphs by the corresponding projection graphs due to the

too large memory overhead (see Section 1). As shown in

Fig. 5b, after inserting edge e¼ðu3; v4Þ into G (Fig. 1), the

weight of edge e¼ðu3; u4Þ in the projection graph changes

from 1 to 3 and there is an new edge e¼ðu3; u5Þ generated
with weight 1.

In line with the above analysis and Observation 1, we
design a task split strategy to break down this complex
problem.

Strategy 2. (Task split) Given a bipartite graph G¼ðU; V; EÞ
and an update edge e¼ðu; vÞ, for each pair of vertices ðu; u0Þ
having sharing butterflies changed, there are l sub-tasks
t¼ðu; u0Þ generated to replace the ori-task (i.e., the edge
insertion e¼ðu; vÞ). l is the change value of the weight of
ðu; u0Þ.

Observation 2. For each sub-task t¼ðu; u0Þ generated by Strat-
egy 2, it can be considered to add a sharing butterfly to both u
and u0.

According to Observation 2, we can find the candidate
vertices that may have tip numbers changed locally.

Theorem 2. Given a bipartite graph G¼ðU; V;EÞ and a sub-task
t¼ðu; u0Þ with uðuÞ< uðu0Þ, we have the following theorems.

� All vertices in U will have tip numbers changed by at
most 1.

� Any vertex u00 that may have its tip number updated
must have the same tip number with u (i.e.,
uðu00Þ¼uðuÞ) and must be connected to u via a butterfly
path consisting of vertices that have the same tip
numbers.

Proof. In a bipartite graph G¼ðU; V; EÞ, the tip number of a
vertex u2U is determined by that of its 2-hop neighbors.
According to Observation 2, only u and u0 have their dffl
changed and the change value is 1. Then the tip numbers
of all vertices in U will have tip numbers changed by at
most 1.

Because uðuÞ< uðu0Þ, u cannot support u0 to increase
uðu0Þ. Therefore, the first vertex that may have tip number
changed is u and the change value is up to 1. Obviously,
the sharing butterfly fflu0

u must be in the new uðu0Þ0-tip
Hu0

uðu0Þ0 , where uðu0Þ0 is the updated tip number of u and
equals uðu0Þþ1.

For edge insertion, we consider two cases:(i) where
uðu1Þ> uðuÞ and (ii) where uðu2Þ< uðuÞ.

For a vertex u1 with uðu1Þ> uðuÞ, it will have tip num-
ber increased by 1. The new sharing butterfly fflu0

u will be
in a uðu1Þ0-tip H

u1
uðu1Þ0 , where uðu1Þ0 equals uðu1Þþ1.

Because uðuÞ0< uðu1Þ0, u cannot participate in H
u1
uðu1Þ0 ,

which is a contradiction.
For a vertex u2 with uðu2Þ< uðuÞ, it will have tip num-

ber increased by 1. uðuÞ is the first candidate vertex that
has its tip number changed. Therefore, uðuÞ0> uðu2Þ0 and
u can participate in H

u2
uðu2Þ0 . Removing the sharing butter-

fly fflu0
u from H

u2
uðu2Þ0 , uðuÞ00¼uðuÞ0�1�uðu2Þ0, then

H
u2
uðu2Þ0n ffl

u0
u can still be a uðuÞ00-tip. As a result, u2 can par-

ticipate inH
u2
uðu2Þ0 withoutfflu0

u , i.e., a contradiction.

We use similar arguments for the removal case. Again,
we consider two cases.

For a vertex u1 with uðu1Þ> uðuÞ, it will have tip num-
ber decreased by 1. The removed butterflyfflu0

u was not in

Fig. 5. Task split based tip maintenance.

438 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

H
u1
uðu1Þ due to uðu1Þ> uðuÞ. Thus H

u1
uðu1Þ is still a uðu1Þ-tip

after the removal, creating a contradiction.
For a vertex u2 with uðu2Þ< uðuÞ, it will have tip number

decreased by 1. After the removal, we have uðu2Þ0< uðuÞ0.
If we put the sharing butterfly back, uðu2Þ0 cannot be
changed since uðu2Þ0 6¼uðuÞ0. A contradiction is generated.

For satisfying the constraint of connectivity in Defini-
tion 3, if a vertex u3 has uðu3Þ¼uðuÞ but cannot be con-
nected to u via a butterfly path consisting of vertices with
tip numbers equaling uðuÞ, there is a subgraph H consist-
ing of vertices with tip numbers equaling uðuÞ and u32H.
Because the none-induced neighbors of vertices in H will
not have tip numbers changed and there is no new but-
terfly inserted into H, the tip numbers of vertices in H
will not be changed. The theorem is then proved. tu

Definition 5. (Support) Given a bipartite graph G¼ðU; V; EÞ,
the support of a vertex u 2 U is the number of butterflies that
connect 2-hop neighbors u0 where uðu0Þ � uðuÞ.

Theorem 3. Given a bipartite graph G¼ðU; V;EÞ and a sub-task
t¼ðu; u0Þ with uðuÞ � uðu0Þ, for edge insertion, a candidate ver-
tex increases its tip number by 1 if and only if its support value
is larger than uðuÞ. For edge deletion, a candidate vertex who
has support value smaller than uðuÞ can decrease its tip num-
ber by 1.

Proof. The proof is similar to the theory on unipartite
graphs [16], [25]. tu

Theorem 4. Given a bipartite graph G¼ðU; V; EÞ and an update
edge e¼ðu; vÞ, the generated sub-task set is T¼ft1; t2; t3; :::g.
After all sub-tasks are completed in serial, the tip numbers of
vertices in U are updated correctly. (Note: these sub-tasks are
performed on the original graph without e¼ðu; vÞ.)

Proof. For each sub-task t¼ðu; u0Þ, it can be considered to
add a sharing butterfly to u and u0. According to Theo-
rem 2, we can find the candidate vertices that may have
tip numbers changed. By Theorem 3, we peel the vertex
that cannot get tip number updated by its 2-hop
neighbors’ tip numbers. After all sub-tasks are completed,
these new butterflies generated by the ori-task are all
inserted to G. As a result, the final tip numbers can be
maintained. The theorem is then proved. tu
Example.We use the projection graph in Fig. 5 to illustrate

these theorems. As shown in Fig. 5b, after inserting edge
e¼ðu3; v4Þ into G (Fig. 1), there are three sub-tasks
ft1¼ðu3; u4Þ; t2¼ðu3; u4Þ; t3 ¼ðu3; u5Þg. For sub-task t1¼ðu3;
u4Þ with ðuðu3Þ¼3Þ> ðuðu4Þ¼2Þ, we get the candidate set
fu4g according to Theorem 2. It can be calculated that
supportðu4Þ¼3 after the new sharing butterfly fflu4

u3
inserted

is larger uðu4Þ. Thus, uðu4Þ is increased from 2 to 3. Serially,
sub-task t2¼ðu3; u4Þ is processed in the following. Since t2 is
performed on the basis of t1, the sharing butterfly added in
t1 needs to be considered in the calculation process of t2.
Other processes are the same as t1. The final tip numbers
are shown in Figs. 5d and 5e.

5.2.2 Algorithm for Edge Insertion

Based on strategies and theories (see Section 4.2.1), we investi-
gate distributed tip maintenance algorithm (DTMA) to

update tip numbers incrementally. Given a bipartite graph
G¼ðU; V;EÞ, there is an edge e thatwill be inserted intoG. For
the new edge e¼ðu; vÞ (the ori-task), we construct a set of sub-
tasks ft1; t2; t3; :::g. These sub-tasks are processed in serial.

According to Strategy 2, the sub-tasks generated by the
same ori-task may have the same endpoints. This character
helps speed up candidate vertices selection.

Observation 3. Given a bipartite graph G¼ðU; V;EÞ and an
inserted edge e¼ðu; vÞ, the generated sub-task set is
ft1; t2; t3; :::g. t1 and t2 have the same endpoints ðu; u0Þ.
Assume there is a vertex set R, vertices in R have tip numbers
changed after the completion of t1, then each vertex in R must
be a candidate vertex of t2.

Proof. Give a sub-task t1¼ðu; u0Þ, there are two cases need to
be considered: (i) uðuÞ< uðu0Þ and (ii) uðuÞ¼uðu0Þ.

For case (i), according to Theorems 2 and 3, R consists
of vertices with tip number uðuÞ0, where uðuÞ0 is the
updated tip number and equals uðuÞþ1. Absolutely,
u2R. Because uðuÞ0�uðu0Þ, the candidate vertices C of t2
is connected to u and have tip numbers uðuÞ0. Thus,R	C.

For case (ii), according to Theorem 2, we have u2R
and u02R. Because the new sharing butterfly must be in
Hu

uðuÞ0 , u0 will also have tip number changed and
uðu0Þ0¼uðuÞ0. Therefore, vertices in R have the same tip
number uðuÞ0 and are connected to u and u0. The observa-
tion is then proved. tu

Algorithm 4. Distributed Tip Maintenance Algorithm

Input: bipartite graph G¼ðU; V; EÞ, an new edge e ¼ ðu; vÞ
Output: updated tip number of each vertex u 2 U
1: Generate sub-task set T¼ft1; t2; t3; :::g
2: for t¼ðu; u0Þ2T do
3: Phrase 1: Initialize sub-task
4: uðtÞ minðuðuÞ; uðu0ÞÞ
5: Put u=u0 with smaller tip number into candidate set C
6: Expand C by Observation 3
7: for u2C do
8: Construct sub�map: u0!ðs; uðu0ÞÞ, where s is the num-

ber of sub-tasks with endpoints ðu; u0Þ
9: Phrase 2: Find candidate
10: CandidateFind(sub-task t¼ðu; u0Þ)
11: Phrase 3: Peel candidate
12: CandidatePeel (sub-projection, C)
13: for u 2 C do
14: uðuÞ uðuÞ þ 1

DTMA for Edge Insertion. Given a bipartite graph
G¼ðU; V;EÞ, there is an edge e ¼ ðu; vÞ inserted into G. The
sub-task set T ¼ ft1; t2; t3; :::g can be generated by Strategy 2
(Line 1). There are three main phrases for each sub-task,
including sub-task initial, find candidate, and peel candi-
date. In the sub-task initial phrase, we first initialize the sub-
task t ¼ ðu; u0Þ. The endpoint with a smaller tip number (i.e.,
uðu0Þ) is selected as a candidate (Lines 4-5). In addition, we
expand C by Observation 3 (Line 6). In the find candidate
phrase, we apply a BFS basedmanner to find candidate verti-
ces via a butterfly connected path consisting of vertices with
tip number uðu0Þ (see Function CandidateFind). Here, we
only consider the vertices in U . Thus, vertices in V just need
to forward messages among different u 2 U . In particular,

WENG ETAL.: DISTRIBUTED APPROACHES TO BUTTERFLYANALYSIS ON LARGE DYNAMIC BIPARTITE GRAPHS 439

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

we construct a sub-projection graph consisting of candidates
to avoid 2-hop communication in the third phase (i.e., peel
candidate). The sub-projection graph for a sub-task contains
the following information. (1) 2-hop adjacency list. An edge
needs to be created between two candidates if they have
sharing butterflies. (2) weight of these new edges. Theweight
is equal to the number of sharing butterflies of two vertices.
What’s more, when a sub-task is being processed, the corre-
sponding edge insertion e¼ðu; vÞ has not been put intoG. To
address this issue, we construct a sub�map for vertices,
which are endpoints of sub-tasks, to store the sharing butter-
flies with its 2-hop neighbors. sub�map can be used to find
new candidates that cannot be found in the original graph
(line 14 of Function CandidateFind) and update support
value of the vertex (line 18 of Function CandidateFind). In
the third phrase, we peel candidates from C if their support
values are not larger than uðu0Þ and update their 2-hop
neighbors’ support value by the sub-projection graph
directly (lines 1-6 of Function CandidatePeel). Finally, those
vertices still inC increase their tip number by 1 (Lines 13-14).

Function CandidateFind (Sub-Task t ¼ ðu; u0Þ)
Input: sub-task t ¼ ðu; u0Þ
Output: candidate set C
1: Superstep 1: (Activate ancestral candidates)
2: Candidate vertices send message ðu; 1Þ to neighbors
3: Superstep 2: (Forward messages)
4: for v that has received messages do
5: Construct a candidate list L by message[0]
6: Send message ðv; 0;LÞ to u0 2 NðvÞwith uðu0Þ � uðtÞ
7: Superstep 3: (Find new candidates and sharing butterflies)
8: for u0 that has received messages do
9: if uðu0Þ¼uðtÞ then
10: C u0

11: Calculate B1 of each u in L
12: Construct sub-projection according to L and B1

13: Send message ðu0; 0;B1Þ to corresponding u
14: Find new candidates from sub�map and put into C
15: Superstep 4: (Calculate support of ancestral candidates)
16: for u that has received messages do
17: Calculate supportðuÞ by B1 in received messages
18: Update supportðuÞ according to sub�map
19: Update sub-projection according to messages and B1

20: Repeat Superstep 1-4 until no new candidate is found

Function CandidatePeel (Sub-Projection, C)

Input: sub-projection, C
1: Superstep 1: (Peel candidate vertex)
2: for u 2 C and supportðuÞ � uðtÞ do
3: C C n u
4: Send message ðu; 0; 2�hop�neighborÞ // 2�hop�neighbor

can be find in the sub-projection
5: Superstep 2: (Update support)
6: Update support for u that have received messages
7: Repeat Superstep 1-2 until no candidate needs to be peeled

Example. In Fig. 5, the sub-task set generated from the new
edge e¼ðu3; v4Þ is T¼ft1¼ðu3; u4Þ; t2¼ðu3; u4Þ; t3¼ ðu3; u5Þg.
We first process t1¼ðu3; u4Þ. The two endpoints u3 and u4 con-
struct a sub�map as sub�map½u4� !uðu4Þ and sub�map½u3�

!uðu3Þ, respectively. u4 is the first candidate. u2, u3, and u5

are the 2-hop neighbors of u4 and can be accessed by lines 1-
13 of Function CandidateFind. In this process, the sub-projec-
tion graph is constructed by candidates. u2 and u3 send mes-
sage ðu2=u3; 0; 1Þ to u4, where 0 indicates the vertex in U will
receive thismessage and 1 is the number of sharing butterflies
between u2=u3 and u4. According to these messages and
sub�map, we can obtain the value of supportðu4Þ. For this sub-
task,C¼fu4g, supportðu4Þ¼3, then uðu4Þ is increased from 2 to
3.Next, sub-task t2¼ðu3; u4Þ is processed serially. ByObserva-
tion 3, u4 can be put into C directly. Because t1 and t2 have
same endpoints and the tip number of u4 is changed after the
completion of t1. For t2, C¼fu2; u3; u4g, supportðu2Þ¼4;
supportðu3Þ¼6, and supportðu4Þ¼4, then uðu2Þ; uðu3Þ, and
uðu4Þ are increased from 3 to 4. The sub-task t3 is handled in a
similarmanner.

5.2.3 Discussion for Edge Deletion

Given a bipartite graph G¼ðU; V; EÞ, there is an edge
e¼ðu; vÞ deleted from G. Similarly, we generate a sub-task
set T¼ft1; t2; t3; :::g according to Strategy 2. These sub-tasks
are processed in serial. For each sub-task t, the endpoint(s)
with smaller tip number is(are) set as candidate(s). Different
from the process of edge insertion, we don’t need to find all
candidates and apply the CandidatePeel function to peel
candidates that will not have tip numbers changed. Based
on Theorem 3, if the support value of a candidate vertex is
smaller than its tip number, we can decrease its tip number
by 1 immediately. In addition, only the vertex who have tip
number changed can expand more candidates. Specifically,
we can determine if the tip number of a vertex u changes at
Superstep 4 of Function CandidateFind (Line 18). The sub-
task completes when no vertex tip number has changed.

As shown in Fig. 5e, the tip number of vertices in U is
updated by DTMA. Assuming that we delete edge ðu3; u4Þ
from Fig. 1, the sub-task set is T¼ft1¼ðu3; u4Þ; t2¼ðu3; u4Þ; t3
¼ðu3; u5Þg, which is the same as the insertion scenario. We
remove those edges in Fig. 5e one by one. For sub-task t1,
the initial candidates are u3 and u4. supportðu4Þ reduces
from 4 to 3 and its tip number is reduced by 1. Then, we
need to update supportðu3Þ to 3 and uðu3Þ to 3. Now, u3 can-
not support u2 to maintain its tip number 4. According to
Definition 4, uðu3Þ should be updated to 3. For sub-task t2,
supportðu4Þ reduces from 3 to 2 and uðu4Þ should be 2.
supportðu2Þ and supportðu3Þ are equal to 3, which indicates
that u2 and u3 can keep their tip numbers. For sub-task t3,
the only influenced vertex is u5. uðu5Þ reduces from 2 to 1.
Finally, all vertices get their new tip numbers.

6 EXPERIMENTAL EVALUATION

In this section, we conduct comprehensive experiments to
evaluate the performance of our algorithms.

6.1 Experiment Setting

Schemes. To our best knowledge, this is the first study to pro-
cess the butterfly counting, tip decomposition, and tip main-
tenance problems in a distributed environment. We apply
the vertex priority paradigm [21] to count butterflies for
each vertex (Algorithm 1) and set it as a baseline, denoted
as DBCA, which can be seen as a distributed version of the

440 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

algorithm proposed in [21]. For Algorithm 2, a novel mes-
sage aggregation strategy is introduced into DBCA, denoted
as DBCA+. Based on the result of butterfly counting, Algo-
rithm 3 (DTDA) is designed to compute the tip number of
each vertex. Also, the optimized version with a message
aggregation strategy is denoted as DTDA+. Then we evalu-
ate the performance of Algorithm 4 (DTMA) by comparing
the time cost and superstep cost of maintaining tip numbers
for per edge update with Algorithm 3 (DTDA). In addition,
we verify the scalability of all algorithms while varying the
number of machines.

Datasets. The performance of the proposed algorithms is
evaluated on five real-world and four synthetic bipartite
graphs. Table 2 shows the properties of the five real-world
graphs, including dblp-au, discogs, amazon, Google
+(IMC12), and orkut. All of these datasets can be down-
loaded from http://konect.cc/. For synthetic datasets,
SNAP [11] python package is used to generate graphs with
varying vertex numbers from 223 to 226 following R-MAT
model [3]. We refer to the parameter configuration for data-
set generation in [25]. After that, we convert these synthetic
datasets into bipartite graphs by the method proposed in
[21], called RMAT-23 to 26, in which RMAT-25 and RMAT-
26 have billion edges. In a vertex-centric system, each vertex
is an independent object. The memory cost of this storage
mode is much larger than that of CSR (Compressed Sparse
Row) or CSC (Compressed Sparse Column). The resident
memory usage (RES) after loading each dataset is shown in
the last column of Table 2.

Environment. The proposed algorithms and distributed
graph computing system are implemented in C++ and com-
piled by mpicxx, which compiles and links MPI programs
written in C++. The experiments are deployed on the
National Supercomputing Center in Changsha, named TH-
I. TH-I has Intel Quad Core Xeon E5540 2.53 GHz/E5540 3.0
GHz CPU and 32 GB of RAM for each machine. We conduct
the experiments on 10 nodes of TH-I, and the total memory
is about 320 GB. As for the dataset orkut and synthetic
graphs, we experiment by starting 10 MPI processes on a
single server with 256 GB memory due to the limited run-
ning time of the distributed cluster.

6.2 Evaluation of Algorithms

In the following, we evaluate the performance of different
algorithms in line with the experiment setting.

6.2.1 Performance of Butterfly Counting

Memory Usage. Memory usage is linear with the number of
messages and Strategy 1 focuses on reducing redundant
messages. We compare the number of messages generated
by DBCA and DBCA+. Because each superstep in a vertex-
centric model is independent, the memory overflow will
happen in the superstep that generates the most messages.
As analyzed in Section 4, the superstep 1 in DBCA (i.e., lines
1-4) and the step 3 of superstep 1 in DBCA+ (i.e., line 5) will
generate the most messages. Fig. 6 shows the number of
messages of the superstep that generate the most messages
while counting butterflies for each vertex. The traffic has
been reduced by up to 87.2%. But for dblp-au, it is the spars-
est one among all datasets, in which the number of edges
and vertices are on the same order of magnitude. As a
result, the potential of Strategy 1 is not well realized. For
dataset orkut, the memory overflow problem happened and
the results cannot be obtained if we apply DBCA rather
than DBCA. In summary, our proposed distributed butter-
fly counting algorithm can be applied to handle large scale
graphs and avoid the memory overflow problem effectively.

Time Cost.We evaluate the time cost of butterfly counting
algorithms with 10 machines on TH-1 and the results are
shown in Fig. 7. The performance of DBCA+ on these data-
sets is better than DBCA. The degree of improvement varies
for different datasets. It should be noted that the main pur-
pose of the message aggregation strategy (Strategy 1) is to
solve the memory overflow problem due to the large num-
ber of messages generated while processing large-scale
graphs. There is an out of memory exception thrown while
processing the dataset orkut. But we can use DBCA+ to get
the butterfly counting results of orkut. This further supports
the effectiveness of Strategy 1.

Varying the Number of Machines. The number of machines
in a distributed system reflects its parallel computing capabil-
ities. In this set of experiments, we evaluate the scalability of
DBCA+ while varying the number of machines. Fig. 8
presents the trend of time cost with a dwindling number of
machines, where “Node-*” indicates the number ofmachines
used in the experiment. Due the memory limitation of a sin-
gle machine in our distributed environment, we set “Node-
2” as the initial reference. Therefore, the improvement rate of
“Node-2” is 1 for every datasets. As for other configurations,
we exhibit the improvement rate comparing to its former
one. For example, given a specific dataset, the improvement
rate of Node-8 is calculated using:

rate¼TNode�5 � TNode�8
TNode�5

: (3)

TABLE 2
Real-World Bipartite Graph Datasets

Graph jEj jU j jV j RES

discogs 5,302,276 1,754,823 270,771 4.5 GB
amazon 5,743,258 2,146,057 1,230,915 7.1 GB
dblp-au 12,282,059 1,953,085 5,624,219 15.9 GB
Google+ 20,592,961 5,998,790 4,443,631 22.2 GB
orkut 327,037,487 8,730,857 2,783,196 56.1 GB

RMAT-23 29,821,707 2,497,203 2,402,566 12.4 GB
RMAT-24 73,942,504 4,971,665 4,986,525 27.0 GB
RMAT-25 149,842,312 9,976,161 9,759,895 53.5 GB
RMAT-26 261,740,855 18,713,683 18,608,791 100.0 GB

Fig. 6. Communication of butterfly counting.

WENG ETAL.: DISTRIBUTED APPROACHES TO BUTTERFLYANALYSIS ON LARGE DYNAMIC BIPARTITE GRAPHS 441

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

http://konect.cc/

Obviously, the descending slope of time cost is inversely
proportional to the number of machines. The single most
striking observation to emerge from the data comparison
was that as the number of machines increases, the rate of
the time cost decline tends to converge. Although more
machines can provide more computing power, they also
introduce more cross edges, which in turn increases the
communication cost.

6.2.2 Performance of Tip Decomposition and

Maintenance

A. Tip decomposition
Time Cost. The distributed tip decomposition algorithm

(DTDA) is designed to compute the tip numbers of vertices
in a given bipartite graph. The time cost of DTDA and
DTDA+ for each dataset on 10 nodes is shown in Table 3.
CoreTree is constructed to split vertices according to tip
numbers. It will be used in both DTDA and DTDA+. The
symbol “n” indicates the memory overflow that happened
when we apply DTDA to decompose graphs. Also, we
count the number of messages sent in the second superstep
(line 12 of Algorithm 3), which produces the most messages.
It can be observed that DTDA+ shows better performance
on both efficiency and effectiveness for most datasets. But
for the dataset dblp-au, DTDA+ appears to be less efficient
than the baseline. Referring to the message column of
Table 3, the number of messages sent by DTDA+ is one
order of magnitude more than that of DTDA. This is
because there are too many vertices that have degrees less
than the number of machines used in the experiment. Here,
we use 10 machines to evaluate our experiments. As shown
in Fig. 9, 99.6% vertices in set V of dataset dblp-au have
degree less than 10. DTDA+ sends a message to 10 machines
in the second superstep. As a result, much more messages
are introduced, which leads to lower efficiency. But for
large-scale graphs, for the dataset orkut, there are only
25.6% vertices that have degrees less than 10. In summary,

DTDA+ is more applicable for processing large-scale dense
graphs.

Varying the Number of Machines. We have also verified the
scalability of DTDA+ with varying the number of machines.
The results are shown in Fig. 10 and are similar to the trend
of DTDA+. Here we show the results and will not repeat
the analysis.

B. Tip maintenance
Task Generation. According to Strategy 2, for an update

edge e¼ðu; vÞ, the number of sub-tasks is closely related to
the number of common neighbors between u and u0 2 NðvÞ.
As shown in Fig. 1, if we insert an edge e¼ðu1; v4Þ into G,
there is still no sharing butterflies containing both u1 and u5.
Thus, no sub-task has endpoints ðu1; u5Þ. Assuming that
edge e¼ðu4; v2Þ does not exist, u1 and u4 would also have no
sharing butterfly. Then there would be no sub-task gener-
ated. In this case, we do not need to apply tip decomposi-
tion or tip maintenance algorithm to maintain the tip
numbers of vertices. Therefore, it does not make sense to
evaluate the performance with this kind of edge update. To
avoid this issue, we start with a random search for two ver-
tices u1; u2 2 U such that Nðu1Þ \Nðu2Þ 6¼ ;. Then we ran-
domly select two vertices v1; v2 2 Nðu2Þ ^ v1; v2 =2 Nðu1Þ and
generate the new ori-tasks as e1¼ðu1; v1Þ; e2¼ðu1; v2Þ. For

Fig. 7. The time cost of butterfly counting.

Fig. 8. The improvement rate of time cost of butterfly counting with vary-
ing machines.

TABLE 3
Performance of DTDA and DTDA+

Dataset Time Cost (s) Message

CoreTree DTDA DTDA+ DTDA DTDA+

discogs 20 \ 1370 \ 3.6E7
amazon 55 114 43 2.2E8 3.7E7
dblp-au 22 15 28 1.5E7 1.1E8
Google+ 142 \ 3964 \ 1.2E8
orkut 17 - 155148 - -

Fig. 9. Ratio of vertices have degree less than 10.

Fig. 10. The improvement rate of time cost of DTDA+ with varying
machines.

442 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

each dataset, we generate 500 new edges and the number of
sub-tasks is shown in Table 4.

To demonstrate the correctness of the proposed tip num-
ber maintenance algorithms, we use Algorithms 2 and 3 to
get the updated tip numbers of all vertices after inserting
the 500 new edges. Then we compare the results with the
results generated by DTMA. After comparing one by one,
the two methods obtain the same results. This indicates that
DTMA can maintain tip numbers effectively.

Time Cost. In this set of experiments, we evaluate the effi-
ciency of DTMA (Algorithm 4). Based on the task genera-
tion scheme, we generate 500 new edges and accumulate
the total time that DTMA takes to process the 500 edge
insertions. Then, we compare the time cost per edge update
of DTMA (Algorithm 4) with DTDA+ (Algorithm 3). It can
be seen from the data in Table 5 that the time cost per edge
is significantly less than that of DTDA+ (see Table 3). The
improvement rate is calculated by

rate¼TDTDAþ � Tper

TDTDAþ
; (4)

where TDTDAþ and Tper represents the time cost of DTDA+
and DTMA (per edge), respectively. Specifically, the time
cost is reduced by 2 to 4 orders of magnitude. This is
because the number of impacted vertices that may have tip
numbers changed is much less than the size of the original
graph while inserting a new edge. DTMA incrementally

maintains tip numbers, which significantly reduces redun-
dant calculations.

Superstep Cost. Massively parallel algorithms in vertex-
centric model admit the number of supersteps. For butterfly
counting and tip decomposition, the message aggregation
strategy is designed to reduce the number of messages. So
we don’t evaluate this factor of the two algorithms. We com-
pare the superstep cost between DTDA and DTMA and the
results are shown in Table 6. For each edge update, the total
superstep cost by DTMA is reduced by 98.54% to 99.99%
(the last column of Table 6). Here, the improvement rate is
calculated similarly with Equation (4). It can be seen that
the superstep of 500 edges may be larger than the cost of
DTDA (the blue marked results in the third column). Espe-
cially for discogs, the superstep cost is nearly an order of
magnitude larger. This is because the dataset is denser than
others, in which the average degree or the tip number is
much larger. Then there are more subtasks generated after
the process of task generation (see Table 4). As a result, it
needs more superstep to maintain tip numbers while proc-
essing dense graphs.

Varying the Number of Machines. We illustrate the scalabil-
ity of DTMA+ (Algorithm 4) while varying the number of
machines. As shown in Fig. 11, a clear benefit of the scale of
the distributed environment in the reduction of time cost
could be identified in this analysis. Also, the rate of the time
cost decline tends to converge with the increase of the num-
ber of machines.

6.2.3 Evaluation on Synthetic Bipartite Graphs

To verify the scalability of our proposed algorithms, we con-
duct experiments on four different scale synthetic graphs.
Because the maximum memory usage happens at line 5 of
Algorithm 2 , which sends the aggregated message to all
machines for each vertex, we first compare the number of
messages sent by DBCA and DBCA+. Fig. 12 shows the

TABLE 4
Tasks Generation

Task discogs amazon dblp google orkut

edge insertion 500 500 500 500 500
sub-task 146,778 1,396 6,047 18,816 3,420

TABLE 5
Time Cost of Tip Maintenance

Dataset Time Cost Improvement (%)
500 edges per edge

discogs 4054.4 s 8.1 s 99.41
amazon 14.5 s 29 ms 99.93
dblp-au 120.0 s 240 ms 99.14
Google+ 4411.9 s 8.8 s 99.78
orkut 28607.0 s 57.2 s 99.96

TABLE 6
Superstep Cost of Tip Maintenance

Dataset Superstep Cost Improvement(%)

DTDA DTMA

500 edges per edge

discogs 154,619 1,128,121 2,256 98.54
amazon 18,001 9,882 20 99.89
dblp-au 17843 46,429 93 99.48
Google+ 64,910 260,387 521 99.20
orkut 997,137 20,900 42 99.99

Fig. 12. Communication of butterfly counting on RMAT-23 and RMAT-24.

Fig. 11. The improvement rate of time cost of tip maintenance with vary-
ing machines.

WENG ETAL.: DISTRIBUTED APPROACHES TO BUTTERFLYANALYSIS ON LARGE DYNAMIC BIPARTITE GRAPHS 443

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

results of the supersteps of DBCA and DBCA+ that generate
the maximum messages. For RMAT-23 and RMAT-24,
DBCA+ saves 96.7% and 90.8% messages compared to
DBCA, respectively. For RMAT-25 and RMAT-26, the mem-
ory overflow problem will occur if we apply DBCA while
DBCA+ can get the results accurately. We use the gray bar
to indicate the memory overflow case in the figure. In addi-
tion, it can be observed that the number of messages grows
linearly as the graph size grows. Summarily, our proposed
algorithms can be applied to process billion scale graphs.

Then, we evaluate the time cost of DBCA+, DTDA+,
and DTMA on given synthetic graphs. Here, we also insert
500 new edges into each synthetic graph. The number of
sub-tasks and the average time cost of a task is shown in
Table 7. As shown in Fig. 13, for each edge update, DTMA
can save more than 99.8% time cost on average compared
to DTDA+. Therefore, our proposed tip maintenance algo-
rithm can be used to maintain tip numbers on dynamic
bipartite graphs efficiently.

6.2.4 Discussion

We discuss the superstep cost of the tip maintenance algo-
rithm for edge deletion in this section. We generate a sub-
task set from the deleted edge according to Strategy 2. For
each sub-task, we find its candidates based on Theorem 2.
Here, the most important difference compared to the edge
insertion scenario is that we do not need to find all candi-
dates. Similar to the core maintenance problem on unipar-
tite graphs [25], the tip number of a candidate can be
determined when it is accessed. Although some 2-hop
neighbors of a candidate have the same tip number with it,
they will not be accessed if the current candidate’s tip num-
ber does not change. But for the edge insertion scenario, we
need to access all candidates according to Function Candi-
dateFind and prune candidates by Function CandidatePeel.
Given a sub-task t¼ðu; u0Þ, u has a smaller tip number and
the distance between u and the farthest candidate from u is
F. For edge insertion, it needs at least 2�F supersteps to
find all candidates and at most F supersteps to prune

candidates. As a result, the minimum and maximal super-
step cost of a sub-task for edge insertion are 2�F and 3�
F, respectively. But for edge deletion, if u do not need to
update its tip number, the process is completed. Because
there is no candidate pruning operation in processing edge
deletion, the minimum and maximal superstep cost of a
sub-task for edge deletion are 1 and 2�F, respectively.

7 CONCLUSION

In this paper, we have investigated butterfly counting, tip
decomposition, and tip maintenance problems in larger-
scale dynamic bipartite graphs on a distributed environ-
ment for the first time. Specifically, the novel message
aggregation is proposed to improve the efficiency and effec-
tiveness of butterfly counting. Our algorithms have been
tested on the vertex-centric graph computing system
deployed on TH-I. The experimental results on real-world
bipartite graphs have validated the efficiency and effective-
ness of our algorithms.

In the future, we will investigate the tip maintenance
problems when edge insertion and deletion happen at
the same time. In addition, most existing dynamic graph
compression algorithms cannot be directly applied to dis-
tributed systems [9], [12]. In [27], a distributed data com-
pression framework was proposed which focuses on
orthogonal processing on compression. It is also interesting
to introduce this technique to further improve memory
efficiency.

ACKNOWLEDGMENTS

The authors would like to thank the three anonymous
reviewers for their kind suggestions.

REFERENCES

[1] A. Abidi, L. Chen, R. Zhou, and C. Liu, “Searching personal-
ized k-wing in large and dynamic bipartite graphs,” 2021,
arXiv:2101.00810.

[2] E. Akbas and P. Zhao, “Truss-based community search: A truss-
equivalence based indexing approach,” Proc. VLDB Endowment,
vol. 10, no. 11, pp. 1298–1309, 2017.

[3] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive
model for graph mining,” in Proc. SIAM Int. Conf. Data Mining,
2004, pp. 442–446.

[4] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algo-
rithms,” SIAM J. Comput., vol. 14, no. 1, pp. 210–223, 1985.

[5] I. S. Dhillon, “Co-clustering documents and words using bipartite
spectral graph partitioning,” in Proc. 7th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2001, pp. 269–274.

[6] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, “K-core
organization of complex networks,” Phys. Rev. Lett., vol. 96, no. 4,
2006, Art. no. 040601.

[7] D. Gibson, R. Kumar, and A. Tomkins, “Discovering large dense
subgraphs in massive graphs,” in Proc. 31st Int. Conf. Very large
Data Bases, 2005, pp. 721–732.

[8] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-
truss community in large and dynamic graphs,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2014, pp. 1311–1322.

[9] J. Ko, Y. Kook, and K. Shin, “Incremental lossless graph summa-
rization,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2020, pp. 317–327.

[10] K. Lakhotia, R. Kannan, V. Prasanna, and C. A. F. De Rose,
“Receipt: Refine coarse-grained independent tasks for parallel tip
decomposition of bipartite graphs,” 2020, arXiv:2010.08695.

[11] J. Leskovec and R. Sosi�c, “SNAP: A general-purpose network
analysis and graph-mining library,” ACM Trans. Intell. Syst. Tech-
nol., vol. 8, no. 1, pp. 1–20, 2016.

Fig. 13. Time cost of DBCA+, DTDA+, and DTMA on RMAT-23 and
RMAT-24. Here, the time cost of DTMA is the total time consumption of
processing 500 new edges.

TABLE 7
Tasks Generation for Synthetic Graphs

Task RMAT-23 RMAT-24 RMAT-25 RMAT-26

edge insertion 500 500 500 500
sub-task 17324 37351 33175 17223
time(s)/task 3.2 14.3 22.6 20.4

444 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

[12] Z. Ma, J. Yang, K. Li, Y. Liu, X. Zhou, and Y. Hu, “A parameter-
free approach for lossless streaming graph summarization,” in
Proc. Int. Conf. Database Syst. Adv. Appl., 2021, pp. 385–393.

[13] G. Malewicz et al., “Pregel: A system for large-scale graph proc-
essing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010,
pp. 135–146.

[14] M. EJ Newman, “Scientific collaboration networks. i. network con-
struction and fundamental results,” Phys. Rev. E, vol. 64, no. 1,
2001, Art. no. 016131.

[15] S.-V. Sanei-Mehri, A. E. Sariyuce, and S. Tirthapura, “Butterfly
counting in bipartite networks,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2018, pp. 2150–2159.

[16] A. E. Sariy€uce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and €U. V. Çat-
aly€urek, “Streaming algorithms for k-core decomposition,” Proc.
VLDB Endowment, vol. 6, no. 6, pp. 433–444, 2013.

[17] A. E. Sarıy€uce and A. Pinar, “Peeling bipartite networks for dense
subgraph discovery,” in Proc. 11th ACM Int. Conf. Web Search Data
Mining, 2018, pp. 504–512.

[18] A. Sheshbolouki and M. T. €Ozsu, “sGrapp: Butterfly approxima-
tion in streaming graphs,” ACM Trans. Knowl. Discov. Data,
vol. 16, no. 4, pp. 1–43, 2022.

[19] J. Shi and J. Shun, “Parallel algorithms for butterfly computations,”
2019, arXiv:1907.08607.

[20] J. Wang, A. W.-C. Fu, and J. Cheng, “Rectangle counting in large
bipartite graphs,” in Proc. IEEE Int. Congr. Big Data, 2014, pp. 17–24.

[21] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang, “Vertex priority
based butterfly counting for large-scale bipartite networks,” Proc.
VLDB Endowment, vol. 12, no. 10, pp. 1139–1152, 2019.

[22] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang, “Efficient
bitruss decomposition for large-scale bipartite graphs,” in Proc.
IEEE 36th Int. Conf. Data Eng., 2020, pp. 661–672.

[23] K. Wang, W. Zhang, X. Lin, Y. Zhang, L. Qin, and Y. Zhang,
“Efficient and effective community search on large-scale bipartite
graphs,” in Proc. IEEE 37th Int. Conf. Data Eng., 2021, pp. 85–96.

[24] X. Wang, D. Wen, L. Qin, L. Chang, Y. Zhang, and W. Zhang,
“Scaleg: A distributed disk-based system for vertex-centric graph
processing,” IEEE Trans. Knowl. Data Eng., to be published,
doi: 10.1109/TKDE.2021.3101057.

[25] T. Weng, X. Zhou, K. Li, P. Peng, and K. Li, “Efficient distributed
approaches to core maintenance on large dynamic graphs,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 1, pp. 129–143, Jan. 2022.

[26] D. Yan et al., “A general-purpose query-centric framework for
querying big graphs,” Proc. VLDB Endowment, vol. 9, no. 7,
pp. 564–575, 2016.

[27] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “POCLib: A high-
performance framework for enabling near orthogonal processing
on compression,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 2,
pp. 459–475, Feb. 2022.

Tongfeng Weng received the master’s degree
from the School of Information Engineering,
Wuhan University of Technology, in 2018. He is
currently working toward the doctoral degree with
the College of Computer Science and Electronic
Engineering, Hunan University, Changsha, China.
His research interests include distributed graph
computing and parallel computing.

Xu Zhou received the master’s degree from the
College of Computer Science and Electronic Engi-
neering, Hunan University, in 2009. She is currently
an associate professor with the Department of
Information Science and Engineering, Hunan Uni-
versity, Changsha, China. Her research interests
include parallel computing and datamanagement.

Kenli Li (Senior Member, IEEE) received the
PhD degree in computer science from the Huaz-
hong University of Science and Technology,
China, in 2003. He is currently a Cheung Kong
professor of computer science and technology
with Hunan University, the dean with the College
of Computer Science and Electronic Engineering,
Hunan University. His major research interests
include parallel and distributed processing. He
serves on the editorial board for IEEE Transac-
tions on Computers.

Kian-Lee Tan (Senior Member, IEEE) received
the PhD degree in computer science from the
National University of Singapore, Singapore, in
1994. He is a professor of computer science with
the School of Computing, National University of
Singapore (NUS), Singapore. His current research
interests include query processing and optimiza-
tion, database performance, data science, and
distributed graph computing. He is a member of
ACM.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of Computer Science with the State Uni-
versity of New York. He is also a national distin-
guished professor with Hunan University, China.
His current research interests include cloud com-
puting, fog computing andmobile edge computing,
energy-efficient computing and communication,
embedded systems and computer architectures
and systems. He has authored or coauthored
more than 860 journal articles, book chapters, and
refereed conference papers, and has received

several best paper awards. He is an AAIA fellow. He is also a member of
Academia Europaea.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WENG ETAL.: DISTRIBUTED APPROACHES TO BUTTERFLYANALYSIS ON LARGE DYNAMIC BIPARTITE GRAPHS 445

Authorized licensed use limited to: National University of Singapore. Downloaded on April 18,2023 at 01:12:44 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TKDE.2021.3101057

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

