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a b s t r a c t

Cross-domain image-to-image translation has made remarkable progress in recent years. It aims to
map the image from the original image domain to the target domains so that the image can appear
in diverse styles. Currently, existing methods are mainly based on Generative Adversarial Networks
(GAN). They often employ an auxiliary encoder to extract style features from noises or reference images
for the generator to translate new images. However, these approaches are usually feasible for two-
domain translation and present low diversity in multi-domain translation since the extracted style
features are simply served as additional input to the generator rather than fully utilized. This paper
proposes a style-guided image-to-image translation (SG-I2IT) with a novel diversity regularization term
named style-guided diversity loss (SD loss), making the best of the extracted style features. In our
model, style features not only serve as the generator’s input but also penalize the generator through
the new SD loss, thus encouraging the model to capture the image styles better. The effectiveness of our
method is demonstrated from two perspectives, noise-based and reference-based image translation.
Qualitative and quantitative experiments validate our superiority of the proposed method against the
state-of-the-art methods in terms of image quality and diversity. In addition, a user study demonstrates
that the proposed method can better capture image styles and translate more realistic images.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Cross-domain image-to-image (I2I) translation is one of the
ottest research topics in the computer vision community, cov-
ring many basic computer vision tasks [1–4], such as image
npainting [5], style transfer [3,4], and super-resolution [6,7]. It
s designed to simulate the mapping between different visual
omains [8,9]. A visual domain refers to a group of images that

share a certain common visual characteristic (such as female or
male in the CelebA dataset), while each image possesses a unique
style (such as skin tone, hair color, beard, and makeup) [10].
Presenting an image in a new style will get a new image. For
example, as shown in Fig. 1, a border collie in black-and-white
style can be translated into a new cat in black-striped style or
black-and-white. Imagining images in different styles is an innate
ability of human beings, while for a machine, it is a tough chal-
lenge. Mimicking this ability is exactly what image translation
intends to learn, which makes image translation a challenging but
attractive task.
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Nowadays, growing efforts are taking up this challenge with
Generative Adversarial Networks (GAN) [5,6,11,12]. The adver-
sarial training of GAN has achieved excellent performance in
image generation, and its introduction has promoted the rapid
development of image translation [5,6,13]. For example, Hedjazi
and Genc [5] proposed a multi-GAN image-to-image translation
architecture to improve image inpainting that synthesizes plau-
sible contents to fill in the missing image regions or remove
unwanted objects from images. Identity-Preservation Generative
Adversarial (IPGAN) is a study of photo-to-caricature transla-
tion, which generates realistic and identity-preserving caricatures
from given photos [4]. Zhang et al. designed a cross-domain
correspondence network (CoCosNet) for example-based image
translation that translates photo-realistic images from given ex-
ample images (edge maps or pose keypoints) [14]. Karras et al. [6]
achieved image translation from low resolution to higher reso-
lution based on GAN. They provided a higher quality version of
the CelebA dataset (CelebA-HQ), where the image resolution is
1024 × 1024. The CelebA-HQ is widely used in image process-
ing [5,10,14–16].

Despite impressive achievements, learning an ideal I2I trans-
lation method is still challenging for two main reasons. First,
to present an object in various styles as much as possible, it is
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Fig. 1. Different types of cross-domain image translation. The translated images in the first row are plausible but similar, which is called unimodal image translation.
ranslated images in the second row are in different styles, called multimodal image translation. These image translations are both between two domains (dog →

cat). The translation images in the third row have different styles and belong to different image domains (cat, wild animal, and dog), called multi-domain image
translation.
required for the model to translate the object style from one
to multiple. More precisely, one input will correspond to mul-
tiple possible outputs [8,17]. That is to say, such mapping from
one visual domain to another is inherently multimodal. However,
the image styles translated by current GAN-based methods are
usually similar rather than diverse due to the well-known mode
collapse problem of GAN [8,17,18]. Thus, increasing diversity has
become a crucial issue for an ideal image translation method [3,
19–21]. Second, image translation between two domains has
made excellent progress [19], but extending them to multiple do-
mains is difficult. Some widely-used datasets in the real situation
often contain multiple domains. For example, the recent popular
animal-face-high-quality (AFHQ) dataset [10] consists of three
domains: cat, dog, and wildlife. Two-domain image translations
are not applicable to such datasets. Therefore, multi-domain I2I
translation in real scenarios is worthy of in-depth study.

To better learn the multimodal mappings, many efforts have
been developed to increase the output diversity from different
perspectives [19–21]. The initial attempt is based on conditional
GAN (cGAN), which guides the output by adding additional con-
ditions. Many researchers prefer adopting an auxiliary encoder to
extract latent variables for the generator [22] or to explore more
relationships between the original and target image domains
[20]. From a new perspective, some recent efforts assume that
a visual image can be decomposed into a domain-specific style
feature space and a domain-invariant content space [8,19]. They
enhance the image diversity by matching the domain-invariant
content codes with other style feature codes. Nevertheless, these
approaches mainly consider the image translation between two
domains [10]. Some datasets actually often have more than two
visual domains (such as the AFHQ dataset). For image datasets
with K domains, these approaches need to learn K (K − 1) map-
pings to achieve the translations between different domains, thus
limiting their scalability over multiple image domains [10,23].

To improve the scalability, some recent studies focusing on
multi-domain image translation have been proposed. An intuitive
approach is to add multiple domain-specific information [23]. But
such domain information is usually fixed and limits the diversity
of the output [10]. Researchers introduced an encoder to break
through this limitation [10,21]. For instance, a recent Ref. [10]
utilizes an encoder to extract domain codes from specific image
domains as substitutes for fixed domain-specific information; The
latest Ref. [21] employs multiple encoders to disentangle the
given images into domain-specific and domain-invariant repre-
sentations. One of the main functions of their encoders is to
2

extract features for the generator. However, most current re-
searchers simply use such style features as additional inputs to
the generator. How to make the best of these style features for
cross-domain image translation is actually still worthy of further
study.

In this paper, we take full advantage of the extracted style
features and design a novel style-guided regularization term for
cross-domain image translation. The main contributions of this
paper are summarized as follows:

• We propose a style-guided image-to-image translation
(SG-I2IT) with a novel diversity loss function named style-
guided diversity loss (SD Loss). It makes the best of style
features to assist the generator in discovering diverse image
styles.

• We theoretically analyze the limitations of the current state-
of-the-art diversity loss approaches. Our method breaks
through the limitations and encourages the model to cap-
ture image styles effectively to translate diverse new im-
ages.

• Extensive experiments are conducted on two wildly-used
image datasets, CelebA-HQ and AFHQ. The results demon-
strate our superiority against other state-of-the-art methods
in terms of image quality and diversity.

Compared with the preliminary conference version of this pa-
per, we have made the following improvements and extensions:
1. Rewrite the whole article; 2. Add Section 3.2 to theoretically
analyze the limitations of the current state-of-the-art diversity
loss methods and introduce the design of the proposed style-
guided loss function; 3. Add diversity analysis experiments to
demonstrate the significance of the proposed technique in en-
hancing image diversity; 4. Add a user study to support the
superiority of this method.

The rest of the paper is organized as follows. Section 2
briefly introduces the related work on cross-domain image trans-
lation. Section 3 describes the details of the proposed style-
guided image-to-image translation. In Section 4, we conduct a
series of experiments to demonstrate the performance of the
proposed method. Section 5 gives a brief conclusion of this paper
and a direction for future work.

2. Related work

Generative Adversarial Networks (GANs). Recent years have wit-
nessed the success of GANs in various artificial intelligence ap-
plications [25–27], especially in the computer vision commu-
nity [28]. The core idea of GANs is to map random noise to
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Table 1
Comparison of different I2I translation methods. The notations ‘‘–’’ and ‘‘✓’’ represent ‘‘no’’ and ‘‘yes’’, respectively.
Methods Unsupervised Unpaired Multimodal Multi-domain Number of generator Usage of style features

Pix2Pix [9] – – – – Single None
CycleGAN [3] – ✓ – – Single None
DiscoGAN [24] ✓ ✓ – – Single None
UNIT [1] ✓ ✓ – – Multiple Injecting
BicycleGAN [20] – – ✓ – Single Injection
StarGAN [23] – – – ✓ Multiple Injection
Augmented CycleGAN [22] ✓ ✓ ✓ – Single None
MUNIT [19] ✓ ✓ ✓ – Multiple Injection
DRIT [8] ✓ ✓ ✓ – Multiple Injection
MSGAN [17] – ✓ ✓ – Single Injecting
DRIT++ [21] ✓ ✓ ✓ ✓ Multiple Injection
StarGAN-v2 [10] ✓ ✓ ✓ ✓ Single Injection

Ours ✓ ✓ ✓ ✓ Single Injecting & regularizing
the target domain samples through the competition between a
generator and a discriminator [29]. The generator is responsible
for mapping the noise to the target domain samples, while the
discriminator aims to distinguish the generated fake samples
from the real samples. The adversarial learning between these
two members makes GANs produce plausible samples that cannot
be recognized. Hitherto, GAN-based methods have been widely
applied to various computer vision tasks, such as target track-
ing [30], medical image analysis [31,32], image translation [9],
etc. For image translation, Ref. [9] is the first to successfully apply
conditional GANs (cGANs) to image translation, breaking through
the bottleneck of traditional methods, and proposed a Pix2Pix
framework, which opened up a new era for image translation.
In this paper, we propose an image-to-image translation method
based on GAN.

Image-to-image translation. I2I translation aims to capture the
mapping from an original visual domain to target domains [9].
Many efforts have been devoted to this challenging task. The suc-
cessful introduction of cGANs has made Pix2Pix the first common
deep-learning framework for I2I translation [2,3,20]. Although the
image quality has been improved, its training requires paired
images. Focusing on unpaired I2I translation, Ref. [3] put for-
ward a novel cycle consistency loss, encouraging the model to
capture auxiliary inverse relations from the target visual domain
to the original domain. Ref. [24] proposes an unsupervised I2I
translation based on the GAN model named DiscoGAN, aiming
to help the model discover the cross-domain relations for un-
paired I2I translation. Unsupervised I2I translation (UNIT) [1] is
another typical unsupervised I2I translation model. It also aims to
avoid costly pairing and make a shared-latent space assumption
based on the combination of GANs and Variational AutoEncoders
(VAEs) [33]. Nevertheless, these early studies make a simple
assumption that the mapping of I2I translation is one-to-one,
which ignores the inherent multimodal characteristic of the I2I
translation [19].

Multimodal image translation. Although GAN-based methods have
made profound progress in image quality [18], the inherent
multi-modal characteristic of I2I translations has been hindered
since the well-known mode collapse problem limits the diversity
of generated images [8,17]. To improve the diversity of generated
images, Encoded Multi-agent GAN (EMGAN) [34] employs multi-
ple generators. CGAN-based methods often assist the model in
discovering more image modes by introducing a regularization
term [17]. For I2I translation, BicycleGAN [20] addresses the
low-diversity problem through the combination of a conditional
Latent Regressor GAN (cLR-GAN) and a conditional VAE-GAN
(cVAE-GAN). It obtains realistic and diverse images by learn-
ing a bijective mapping between target space and latent space.

Augmented CycleGAN [22] introduces an encoder to assist the
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model with achieving the multi-modal goal of I2I translation.
Additionally, I2I Translation via Disentangled Representations
(DRIT) [8] and Multimodal Unsupervised I2I Translation (MU-
NIT) [19] propose a new assumption that the image representa-
tion can be decomposed into different domain-specific style codes
and domain-invariant content codes. They recombine domain-
invariant content codes with other style codes corresponding to
different domains and produce desirable and diverse outputs [8,
19]. However, these methods mainly focus on the two-domain I2I
translation. Some widely-used datasets in the real situation often
contain more than two domains. The scalability of these two-
domain translation methods is limited for datasets with more
than two domains [10,23].

Multi-domain image translation. To conquer the scalability, sev-
eral recent methods have been developed. In [23], the authors
proposed a StarGAN framework, implementing the translations
for more than two domains using target domain labels. StarGAN
is a typical cGAN-based framework, but its fixed domain labels
limit the diversity of the outputs. To avoid this limitation, Lee
et al. abstracted domain information by introducing an image
domain encoder and further extended DRIT to the multi-domain
I2I translation [21]. In addition, based on the assumption that
the image encoder can decompose images into style space and
content space, StarGAN-v2 [10] proposes domain-specific style
vectors and implements image translations over multiple do-
mains. Nevertheless, most existing approaches simply use the
extracted image style features as conditional inputs to the gen-
erator. To our knowledge, no study encourages the model to
generate diverse images by regularizing the generator based on
the extracted features. Therefore, we conduct a further study on
making the best of the extracted image style features to enhance
the diversity for multi-domain I2I translation.

Diversity maximization methods. Enhancing the diversity of sam-
ples is an unavoidable and crucial problem in many computer
vision tasks [17,35,36]. For instance, to avoid tedious manual an-
notation work, Yang et al. proposed a multi-class active learning
method for visual concept recognition [35]. They employed a
similarity matrix as a diversity regularization term for the objec-
tive function to make the sampled data as diverse as possible.
Liu et al. [36] designed a pair-based early active learning method
for Person Re-identification (Re-ID) by introducing a pairwise
diversity maximization criterion. This method can improve the
diversity of selected image pairs for Re-ID tasks. However, the
above approaches mainly work in the sampling stage of model
training. For I2I translations, enhancing the diversity of image
translation is mainly in the stage of image generation [8,15,17].
Mode-seeking GAN (MSGAN) improves the diversity of generated
images by introducing a mode-seeking regularization term [17].

This regularization term works based on the conditional input of
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Fig. 2. Framework overview. The framework consists of three parts: a feature extractor (a style encoder or a mapping network), a generator, and a discriminator.
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he model. Inspired by MSGAN, we make full use of the extracted
mage style features to design a style-guided diversity regular-
zation term for the I2I translation model, thereby improving the
iversity of translation samples.

omparing I2I translation and image harmonization. Image harmo-
ization is crucial in image processing [37–40]. It aims to improve
he generated image quality by harmonizing the appearance (e.g.,
olor, contrast, or brightness) of the foreground to match the
ackground image [38,40]. It can generate high-quality images
hat appear more realistic [38]. However, I2I translation aims to
ranslate the image target from one original image domain to
ther image domains with different styles [8,10]. The styles here
efer not only to objects’ colors but also to some attributes [21,
3]. For example, in Fig. 1, a good image translation model can
ranslate a black and white dog into a brown cat or a lion. Ideal
mage translation requires that its translated images are not only
ealistic but also as diverse as possible [8,15,17]. It exactly is
ur goal to enhance the diversity of multi-domain image trans-
ation. We compare many of the state-of-the-art I2I translation
ethods mentioned above, and their differences are summarized

n Table 1. Among them, our method and StarGAN-v2 improve
he multimodality of multi-domain image translation through a
ingle generator. Furthermore, only our method not only takes
he extracted feature styles as input to the generator but also
tilizes them to propose a regularization term for the generator
o encourage the model to generate more diverse images.

. Style-guided image-to-image translation

We propose a style-guided I2I translation (SG-I2IT) with a
ovel style-guided diversity regularization term. The new diver-
ity regularization term encourages our model better to explore
he image space and capture image styles.

.1. Image translation framework

Let Z , X , and Y be the spaces of the noise, image, and possible
isual domain, respectively. Given a random noise z ∈ Z or a
eference image x′

∈ X in any target visual domain y′

i ∈ Y ,
e can extract style features si through the feature extractor.
e aim to encourage the image translation model to make the

ost of the extracted style features si and produce diverse images

4

eflecting the style of domain y′

i . Our method is based on a
ecent successful I2I translation framework, StarGAN-v2 [10]. The
ramework consists of the three parts shown in Fig. 2, and they
re described below.

tyle feature extractor (green module in Fig. 2). We extract the
tyle features si through an image encoder E (the red networks)
r a mapping network M (the green networks), as shown in
ig. 2. For the former, given a reference image x′

∈ X and its
omain y′

i , the encoder E extracts style features si = Ey′i (x
′) from

mage x′. For the latter, randomly sampled a noise vector z from
aussian distribution N(0, 1), the mapping network M maps the

noise vector z to style features si = My′i
(z) that is likely in the

target domains y′

i . To make the feature extractor applicable to
every domain, both E and M are designed with multiple branch
outputs corresponding to different domains. Each output branch
Ey′i (·) or My′i

(·) provides style features si for a specific domain
i, i = 1, 2, . . . , K , where K refers to the number of domains.
herefore, the extractor can provide style features for all possible
omains.

enerator (orange module in Fig. 2). It produces new images I i =

(x, si) from an original image x ∈ X with the assistance of
tyle features si provided by the style feature extractor. Domain-
pecific style features si help the generator G produce images that
re likely in any target domain y′

i . Thus, the model can translate
mages between multiple domains (such as from cats to dogs,
ildlife, or cats). The generator G mainly contains two parts:
ownsampling blocks and upsampling blocks. Down-sampling
locks adopt the instance normalization (IN), and up-sampling
locks use the adaptive instance normalization (AdaIN). We inject
he style features si into the generator G through the AdaIN
ayers [10,41]. AdaIN layers complete the fusion of the original
mage x and the features si through

daIN(x, si) = σ (si)
(
x − µ(x)

σ (x)

)
− µ(si), (1)

where σ (·) and µ(·) denote mean and variance functions, respec-
ively.

iscriminator (purple module in Fig. 2). Both generated fake im-
ges x′ and real images x are put into the discriminator D. The

discriminator D is responsible for identifying the authenticity of
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Fig. 3. The comparison of different diversity loss functions. Figs. 3(a), 3(b), and 3(c) respectively illustrate the diversity regularization terms of MSGAN, StarGAN-v2,
nd the proposed method. Fig. 3(a) presents the mode-seeking loss Lms of MSGAN, maximizing the distance between two images with respect to the noises and

ignoring the extracted features si . Fig. 3(b) shows the diversity-sensitive loss Lds of StarGAN-v2, which directly maximizes the distance between two samples. Fig. 3(c)
presents the proposed style-guided diversity loss Lsd , maximizing the image distance with the guidance of the extracted features si . Black arrows represent the
original mappings of Lms or Lds, and red arrows represent the mappings of the proposed method in this paper.
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the input images. As shown in Fig. 2, the discriminator D is de-
signed with multiple output branches corresponding to multiple
visual domains. Each branch Dyi (·) is a binary classifier designed
to distinguish whether the input sample is a real image from the
domain yi or a fake image from the generator G corresponding
o domain yi. This multi-branch design not only encourages the
odel to generate plausible images but also makes the generated

mages cover all possible image domains as much as possible.

.2. Diversity loss function design

A good diversity loss function can alleviate the mode col-
apse problem for GAN-based methods and effectively improve
he diversity of generated images. The core idea of designing a
iversity loss function is to encourage the model to discover more
mage modalities by maximizing the distance between any two
enerated images, I1 and I2 [10,17]. Recently, the most popular
nd widely-used diversity loss function is the mode-seeking loss
Lms) [10,21] proposed by Ref. [17],

ms = E
[
dX (I1, I2)
dZ (z1, z2)

]
= Ex,z1,z2

[
∥G(x, z1) − G(x, z2)∥1

∥z1 − z2∥1

]
, (2)

where d∗(·, ·), z i, and G(x, z i) respectively denote the distance
measured by L1 norm ∥·∥1, noise vectors, and generated images.
The design idea of Lms is illustrated in Fig. 3(a); that is, the
model can be encouraged to discover different image modes
by maximizing the ratio of the image distance over the noise
distance. As can be seen in Fig. 3(a), Lms ignores the feature space.
When it is introduced into StarGAN-v2, the slight difference in
the denominator significantly increased the loss and made the
model training unstable [10]. Then, Ref. [10] directly removes the
denominator ∥z1 − z2∥1 in the original form of Lms to maximize
the distance between any two generated images and provides a
diversity-sensitive loss Lds for StarGAN-v2,

Lds =E[dX (I1, I2)]
=Ex,s1,s2 [∥G(x, s1) − G(x, s2)∥1]

=Ex,y′i,z1,z2 [∥G(x,M(z1)) − G(x,M(z2))∥1].

(3)

The design of Lds is illustrated in Fig. 3(b). Obviously, Lds
does not consider the feature space, and directly removing the
denominator makes Lds fail to inherit the design idea of Lms. To
this end, we attempt to find out the reason why L makes the
ms

5

training of StarGAN-v2 unstable so that we can effectively inherit
the design ideas of Lms to design a diversity loss function utilizing
style features for such multi-domain translation frameworks.

We notice that noise vectors z i in the denominator of Lms, as
shown in Fig. 2, are no longer direct inputs of the generator but
are inputs of the mapping network M . M extracts style features si
from z i for the generator G. We respectively denote the mapping
network M as a continuous function on the noise variable z i and
the generator G as a continuous function on the image x and style
features si, that is,

si = M(z i) and I i = G(x, si),

then we get

I i = G(x,M(z i)). (4)

Eq. (4) shows that the generator G is a composite function with
respect to the noise vector z i. Thus, given an input image x0 and
the slight difference of noise vector, ∆z = z2−z1, when ∆z → 0,
the mode-seeking loss in StarGAN-v2 will be described as

L̃ms =E
[
dX (I1, I2)
dZ (z1, z2)

]
=Ez1,z2

[
∥G(x0,M(z2)) − G(x0,M(z1))∥1

∥z2 − z1∥1

]
=Ez1,z2

[
∥G(x0,M(z1 + ∆z)) − G(x0,M(z1))∥1

∥∆z∥1

]
=Ez1,z2

[G′

z (x0,M(z1))

1

]
=Ez1,z2

[G′

s(x0, s1)

1 ·

M ′

z (z1)

1

]
,

(5)

here M ′
z (z1) and G′

s(x0, s1) respectively denote the differential
gradient) of function M(z) and the partial differential (gradient)
f function G(x, s) with respect to style feature s. But in the
eneral cGAN models, generated images I i = G(x, z i), and Lms
ill be

ms =E
[
dX (I1, I2)
dZ (z1, z2)

]
= Ez1,z2

[
∥G(x0, z2) − G(x0, z1)∥1

∥z2 − z1∥1

]
=Ez1,z2

[
∥G(x0, z1 + ∆z) − G(x0, z1)∥1

∥∆z∥1

]
=E

[G′ (x , z )
 ]

.

(6)
z1,z2 z 0 1 1
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y comparing Eq. (5) with Eq. (6), it can be seen that L̃ms in
tarGAN-v2 has one more term

M ′
z (z1)


1, that is a norm of

he gradient of the mapping network. When the gradient of
he generator is determined, the more enormous

M ′
z (z1)


1 will

ake L̃ms increase more sharply, which will finally cause the un-
stable training of the model. Therefore, we infer that the unstable
training of StarGAN-v2 with L̃ms results from the fact that the
noise vectors z i are no longer direct inputs of the generator.

Based on the above analysis, we propose to make full use
of style features si, conditional inputs of the generator, and de-
sign a style-guided diversity loss (SD loss) for the StarGAN-v2
framework as follows,

Lsd = max
{
dX (I1, I2)
dS(s1, s2)

, dX (I1, I2)
}

=

{
Ex,s1,s2

∥G(x,s1)−G(x,s2)∥1
∥s1−s2∥1

, if ∥s1 − s2∥1 < 1,
Ex,s1,s2 ∥G(x, s1) − G(x, s2)∥1 , if ∥s1 − s2∥1 ⩾ 1.

(7)

he proposed SD loss function Lsd aims to utilize style features
i to regularize the generator G and guide the model to dis-
over more diverse images. When two style features are similar,
hat is, ∥s1 − s2∥1 < 1, it maximizes the ratio of the distance
etween translated images I1 and I2 over that between style
eatures s1 and s2. When two style features are far apart, that is
s1 − s2∥1 ⩾ 1, then ∥I1 − I2∥1/∥s1 − s2∥1 ⩽ ∥I1 − I2∥1, so it
dopts ∥I1 − I2∥1 to maximize the distance between two images
1 and I2. As illustrated in Fig. 3(c) (black solid mappings), a mode
ollapse situation is likely to occur when two features s1 and s2
re relatively close, and the images I1 and I2 translated by them
re likely to be in one mode. However, with our loss function (red
olid mappings), the style feature s2 generates I2, which belongs
o another undiscovered mode. This shows that the proposed
iversity loss function effectively utilizes style features to max-
mize the distance between any two generated images, I1 and
2, thereby making it more effective to encourage the model to
xplore the image space to translate more meaningful images.

.3. Training

Given an original image x ∈ X and its domain y ∈ Y , we train
he proposed SG-I2IT model with our style-guided diversity loss
sd (Eq. (7)), as well as the following three loss functions.

dversarial loss. Given a random noise vector z ∼ N(0, I) or a
eference sample x′

∈ X from a target domain y′

i ∈ Y , the style
eature extractor provides style features si = My′i

(z) or si =

y′i
(x′) for the generator G. With the assistance of style features

i, the generator G produces plausible images G(x, si) to confuse
he discriminator D, which in turn identifies the translated fake
amples G(x, si) from real samples x. They compete with each
ther via an adversarial loss [29]

adv = Ex,y
[
logDy(x)

]
+ Ex,y′i,si

[
log(1 − Dy′i

(G(x, si)))
]
, (8)

here Dy(·) refers to the output of discriminator D. Generator G
inimizes Ladv to make generated images G(x, si) much more re-
listic that the discriminator cannot distinguish from real images
. Discriminator maximizes Ladv to identify generated images x
rom fake images G(x, si).

tyle reconstruction loss. To guarantee the generator G makes full
se of style features si and generates new images G(x, si) with
uch styles, we utilize a style reconstruction loss [19,20]

rec = Ex,si,y′i

[Ey′i (G(x, si)) − si

1

]
. (9)

y′i
(G(x, si)) refers to style features that are extracted from trans-

ated sample G(x, s ) and correspond to the target domain y′.
i i

6

eatures si come from the domain y′

i . Minimizing Lrec ensures that
ranslated images G(x, si) better reflect the styles of the target
omain, making G(x, si) more like the target domain image.

ycle consistency loss. To stabilize the model training and ensure
ranslated images G(x, si) preserve some characteristics of the
riginal sample x (such as expression and posture), an L1 norm
unction is employed, named the cycle consistency loss [20,22],

cyc = Ex,si,y

[G(G(x, si), Ey(x)) − x

1

]
. (10)

n Equation (10), G(x, si) are translated samples corresponding to
arget domain y′

i . Style feature Ey(x) is extracted from the original
ample x and corresponds to the original domain y. Hence, min-
mizing Lcyc helps the translated new samples G(x, s) preserve
ome characteristics of the original image x.

ormulation of Style-Guided Image Translation. With the assis-
ance of style-guided diversity loss, the objective function of the
roposed SG-I2IT model can be designed as:

min
G,M,E

max
D

V (M, E,G,D)

min
G,M,E

max
D

Ladv − λsdLsd + λrecLrec + λcycLcyc,
(11)

here λsd, λrec , and λcyc denote hyper-parameters, controlling the
eight of each term. Terms Ladv , Lsd, Lrec , and Lcyc correspond to
qs. (8), (7), (9), and (10), respectively.
Considering the discriminator D and other modules containing

he generator G, the mapping network M , and the encoder E as
wo players, the model can be viewed as a two-player game.
e train the discriminator D to maximize V (M, E,G,D), aiming

o identify the translated fake image from the real image. The
ther modules aim to translate plausible images that may confuse
iscriminator D by minimizing V (M, E,G,D). It is worth noting
hat the style-guided diversity loss can assist the generator in
etter-capturing image styles, thereby generating higher quality
nd more diverse images for multi-domain I2I translation.

. Experiments

To evaluate the performance, we conduct extensive compar-
tive experiments to compare the proposed SG-I2IT model with
wo state-of-the-art approaches, StarGAN-v2 [10] (in CVPR 2020)
nd MSGAN [17] (in CVPR 2019). Experimental details are as
ollows.

.1. Datasets

We evaluate our method against baselines on two widely
dopted datasets, a high-quality CelebFaces Attributes dataset
CelebA-HQ) [6] and a high-quality Animal Faces image dataset
AFHQ) [10], which follows the Ref. [10].

elebA-HQ. It is a high-quality version of the CelebFaces At-
ributes (CelebA) dataset [6], which contains 30,000 face images
ith a resolution of 1024 × 1024. The images in this dataset can
e split into two visual domains, male and female, according to
ender. The training set contains 28,000 images, including 17,943
emale images and 10057 male images, while the test set has
,000 images, including 1,000 females and 1,000 males.

FHQ. To further compare translation performance across mul-
iple domains, our experiments adopt a recently released three-
omain dataset AFHQ [10]. It contains 15,000 animal faces with
resolution of 512 × 512. The images in this dataset can be split

nto three visual domains: cat, dog, and wildlife. Each domain has
,000 images, of which 4,500 are selected as the training set, and
he remaining 500 images are used as the test set.
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Fig. 4. Detailed neural network architecture of four members: the image encoder, the mapping network, the generator, and the discriminator.
Fig. 5. Noise-based visual comparison on both two datasets. The other rows display the images translated by different methods using randomly sampled noise codes.
n Fig. 5(a), the left two columns and the right two columns show the translated images from male to female and from female to male, respectively. In Fig. 5(b), each
olumn from left to right displays the translations in the following order: cat-to-dog, dog-to-cat, cat-to-wildlife, wildlife-to-cat, wildlife-to-dog, and dog-to-wildlife.
.2. Evaluation metrics

We evaluate translated images with two widely used eval-
ation metrics, including Fréchet inception distance (FID) [42]
or image quality and learned perceptual image patch similarity
LPIPS) [43] for image diversity.

ID. It evaluates image quality by measuring the similarity be-
ween the translated image distribution and the real image dis-
ribution with the Fréchet distance. Image distributions are ex-
racted from the image sets through the ImageNet pre-trained
7

Inception-V3 [42]. If we mark the translated image distribution
as N(µge, Σge) and the real one as N(µre, Σre), the FID value is
calculated by

FID =d2(N(µge, Σge),N(µre, Σre))

=∥µge − µr∥
2
2 + Tr(Σge + Σre − 2(ΣgeΣre)

1
2 ).

Thus, a lower FID value means that the translated images are
more plausible and more similar to the real images.

LPIPS. We employ LPIPS to evaluate image diversity. It mea-
sures the image diversity by calculating the average perceptual
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Fig. 6. The diverse samples translated by our model on CelebA-HQ dataset. Input images in the first row are real images. The rest images are our translated results
ased on the input images, including four rows of female translations and four rows of male translations. We preserve the identity and pose of the input images,
hile transforming their high-level semantics (such as makeup, hair texture, and complexion) into other diverse styles.
airwise distances (PPDs) between all images. The pre-trained
lexNet [44] extracts features for computing the perceptual pair-
ise distance. PPD is an L1 norm distance between every two

eatures. LPIPS is the average PPD among all feature pairs. Thus,
higher LPIPS value suggests better diversity of the translated

mages.

.3. Experiment setup

.3.1. Architecture
The proposed method follows the StarGAN-v2 framework.

he detailed neural network architecture is displayed in Fig. 4.
8

For style extractor, image encoder E consists of six pre-trained
residual blocks activated by Leaky ReLU functions and one fully-
connected domain-specific multi-branch output layer. At the same
time, the mapping networkM is composed of six 512 dimensional
fully-connected layers with ReLU activation functions and one
fully-connected domain-specific multi-branch output layer. The
generator G mainly consists of two parts: four layers of down-
sampling blocks normalized by IN and four layers of upsampling
blocks normalized by AdaIN. Every block is activated by Leaky
ReLU. The discrimination D is implemented through six pre-
trained residual blocks with Leaky ReLU and a multi-branch fully
connected output layer.
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Fig. 7. The diverse samples translated by our model on AFHQ dataset. Input images in the first row are real images. The rest images are our translated results based
n the input images, including two rows of cats, two rows of dogs, and two rows of wildlife. We preserve the pose and gaze of the input images, while transforming
heir high-level semantics (such as breed, hair texture, and color) into other diverse styles.
a

4

.3.2. Implementation details
We implement the proposed model, StarGAN-v2, and MSGAN

ith PyTorch 1.4.0. All models are trained on an NVIDIA GeForce
TX 2080Ti GPU with 8 GB memory. For a fair comparison, all
raining images are resized into 256 × 256 resolution, following
ur baseline [10]. The maximum batch size of the model on
eForce RTX 2080Ti GPU can is 4, just half of that in Ref. [10],
hich causes some discrepancies in the numerical results. The

teration number is set to 100K for all models. It takes about two
ays to train a model with our equipment. There are three hyper-
arameters, λ , λ , and λ , in our objective. These parameters
sd rec cyc a

9

are tuned by the control variable method. We choose hyper-
parameter values ranging from 0.2 to 2 with a stride of 0.2, and
determine hyper-parameters {λsd = 1, λrec = 1.2, λcyc = 1}
for CelebA-HQ and {λsd = 1, λrec = 0.3, λcyc = 0.2} for AFHQ
ccording to these empirical experiences.

.4. Experimental results

Since the extracted style features si, as shown in Section 3.1,
re extracted from random noises z or from reference images x,
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Fig. 8. Reference-based visual comparison on CelebA-HQ dataset. Input images and reference images in the leftmost column and the uppermost row are real images.
Each method translates input images to the target domains, reflecting the styles of the reference images. The even-numbered rows display the translated images of
StarGAN-v2, and the remaining rows present the translated images of our method.
Fig. 9. Reference-based visual comparison on AFHQ dataset. The input images in the leftmost column and reference images in the uppermost row are real images.
Each method translates the input image to the target domains, reflecting the styles of the reference images. The even rows present the images generated by the
StarGAN-v2 model, and the rest rows show the images generated by our method.
we evaluate the proposed method from two perspectives: noise-
based translation and reference-based translation. In addition,
a user evaluation of the user preference between the proposed
method and the state-of-the-art approaches is provided.
10
4.4.1. Noise-based results
For the qualitative comparison of noise-based translation,

Fig. 5 shows some translation images of the proposed method
and two competing approaches, MSGAN and StarGAN-v2. Each
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Table 2
Quantitative evaluation of noise-based translations on CelebA-HQ and AFHQ
datasets with FID and LPIPS. The lower the FID, the higher the quality of the
translations. The higher the LPIPS, the more diverse the translations.
Methods CelebA-HQ AFHQ

FID ↓ LPIPS ↑ FID ↓ LPIPS ↑

Real images 14.8 – 12.9 –
MUNIT [19] 31.4 0.363 41.5 0.511
DRIT [8] 52.1 0.178 95.6 0.326
MSGAN [17] 33.1 0.389 61.4 0.517
StarGAN-v2 [10] 20.6 0.369 27.2 0.441

Ours 19.4 0.463 25.9 0.497

method provides several translated images in rows that are
translated from different input images (in the first row) with
the features extracted from random noise. Fig. 5(a) presents the
visual results on the CelebA-HQ dataset. Obviously, the images
translated by MSGAN do not have smooth and complete con-
tours, especially facial shapes and hairstyles. Its generated images
have many artifacts, which means that MSGAN cannot generate
realistic face images. Compared with StarGAN-v2, the images
translated by our method have more clear contours, such as more
refined hairstyles and more clear backgrounds.

Fig. 5(b) presents a visual comparison of translated images
n the AFHQ dataset. AFHQ is a more challenging dataset, for
ts three domains bring relatively significant differences. For the
FHQ dataset, MSGAN could learn some recognizable features of
nimals, such as ears, eyes, and noses. But these features are not
orrectly combined to form an animal with a realistic anatomical
tructure. The StarGAN-v2 method could generate relatively re-
listic images. Still, in comparison, our model not only generates
ealistic images but also preserves the contours of input images
ore accurately, such as ears and chins. The visual results on

he CelebA-HQ dataset and the AFHQ dataset both show that our
ethod could translate realistic images with higher quality than
ther methods.
Figs. 6 and 7 provide some image samples translated by our

ethod on the CelebA-HQ and AFHQ datasets, respectively. In
ig. 6, we preserve the identity and pose of the input images
nd translate them into diverse appearances with different styles,
uch as their hairstyle, hair color, complexion, etc. In Fig. 7, we
eserve the pose and gaze of input images and translate the input
mages into three visual domains (cat, dog, and wildlife). Each
mage can be translated into diverse appearances with different
tyles, such as their breed, hair texture, and color. The diverse
lausible translations of our method on the two datasets demon-
trate that our method can effectively make the images appear in
arious styles with high quality.
Quantitative evaluation results of noise-based translations are

rovided in Table 2. As shown in the table, our method is quan-
itatively compared with four image translation models, MU-
IT, DRIT, MSGAN, and Star-GAN-v2. For quality evaluation, our
ethod obtains the lowest FID scores among all methods on both

wo datasets. The best FID results validate that images translated
y our method are the most realistic, demonstrating that our
ethod performs the best in image quality compared to other
ethods. For diversity evaluation, the LPIPS score of our method
n CelebA-HQ dataset is the best among all methods, which
eans that our method is superior to other methods in image
iversity on CelebA-HQ dataset. On AFHQ dataset, our method
ets a higher LPIPS score than StarGAN-v2 and DRIT, indicating
hat our method outperforms StarGAN and DRIT in image diver-
ity. Regarding the high LPIPS scores of MSGAN and MUNIT on
he AFHQ dataset, we speculate from the FID scores and visual

omparisons that this is due to their inability to effectively reflect

11
Table 3
Quantitative evaluation of reference-based translations on CelebA-HQ and AFHQ
datasets with FID and LPIPS.
Methods CelebA-HQ AFHQ

FID ↓ LPIPS ↑ FID ↓ LPIPS ↑

Real images 14.8 – 12.9 –
MUNIT [19] 107.1 0.176 223.9 0.199
DRIT [8] 53.3 0.311 114.8 0.156
MSGAN [17] 39.6 0.312 69.8 0.375
StarGAN-v2 [10] 24.1 0.335 32.1 0.370

Ours 21.7 0.363 30.3 0.392

image features resulting in large differences between the gener-
ated images. The quantitative comparison results confirm that our
method significantly outperforms other methods concerning the
quality and diversity of the translated samples.

4.4.2. Reference-based results
For the visual comparison of reference-based translations, the

proposed method is mainly compared with StarGAN-v2, as the
above visual results already show that the translation images
of MSGAN are blurry and have many artifacts. Fig. 8 provides
some translated images of these two methods on CelebA-HQ
dataset. Except for the first row, each row of translated images is
produced from an input image (in the first column) referring to
different reference images (in the first row). For a normal image
without other interference (such as the male image in the first
column), both methods can effectively translate realistic images
based on reference images. But for the original images with in-
terference (such as the female images with hands in the first col-
umn), it is difficult for StarGAN-v2 to overcome the interference
information (hands) to generate realistic images. Its translated
images have a lot of artifacts. Our method can effectively over-
come the interference to translate more realistic images. Artifacts
in the background of generated images are also much less. Our
method could effectively overcome the interference to translate
realistic images.

Fig. 9 presents some reference-based translated samples on
AFHQ dataset. The images translated by both methods are real-
istic. But the proposed method performs better on some details,
such as animal face contours, marked in Fig. 8 (poor in red and
better in green). The visual comparisons on the AFHQ dataset also
demonstrate the superiority of our method in translated image
quality. However, in most image translation models, including the
model proposed in this paper, the background of the generated
image has some artifacts. We conjecture that it is caused by
the fact that the translation model mainly focuses on the style
transfer of the image target and ignores the processing of the
image background.

Table 3 displays the FID and LPIPS results of reference-based
samples translated by different methods, including MUNIT, DRIT,
MSGAN, StarGAN-v2, and the proposed model. The experiments
are performed on two datasets, CelebA-HQ and AFHQ. For qual-
ity comparison, our method obtains the significantly lowest FID
values on both datasets. Our FID values are 2.4 and 1.8 points
on the CelebA-HQ and AFHQ datasets, respectively, which are
lower than the state-of-the-art method StarGAN-v2. The low-
est FID scores indicate that our method performs best among
all approaches in terms of image quality. For diversity evalua-
tion, the proposed method also obtains the best LPIPS values on
both two datasets, indicating that, for reference-based transla-
tion, our method also performs the best among all methods in
terms of image diversity. The best quantitative comparison results
in Table 3 demonstrate that the proposed method outperforms
other methods with regard to image quality and diversity for
reference-based translation.



T. Li, H. Zhao, J. Huang et al. Knowledge-Based Systems 255 (2022) 109731

r
s
d

4

s
m
m
h
f
h
i
T

Fig. 10. Manhattan distance of image samples trained on AFHQ dataset. Different colors represent the results obtained by the model with different diversity
egularization terms: orange represents the results of the model with our style-guided diversity regularization term; yellow represents the results of the diversity-
ensitive loss function; blue represents the results of the model using mode-seeking regularization; gray represents the results obtained by the model without any
iversity function.
.4.3. Diversity analysis
Currently, many I2I translation models enhance the diver-

ity of translated images by adopting a regularization term that
aximizes the distance between images [10,17]. Our proposed
ethod is a novel technique to maximize image distance, thus en-
ancing image diversity for multi-domain I2I translation. There-
ore, we demonstrate the effectiveness of our technique in en-
ancing image diversity by computing image distances. Such
mage distance is calculated by the Manhattan distance [45].
he proposed style-guided diversity regularization term Lsd is

mainly compared to the diversity-sensitive loss Lds [10] and
mode-seeking regularization term Lms [17]. Additionally, we also
calculated the image distance obtained by the model without any
diversity loss. For a fair comparison, we conduct all experiments
on the StarGAN model. They are compared on the AFHQ and
CelebA-HQ datasets, respectively. Translated images are all color
images with 256 × 256 pixels. We calculated the average of
Manhattan distances for six pairs of translated images. All models
are trained 100,000 iterations and output a distance result every
500 iterations.

Fig. 10 presents the generated image distances from the model
trained on the AFHQ dataset. Figs. 10(a) and 10(b) show the
12
Table 4
Pixel-level image distances on the AFHQ dataset. ‘S.D.’ denotes the standard
deviation of the image distance. The best results are highlighted in bold. The
second best results are underlined.
Methods Noise-based Reference-based

Mean ↑ S.D. ↓ Mean ↑ S.D. ↓

Without 0.221 0.067 0.242 0.079
Lms 0.421 0.082 0.420 0.075
Lds 0.425 0.051 0.404 0.066

Ours 0.507 0.065 0.489 0.064

image distance results of the model guided by noises and refer-
ence images, respectively. In the figures, the red, yellow, and blue
solid lines are higher than the gray ones. It shows that, compared
with the model without diversity loss, diversity loss functions
can effectively help the model generate images that are different
from each other, thereby increasing the diversity of samples. Ad-
ditionally, the red line is slightly higher than the yellow line and
the blue line overall, indicating that the diversity regularization
term L is better than mode-seeking regularization term L
sd ms
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Fig. 11. Manhattan distance of image samples trained on CelebA-HQ dataset. Different colors represent the results obtained by the model with different diversity
regularization terms: orange represents the results of the model with our style-guided diversity regularization term; yellow represents the results of the diversity-
sensitive loss function; blue represents the results of the model using mode-seeking regularization, and gray represents the results obtained by the model without
any diversity function.

Fig. 12. Visualization of the feature space of images generated on the dataset CelebA-HQ via t-SNE. Each data point represents an image. ‘‘0’’ represents a female
image; ‘‘1’’ represents a male image. There are 300 image samples per class.

13
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Table 5
Pixel-level image distances on the CelebA-HQ dataset. ‘S.D.’ denotes the standard
deviation of the image distance. The best results are highlighted in bold. The
second best results are underlined.
Methods Noise-based Reference-based

Mean ↑ S.D. ↓ Mean ↑ S.D. ↓

Without 0.210 0.075 0.305 0.101
Lms 0.447 0.090 0.454 0.092
Lds 0.435 0.086 0.434 0.088

Ours 0.536 0.071 0.502 0.076

and diversity-sensitive loss function Lds. That is to say, Lsd can
more effectively encourage the model to enhance the diversity of
generated images.

Table 4 gives the quantified results of translated image dis-
tance on the AFHQ dataset. These results are pixel-level image
distances. The larger the image distance, the better the image
diversity. The comparison of the mean values shows that the pro-
posed style-guided diversity loss function achieves the maximum
image distance among all methods. It shows that, among all ap-
proaches, the proposed method performs the best in encouraging
the model to increase image diversity. Additionally, comparing
the standard deviation (S.D.) of image distance, the smaller S.D.,
the more stable the model training. In noise-based image trans-
lation, Lds achieves the minimum variance, and Lsd is the second
best. In reference-based image translation, our method achieves
the minimum variance. Overall, Lsd can more effectively encour-
age the model to translate diverse images without reducing the
stability of the model.

Fig. 11 shows the image distances of the model trained on the
CelebA-HQ dataset. Figs. 11(a) and 11(b) show the image distance
results of noise-based image translation and reference-based im-
age translation, respectively. Comparing these two subgraphs, it
is evident that diversity loss functions are more effective in im-
proving image diversity for noise-based image translation. Among
all diversity regularization terms, our method performs the best.
The quantified image distance results on the CelebA-HQ dataset
are shown in Table 5. The table shows that the proposed style-
guided diversity regularizer term obtains the most significant
mean distances in noise-based and reference-based image trans-
lation, 0.536 and 0.502, respectively. They are 0.089 and 0.048
higher than the mean distances of the second best method Lms,
respectively. It shows that the proposed diversity regulariza-
tion term still outperforms other methods in enhancing image
diversity on the CelebA-HQ dataset.

Furthermore, we visualize the feature distribution of trans-
lated images via t-SNE. Fig. 12 presents the feature space distri-
butions of the generated images on the CelebA-HQ dataset. The
CelebA-HQ dataset consists of two domains: female and male.
For each image domain, 300 generated samples are randomly
selected for experiments. Sub Fig. 12(a) shows the feature dis-
tribution of the images generated by the StarGAN-v2 model.
Sub Fig. 12(b) visualizes the feature distribution of the images
generated by the proposed method. In sub Fig. 12(a), multiple
samples are clustered into groups, while this phenomenon is rare
in sub Fig. 12(b). Overall, the sample distribution in sub Fig. 12(b)
is more spread out than that in sub Fig. 12(a). It shows that
the proposed method can indeed effectively increase the image
distance.

4.4.4. User study
Besides the qualitative and quantitative comparisons, we also

evaluate the performance of our method through a user study
on CelebA-HQ and AFHQ datasets. There are 40 users taking part
in our study. Everyone is provided with 15 groups of translated
14
Fig. 13. User Votes (%) on the most preferred method concerning the visual
quality and style reflection. Our method outperforms the baselines with obvious
advantages in both aspects.

images. Every group of images contains three shuffled translated
images coming from different models. This study assesses trans-
lated images from two aspects: quality and style reflection. For
quality comparison, users evaluate each image’s realism through
specific questions about the facial features, contours, and back-
ground. For style reflection comparison, users mainly evaluate
through questions related to the similarity between the style of
translated images and that of real images. They are also asked to
select the highest quality image and the best one reflecting the
style of the reference image from each group of images.

Fig. 13 presents the vote results of the user study on CelebA-
HQ and AFHQ datasets regarding image quality comparison and
style reflection comparison. The vote results show that our method
is approved by most users. On the one hand, our translations are
obviously considered to outperform other baselines not only in
quality but also in style reflection. On the other hand, comparing
the results on two datasets, our method is perceived to perform
better than baselines on the complex three-domain dataset AFHQ.
The results show that the proposed method can better extract
styles and render them into input images to translate more
realistic and diverse images, compared with other baselines.

5. Conclusion

We have proposed a multi-domain I2I translation method SG-
I2IT with a novel loss function named style-guided diverse loss.
The proposed loss takes full advantage of extracted style features
to maximize the distance between different translated images. As
a result, the model can efficiently capture various image styles.
Extensive experiments have been conducted on a two-domain
dataset, CelebA-HQ, and a three-domain dataset, AFHQ. The re-
sults demonstrate that the proposed method performs better than
two state-of-the-art methods, MSGAN and StarGAN-v2, in terms
of image quality and diversity. In the user study, the proposed
method is also approved by most users, which shows that the
proposed method can capture image style more effectively. In the
future, we will attempt to design a specific feature extractor for
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mage translation to achieve the combination of noise-based and
eference-based methods. Besides, there are some artifacts in the
mages translated by many I2I translation methods. Addressing
he artifacts of translation samples will also be an essential task
n our future work.
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