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Abstract—As a specific kind of cyber-physical systems (CPSs),
autonomous robot clusters play an important role in various
intelligent manufacturing fields. However, due to the increas-
ing design complexity of robot clusters, it is becoming more
and more challenging to guarantee the safety and efficiency for
multirobot cooperative navigation in dynamic and complex envi-
ronments. Although deep reinforcement learning (DRL) shows
great potential in learning multirobot cooperative navigation
policies, existing DRL-based approaches suffer from scalability
issues and rarely consider the transferability of trained policies
to new tasks. To address these problems, this article presents
a novel DRL-based multirobot cooperative navigation approach
named HRMR-Navi that equips each robot with both a two-
layered hierarchical graph network model and an attention-based
communication model. In our approach, the hierarchical graph
network model can efficiently figure out hierarchical relations
among all agents that either cooperate for efficiency or avoid
obstacles for safety to derive more advanced strategies, and the
communication model can accurately form a global view of the
environment for a specific robot, thus, the multirobot cooperation
efficiency can be further strengthened. Meanwhile, we propose an
improved proximal policy optimization (PPO) algorithm based on
the Maximum Entropy Reinforcement Learning, named MEPPO,
to enhance the robot exploration ability. Comprehensive experi-
mental results demonstrate that, compared with state-of-the-art
approaches, HRMR-Navi can achieve more efficient coopera-
tive navigation with less time cost, lower collision rate, higher
scalability, and better knowledge transferability.

Index Terms—Cyber—physical systems (CPSs), deep reinforce-
ment learning (DRL), multirobot cooperation, robot navigation.

I. INTRODUCTION

LONG with the rapid development of artificial intelli-
gence (Al), Internet of Things (IoT), and cyber—physical
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systems (CPSs) technologies, multirobot cooperative navi-
gation problem (MRNP) [1], [2] becomes more and more
important, since it enables the cooperation among robots to
complete complex and cumbersome tasks in logistics systems
and manufacturing industry [6]. Essentially, the objective of
the MRNP is to ensure that multiple robots can jointly achieve
optimal paths toward all respective targets in a quick manner
without causing any collisions, where the targets are dynami-
cally assigned in a highly dynamic environment. However, due
to the lack of effective design automation methods [3], [4],
modern robot cluster-based systems suffer from the inaccu-
rate modeling of interactions between different entities, which
strongly affects the quality of robot cooperation in prac-
tice [5]. Various approaches have been proposed to address
the intractable MRNP, such as simultaneous localization and
mapping (SLAM)-based planning [7] and velocity obstacles
(VOs)-based velocity selection [8]. However, most of these
methods [3], [4], [5], [8] are based on strong premises, such
as requiring a priori global knowledge of the environment for
path planning. Furthermore, as the number of robots increases,
such methods will inevitably face various problems, includ-
ing the nonstationarity of the environment, and increasingly
growing spaces of robots’ actions and states.

Deep reinforcement learning (DRL) has been recognized as
a promising means to tackle the challenging MRNP [9], [10],
[11], [12], [13], [14], [15], [16], [17]. Nevertheless, existing
DRL-based solutions have their respective shortcomings. For
example, some of them assume that robots make their deci-
sions independently without considering any cooperation with
other robots [11], [12], [13], [14]. Moreover, some DRL-based
robot navigation approaches rely on simplified collaborative
mechanisms, such as parameter sharing policy, to achieve basic
cooperative navigation among correlated robots [9]. However,
such methods do not allow optimally allocating target loca-
tions. Although various works [15], [16], [17] have been
proposed recently to enable robots to select targets dynam-
ically or avoid dynamic obstacles during navigation, due to
the insufficient modeling of interactions and relations among
obstacles and robots, so far their robot exploration ability is
strongly limited.

Based on the above observations, this article aims to solve
the following four critical problems in multirobot navigation.
First, most existing approaches [9], [11], [12], [13], [17] can-
not fully represent latent interactions between obstacles, where
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they usually model the joint impact of obstacles by simply
aggregating the pairwise interactions. Second, most methods
fail to model the relations among heterogeneous agents (e.g.,
moving obstacles and robots) in a complex task [11], [12],
[14], [16], [17]. As a result of the above two problems, these
methods are limited for scaling up to model a larger number
of agents owing to high complexity and potential instability
of tasks. Third, most schemes [15], [16], [17], [24] suffer
from poor knowledge transferability, where the trained poli-
cies are difficult to be transferred to different scenarios with
different numbers of robots. Fourth, most existing multiagent
RL-based methods are implemented based on the central-
ized training with decentralized execution (CTDE) framework,
which depends on assumptions, such as centralized training
and information sharing among all agents [15], [21], [23],
[24], [25]. However, this is hard to meet in practical systems
and may degrade the system robustness to attacks.

To address the above issues, this article proposes a novel
multirobot cooperative navigation framework called HRMR-
Navi that focuses on the mobility of obstacles in dynamic
environments. In our approach, HRMR-Navi implements both
representation learning and policy learning of an agent on
top of our proposed hierarchical graph neural network (GNN)
model and attention-based communication model. The hier-
archical GNN consists of two layers: 1) the interagent layer
based on a graph convolutional network (GCN) to effectively
model the relations between robots and 2) the intergroup layer
based on a graph attention network (GAT) to capture the
relations between robots and obstacles. Note that a whole nav-
igation involves a series of cooperation steps among robots.
At the beginning of a cooperation step, each robot needs to
use its hierarchical GNN to figure out a local state represen-
tation by encoding its local observation (i.e., the robot state,
and the observed states of neighboring robots and obstacles)
into an encoder vector. Then, within the cooperation step, all
the robots need to iteratively exchange their local state repre-
sentations with their neighboring agents to form a global view
of the surrounding environment. Note that the above navi-
gation process allows policies to be trained and executed in
a fully distributed manner. This article makes the following
three major contributions.

1) We propose a novel hierarchical GNN, with which
HRMR-Navi can effectively extract the interagent rela-
tions based on a GCN, and adaptively reason the
intergroup relations based on a GAT to help policies
adjust their high-level strategies.

2) We design an attention-based inter-Robot commu-
nication model, which can help robots to obtain
global information to further facilitate the multirobot
cooperation.

3) We propose a novel training algorithm named MEPPO,
which is an augmented PPO algorithm with entropy
maximization, to enhance the exploration ability of the
robots, as well as to enable the robots to obtain a more
efficient cooperative navigation path without collisions
in complex dynamic environments.

Comprehensive experimental results show that our approach
can achieve more efficient navigation policies with better
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scalability and knowledge transferability compared with state-
of-the-art approaches.

The remainder of this article is organized as follows. The
related works are briefly reviewed in Section II. Section III
provides some background knowledge about GAT and presents
the problem formulation. Section IV details the design of our
HRMR-Navi approach. Section V presents the performance
evaluation results. Finally, Section VI concludes this article.

II. RELATED WORK

A considerable number of methods have been proposed to
solve the robot navigation problem, which can be mainly clas-
sified into three categories: 1) traditional schemes; 2) DRL-
based schemes; and 3) DRL+GNN-based schemes.

A. Traditional Schemes

As one of the representative traditional methods, the Social
Force Model [18] has been successfully used in dealing with
the robot navigation problem [19]. The work [20] proposes
a new concept, named reciprocal VOs (RVOs), for multi-
robot navigation, which assumes that each robot navigates
independently without any communications with other robots,
and other robots will make similar collision avoidance behav-
iors. The work [8] proposes a velocity-based approach for
reciprocal n-body collision avoidance, named ORCA, which
enables multiple robots to navigate safely in a complex envi-
ronment without any communications among robots. These
model-based methods inevitably suffer from a series of limita-
tions that may lead to freezing behaviors and tedious parameter
selection.

B. DRL-Based Schemes

DRL has shown significant potentials in multirobot nav-
igation systems in recent studies. The work [15] employs
a multiagent deep deterministic policy gradient (MADDPG)
algorithm utilizing CTDE framework to enable multiagent
clusters to accomplish a cooperative or competitive task.
The work [21] presents counterfactual multiagent (COMA)
to address the challenges of multiagent credit assignment,
which uses a counterfactual baseline that marginalizes the
action of a single agent while keeping the actions of other
agents fixed. However, the policies trained with MADDPG
and COMA lack the ability of knowledge transferring, and
dynamic obstacles are also not considered. Mean Field [22]
utilizes the state and mean action of neighboring agents to
make decisions. However, it ignores various impacts of neigh-
boring agents. To deal with this shortcoming, the work [23]
proposes an attentional communication model, which allows
the agent to decide when to communicate with which neigh-
boring agents, aiming to achieve potential cooperation. The
work [24] proposes QMIX based on the joint value function,
which uses a neural network to estimate the complex relation
between the joint value function and the value function of
each agent, so that each agent can obtain a cooperative pol-
icy with only local observation. The work [25] proposes an
actor—critic algorithm that trains decentralized policies with a
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soft attention mechanism, which can dynamically select rele-
vant information coming from other agents at every time step.
Overall, the above works usually consider the environment
as a black box and the learned knowledge cannot be trans-
ferred to different scenarios. Recently, the work [26] proposes
a method, which combines imitation learning and multiagent
RL to learn a policy of decentralization with local observable
environments. However, this method needs an expert obtained
through centralized planning as the precondition.

C. DRL + GNN-Based Schemes

GNN has attracted great attention in the field of robot
navigation due to its capability to model non-Euclidean rela-
tions among agents [27]. HAMA [28] employs a hierarchical
GAT to obtain information-condensed state representation.
However, this method fails to take into account the latent inter-
actions between noncooperative dynamically moving obsta-
cles. Besides, HAMA does not consider the communications
between robots, making it difficult to obtain cooperative
behaviors among robots. The work [29] uses human maze
data to train a GCN structure, so that the robot can obtain
similar human attention to obstacles. However, it only con-
siders the path planning of a single robot, and neglects the
cooperation between robots. Meanwhile, it also does not
consider the attention between obstacles. The work [30] pro-
poses an algorithm called GPS, which fully utilizes the latent
graphic symmetry between robots in multirobot scenario. The
work [31] constructs an aggregate GNN with time-varying
signals and time-varying networks to learn a local controller
that only needs local observation and local communication.
The work [32] presents a general learning model, which uti-
lizes GNN to extract the local interaction of the robots, so
as to learn the distributed policies for the robots. At the
same time, imitation experts are also used in this learning
method. The work [33] proposes a GNN-based multirobot
perception method, which improves the robots’ abilities of
reasoning perception and fault recovery by nesting the spatial
relation between robots in the communication information and
adjusting the communication weights with the cross-attention
mechanism. The work [34] considers a scenario, where the
robots have a limited field of view and cannot access environ-
ments beyond their limited field of view. The authors propose
a multirobot navigation model, where a convolutional neural
network is used to extract the local spatial features of robots,
GNN is employed to communicate with neighbors, and long
short-term memory (LSTM) is utilized to fuse temporal and
spatial information.

Based on the above observations, in this work we inno-
vatively propose a novel hierarchical GNN model (i.e.,
GCN-based interagent layer and GAT-based intergroup layer)
together with a GAT-based inter-Robot communication model
for the MNRP. The hierarchical GNN model can help
achieve local graph relation representation involving potential
relations between agents, leading to more efficient naviga-
tion policies, while the GAT-based communication model
can further enhance the navigation efficiency by effective
communications.
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Fig. 1. Tllustration of MRNP.

III. PRELIMINARIES AND PROBLEM FORMULATION
A. Graph Attention Network

GAT [38] is a novel convolution-style neural network that
can efficiently process graph-structured data. GAT provides
an efficient way to compute the node embeddings. In GAT,
each node of the graph can assign different weights to its
neighboring nodes according to their characteristics. The node
embedding 4; can be computed from neighboring nodes {N;}
that are connected to the node i, as h; = cr(X:jE N aijWh]/-),

where W € RF'*F js a weight matrix, and h} represents state
feature of node i. The attention weight «;; = softmax;(e;)
measures the importance of node j to node i in calculating
node-embedding vector h;, where e;; = a(Wh, Wh]/.), and a is
a multilayer feed-forward neural network.

B. Problem Formulation

In this section, we present the problem formulation of
MRNP in dynamic and complex environments with moving
obstacles. This problem can be regarded as a partially observ-
able Markov decision process (POMDP), where N robots aim
to arrive at N targets without collisions within a minimum
expected time. The state vector s; of the robot r at time ¢ is
composed of the robot’s position [p/, p;’1, speed [v/*, v/’ ], and
orientation 6/, and is denoted as s; = [p;7, ptry, v, vtry, o/1.
The observable states s7 = [pf*, pfy, v, v?y, r,] of moving
obstacles at time ¢ include position [p?*, p,oy 1, speed [v¥, v;’y 1,
and radius of the circumcircle r,, while the unobservable states
sf = [Pogx: Pogy Vpref, 071 consist of goal position [pogy, Pogyls
preferred speed vprer, and orientation 6. As shown in Fig. 1,
the detection range of the robot is dg4, and v,; and v,; denote
the speeds of obstacle i and robot j, respectively. The radius
of all robots is the same, and the radius of moving obsta-
cles is not consistent. The robot’s target position is denoted
as Sg = [pgx,Pgy]- The navigation policy of robots gener-
ates the actions a; at each time step, a; ~ mq (as|s;, s~,’, s~§’, S¢),
where, s~{ and sN? are the states of robots and obstacles observed
locally by the robot, respectively, and 6 is the parameter of
policy. Eventually, the MRNP in dynamic environment can be
formulated as

H}Tign E[tgmaxlﬂév s?;}v’ s(l);Mv Sg,l:N] (D

s.t. Vi,je[1,N],ke[l, M] )
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Fig. 2. Overview of our HRMR-Navi framework.
dprij > 21y (3) is a proximal policy optimization (PPO) algorithm based on
droik > 1r+ 1o 4) the maximum entropy reinforcement learning.
dg,i < dmin (5)

where N and M are the number of robots and obstacles, respec-
tively. d,, ; j denotes the distance between robot i and robot j,
and d,, ; ; represents the distance between robot i and obsta-
cle k. The constraint (3) gives the requirement of avoiding
collisions between robots. r. and r, represent the radius of
the robots and the circumcircle of the obstacles, respectively.
The constraint (4) should be met to avoid collisions between
robots and obstacles. The distance d;; in constraint (5) is
utilized to determine whether the robot i reaches the target
position according to whether it is less than the minimum dis-
tance dmin. fgmax = MaXje[1,N] tgi» Where t,; is the navigation
time of robot i. This problem has been proved to be NP com-
plete [16], and we design an efficient DRL-based solution to
solve this problem.

IV. HRMR-NAVI APPROACH DESIGN

This section presents the design of our DRL-based HRMR-
Navi framework, elaborating the scheme of state representa-
tion, the reward function design, and the DRL framework.

A. Overview of HRMR-Navi Framework

HRMR-Navi is a hierarchical graph network representation
learning framework, which models all the entities as a graph
to reason about the latent relations among all the agents. As
illustrated in Fig. 2, the framework represents multirobot envi-
ronment as a graph, and calculates a node embedding vector
for each robot node, which concisely summarizes the state of
each robot relative to its local observed environment. When the
distance between two robots is less than a predefined threshold,
the two robots communicate with each other so as to exchange
their node embedding vector information. After multihop com-
munications, each robot will have an updated encoding. The
computed encoding is subsequently utilized to generate the
Q-values and actions. The model is trained in an end-to-end
manner using our newly proposed MEPPO algorithm, which

B. State Representation

The hierarchical graph network is employed to transform
each robot’s local observation into a high-dimensional node
state encoding based on potential feature of agents to repre-
sent the interaction among agents (robots and obstacles). After
the robots obtain the local state encoding, a communication
model is then employed to help robots obtain effective global
information to enhance the cooperation performance.

1) GCN-Based Interagent Interaction: First, the agents
observed by robot i are clustered into two distinct groups Gf-‘
(k =1, 2), namely, robot group and obstacle group. The inter-
actions between observed obstacles or robots play an important
role in robot navigation. In particular, the robots should
actually consider the potential interaction between moving
obstacles on the planning path, however, moving obstacles are
noncooperative. Therefore, we try to employ GCN to obtain
a high-level robot state representation considering the relation
between moving obstacles through multilayer convolution. We
model the environment as a graph to infer the relations among
all agents and use a GCN to reason about the interaction of
agents. We model robots and obstacles as a directed graph,
where a graph edge represents the amount of attention between
two agents. Note that this paired relation is an unknown pri-
ori, so a paired similarity function can be used to infer such
relation. After inferring the relation among agents, the GNN
spreads the information among the observed agent nodes to
calculate the state representation of agents.

We use two multilayer perceptrons (MLPs) f.() and f,()
to embed the states of robots and moving obstacles into an
embedding vector. Then, an adjacency feature matrix A is
defined, where the first row is the embedding vector of the
robot and the remaining rows are the embedding vectors of
observed obstacles or robots. For matrix A, an embedded
Gaussian as the similarity function [39] is leveraged to com-
pute the matrix relation of agents. The pairwise relation of
agents is represented by

£ (i) = 70" 0 ) ©)
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where 0(x;) = Wox;, ¢(xj)) = Wyxj, x; = Ali:] is the state
embedding vector of agent i, and Wy and Wy are learnable
parameters. The relation matrix of agents is given as

(7

Subsequently, GCN is utilized to compute interaction features
among agents. The formula of feature interaction between
agents is given as

R = softmax (AW@ WQ{AT).

H! = o (RH'W! + H') ®)
where W' is the learned parameter matrix, o is an activation
function, and H' is the feature matrix of layer I. The features
of the [+ 1 level node i are weighted to aggregate the features
of the [ level adjacent nodes according to the relation stored
in the matrix R. Given H® = A, after L layer propagates, we
obtain the state encoder matrix H. The first row of HL is the
group-level node embedding vector hi‘ for robot i of group k
encoding its local interactions.

2) GAT-Based Intergroup State Representation: After
obtaining node-embedding vectors hll for robot group and hl2
for obstacle group of robot i, the information-condensed state
representation of robot i is represented as

2
hi = Z vin§
k=1

where ﬁi contains the relations between robot i and its locally
observed agent groups. The intergroup attention weight yl-k
instructs robot i to pay more attention to the obstacle agent
or the robot agent to achieve cooperative navigation. The
intergroup attention weight is computed with the softmax
function

(yl;’ )/i2> - exp<[(hi‘)kaTWqW9x,-, (hf)TWkTqugx,-D

(10)

€))

where x; is the state vector of robot i, and W,, Wy, and Wy
are the query, key, and value parameters, respectively.

The hierarchical state representation, combining interagent
and intergroup relations, greatly improves the efficiency of
multirobot cooperative navigation in dynamic environments,
especially, when robots need to consider cooperation and
obstacle avoidance at the same time. This will be empirically
proven by the experiments in Section V.

3) Inter-Robot Communication: Due to the local observ-
ability of the environment, the effect of one robot’s decision
making will be negatively affected by its unobservable robots,
resulting in the relatively low performance of the robot’s
decision-making system. Therefore, the way of information
sharing between robots becomes essential to the cooperation
performance of the whole system. Each robot needs to be
able to accumulate information from its neighboring robots.
Thus, a reasonable communication strategy rationally becomes
the key to information sharing. The local encoding hi com-
puted by the hierarchical relational graph network represents
the robot’s understanding of its own state and the observed
environment. The attention-based message propagation mech-
anism of our HAMR-Navi works as follows. First, each robot i
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Algorithm 1: State Representation

1 for robot i=1,2,...do

2 Cluster the agents observed locally into robot group

G} and obstacle group Ciz;

Get high level local state hl] and hl2 using GCN;

4 Calculate state representations h} and hlz considering
the relation between observed obstacles and robots
using GCN, respectively;

5 Get high level local state representation hi using
GAT;

6 end

for robot i=1,2,...do

Compute global state representation 4; of robot i
through attention-based inter-Robot communication
scheme, where the weights are obtained via GAT;

o«

9 end
Return h = {hy, hy, ...};

—
=)

computes a query vector Q; = WQﬁi, a key vector K; = Wkﬁi,
and a value vector V; = Wvﬁ,-, where Wp, W, and W, are
learnable parameters. After receiving query-value pair (Q;, V)
from all of its neighbors j € A/(i), robot i assigns weight
wij = softmax([Qj(Ki)T]/dk) to the exchanged information
from its neighbor robots, where dy is the dimensionality of the
key vector. Afterwards, all the received messages are aggre-
gated by computing a weighted sum of its neighbors’ values,
and then executing a linear transformation V; = Wou Zw;;Vj,
where Wy is also a learnable parameter. Eventually, the robot
updates its node embedding #; by using a neural network to
conduct a nonlinear transformation of its current encoding
ﬁ,- concatenated with V; and targets state encoder, which is
obtained by encoding the target state with two MLPs.

The attention mechanism described above enables the agent
to selectively pay attention to the messages received from its
neighbors. Multihop communications are utilized to achieve
the spread of information between robots that might not be
directly connected with each other, owing to that the agent
(robot and moving obstacle) network may be sparsely con-
nected. After multihop communications, each robot has an
updated node embedding h;. Afterwards, this node embedding
is fed into two neural networks to predict the state value of
robot and the probability distribution of all possible behaviors,
respectively. Ultimately, each robot extracts an action from the
distribution and takes this action. Algorithm 1 describes the
whole working procedure of the state representation scheme.

C. Reward Function

Maximizing the reward of a series of actions is the ultimate
goal of the DRL algorithm. An appropriate reward function
should be designed in line with the specific task so as to
ensure the task to be well accomplished. The multirobot group
not only needs to meet these constraints to arrive at the tar-
gets as soon as possible but also needs to be collision free.
Meanwhile, it is also necessary to promote the cooperation
of multirobot groups. To this end, for robot i at time f, we
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design an augmented reward function R} = R, ; + R’ ,, where

RZ ; 1s the reward from environments, and Rél. is the punish-
ment in case of collisions between robots or robot obstacle.
RL . is given as

' .
R = {1.0t A, . , if p; . Pe an
’ —dy, + B (goaldist - goaldist), otherwise

where fimi; is a time limit for arriving at destination. In order
to encourage robots to reach the targets as soon as possible,
this reward will decay monotonically over time. d, is the
sum of the distances from all the robots to their targets at
time 7. goally,, is the average of the total distance of all robots
from their targets at time ¢. § is a hyperparameter. Rf?’i endows
robots a positive or negative reward according to the upcoming
goall,, closer or further to their goals, respectively.

On the other hand, R’C’ ; is defined as follows:

—0.25, if dy<2xr,
ro_ —0.25, if do<r,+r, (12)
o n(dl - ddisc)y if d' < dgise

0, otherwise

where 7 is a hyperparameter, d,,, and d,, are used to deter-
mine whether robot i collides with other robots or obstacles,
d' represents the distance from robot i to its target at time z,
and dygsc represents the minimum discomfort distance between
robots and between robots and obstacles, which is utilized to
encourage earlier collision avoidance.

D. Deep Reinforcement Learning Framework

The local encoding represents the robot’s understanding of
its own state and the observed environment, which is computed
by a hierarchical relational graph network. Robots communi-
cate with each other using GAT [38] only when their distance
is smaller than a predefined threshold. The GAT enables the
robots to selectively process messages coming from its neigh-
bors. The model is trained in an end-to-end manner using
the actor—critic policy gradient PPO algorithm. Notably, our
proposed model has a specific distributed feature, where it
can be trained and executed in an absolutely decentralized
manner. Compared with the latest PPO2 algorithm [40] which
uses the entropy as a regularizer to augment exploration, in
our approach, a better way is drawn on the maximum entropy
framework to provide a substantial improvement in exploration
and robustness.

1) MEPPO Algorithm Design: The maximum entropy rein-
forcement is different from the standard maximum expected
reward utilized in legacy reinforcement learning to general-
ize the standard objective with an entropy term, such that the
optimal policy additionally aims to maximize its entropy at
each visited state [36]

o

7" = argmax E [Z y (r(s1, ars si1) + aH(nus,)))} (13)
t=0

where y is a discount factor, « is the temperature parameter,

and H(m(.|s;)) is the entropy of policy distribution in s; state.

To enhance the exploration ability of the robots, we propose

an improved PPO algorithm based on the Maximum Entropy
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TABLE I
SUMMARY OF NOTATIONS

Notations Description

Vi (st) Value function estimated by neural network
I%t Returns obtained from the environment
vjiers Equivalent to R,

At Advantage function value

AT’ Advantage function value of policy 7,
H(w(.|st)) | Entropy of policy distribution in s; state

¥ Discount factor

Temperature parameter utilized to tradeoff
the importance of entropy and reward.
Ensure that the gap between 7g(at|st)
and 7, (a¢]s¢) is small

Reinforcement Learning, named MEPPO. First, we define the
policy gradient loss and value loss. In the Maximum Entropy
Reinforcement Learning framework, the reward r = r& + pin
is composed of r** and 0 where the external reward r°* is
empowered by the environment and the internal ™ is defined
in line with the policy entropy. The value estimation needs to
minimize a square-error loss

v targ 2 5\ 2
L) = (Voo = Vi) = (Vo —R) . (4
The advantage estimator is given as
Ar=8+ (W81 4+ )l (15)
where
& =1+ yVi(sr1) — V(s (16)
re=r 4+t =+ aH(m (sy). (17)

Then, the policy gradient loss of the MEPPO algorithm can
be computed as

o (arlsy)

LY (0) = mm(rrg/(aﬁs,)

AT (¢, at),f(,O, AT (81, at)))

+ aH(m(.|s) (18)
where
_[A+pA if A0
flp,A) = { (1= p)A,  otherwise. 19

The descriptions of all notations mentioned above are
summarized in Table I.

2) Training Algorithm Design: Since each robot processes
incoming messages from other robots in a different way and
receives different observations, they may take different actions
even if they share parameters. Furthermore, robots in this
MRNP are homogeneous, thus, a common policy can be
shared. Thereby, we develop a common navigation policy for
all robots. The navigation policy is modeled as a combination
of a collision-free policy and a dynamic target selection policy.
As these two policies are coupled, thus, they cannot be trained
separately. Therefore, we propose a DRL method to learn them
at the same time. We apply the MEPPO, an actor—critic method
to learn the navigation policy, in consideration of the con-
tinuous action space and dynamic complex environment. The
training algorithm is described in Algorithm 2.
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Algorithm 2: MEPPO Algorithm for N Robots

1 Initialize policy parameter 6;

2 Initialize value-function parameters ;
3 Initialize Temperature «;

4 for each episode € [1, ...n] do

5 Reset the environment with the initial state, s;,;;;

6 for each step do

7 Compute high level state representation . using

Algorithm 1;

8 for robot i=1,2,...do

9 Receive state s';

10 Sample action a’ ~ g (di|s);

11 Execute action a} to robot i;

12 Collect state s;H, reward r} and action a;

13 Compute rewards-to-go Iéf,

14 Compute advantage estimates A’;

15 end

16 end

17 Optimize policy loss L™ (6) via Equation 18, with
Adam optimizer and learning rate [;

18 0 < 6 —1,VoL™ (0);

19 Optimize value loss L' () via Equation 14, with
Adam Optimizer and learning rate /,;

20 | Y <Y —LVyL'(Y);

21 end

V. PERFORMANCE EVALUATION

To validate the effectiveness of our proposed approach, in
this section, we implemented a prototype of the HRMR-Navi
framework on top of the OpenAl Gym [41] under dynamic
environments. Besides, we conducted extensive experiments
to compare HRMR-Navi with state-of-the-art methods, and
also conducted a series of ablation experiments to verify the
necessity of key components of HRMR-Navi.

A. Experimental Settings

The experiments were conducted in a simulated dynamic
environment with different numbers of moving obstacles and
robots within a square area. Fig. 3 shows an example of a
square crossing scenario with three robots and three moving
obstacles, which are randomly positioned on a 3 m x 3 m
square with a random perturbation added to their (x, y) coordi-
nates. The obstacles are controlled by ORCA [8]. To introduce
diversity, the parameters of ORCA are sampled from the
Gaussian distribution. The maximum speed vpret Of robots is
set to 0.2 m/s. The rotation angles of robots are between —60°
and 60°. Each robot is controlled by the policy trained via
HRMR-Navi. In addition, to fully evaluate the performance
and generalization of our approach, the robots are assumed
to be invisible to obstacles. Therefore, the simulated obstacles
react only to obstacles but not to the robots. The navigation
policy is trained using Algorithm 2 on a virtual machine with
a 2.30 GHz Xeon CPU and a Nvidia Tesla P100 graphics card
on the Google Colab platform. Both the robot encoder f, and
the obstacle encoder f, take the 4-D states as input, and the
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Fig. 3. Example of multiagent dynamic environment.

output dimension is 128. Each encoder is a single ReLu fully
connected layer. The output dimension of W! is 128. When
communicating with neighbor robots, the attention module
uses 128-D queries, keys, and values to calculate the atten-
tion. Adam optimizer is used to train all parameters. The
learning rate /, and [, are set to 0.001. The discount factor
y is set to 0.9. Each episode lasts up to 320 timesteps. Each
MEPPO update is executed after accumulating experience for
640 timesteps on 24 parallel processes.

B. Baseline Algorithms

To verify the superiority of our approach, we imple-
mented three state-of-the-art approaches, i.e., ORCA [8],
GA3C-CADRL [12], and TA-Policy [17] for multidimensional
comparisons. In addition, we implemented two ablation meth-
ods: 1) a trimmed HRMR-Navi algorithm without hierarchical
GNN and 2) HRMR-Navi using PPO2 as the training algo-
rithm to conduct ablation experiments for comparisons.

1) ORCA, which is a popular VO-based policy used as a

baseline algorithm for performance comparison.

2) GA3C-CADRL, which is a reinforcement learning-based
algorithm and utilizes LSTM to encode observations
of an arbitrary number of other agents breaking the
limitation of fixed observation size.

3) TA-Policy, which is also a learning-for-communication
approach like our approach and is designed to pro-
cess only local observation during the execution phase.
Another reason we choose TA-Policy as the baseline
algorithm is that, similar to our approach, TA-Policy
also considers both the mobility of obstacles and the
cooperation of robots at the same time.

4) HRMR-Navi (non-hierar), which is the ablation method
without a hierarchical GNN. Specifically, compared with
the method HRMR-Navi, HRMR-Navi (non-hierar) does
not utilize GAT to calculate the agent intergroup relation.

5) HRMR-Navi (ppo2), which is the ablation method using
PPO2 as the training algorithm.

C. Experimental Results

To fully evaluate the performance of the proposed approach,
we conduct a task, in which n robots cooperatively reach n
different targets without collisions. The initial positions of
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Fig. 4. Comparison of mean episode rewards of HRMR-Navi and its variants
with the other two RL methods.

robots, targets, and obstacles are all randomly generated. The
evaluation results will be demonstrated with respect to various
performance metrics, including convergence speed, success
rate, mean episode reward, and extra time.

1) Convergence Speed: The rate of convergence to the
minimum return during training.

2) Mean Episode Reward: Average rewards on 24 parallel
processes per episode.

3) Success Rate: The ratio of successful cases without any
collision or being stuck somewhere within the maximum
time step during the navigation.

4) Extra Time: The difference between the average travel
time over all robots and the lower limit of the travel time
(i.e., the average time cost of going straight toward goal
at the preferred speed) [11].

1) Convergence Speed and Mean Episode Reward:
Intuitively, a good reward function results in an efficient nav-
igation policy with fewer collisions. If a robot is closer to the
target and has fewer collisions, there will be a higher average
reward.

Fig. 4 shows the comparison results of the mean episode
rewards (averaged per ten episodes) of HRMR-Navi, HRMR-
Navi (non-hierar), HRMR-Navi (ppo2), TA-Policy, and GA3C-
CADRL. In the training phase, as revealed in Fig. 4, our
algorithm HRMR-Navi converges faster to the optimal reward.
This is mainly due to the fact that the state of each
robot is effectively represented by relational graph learning
through the hierarchical graph network. HRMR-Navi con-
verges to better rewards faster than HRMR-Navi (non-hierar),
which also indicates that hierarchical graph network architec-
ture can effectively facilitate the cooperation among robots
while avoiding obstacle. From another perspective, except
for GA3C-CADRL, all the other four methods are active-
communication schemes. However, with the benefit of atten-
tion network our method HRMR-Navi can converge faster,
which indicates that the attention-based communication mod-
ule using GAT can encourage more effective communications
among robots leading to a more efficient navigation policy.

2) Success Rate and Extra Time: In order to effectively
evaluate the quality of navigation paths planned by various
methods in a dynamic environment, we choose two typical
metrics: 1) success rate and 2) extra time. The experimental
results of four algorithms are summarized in Table II.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 11, NOVEMBER 2023

TABLE II
SUCCESS RATE AND EXTRA TIME

. . Number of Robots
Metrics Methods i 5 3 7 3
HRMR-Navi 1 1 1 0.97 0.93
Success rate HRMR-Navi (ppo2) 1 1 1 0.96 091
HRMR-Navi (non-hierar) 1 1 0.98 0.95 0.90
TA-policy 1 1 0.96 0.94 0.88
GA3C-CADRL 1 1 0.97 0.92 0.85
ORCA 1 0.96 0.94 0.89 0.83
HRMR-Navi 1.15/0.72  1.64/1.45 2.88/1.67 3.76/2.32  5.46/2.13
Extra time (s) / std HRMR-Navi (ppo2) 1.12/0.80  1.84/1.55  3.12/1.81  3.95/2.63  5.79/2.51
HRMR-Navi (non-hierar) ~ 1.53/0.79  2.07/1.75 ~ 3.52/2.46  4.41/2.72  6.34/3.06
TA-policy 1.28/0.87  2.63/1.81  4.16/3.15 5.47/291  7.52/3.22
GA3C-CADRL 1.34/0.74  2.52/1.78  4.43/282  5.61/3.14  8.05/3.61
ORCA 1.52/0.96  2.77/1.97  4.55/3.08  6.24/3.52  8.49/3.90
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Fig. 5. Comparison of success rate of HRMR-Navi and its variants with the
other three methods.
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Fig. 6. Comparison of the extra time of HRMR-Navi and its variants with
the other three methods.

Figs. 5 and 6 compare our HRMR-Navi with HRMR-Navi
(non-hierar), HRMR-Navi (ppo2), TA-Policy, GA3C-CADRL,
and ORCA over various policies in terms of success rate
and extra time. Fig. 5 exhibits the percentage of success-
fully completed tasks under different densities of robots. A
higher success rate implies that the robots are more likely
to avoid obstacles to reach different targets within a speci-
fied maximum time range. As revealed in the experimental
results, all four algorithms work well for low-density cases,
but their performance decreases as the density of agents
increases. Nevertheless, as expected, HRMR-Navi achieves
the lowest performance degradation rate as the number of
robots and obstacles increases. This achievement primarily
benefits from the fact that a certain action of the robot is
induced at a certain state by analyzing and interpreting the
interagent and intergroup attention weights in our algorithm,
so that robots can adaptively choose to pay more attention
to obstacle avoidance or to cooperation at a certain time.
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The robot’s full understanding of the relation between agents
greatly helps predict the behaviors of other agents and their
possible impacts on itself, thus, it can more efficiently gen-
erate obstacle avoidance behavior in the appropriate position
and reach the globally optimal targets as soon as possible.
Moreover, HRMR-Navi achieves a better performance than
HRMR-Navi (ppo2), which is due to that the augmented ppo
algorithm (MEPPO) with maximizing entropy significantly
enhances the robot’s exploration ability leading to a better
stability. This is connected with a more fundamental merit,
where the model trained by HRMR-Navi enables robots to
better explore and understand the inherent and high-level con-
notation of the environment. In addition, GA3C-CADRL only
utilizes an LSTM to encode the observations of robots, with-
out an effective reason about the relationship beween agents,
so that the behavior selection policy is vulnerable to encounter
a freezing point problem.

Fig. 6 presents the comparison results from the perspective
of the average extra time taken by the robots to reach tar-
gets under different robot densities. A lower extra time reveals
that the robots are less likely to get stuck and reach different
targets as soon as possible. As shown in Fig. 6, our algo-
rithm HRMR-Navi achieves the best performance with the
least extra time. The key reason behind this achievement is
owing to that the hierarchical GNN architecture can fully con-
sider the interactions between obstacles and the robots. When
there are no obstacles in the direction toward the selected target
of the robot, it can go straight to the target. Since our method
HRMR-Navi can reason both obstacle-robot interactions and
obstacle—obstacle interactions, the trained policies are capa-
ble of avoiding obstacles and avoiding unnecessary steering
behaviors with as little cost as possible. What is more, the cus-
tomized MEPPO algorithm can fully explore the environment
and enable robots to always find a relatively optimal path,
so as to avoid the robots getting stuck. Thereby, the robots
will be encouraged to reach their targets as soon as possible.
As shown in Table II, compared with baseline algorithms, our
HRMR-Navi achieves a lower extra time standard deviation,
which also proves the stability of our approach.

3) Knowledge Transferability: To evaluate the knowledge
transferability of our approach, we first obtain policies trained
for three robots and five robots, and then the trained poli-
cies are directly applied to evaluate a new scenario that has
a different number of robots, without model retraining. When
testing the performance of the policy trained for five robots
in some scenarios with more than five robots, the size of
the robots and obstacles are reduced to half of the origi-
nal size. The performance evaluation results are summarized
in Tables III and IV, from which we can see that HRMR-
Navi significantly outperforms HRMR-Navi (non-hierar). This
proves that our hierarchical GNN model greatly enhances the
knowledge transferability of the algorithm.

As revealed in Fig. 7(a) and (b), the trained policy shows
impressive success rates in robot clusters with different sizes.
The results demonstrate that HRMR-Navi is able to utilize
its experience obtained from related but different tasks to
solve new tasks. Moreover, HRMR-Navi exhibits better trans-
ferability compared with the ablation algorithm HRMR-Navi
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TABLE III
SUCCESS RATES OF TRANSFERABILITY FOR POLICY
TRAINED OF THREE AGENTS (S%)
Number of Robots
Methods NT N=3 N+l N2 N+3 N4
HRMR-Navi 99 96 92 37 33 48

HRMR-Navi (non-hierar) 97 95 79 61 39 22

TABLE IV
SUCCESS RATES OF TRANSFERABILITY FOR POLICY
TRAINED OF FIVE AGENTS (§%)

Number of Robots
Methods N4 N2 NI N=5 N+l N+2 N3
HRMR-Navi 89 93 94 93 90 85 82
HRMR-Navi (non-hierar) 76 80 83 85 78 62 49
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Fig. 7. Evaluation of knowledge transferability: the policies trained for three
and five robots are utilized to evaluate a new scenario that has a different
number or size of robots. (a) Transferability of the policy trained for three
agents. (b) Transferability of the policy trained for five agents.

(non-hierar) as the number of robots increases. This evidently
proves that the hierarchical GNN architecture is beneficial to
achieving a policy with better transferability, since this hier-
archy can be leveraged to obtain the state representation that
takes the interactions between agents into account. The trans-
ferability exhibited by the policies trained by our method plays
a significant role in exploring general policies.

4) Trajectory Analysis: In our HRMR-Navi framework, the
robots are expected to achieve two objectives: the first one
is to automatically select the targets that minimize the sum
of the distances of all robots to their respective targets; and
the second one is to select the appropriate linear velocity and
angular velocity to reach the targets as soon as possible while
avoiding collisions with moving obstacles. Notably, robots are
invisible to dynamic obstacles, so the obstacles only respond
to obstacles but not to robots. This setting is helpful for a clean
test to verify the ability of our method to infer obstacle-robot
interaction and obstacle—obstacle interaction without affect-
ing obstacles’ behaviors. Note that HRMR-Navi requires no
prior knowledge about the dynamic environment, which makes
learning an efficient navigation policy a challenging task.

To more intuitively demonstrate the effectiveness of the
trained policy, Fig. 8 shows the robots’ motion trajectories
in environments with different numbers of agents. The sim-
ple and direct way to evaluate the efficiency of these path
plannings is to compare the indicated time consumed by the
robots to reach their goals. Fig. 8 reveals that the robots have
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Fig. 8. HRMR-Navi trajectories with n € {3, 4, 5} robots. The circles represent robots, and the red numbers denote the time at robot’s position. The

squares represent obstacles, and black numbers denote the time at obstacle position. The stars indicate the targets of robots. (a) Trajectories with three robots.

(b) Trajectories with four robots. (c) Trajectories with five robots.

successfully learned to cooperate in selecting targets and find-
ing the shortest paths, and also have learned to avoid dynamic
obstacles at the same time. As shown in Fig. 8(a), the robots
have not selfishly selected the targets closest to themselves, but
the targets that can minimize the overall distance of all robots
to their targets. For example, the red and yellow robots are
farther from all targets than the cyan robot, so they chose the
targets closest to themselves. Comparatively, the cyan robot
is much closer to all targets than the other two robots, and
even the distance between the cyan robot and its farthest tar-
get is closer than that between the red robot and its nearest
target. Nevertheless, the cyan robot does not selfishly choose
its nearest target so as to minimize the overall path length of
all robots.

From Fig. 8§, we can also observe that all robots have
successfully reached the dynamically selected targets within
the time limit. Meanwhile, as the trajectory depicts, neither
the robots nor the obstacles appear at the same position at the
same time, which means that the robots successfully avoid
collision with all dynamic moving obstacles. Besides, it also
reveals that, as the number of robots and obstacles increases,
it is more difficult for robots to avoid other agents (robots and
obstacles), resulting in more turns for robots, which will take
more time to reach their targets. However, the moving paths of
robots are not always absolutely optimal, for instance, the red
robot in Fig. 8(b) travels a longer path with some redundant
turn actions. This is mainly due to the dynamic selection of
targets and the interference of other agents’ behaviors, where
the target selected by the same robot at different time points
may change due to the change of positions of other agents,
resulting in redundant turn actions.

Beyond the above, the GCN layer of HRMR-Navi also plays
a vital role in guaranteeing the navigation efficiency, where the
GCN layer can effectively extract the relation between agents,
so that the robots can obtain an information-condensed state
representation. To evaluate the effect of the GCN layer, we
conduct a group of experiments in a scene with three robots
and three obstacles, and depict the navigation trajectories gen-
erated by policies trained with and without GCN layers, as
shown in Fig. 9. Specifically, Fig. 9(a) and (b) demonstrate
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Fig. 9. Trajectories with L € {0, 2} GCN layers. (a) Trajectories of three
robots without GCN. (b) Trajectories of three robots with GCN.

the robots’ trajectories without GCN layers and with two GCN
layers, respectively. It can seen from Fig. 9(a) and (b), policies
trained with GCN layers can generate smoother trajectories
than policies trained without GCN layers, with fewer turns
and trajectory offsets.

Specifically, as shown in Fig. 9(a), the cyan robot deviates
to the left abnormally without the threat of collision with other
agents, resulting in a longer moving path. Comparatively, in
Fig. 9(b), all robots reach their targets more smoothly at a
smaller cost without collisions. The key reason behind this
achievement is mainly owing to that the GCN layer helps the
robots fully understand their relations with other agents so
that they can correctly predict the influence of other agents on
them and make better behavioral decisions.

5) Performance in Complex Hybrid Environment With
Both Dynamic and Static Obstacles: To further verify the
performance of our method in more complex environment,
we simulate a complex hybrid environment with both dynamic
and static obstacles. In this simulation, the number of dynamic
obstacles is equal to that of robots. Meanwhile, for each sce-
nario, we set up two additional static obstacles, whose radius
is twice that of the dynamic obstacles.

Table V presents the evaluation results of four algorithms
in such hybrid environment in term of success rate and extra
time. As revealed, all four methods achieve a high success
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TABLE V
PERFORMANCE IN HYBRID ENVIRONMENT

Metrics Methods | . Number of Robots .

HRMR-Navi 1 1 0.99 0.97 0.95

Success rate HRMR-Navi (ppo2) 1 1 0.98 0.95 0.93

> HRMR-Navi (non-hierar) 1 1 0.97 0.94 091

TA-policy 1 1 0.97 0.91 0.87

GA3C-CADRL 1 1 0.96 0.89 0.85

ORCA 1 0.98 0.95 0.88 0.83
HRMR-Navi 224/1.15 283/1.88 325232 448267 6.13/2.96
Extra time (s) / std HRMR-Navi (ppo2) 2.46/1.25 297/1.70  3.36/2.36  4.98/2.89  6.42/3.14
- h HRMR-Navi (non-hierar) ~ 2.85/1.58  3.37/2.08  4.45/275 5.42/3.22  7.18/3.29
TA-policy 3.15/1.41 3.92/2.61  4.96/296 6.13/3.09  8.46/3.47
GA3C-CADRL 3.08/1.52 398275 5.13/3.16 6.75/3.44  8.81/3.68
ORCA 3.49/1.73  4.28/2.61  546/3.52  7.46/378  9.56/4.14

TABLE VI

PERFORMANCE OF SCALABILITY

Number of Robots

Metrics Methods W 5 18 0
HRMR-Navi 0.97 0.96 0.93 0.91
Success rate HRMR-Navi (ppo2) 0.96 0.93 0.91 0.88
- HRMR-Navi (non-hierar) 0.92 0.89 0.85 0.82
TA-policy - - - -
GA3C-CADRL 0.82 0.65 0.56 0.50
ORCA 0.71 0.63 0.53 0.48
HRMR-Navi 5.86/2.35 7.26/3.10 9.23/3.26 11.09/3.45
Extra time (s) / std HRMR-Navi (ppo2) 6.04/3.53 7.86/3.42 9.95/3.37 12.18/3.53
HRMR-Navi (non-hierar) ~ 6.75/2.88/  8.33/3.57 11.79/3.74  14.16/3.82
TA-policy - - - -
GA3C-CADRL 9.57/2.84 11.68/3.93 13.42/3.89 15.18/3.97
ORCA 11.72/3.42 14.18/4.36  16.58/4.91 18.24/4.28

rate, among which HRMR-Navi achieves the highest, which
is up to 9.2%, 11.7%, and 14.5% higher than TA-policy,
GA3C-CADRL, and ORCA, respectively. However, as for
the performance of extra time, compared with the scenario
with only dynamic obstacles (as shown in Table II), the sce-
nario with additional static obstacles takes a longer extra time
to complete the navigation task. Intuitively, this is largely
due to the interference of static obstacles, where the robot
has to detour if the static obstacles are located on its path.
Comparatively, dynamic obstacles and robots may arrive at the
same position at different times, and if the robot predicts a pos-
sible collision, it can slightly slow down to avoid the dynamic
obstacle without detouring with less cost. Therefore, in the
scenario with only dynamic obstacles, it may take less extra
time to complete the navigation task. Nevertheless, our method
still significantly outperforms other baseline algorithms.

6) Scalability Analysis: As an important indicator of prac-
ticability, the scalability of an algorithm determines its deploy-
ability in real-world production environment. To verify the
scalalibity performance of HARM-Navi, we conduct a series
of experiments in several larger-scale robot network environ-
ments with n robots (n € {12, 15, 18, 20}) and ten obstacles,
where the radius of both robots, each episode lasts up to 400
timesteps and obstacles is halved compared with the previous
experiments and the size of the experimental site is expanded
to 3.5 m x 3.5 m.

Table VI presents the evaluation results of four algorithms
in terms of success rate and extra time. It can be seen that
the policies trained by HRMR-Navi achieve the highest suc-
cess rate and lower extra time, which are 36.7%-89.6% higher
than ORCA, and the more robots the greater the advantage
of HRMR-Navi. HRMR-Navi (non-hierar) also exhibits an
impressive performance. Comparatively, the method TA-policy
fails to converge for all four scenarios, demonstrating a poor
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scalability. This is mainly due to the fact that TA-policy lacks
an effective communication mechanism among robots and
cannot effectively capture the interactions among agents. In
conclusion, the results prove the convincing performance of
our method HRMR-Navi in terms of scalability. This achieve-
ment is primarily owning to that hierarchical graph network
architecture can effectively help interpret the interactions
between agents and the effective attention-based communi-
cation model can facilitate the robots obtain more useful
information for decision making from other robots.

VI. CONCLUSION

To address the MRNP, this article presented a novel DRL-
based multirobot navigation method named HRMR-Navi that
can simultaneously learn a dynamic target selection policy
together with a collision avoidance policy. By adopting a hier-
archical graph network model together with an attention-based
communication model for each robot, HRMR-Navi greatly
facilitates the communication and cooperation between robots
under DRL. Meanwhile, a novel training algorithm MEPPO is
proposed to further enhance the exploration ability of robots,
aiming to achieve more efficient and stable movement in a
complex dynamic environment. Since our approach enables
the modeling of both interagent relations between robots and
intergroup relations between robots and obstacles, the latent
interaction among agents can be fully investigated to bene-
fit the robot navigation. Comprehensive experimental results
demonstrated that, compared with state-of-the-art DRL meth-
ods, our approach can not only significantly improve both
the convergence rate and overall navigation time for various
complex environments but also dramatically reduce the col-
lision rate as the number of agents grows. The results also
proved that the policies learned by our approach can be well
transferred to accommodate different environments for robot
clusters with different scales.
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