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Abstract—The issue of potential privacy leakage during centralized AI’s model training has drawn intensive concern from the

public. A Parallel and Distributed Computing (or PDC) scheme, termed Federated Learning (FL), has emerged as a new paradigm

to cope with the privacy issue by allowing clients to perform model training locally, without the necessity to upload their personal

sensitive data. In FL, the number of clients could be sufficiently large, but the bandwidth available for model distribution and

re-upload is quite limited, making it sensible to only involve part of the volunteers to participate in the training process. The client

selection policy is critical to an FL process in terms of training efficiency, the final model’s quality as well as fairness. In this article,

we will model the fairness guaranteed client selection as a Lyapunov optimization problem and then a C2MAB-based method is

proposed for estimation of the model exchange time between each client and the server, based on which we design a fairness

guaranteed algorithm termed RBCS-F for problem-solving. The regret of RBCS-F is strictly bounded by a finite constant, justifying

its theoretical feasibility. Barring the theoretical results, more empirical data can be derived from our real training experiments on

public datasets.

Index Terms—Client selection, contextual combinatorial multi-arm bandit, fairness scheduling, federated learning, lyapunov optimization

Ç

1 INTRODUCTION

1.1 Background

FEDERATED Learning (FL) has been esteemed as one of the
most promising solutions to the crisis known as isolated

“data island”. It helps break down the obstacles between
parties or entities, allowing a greater extent of data sharing.
All the entities being involved could benefit from such a
new paradigm, in which model owners could build a more
robust and comprehensive model with more data being
accessible. Meanwhile, data owners might either receive
substantial rewards or services that match their interests in
return. More importantly, the privacy of the data owners
would not risk being intruded since their raw data simply
does not necessarily need to leave the local devices, as all
the training is only performed locally.

1.2 Motivations

Within such a novel paradigm, new challenges co-exist with
opportunities. Unlike the traditional model training process,
not all the data within the system could be accessed over
every round of training. Owing to the limited bandwidth
and the dynamic status of the training clients, only a frac-
tion of them could be picked to perform training on behalf
of the model owner. From the perspective of a model owner,
the selection decision in each round could have a profound
impact on the model’s training time, convergence speed,
training stability, as well as the final achieved accuracy.
Some studies in the literature have made iconic contribu-
tions to this problem. To illustrate, in [1], when making a
selection, Nishio et al. concentrate on the evaluation of com-
munication time, which accounts for a considerable portion
of time for a training round. In another study [2], the
authors consider more. They further take the energy con-
sumption factor into consideration. Barring an intelligent
decision on participant selection, an efficient bandwidth
allocation scheme was also given by them. However, the
current line of research evades two important factors. For
one thing, both of them assume a pre-known local training
time to the scheduler, which may not be realistic in all cir-
cumstances. For another, indicated by Theorem 2 in [2],
devices with higher performance are more favored by their
proposed methods. Indeed, always selecting the “fast” devi-
ces somehow boost the training process. But clients with
low priority are simply being deprived of chances to partici-
pate at the same time, which we refer to it as an unfair selec-
tion among clients. In fact, such an extreme selection
scheme might bring undesirable side effects by neutralizing
some portions of data. Conceivably, with a smaller amount
of data involved, data diversity can not be guaranteed,
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thereby hurting the performance of model training to some
extent. This motivates us to develop an algorithm that
strikes a good balance between training efficiency and fair-
ness. Also, the algorithm is supposed to be intelligent
enough to predict the training time of the clients based on
their reputation (or their historical performance), rather
than assuming it to be known a priori.

1.3 Contributions

The main contributions of this paper are listed as follows:

1) We investigate the client selection in FL from the per-
spective of minimizing average model exchange
time when subjecting to a relatively flexible long-
term fairness guarantee, as well as a few rigid system
constraints. At the same time, more factors, involv-
ing the clients’ availability, unknown and stochastic
training time, as well as the dynamic communication
status, are taken into account.

2) Inspired by [3], we transform the original offline
problem into an online Lyapunov optimization prob-
lem where the long-term guarantee of client partici-
pating rate is quantified using dynamic queues.

3) We build a Contextual Combinatorial Multi Arm
Bandit (C2MAB) model for estimation of the model
exchange time of each client based on their contex-
tual properties and historical performance (or their
reputation).

4) A fairness guaranteed selection algorithm RBCS-F is
proposed for efficiently resolving the proposed opti-
mization problem in FL. Theoretical evaluation and
real data-based experiments show that RBCS-F can
ensure no violation in the long-term fairness con-
straint. Besides, the training efficiency has been sig-
nificantly enhanced, while the final model accuracy
remains close, in a comparison with random, i.e., the
vanilla client selection scheme of FL.

To the best knowledge of the authors, this is the first track-
able practice that combines Lyapunov optimization and
C2MAB for a long-term constrained online scheduling prob-
lem.Also, we shall remind the readers that the proposed com-
bination does not confine to the application of our current
proposedproblem, but it has the potential to extend to awider
range of selection problems. (e.g., worker selection in crowd-
sensing, channel selection in thewireless network, etc.)

2 RELATED WORKS

In recent years, we are experiencing a great surge of Edge
Intelligence (see in [4], [5], [6]). Numerous attempts have
been made to combine AI techniques and edge, tapping the
profound potential of the ubiquitous deployed edge devi-
ces. Among these, one of the most iconic studies could be
neurosurgeon [7]. Its basic idea is to partition an intact
DNN (Deep Neural Networks) into several smaller parts
and disseminate them to the edge devices. Owing to a low
latency between edge and users, inference speed could be
significantly improved.

Besides, edge coordinated Federated Learning is another
promising combination. Federated Learning [8], which allows
data to be trained in local rather than being transmitted to the

cloud, is now known as a more secure paradigm for AI’s
model training. We have witnessed the surge of some plausi-
ble applications of FL within these years (e.g., keyboard and
emoji prediction in [9], [10], visual object detection in [11],
etc). Despite the potential advantages aswell as the promising
applications of FL, the communication overhead between
cloud and users renders as a bottleneck for it. A lengthy
communication round during training might significantly
degrade FL’s training performance. Although more advance
training schemes, such as federated distillation (FD, originally
proposed in [12]), promise us a more desirable, reduced size
information exchange between users and model aggregator,
the latency between cloud and edge alone is inevitable. Such a
defect could be better addressed by making edge the model’s
aggregator or at least an intermediate one (see in [13]). In this
way, the data don’t have to bear an outstanding communica-
tion length to the cloud. Another open problem of FL we
would like to mention here is the client selection problem,
originally proposed in [1] and followed by some related
works (e.g., [2], [14], [15], [16]). Many of them see the problem
from a communication perspective, focusing on building an
efficient selection or bandwidth allocation scheme that helps
shorten the communication length. In this paper, we will see
the problem from a different angle, namely, to investigate
how the fairness factor affects the training performance. We
couldn’t check out any specialized studies on this topic yet
and we hope our research could bring some new insights in
the field. Last but not least, we also want to note, FL itself is
now far from its maturity, many important issues worth our
study. Some of which might involve asynchronous or semi-
asynchronous aggregation protocol [17], [18], incentive mech-
anism [19], [20] and security issues [21], etc. We look forward
tomore insightful and dedicated research into FL.

Now we would like to talk more about a classical prob-
lem, termedmulti-arm bandit (MAB). In a classical MAB set-
ting, arms are characterized by different unknown reward
distribution. In each round of play, the player selects one of
the arms from the possible options and gains a reward sam-
pling from the selected arm’s reward distribution. As there
exists a tradeoff between exploration and exploitation for the
player, how to maximize her obtained reward is the main
concern. Several solutions, such as the well-known Upper
Confidence Bound (UCB), Thompson Sampling (TS) could
be applied to the problems. In addition, MAB has several
variations. Those include combinatorial MAB, where players
are allowed to select more than one arms in every round,
contextual MAB [22], [23], where the reward of an arm fol-
lows a linear stochastic formulation, and a much newer one,
contextual combinatorial MAB (C2MAB) [24], [25], which is
the combination of the above two. We found that C2MAB
could be well applied to the client selection problem in FL, as
each client could be regarded as an arm and our task for each
round is to choose a combination of which for participation,
thus, in this paper, such a prototype will be used for our
model establishment.

3 PRELIMINARY INTRODUCTION ON FL

In this paper, we consider an edge-coordinated federated
learning system, in which edge is functioning as a model
aggregator, and the clients (mostly mobile devices) are
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responsible for doing local training over their private data
on behalf of the model’s owner. We adopt in our system the
most-accepted synchronous scheme for federated learning,
which is characterized by training in iterations. For clear-
ness, now we will explicitly explain the workflow of our
synchronized scheme by giving four sequential stages of
training, as follows:

1) At the very beginning of a new iteration, the clients
first report their willingness to participate in the
training as well as a few client-side information,
which will be used for the client selection in the next
stage.

2) In the second step, the scheduler conducts client
selection to choose a portion of participants among
the volunteers in light of the provided information.

3) Global model is distributed to the selected clients.
After receiving the model, the clients conduct local
training using their private data and update their
local model. Once the training of all the selected cli-
ents is finished, the local model will be returned to
the MEC server. The time span of this round is
known as model exchange time.

4) The collected local models are aggregated by the
server, substituting the original global model that
once being distributed, and then it proceeds to step
1) to start a new iteration.

For a more vivid presentation of the training process, we
refer the readers to Fig. 1.

4 PROBLEM FORMULATION

Our main concern focuses on the selection phase, in which
the server makes a decision on the involved clients. Before
our formal introduction of the selection problem, we first
derive a high-level description of the content of this section.
In the first sub-section, we formulate the client selection
problem into an offline problem with a long-term fairness
constraint. The formulated problem is simple in form but
indeed unsolvable due to the time coupling effect as well as
the unknown model exchange time persisting in the objec-
tive. To resolve the time coupling effect, we transform the

problem into an online mode using Lyapunov optimization
technique, the online transformation of which gains us a
fighting chance to derive an estimated model exchange time
before each round scheduling, which might help resolve
another obstacle (i.e., the unknown parameter in the objec-
tive function). Specifically, targeting the transformed online
problem, a C2MAB setting could come in handy for online
learning of the exchange time, and being enlightened by
which, we are able to further transform the problem into the
ultimate form, which concludes the whole section.

Then we need to explain some key notations that are con-
sistently used throughout the paper, among which, a set
T , f1; 2; . . .g, indexed by t, is used to capture the federated
rounds (namely, the iterations in FL’s model update pro-
cess). The set N , f1; 2; . . .Ng captures all the clients (each
indexed by n) in the system. Besides, we assume that the
maximum number of selected clients each round is fixed in
advance to m. Another important notation is St, which we
use to capture the selected clients in round t and it serves as
the representation of the selection policy that we aim to
optimize.

4.1 Basic Assumption on System Model

4.1.1 Model Exchange Time

In a client selection problem, an important metric we shall
evaluate is the long-term average model exchange time. We
refer to the model exchange time as the time span between
the instant the scheduler made the selection decision and
that when all the re-upload models have been gathered.
This model exchange time might involve time for model
distribution, model training and model upload. Intuitively,
a client selection scheme that is able to achieve a shorter
span of each federated round is of interest, since a shorter
period of each round explicitly marks shorter time for fix
rounds of training. Recall that the server could step into the
next phase (model aggregation) only after all the models
have been gathered when adopting a synchronous feder-
ated training protocol. The time for model exchange is
explicitly determined by the participated clients, or more
precisely, by the one among them who spends the most
time in training and model uploading. Mathematically, we
have the following equation to capture the time span for a
federated round:

fðSt; tttÞ ¼ max
n2St
ftt;ng; (1)

where we use a set St to capture the selected clients in
round t. Besides, tt;n is used to represent the time span
between the very beginning of model distribution and the
instant when the model from client n being gathered. Here
ttt , ftt;ngn2N in round t is unknown to the scheduler until
the end of this round.

4.1.2 Long-Term Fairness Constraint

Another metric that might have a significant impact on FL’s
performance is fairness. Assume an ideal case that the
server is fully aware of the exact model exchange time of
each client for the incoming federated round. Then is it
incontrovertibly optimized when always choosing the
m-fastest clients, making the time span for each round of

Fig. 1. Illustration of FL.
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training minimized? We must note, however, that the
answer may not be such apparent. We acknowledge that
the time span of each round could be somehow minimized
by adopting such a greedy selection scheme, but we must
argue that if we always choose the fastest clients, small
chance could become available for their slower counter-
parts, implicitly implying that little contribution could be
obtained from the slowers’ local data. Very likely, along
with the selection bias, the global model would suffer a deg-
radation on its capability to generalize. In this regard, a
greedy selection may not trivially be the best scheme, and
fairness in selection is another factor that we need to take
into account. To model such a critical fairness concern, we
introduce a long-term fairness constraint, as follows:

lim
T!1

1

T

XT
t¼1

E½xt;n� � b 8n 2 N ; (2)

where b models the expected guaranteed chosen rate of cli-
ents. xt;n is used to indicate whether client n is involved in
the federated round t or not. In other words, xt;n ¼ 1 for n 2
St; otherwise, xt;n ¼ 0. The constraint is set to make sure the
long-term average chosen rate of every client at least greater
than b, which somehow helps maintain some degrees of
fairness for the system.

4.1.3 Availability of Clients

As we are investigating a client selection problem under a
highly dynamic real-world system, it is unrealistic to
assume clients are always ready to provide training serv-
ices. In fact, clients are free to join and leave the loose
“federation” at any time they want. With this consideration,
we use an indicator function It;n to capture the status of a
client, indicating whether the client is willing to engage or
not. Such information could be given by the availability
report from the clients before scheduling. Formally, we
introduce a strict constraint to prevent futile participation:

It;n ¼ 1 8n 2 St; (3)

4.1.4 Selection Fraction

Recall that the maximum number of clients that could be
selected is fixed tom in our setting. However, as the number
of volunteers may not be able to reach m if the activated
number is smaller than m, we have to use a “min” function
to constraint the selection fraction, as follows:

jStj ¼ min m;
X
n2N

It;n

( )
; (4)

where jStjmeans the number of elements in St. Intuitively, in
the casewhen the total number of availability could not over-
take the maximum selection fraction, we simply involve all
the active clients for the incoming round of training.

4.2 An Offline Long-Term Optimization Problem

Based on the above discussion, we are ready to introduce
our client selection problem, as follows:

ðP1Þ : min
fS1;S2;...;S1g

lim
T!1

1

T

XT
t¼1

fðSt; tttÞ

s.t. ð2Þ; ð3Þ; ð4Þ;
(5)

where St captures the selected clients in each round, which
is our optimized target. Intuitively, our aim is to minimize
the long-term model exchange time while subjecting to a
“soft” long-term fairness constraint (2), which tolerates
short-term violation, as well as two extra “hard” constraints
(3), (4), which bear no compromise.

One could notice that P1 is a time-coupling scheduling
problem, regarding the long-term objective and the fairness
constraint in (2). But we note here that such an optimization
problem is challenging or even impossible to be solved off-
line. There are mainly three concerns about this. First, ran-
dom events, such as clients’ availability, are not known to
the scheduler until the very beginning of a particular round.
This implies that an offline strategy, which is not given
access to this particular information, can hardly guarantee
the qualifications of constraints (3) and (4). Our second con-
cern is derived from the time-coupling constraint (2), which
is quite difficult for the offline solution to deal with. The
final concern is that the information on model exchange
time can only be observed after actually involving the cli-
ents in training. Nevertheless, the scheduler is supposed to
make a scheduling decision before the real training process,
when the actual model exchange time is unachievable. The
lack of this crucial information precludes any feasible
attempts to achieve an optimal offline solution. Therefore,
for an alternative sub-optimal problem-solving, in the fol-
lowing section, we will elaborate on our transformation of
the offline problem to a step-by-step online scheduling
problem by Lyapunov optimization to cope with the first
two proposed concern. Later, we will display our estimation
of model exchange time based on clients’ reputation, by
which we leverage to deal with our third concern.

4.3 Problem Transformation Under Lyapunov
Framework

In this sub-section, we first take advantage of Lyapunov
optimization framework to transform the offline problem
P1 to an online one.

First, we introduce a virtual queue for each client, whose
backlog1 is denoted by Zt;n

2, to transform the long-term fair-
ness constraint. Specifically, Zt;n evolves across the FL pro-
cess complying the following rule:

Ztþ1;n ¼ Zt;n þ b� xt;n

� �þ
; (6)

where b is the expected guaranteed selection rate in (2) and
½. . .�þ is equivalent tomaxð. . .; 0Þ.

Now we present Theorem 1 to justify the rationale for
this transformation.

1. We use the term “backlogs” and “queue length” interchangeably
throughout the paper but actually, they share the same meaning.

2. The subscripts t and n here correspond to a federated round and a
client, respectively. A similar form of subscript definition will be
adopted throughout the paper.
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Theorem 1. Long-term time average constraint (2) holds if all
the virtual queues (whose backlogs denoted by Zt;n) remain
mean rate stable across the FL process.

Proof. According to the queue theory (see in Theorem 2.5,
[26]), if all the virtual queues Zt;n remain mean rate stable
across the FL process (or formally, limT!1 E½ZT;n�=T ¼ 0),
the time average arrival rates of the queue will be smaller
than the service rates, namely, we have:

1

T
lim
T!1

XT
t¼1

E½b� jStj� � 0: (7)

Through basic mathematics operations, we can recon-
struct the above inequality into the form of (2) with ease.
This completes the proof. tu

Remark. Intuitively, the length of the queue will soar
towards infinity if the long-term fairness constraint is vio-
lated, (i.e., when the real chosen rate could not match up
with the expected guaranteed selection rate), which is for-
mally justified by Theorem 1. To guarantee the fairness
constraint, the queue has to remain mean rate stable and a
qualified algorithm is supposed to achieve this goal.
Apart from this conclusion, we shall note that the stabi-
lized queue length could also reflect the degree of fair-
ness. For example, if a client never being selected in the
first few limited round, its corresponding queue length
will soar to a positive value. After that, if its real selection
rate basically flats with the expected guaranteed selection
rate, its queue still remains mean rate stable and the queue
length will slightly fluctuate over the same positive value.
Intuitively, the bigger this value is, the unfairer the selec-
tion policy could be, as it demonstrates more violation of
the fairness constraint in the initial stage. This conclusion
could also be derived from the results in our experiments,
which will be presented later.

With Theorem 1, now we have transformed the trouble-
some time-coupling constraint into the goal of ensuring the
virtual queues mean rate stable across the FL process. To
reach this end, a straightforward approach is to bound
every increase of queues so that they could not grow to
infinity. Under this motivation, we shall leverage Lyapunov
optimization technique to bound the growth of virtual
queues while simultaneously minimizing the objective in
P1. First, we establish the quadratic Lyapunov function,
with the following form:

LðQQðtÞÞ ¼ 1

2

X
n2N

Z2
t;n; (8)

where QQðtÞ , fZt;ngn2N contains the backlogs of all the vir-
tual queues.

Aiming at bounding the expected increase of LðQQðtÞÞ for
one single round, we first formulate the Lyapunov drift to
measure it, basically, we have:

DðQQðtÞÞ ¼ E½LðQQðtþ 1ÞÞ � LðQQðtÞÞjQQðtÞ�: (9)

As the backlogs of queuesQQðtÞ can be known to the scheduler
when being scheduled in an online manner, we take it as the
condition in the Lyapunov drift. It is notable that the

conditional expectation here is with respect to the availability
of clients (which is a stochastic variable) aswell as the possibly
random selection policy. For ease of later interpretation,we let
vt , fIt;ngn2N to capture the stochastic availability.

Recall that the objective of P1 is to minimize the model
exchange time while satisfying the given constraints. This
motivates us to combine the objective function into the drift
function. Formally, we term such a combination as drift-
plus-cost function, with the following form:

DðQQðtÞÞ þ VE½fðSt; tttÞjQQðtÞ�; (10)

where V � 0 is a penalty factor set for the purpose of balanc-
ing the tradeoff between minimizing the objective and satis-
fying the fairness constraint. Such a parameter is crucial for
the algorithm’s performance and we will conduct a specific
analysis to it in the next section. Note that the conditioned
expectation being taken here is also with respect to stochastic
events vðtÞ and the possibly random policy as well. Now we
are going to introduce a potential upper bound for the drift-
plus-cost function.We show the result by Theorem 2.

Theorem 2. Conditioning on the queues’ backlogs QQðtÞ, the
drift-plus-cost function for our system model could be bounded
into the following form, where G ¼ N 1þ b2

� �
=2 is a constant.

DðQQðtÞÞ þ VE½fðSt; tttÞjQðtÞQðtÞ�
� Gþ

X
n2N

Zt;nE½b� xt;njQQðtÞ� þ VE½fðSt; tttÞjQQðtÞÞ�:

(11)

Proof. The complete proof is given in Appendix A, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/
TPDS.2020.3040887. tu

Intuitively, if we minimize the Right Hand Side (R.H.S)
of (11), the fairness virtual queues could be somehow main-
tained stable, while the objective function is also being mini-
mized. Now shall introduce our step-by-step online
scheduling problem by giving P2:

ðP2Þ : min
xxt

Gþ
X
n2N

Zt;nðb� xt;nÞ þ V _fðxxt; tttÞ

s:t:
X
n2N

xt;n ¼ min m;
X
n2N

It;n

( )

xt;n � It;n

xt;n 2 f0; 1g;

(12)

we first have to make it clear that we use xxt to substitute all
the St in P1, making it a clearer form. Here _fðxxt; tttÞ ¼
maxn2N fxt;ntt;ng is an equivalent form to fðSt; tttÞ. While
solving P2 on every round, the R.H.S of (11) can be mini-
mized. The rationale behind is quite evident. As we have
done the minimization under every round (alternatively,
under every vt, since vt is an independent sampling for
each round), then the expectation with respect to vt is also
being minimized. Note here that vt is indeed observable for
an online algorithm since an online algorithm makes sched-
uling after the stage of availability report, making it accessi-
ble to this particular information.
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For briefness, we eliminate all the constants (i.e., G, Zt;nb)
in the objective of P2 and transform it to P3:

ðP3Þ : min
xt

V max
n2N
fxt;ntt;ng �

X
n2N

Zt;nxt;n

s:t:
X
n2N

xt;n ¼ min m;
X
n2N

It;n

( )

xt;n � It;n

xt;n 2 f0; 1g:
(13)

But note that such a problem remains unsolvable yet
since the real model exchange time of all the clients (or tt;n)
is not known to us before real scheduling. In the next sub-
section, we will present a C2MAB estimation to conquer
such a barrier.

4.4 Estimation of Model Exchange Time With
C2MAB

4.4.1 Background Knowledge on C2MAB and UCB

Each round selection in a Contextual Combinatorial Multi
Arm Bandit (C2MAB) is characterized by a tuple
N ;St; fuu�ngn2N ; fcct;ngn2N ; f�t;ngn2N ; fð�Þ
� �

, in whichN repre-
sents the arm set and St is another set that catpures all the
possible combination of arms. cct;n and uu�n represents the con-
textual vector and coefficient vector respectively, among
which, cct;n is known before each round scheduling but
dynamic between rounds, while uu�n is unknown but station-
ary. After each round of scheduling, a combination of arms
(often being called as a super arm) St 	 St is put into play.
Then loss drawn from each selected arm, formulated by
lt;n ¼ cc>t;nuu

�
n þ �t;n; n 2 St is revealed to the scheduler, and

meanwhile, a collective loss fðfrn;tgn2StÞ is imposed. Our
ultimate aim in the C2MAB setting is to minimize the
expected cumulative penalty 1

T

PT
t¼1 E fð�Þ½ � as far as possible

by a careful selection on St.
Now we shall give a high-level description of a plausible

solution for C2MAB, i.e., a UCB algorithm. The UCB algo-
rithm takes the upper confidence bound as the optimistic
estimation of the expected loss in each round. As the histori-
cal data accumulated, (i.e., lt;n in the previous rounds), the
bound could be narrowed and eventually converges to the
real value, and thereby gaining more precision for our
scheduling. By this means, the expected cumulative penalty
could be minimized to the full extent with the increase of
rounds of play.

4.4.2 Application

Recall that the information of model exchange time, or at
least an estimated one, is supposed to be fetched before real
client selection. One can take advantage of a MAB based
technique to predict the model exchange time for all clients
based on their historical performance (or to say, their repu-
tation). In particular, each client can be regarded as an arm3.
in a bandit setting and a combination of them (i.e., a super
arm) is put into training, after which, the model exchange
time for the selected arm, namely, ftt;ngn2St can be observed
by the scheduler.

Normally, the model exchange time is associated with the
client’s computation capacity, running status as well as the
bandwidth allocation for the model update. In this regard,
we consider introducing linear contextual bandit into our
estimation. Formally, we let cct;n , ½1=mt;n; st;n;M=Bt;n�>
denote the contextual feature vectors that are collected by
the scheduler before the scheduling phase. More explicitly,
mt;n is the ratio of available computation capacity of client n
over round t. We can simply comprehend mt;n as the avail-
able CPU ratio of the client.4 A binary indicator st;n indicates
if client n has participated in training in the last round. M is
the size of themodel’s parameters (measured by bit) andBt;n

indicates the allocated bandwidth. Barring the available
computation capacity of clients (i.e., mt;n), which have to be
proactively reported by the clients, all the other information
could be fetched by the servers with ease. Therefore, here we
can just comprehend the contextual feature cct;n as some prior
information known by us before we do the scheduling.
Given the contextual features, we assume that the sampling
value of tt;n complies with the following equation:

tt;n ¼ cc>t;nuu
�
n þ �t;n; (14)

where uu�n , ½tbn; tsn; 1=h�
> captures the static coefficient factors

that are presumed to be unknown to the scheduler as they
are hard to be detected by the server or even by the clients
themselves. More explicitly, tbn is the local training time for
100 percent computation capacity. Multiplying it with the
first element in cct;n, we get the approximated local training
time under the computation capacity provided by clients. tsn
denotes the cold start time, multiplying which with the sec-
ond element st;n in contexts yields the real data preparation
time. This formulation is derived from the fact that clients
who did not undertake the previous round of training need
to spend extra time for data preparation, say, loading the
data into memory. Likewise, we let h , log ð1þ SNRÞ and
multiplying which with Bt;n yields the Shannon formula
that we use to calculate the uploading data rate. Here SNR
is an abbreviation of Signal-to-Noise Ratio, which is associ-
ated with the client profile (e.g., transmission power and
channel condition). In this regard, M=ðBt;nhÞ can fully rep-
resent the model uploading time for client n. In light of our
formulation, cc>t;nuu

�
n yields the approximation of the expected

model exchange time.
In addition, acknowledging some deviation, we admit a

noise factor �t;n in our estimation, which is assumed to be a
zero-mean random variable, conditionally sampling from
an unknown distribution with left-bounded support, i.e.,
Suppð�t;njcc>t;nÞ ¼ ða; b� where a > �cc>t;nuu�n and b is arbitrary.
This assumption is made to ensure that tt;n must be always
positive. Also, we have to make sure that �t;n is condition-
ally R-sub-Gaussian where R � 0 is a fixed constant. For-
mally, we need:

8L 2 R E eL�t;n j cc1:t;n; �1:t�1;n
� �

� exp
L2R2

2

� �
: (15)

3. We use an arm to represent a specific client in our later analysis
4. Note that mt;n could exceed 100 percent since a client could have

more than 1 CPUs, say, mt;n ¼ 200%when 2 CPUs are free.
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This assumption is necessary for the regret analysis of a lin-
ear bandit, which is also adopted by [23]. Though we admit
some loss of generality for the noise assumption, we argue
that a great number of distribution families in nature corre-
sponds to R-sub-Gaussian (e.g., any distributions with zero
mean bounded support, zero-mean Gaussian distribution,
etc), so the assumption would not compromise the objectiv-
ity of this paper.

Now we let t�t;n ¼ E½tt;n� ¼ cc>t;nuu
�
n. If t

�
t;n is clearly known

to us, we can safely substitute tt;n in P3 with it. Recall that
uu�n is an inherent feature of each arm (or client) that is sup-
posed to be static, unchangeable over time. With this
assumption, although the scheduler has no access to the
real value of uu�n, which creates a barrier in the calculation of
t�t;n, this value can be predicted using the historical informa-
tion (or the reputation of an arm). For such a linear formula-
tion, ridge regression could suit well. Now we let ðDt;n; yt;nÞ
to represent p pieces of client n’s historical performance
(i.e., the previous model exchange time and the contexts)
that are obtained before round t. Formally, we have:

Dt;n ¼
cð1Þn

..

.

cðpÞn

2
64

3
75
m
3

yt;n ¼
tð1Þn

..

.

tðpÞn

0
B@

1
CA (16)

where cðpÞn and tðpÞn respectively represent the context and the
real model exchange time of the pth play of the arm n. With
ridge regression, we can empirically estimate uu�n with ûut;n:

ûut;n ¼ D>t;nDt;n þ �I3

� 	�1
D>n yt;n: (17)

For ease of algorithm’s design, we then transform ûut;n
into an equivalent form, as follows:

ûut;n ¼ H�1t�1;nbt�1;n; (18)

whereHT;n ¼ Hþ
PT

t¼1 xt;nct;nc
>
t;n and bT;n ¼

PT
t¼1 xt;ntt;nct;n.

Amongwhich,H ¼ �I.
As we are going to take advantage of the UCB algorithm

we previously discussed as our solution, we resort to �tt;n as
the optimistic estimation of tt;n, which has the following form:

�tt;n , max cc>t;nûut;n � at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c>t;nH

�1
t�1;nct;n

q
; 0

n o
; (19)

where at is an exploration parameter.
Now we show in Lemma 1 the validity of the given confi-

dence bound (i.e., to demonstrate that the real expected
exchange time does not deviate much from the confidence
bound with a high probability).

Lemma 1. If we set at ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 log 1þtL2=�

d

� 	r
þ �1=2S, with

probability at least 1� d; we have

0 � t�t;n � �tt;n � 2at ct;n
�� ��

H�1
t�1;n

; (20)

for any round t � 1 and any arm n 2 N

Proof. The complete proof is given in Appendix B, available
in the online supplemental material. tu

We first note here that Lemma 1 will be used in our analy-
sis of regret bound, whichwill be shown in the next section.

As we have decided �tt;n as our estimation of tt;n, we now
transfer P3 to the ultimate form, shown in the following:

ðP4Þ : min
xt

V max
n2N
fxt;n�tt;ng �

X
n2N

Zt;nxt;n

s:t:
X
n2N

xt;n ¼ min m;
X
n2N

It;n

( )

xt;n � It;n

xt;n 2 f0; 1g:
(21)

Then transformed problem is an Integer Linear Programming
(ILP) problem, which is indeed theoretically solvable and for
which we design a divide-and-conquer-based algorithm for
an efficient settlement, shown in the coming section.

5 ALGORITHMS AND ANALYSIS

In this section, we first present the detail of our proposed
algorithm, and then some related analysis is given.

5.1 Algorithms Design

Noticeably, the first term on the objective function of P4 has
only finite possible values, so we can simply iterate these
values and transform them into the constraint in the sub-
problems. By this means, we divide the problem into a few
smaller-scale sub-problems, which are easier to conquer.
Formally, the sub-problem after division is shown in the
following:

ðP4� SUBÞ : min
xt

�
X
n2N

Zt;nxt;n

s:t:
X
n2N

xt;n ¼ min m;
X
n2N

It;n

( )

xt;n�tt;n � �tmax

xt;n � It;n

xt;n 2 f0; 1g; (22)

where �tmax is one of the fixed value among the possible val-
ues of the first term in P4. P4-SUB is much easier to conquer.
First we only need to filter those qualified clients with a
smaller or equal �tt;n to �tmax, and with an active status (or to
say It;n ¼ 1). Trivially, the sub-problem can be solved by
finding k ¼ min m;

P
n2N It;n

� 
clients with the biggest Zt;n

among the qualified clients. After the divide-and-conquer
process, we only need to compare all the objectives obtained
from the sub-problems and select the minimum one as our
final achieved solution. The detail of the above process can
be found in Algorithm 1, which could at least reach a com-
putation complexity of OðN2Þ.

With Algorithm 1 introduced, now we shall discuss our
proposed solution for fairness-aware FL, termed Reputation
Based Client Selection with Fairness (RBCS-F), shown in
Algorithm 2. The working procedure of RBCS-F is quite
intuitive. The algorithm starts with initialization of some
parameters in the first three lines, and then begins to start
iterative federated learning. In every iteration, the scheduler
first observes the contexts and the availability of the arms
(i.e., FL clients), then estimates the model exchange time
with Eqs. (18) and (19) using historical information. Taking

1558 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 7, JULY 2021

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on February 21,2021 at 23:36:25 UTC from IEEE Xplore.  Restrictions apply. 



advantage of the observed context, availability as well as the
estimation, the selection scheme for this round could be
fetched by Algorithm 1. After the decision, the model would
be distributed to the selected clients and gathered after local
training. Before the end of a round, the algorithm records
the exchange time of the selected clients and update the
associated parameters, as shown in lines 14-16.

Algorithm 1. Divide-and-Conquer Solution for P4

Input:
The estimated time for model exchange; f�tt;ngn2N
The expected number of chosen arms;m
Indicator function of arms’ availability; fIt;ngn2N
Length of virtual queue; fZt;ngn2N

Output:
The solution for P4 in round t; fxt;ngn2N

1: Set ZZ�t ¼ fZt;ngIt;n¼1
2: Use At to store arms with an descending order of ZZ�t
3: UseNþt to store all the n that satisfies It;n ¼ 1
4: Set k ¼ minfm;

P
n2N It;ng // # of clients to be picked

5: for nmax 2 Nþt do
6: Initialize an empty set Snmax

7: for n 2 At do
8: if �tt;n � �tt;nmax then
9: Push n into Snmax

10: end if
11: if lengthðSnmax Þ ¼¼ k then
12: Calculate the objective of P4 as Fnmax based on Snmax

13: Break the first loop
14: end if
15: end for
16: end for
17: Set n� the index of minimum Fnmax among those being cal-

culated in line 12.
18: Return fxt;ng that represented by Sn�

5.2 Theoretical Analysis

5.2.1 Regret and Fairness Guarantee

In an MAB model, regret is a key performance metric that
measures the performance gap between a given policy and
the optimal policy. Therefore, for ease of analysis, we first
define the time average regret of RBCS-F.

Definition 1. Time average regret of RBCS-F is defined as:

RðT Þ ,
1

T

XT
t¼1

E fðSt; tttÞ � fðS�t ; tttÞ
� �

; (23)

where we leverage S�t to represent the decision made by the
optimal policy while St captures RBCS-F’s decision.

To proceed, we show a strict upper bound on time aver-
age regret of RBCS-F in Theorem 3.

Theorem 3. Given any control parameter V , with probability at
least ð1� dÞ2, the time average regret achieved by RBCS-F is
upper bounded by:

RðT Þ � N 1þb2ð Þ
2V þ zT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 log ð1þTL2=3�Þ

T

q
; (24)

where S and L are both positive finite constants satisfying
uu�n

�� ��
2
�S and ct;n

�� ��
2
� L for all t � 1 and n 2 N . And:

zT ¼ maxfK; 1g �max 2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3log 1þTL2=�

d

� 	r
þ �1=2S; 1

� �
whereK is a constant value.

Proof. The complete proof is given in Appendix C, avail-
able in the online supplemental material. tu

Now we give another theorem to ensure that the long-
term fairness constraint would not be violated.

Theorem 4. For RBCS-F, the fairness vitual queues are all mean
rate stable in any setting of V , thus the time average fairness is
being guaranteed.

Proof. The complete proof is given in Appendix D, avail-
able in the online supplemental material. tu

5.2.2 Impact of V

In light of Theorem 3, it seems quite reasonable for us to set
the penalty factor V as large as possible so as to eliminate
the first term in the regret upper bound. Such an extreme
setting seems even more attractive regarding the fact that
the long-term fairness constraint holds under any setting of
V , which is justified by Theorem 4. Although a large value
of V could indeed bring us a more satisfying long-term
model exchange time while satisfying the long-term fairness
constraint, we must claim here that the fairness factor is not
impervious to the setting of V . Note that our long-term fair-
ness constraint is built on the premise that the training
rounds are infinite, but this may not be true in real training.
With a larger V , the fairness queue will have a slower rate
to converge, indicating that fairness could not be well
guaranteed before convergence. When the training rounds
are finite, the number of rounds that need to undergo before
convergence could compromise some degrees of fairness.
Such an analysis could be verified by our experiment results
that we are now going to display.

6 EXPERIMENTS

In this section, we present the detail of our experiments. In
the first sub-section, we would explain the general setting
of our simulation environment and evaluate the numerical
performance of our proposed solutions. The numerical eval-
uation results could well explain the relationship between
the penalty factor (V ), fairness (reflected by the queue
length), and efficiency guarantee (the time span of a feder-
ated round). Then we will move on to the evaluation of the
real training of two iconic public datasets, CIFAR-10 and
fashion-MNIST, both of which are evaluated under different
settings of non-iid extent. The real-data experiment will
show how our proposed RBCS-F impacts the training effi-
ciency and final model performance (i.e., accuracy).

6.1 Numerical Simulation

6.1.1 Simulation Setting

In our simulation, we assume the model exchange time con-
forms to the linear formulation as shown in Eq. (14). To sim-
ulate a heterogeneous system with clients of different
computation and communication capacity, we equally
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divide the total number of 40 clients into 4 classes and
accordingly endow disparate abilities to them. For clear-
ness, one can check Table 1 for the inherent training setting
of different classes of clients.

Algorithm 2. Reputation Based Client Selection with
Fairness (RBCS-F)

Input:
The expected number of involved clients each round;m
Exploration parameter; a0;a1; . . .
The set of clients;N , Parameter for ridge regression; �
The guaranteed participating rate; b
Parameter for objective balance; V

Output:
The control policy p ¼ fxt;ngn2N ;t¼0;1;...

1: for n 2 N do
2: InitializeH0;n  �I3
3;b0;n  0>3 , Z0;n  0
3: end for
4: for t ¼ 1; 2. . . do
5: Observe current contexts fct;ng and arms availability fIt;ng
6: for n 2 N do
7: ûut;n  H�1t�1;nbt�1;n

8: t̂t;n  c>t;nûut;n
9: �tt;n  t̂t;n � at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c>t;nH

�1
t�1;nct;n

q
10: end for
11: // Execute Algorithm 1 for a decision

fxt;ng  Algorithm 1ðf�tt;ng;m; fIt;ng; fZt;ngÞ
12: Distribute model to the selected clients and observe their

model exchange time;ftt;ng
13: for n 2 N do
14: Update Zt;n according to (6)
15: Ht;n  Ht�1;n þ xt;nct;nc

>
t;n

16: bt;n  bt�1;n þ xt;ntt;nct;n
17: end for
18: end for

For the context generation (in order to simulate the per-
round status of clients), we assume the allocated bandwidth
of all clients is sampling from a uniformdistribution between
[2,4] MHz and the model size M is fixed to 20 Mb. Likewise,
the available computation capacity of all clients is also
sampling from the same uniform distribution within ½50%;
200%�. The indicator st;n is set according to the training deci-
sion in the last round. In addition, for the noise in our linear
formulation, we draw � from a conditional uniform distribu-
tion within ð�cc>t;nuu�n; cc>t;nuu�nÞ. The availability of clients follows
the same Bernoulli distribution with parameter 0.8, and the
setting of other algorithm related parameters could be found
in Table 2. In our simulation, we mainly compare RBCS-F
with two baseline selection methods that are commonly
used in the field, i.e., random and FedCS [1]. Note that we

have made an adaption to FedCS in order to accommodate it
to our context, but the basic idea is the same as the vanilla
one, which is to select as much as clients within a fixed dead-
line. More concretely, we allow FedCS to have full access to
both the contextual features and the static coefficient factor.
With the additional information, its strategy is to select all
the clients that possess an expected training time (i.e., cc>t;nuu

�
n)

that shorter than the pre-set deadline.

6.1.2 Numerical Performance Evaluation

In our first evaluation, we show the variation of queue sta-
tus for RBCS-F under different values of penalty factor V .
As shown in Fig. 2, where RBCS-F(x) is abbreviated for
RBCS-F with a penalty of V ¼ x, it is interesting to see that
all the curves with different settings of V flatten after going
through a number of scheduling rounds. This phenomenon
can justify our conclusion of the mean rate stability of the
queues, which indicates that they could not grow to infinity
and break our fairness constraint. Another observation we
can derive here is that the curve with a higher penalty factor
(i.e., V ) seems to have a slower convergence speed and a
higher convergence value. This implies that a large value of
V might sacrifice a few fairness before its convergence,
although it does conform to the long-term fairness con-
straint. Such an observation is consilient with our explana-
tion given in the remark below Theorem 1 and our
theoretical analysis in the last section.

Now we take a look at the evolution of training time
across scheduling rounds. In Fig. 3, we depict the time con-
sumption of our proposed RBCS-F with different V , and
that of the random strategy and FedCS(3) 5. As depicted,
RBCS-F seems to have a satisfying enhancement in reducing
the training time, compared with the random scheme, and
of the same number of federated rounds, RBCS-F with a

TABLE 1
Inherent Setting of Arms (or Clients)

client tbn tsn h

class (cold start time) log ð1þ SNRÞ
1 1s 1s log ð1þ 1000Þ
2 2s 1s log ð1þ 100Þ
3 3s 1s log ð1þ 10Þ
4 4s 1s log ð1þ 1Þ

TABLE 2
Parameters Setting

notation meaning value

b guaranteed participating rate 0.15
m maximum selected clients 8
� parmeters for ridge regression 1
at exploration factor 0.1

Fig. 2. The impact of V on the convergence of queues.

5. For FedCS(3), we set its deadline (one of its key parameter) to 3s.
The specific setting allows us to make the number of its selection clients
approximates to 8, which is exactly the selection number of other strate-
gies (see our setting in Table 2).
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higher V boasts a shorter time consumption. In addition, it
is interesting to see that there is a performance gap between
RBCS-F and FedCS(3). We note that this gap is inevitable
due to our introduction of the fairness factor and the cost of
online learning, but the bound itself is well-defined by our
analysis of the regret.

The variance in training time of different schemes could
be alternatively explained by looking at Fig. 4. This figure
depicts the pull number of different arms (or chosen times
of FL clients) after going through 500 rounds of decision, in
which the clients are sorted in ascending order over their
pull number. The brighter color indicates a heavier pull (or
more times being selected) on the corresponding arm. From
Fig. 4, we notice that the pull number of clients could vary
dramatically when V is set to a high value and the unbal-
anced selection is more intense for FedCS(3). By contrast,
the scheme that is known to be fairer (e.g., random or
RBCF-F with low penalty) boasts an even distribution on
the pull number, based on which we can explain why the
training time of RBCS-F would escalate with a fairer selec-
tion. Clearly, the selection scheme that evenly chooses the
clients shall never match up with those always choosing the
fastest ones. However, is it the faster the better? Does fair-
ness matter in real training? Now we are going to explore
the answers with our real training on two public datasets.

6.2 Training on Public Dataset

6.2.1 Setup

Weset up federated environmentwithPyTorch (version: 1.6.0)
and all the computation is conducted using a high-perfor-
mance workstation (Dell PowerEdge T630 with 2x GTX
1080Ti). We have prepared two tasks for an evaluation pur-
pose. To be specific, we use two different Convolutional Neu-
ral Network (CNN) models to predict the classifying results
from two datasets, fashion-MNIST, and CIFAR-10. For
fashion-MNIST, we adopt a CNN with two 5x5 convolution
layers (the first with 20 channels, the secondwith 50, each fol-
lowed with 2x2 max pooling), a fully-connected layer with
500 units and ReLu activation, and finally a softmax output
layer. For CIFAR-10, which is known to be a harder task, we
use anothermuch heavier CNNmodel with two 5x5 convolu-
tion layers (each with 64 channels), also followed with 2x2
max pooling, two fully connected layers with respective 384
and 192 units, and finally a softmax output layer.

In addition to the general iid setting, we also explore the
training performance on a non-iid one. Here we adopt the
same approach as in [27] to synthesize non-identical client

data. More specifically, we uniformly sample qi 
 500 items
from each of the classifying class, where qq , ðq1; q2; . . .; qiÞ is
drawn from a Dirichlet distribution, i.e., qq � Dirðg1ppÞ. Here
pp is an all-1 10-dimension vector 6 and g1 is a concentration
parameter controlling the extent of identicalness among cli-
ents, say, with g1 ! 0 each client holds only one class cho-
sen at random (i.e., high degree of non-iid), conversely, all
clients have identical access to all classes (i.e., approximates
to iid) if g1 !1.

6.2.2 Impact of Fairness

In order to quantify the fairness factor and investigate how
the factor affects the model accuracy as well as the training
efficiency, we thereby introduce g2 to indicate the extent of
fairness. Analogically to how we quantify the non-iid
extent, we drawqq from a Dirichlet distribution, i.e., qq0 �
Dirðg2p

0p0Þ and then qq0 is serving as the probability vector that
we use to randomly select clients in each round. As we note
before, a smaller value of concentration parameter g2 leads to
a higher variation of qq0 and thereby causing greater unbal-
ance in selection. Fig. 5 show how the model accuracy
evolve with different g2, under different non-iid extent
(given by g1). Among which, subfigures (a), (b), and (c)
depict that of the training for fashionMnist, where we can
see that a higher g2 (a fairer selection) boasts a higher final
model accuracy. Also, a similar observation, or an even
more conspicuous one, can be found in our training for
CIFAR-10, as indicated in subfigures (d), (e), and (f). From
our result, it appears that the fairness factor might have dif-
ferent degrees of influence for the training of different data-
sets. More radically, we are in fact guessing that fairness
factor would play a more critical role in a more complicated
task. Our theory is that training of a harder task might
require more diversified data (in terms of both targets and
features), and corresponding, the relative information that
each piece of data contains would reduce, and thereby, the
training of those tasks should better involve as much avail-
able data as possible (i.e., better to be fair), so as to improve
the model performance (specifically, final accuracy).

On the other hand, although the experimental data does
demonstrate a profound impact of non-iid extent on the
model stability and convergence speed during training
(as we can observe in Fig. 5 that when g1 decreases, more jit-
ters on the curve and more rounds underwent before

Fig. 3. Training time of different client-selection strategies.
Fig. 4. Pull record of arms (or clients) under different client-selection
strategies.

6. Both Cifar and fashion-Mnist have 10 targets (or classes)
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convergence), it does not explicitly show the fairness factor
(as reflected by g2) being more or less influential with the
change of g1, which seems to tell us that our defined non-iid
extent has little or no impact on the effect of fairness.

6.2.3 Accuracy Versus Federated Round

Fig. 6 depicts how our proposed RBCS-F with different set-
tings of V performs in the real training, being compared

with the baselines, random and FedCS(3). The result is con-
sistent with our former conjecture that RBCS-F with a
smaller V , which is known to be fairer, would achieve a
higher final accuracy after rounds of training. Random, a
categorically fair scheme, yields the best performance in
terms of final model accuracy, while the FedCS(3), another
extreme in terms of fairness, does not promise us a com-
mensurate result.

Fig. 5. Fairness impact under fashion-MNIST ( (a), (b), and (c) ) and CIFAR-10 ( (d), (e), and (f)).

Fig. 6. Accuracy versus federated rounds for fashion-MNIST ( ðaÞ; ðbÞ; ðcÞ ) and CIFAR-10 ( ðdÞ; ðeÞ; ðfÞ).
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Another point we are interested in is that RBCS-F with a
higher penalty seems to spend more rounds to reach a cer-
tain accuracy, which we refer to a lower round efficiency.
This phenomenon can be justified by the result from Fig. 2,
which indicates that RBCS-F with a higher penalty tends
only to consider fairness when the queue length is large, or
in other words, only during a big number of training
rounds. Correspondingly, the delay of fairness consider-
ation would make the global model having the chance of
aggregating some seldom access data only when the num-
ber of rounds is large, and thereby, causing postpone on
convergence. Besides, we also found that RBCS-F generally
outperforms FedCS(3) in terms of round efficiency, which is
conspicuously depicted by subfigures (e) and (f).

6.2.4 Accuracy Versus Training Time

Due to space limit, this section is moved to Appendix E,
available in the online supplemental material.

7 CONCLUSION AND FUTURE PROSPECT

In this paper, we have investigated the client selection prob-
lem for federated learning. Our concern mainly focuses on
the tradeoff between fairness factor and training efficiency.
In light of the experiment on our proposed method, we
found that fairness is indeed playing a critical role in the
training process. In particular, we show that a fairer strategy
could promise us a higher final accuracy while inevitably
sacrificing a few training efficiency. In terms of how the fair-
ness factor would affect the final achieved accuracy, as well
as the convergence speed, however, we could not figure out
a rigorous way to quantify their relation. And neither could
we track down from the existing literature any theoretical
analysis of the fairness factor for FL, making this particular
issue quite worthy of investigation. Our future effort would
be mainly on this emerging issue.
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