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Abstract—Federated learning (FL), arising as a privacy-
preserving machine learning paradigm, has received notable
attention from the public. In each round of synchronous FL
training, only a fraction of available clients are chosen to partic-
ipate, and the selection decision might have a significant effect
on the training efficiency, as well as the final model performance.
In this article, we investigate the client selection problem under
a volatile context, in which the local training of heterogeneous
clients is likely to fail due to various kinds of reasons and in dif-
ferent levels of frequency. Intuitively, too much training failure
might potentially reduce the training efficiency, while too much
selection on clients with greater stability might introduce bias,
thereby resulting in degradation of the training effectiveness. To
tackle this tradeoff, we, in this article, formulate the client selec-
tion problem under joint consideration of effective participation
and fairness. Furthermore, we propose E3CS, a stochastic client
selection scheme as a solution. According to our experimental
results over a public data set, the proposed selection scheme is
able to achieve up to 2× faster convergence to a fixed model accu-
racy while maintaining the same level of final model accuracy,
compared with the state-of-the-art selection schemes.

Index Terms—Adversarial multiarm bandit (MAB), client
selection, exponential-weight algorithm for exploration and
exploitation (Exp3), fairness scheduling, federated learning (FL).
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I. INTRODUCTION

A. Background

DATA privacy issue has received notable attention nowa-
days, making the acquisition of reliable and realistic data

an even more challenging task. However, without the sup-
port of massive real-world data, model training by artificial
intelligence (AI)-based technique might not be realistic. In
this security-demanding context, federated learning (FL), a
privacy-preserving machine learning paradigm, has come into
vision. In FL, training data possessed by a client (e.g., mobile
phone, personal laptop, etc.) does not need to leave the sources
and be uploaded to a centralized entity for model training. All
the training is done in the local devices alone, and only the
posttrained models, rather than the raw data, would be exposed
to other entities. By this mechanism, potential data exposure
could be reduced to a minimum extent and thus, making data
sharing less reluctant by the data owners.

B. Motivations

The training of canonical FL is an iterated process, in which
the following basic procedure performs in sequence: 1) server
makes a client selection decision and distributes the global
model to the selected participants; 2) clients (or participants)
take advantage of their local data to train the global model.
Explicitly, it does multiple steps of optimization [like stochas-
tic gradient descent (SGD)] to the global model; 3) clients
upload the posttrained model after training is accomplished;
and 4) server aggregates the uploaded model (i.e., averages
the model weights of all the uploaded models) and repeats the
above procedures until the aggregated model is converged.

In the client selection stage, due to the limited bandwidth
as well as the budget issue, not all the clients in the system
are selected for training. As a result, some portion of training
data is simply missing from training in each round. Under
this partial participation mechanism, multiple factors, such as
the number of aggregated models, may play a critical role in
the FL’s convergence and performance. Empirical observations
given in [1] (i.e., the first FL paper) agree that increasing the
number of participants (equivalently, enlarging the number of
posttrained models to aggregate, if no training failure presents)
in each round may boost the convergence speed.

Now, consider a more realistic volatile training context, in
which the selected client may not successfully return their
models for aggregation in each round. These failures could
be as a result of various kinds of reasons, e.g., insufficient
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Fig. 1. Example illustrating the effect of fairness in FL, where �∗
A and �∗

B, respectively, are the local weights of Client A and Client B [i.e., �∗
A =

arg min� f (�;DA) and �∗
B = arg min� f (�;DB)] and �∗ is the global optimal weights (i.e., �∗ = arg min� f (�;DA ∪ DB)). In each round of training,

only one of the two clients is asked to train the global model (but no aggregation is needed in this example, which is a special case of FL). The left selection
scheme consistently involves Client A while the right one gives the two clients the same opportunity to participate. It can be observed that after four rounds
of training, the obtained global weights of the fairer selection is much closer to the optimal global weights �∗, so typically the model enjoys smaller loss
and higher accuracy.

computing resources, user abort, network failure, etc. This
volatile context is pretty common in IoT scenario, and typ-
ically, in this particular scenario, different clients may expe-
rience different rates of failure owing to their heterogeneous
composition. Under this more realistic consideration, and com-
bining the observations given in [1], we may derive a rather
heuristic rule of making client selection for this context: to
maximize the effective participation in each round. That is,
simply selecting the clients with the lowest failure probability
(i.e., the stable ones) would be beneficial and may accelerate
the training.

But this statement could be erroneous as subsequent study
reveals a possible drawback of this naive selection scheme.
The major concern arises from the violation of selection fair-
ness. In our previous work [2], we empirically substantiate
that biased selection of clients may somehow hurt the model
performance (or final model accuracy). Specifically, we argue
that too much selection on a specific group of clients may
make the global model “drifting” toward their local optimizer.
That is, the model might overfit to the data owned by those
clients that we frequently select, while having poor accuracy
for those seldom accessed (see Fig. 1 for an example). Barring
the most intuitive observation, a concurrent study [3] has pro-
vided theoretical analysis on selection fairness. They present
a nonvanishing bias term in the convergence error, which is
exactly resulting from the selection bias (selection skewness
in their contexts) toward some specific clients.

To sum up, reasonable inference based on existing stud-
ies reveals that: 1) tendentiously selecting stable clients might
increase effective participation, and thereby, accelerate conver-
gence and 2) but selection bias might deteriorate the obtained
model’s performance. As both the training efficiency and effec-
tiveness are of interest in FL, we, in this article, like to
investigate the tradeoff between effective participation (i.e.,
number of returned models for each round) and selection

fairness in a volatile training context, and discover if there is
a nice way to tame these two seemingly contrastive metrics.

C. Contributions

The main contributions of this article are listed as follows.
1) We propose a deadline-based aggregation mechanism to

cope with FL aggregation in a volatile training context.
2) Under the new aggregation mechanism and the premise

of the client’s volatility, we formulate the global
optimization problem for FL. To simplify the problem,
we decompose the global problem into two subproblems
based on the idea of alternating minimization. After that,
we propose to relax the client selection subproblem to
a solvable form based on empirical observations.

3) We design an efficient solution termed exponential-
weight algorithm for exploration and exploitation
(Exp3)-based client selection (E3CS) for the defined
stochastic client selection problem. Theoretically, we
derive the regret bound of E3CS, and we further dis-
cuss its relation to the canonical Exp3 in our analysis.
Empirically, numerical as well as real data-based exper-
iments are conducted to substantiate the effectiveness of
our proposed solutions.

To the best of our knowledge, this is the first paper
that presents a systematic study for FL under a volatile
context. Before this study, almost all the literature on syn-
chronized FL escape the potential dropout phenomenon of
clients. Consequently, this article may bring new insights into
the subsequent research of synchronized FL.

II. RELATED WORKS

Open research of FL can be classified into the following
aspects.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on October 09,2022 at 01:03:05 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: STOCHASTIC CLIENT SELECTION FOR FEDERATED LEARNING WITH VOLATILE CLIENTS 20057

A. Statistical Heterogeneity

Zhao et al. [4] highlighted the issue of nonindependently
identical distribution (non-iid) of data. They presented the
experimental data of FL training in a non-iid setting, which
indicates a test accuracy loss of up to 51% for CIFAR-101

and 11% for MNIST,2 comparing to an iid case. This phe-
nomenon can be explained by statistical heterogeneity, which
makes the local optimum model weights for different clients
utterly different, and is proven to affect the convergence rate
of FL in [7]. As a potential solution, Zhao et al. [4] proposed
to create a small subset of public data, which is distributed
to clients to form a rectified “iid” data set. A similar idea of
data exchange is also available in [8] and [9]. Identifying the
potential privacy leakage and communication overhead of the
above data-exchange-based approach, Jeong et al. [10] further
proposed federated augmentation (FAug), which essentially is
to train a generative adversarial network (GAN) to produce
the “missing” data samples, so as to make the training data
set becoming iid. However, potential privacy intrusion still per-
sists in this data generation method, since training GAN needs
seed data samples uploaded from clients.

B. System Heterogeneity

Another performance bottleneck faced by FL is the het-
erogeneous computing and network capacity of clients. In
synchronous FL, aggregation could only be conducted when
all the clients fully complete their local training and return
their posttrained model. But the clients have utterly different
performances in the real use case, which implies that some
“faster” clients have to wait for the “slower,” resulting in
unnecessary time consuming.

To tackle this problem, Li et al. [11] allowed the train-
ing epochs of different clients to be inconsistent, such that
“weaker” clients can be allowed to perform less computing in
each round of training. But this more flexible setting makes the
original FedAvg scheme performs even worse in the case that
the clients’ data are highly statistically heterogeneous. An intu-
itive explanation for this phenomenon is that the global model
is peculiarly prone to drift (or be pulled) toward the local
optimum of those clients who conducted more epochs of train-
ing, resulting in an incomplete and unbalanced global model.
To cope with this arising problem, Li et al. [11] proposed to
use a proximal term to constrain the “distance” between the
local model and global model, such that the local model of
those clients with more computation (or more steps of update)
would not be so drastically deviated from the global one,
and therefore, mitigating the drifting phenomenon. In another
recent work [12], the idea of imposing varying epochs for
different clients is also adopted. But they propose an alterna-
tive solution for the drifting problem. Specifically, they assign
epochs-related aggregation weights to different clients, and the
clients with fewer training epochs are assigned with higher

1The CIFAR-10 [5] data set is a collection of images that are commonly
used to train machine learning and computer vision algorithms.

2MNIST [6] is a collection of handwritten digits that are commonly used
for training various machine learning model.

aggregation weights, such that their local models would not
be overwhelmed by those with larger training epochs.

However, we argue that system heterogeneity in FL not
only specifies the local training epochs of clients but more
aspects (such as volatility of clients) should also be consid-
ered. As such, we, in this article, extend the notion of system
heterogeneity in FL to the client’s heterogeneous volatility,
and discover its subsequent impact on the overall training
performance.

C. Client Selection

In FL, due to the communication bottleneck, often only
a subset of clients could be selected to put into training
in each round, which is termed as partial participation (aka
partial selection). Partial participation might introduce extra
bias in update gradients, thereby deteriorating FL’s training
performance. But the proper selection of clients in each round
may potentially narrow this performance gap.

The earliest record of this genre of research is perhaps [13],
in which Nishio and Yonetani proposed a rather intuitive selec-
tion scheme and highlighted the importance of client update
number to the model performance. In a more recent work [14],
the joint bandwidth partition and client selection issue was
investigated in depth, and the joint optimization problem was
solved by a rather traditional numerical method. Following
this line of research, Xu and Wang [15] constructed a long-
term client energy constraint to the selection problem, which
essentially is to reserve energy during initial rounds of training
so that more clients have chances to be involved in the later
rounds of training. This study yields a very similar observa-
tion as ours that the FL process indeed benefits if later rounds
of training cover more clients. We do believe that such a phe-
nomenon is due to the fairness effect that we discover, i.e., the
model needs more diversified data to further improve if near
convergence.

In the earliest client selection study, Nishio and
Yonetani [13] assumed that the training status of clients
(e.g., the training time, resource usage, etc.) is known or
can at least be calculated. However, client selection is not
always based on a known context. Sometimes we do need
some historical information (or the reputation of clients)
to facilitate decision making. In [16], a reinforcement
learning-based selection scheme was proposed. The authors
take dimensionality reduced model weights as states in a
Markov decision process, and use the reinforcement learning
technique to optimize the selection decision for each state
(i.e., each group of model weights after dimensionality
reduction). However, this specific method needs thousands
of epochs of FL data to train the reinforcement learning
model and thereby, may lose some of its applicability and
genericity. Alternatively, an exploration and exploitation
balance model, e.g., multiarm bandit (MAB), would be
more realistic. For example, Yoshida et al. [17] leveraged
a canonical MAB and further developed a rectified way to
accommodate the intrinsic problem of canonical MAB, i.e.,
an exponential number of arms’ combination. In another
work [18], Xia et al. made use of a combinatorial MAB
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setting, in which the independent feedback of each arm is
directly observed, enabling their designed UCB algorithm
to boast a strict regret bound. Their work further took the
fairness constraint into account, which appears to be a critical
factor in FL training. Our previous work [2] shared a very
similar consideration with [18], despite that we alternatively
assumed a combinatorial contextual bandit for modeling of
training time. Similarly, in [19], a MAB-based selection was
also implemented, but the feedback obtained for clients not
only involved training time (or training efficiency) but the
statistical efficiency (or training quality) was also jointly
modeled. All of the above-mentioned work made use of
a deterministic UCB-based algorithm to solve the bandit
problem. In this work, rather than employing the deterministic
UCB algorithm, we shall alternatively adopt a stochastic
Exp3-based algorithm, which makes it more natural and
intuitive to cope with the fairness constraint, without the need
of imposing dynamic queues, as [18] and [2] did.

Selection fairness is another dominant factor in performing
client selection. In our concurrent work [3], Cho et al. have
derived a theoretical analysis of the selection skewness. Based
on their finding, selection bias may introduce a nonvanishing
constant term in the convergence error, but bias toward clients
with higher local loss may accelerate the convergence speed
(see the vanishing term in their Theorem 3.1). Inspired by the
derived results, they proposed a power-of-choice client selec-
tion strategy to cope with the tradeoff between the local loss
of the selected clients and the selection fairness.

In [3], a stochastic selection scheme was considered in their
theoretical analysis, and they concluded that selection bias
toward clients with larger loss might: 1) accelerate the con-
vergence rate, but 2) enlarge the gap between the convergence
value to the global optimum. However, there is still a theoret-
ical gap between their proposed method and their theoretical
result (as they did not derive the optimal sampling probabil-
ity based on the result, but used a rather heuristic method to
determine the extent of skewness). In another study [20], con-
crete selection probability for independent sampling has been
given, in which the authors inherited and applied the basic
idea from [21], to make use of an unbiased estimator to do
the real update. Specifically, Chen et al. [20] formulated the
partial update from a client as an unbiased estimator of the
real update. Based on this formulation, their goal is to tune the
selection probability to minimize the variance between partial
update and the real update. They derive the optimal probability
allocation to optimize the above problem. However, to derive
this optimal probability allocation, real updates from all the
clients have to be known in advance, which indeed violates
the real intent of performing client selection—we select a sub-
set of clients for training in order to save the bandwidth, as
well as the computation. Neither goal can be achieved via the
optimal sampling proposed by [20].

In a high level, these two recent studies [3] and [20] actu-
ally share some common insights in terms of selection. That
is, it seems to be beneficial to select those clients with a
larger “distance” between the current global model and their
local optimal models. In other words, it is better to select the
clients whose local optimal models are most deviated from

the global model, so that the global model could be pulled
toward a proper direction. In [20], this distance is quantified
as local update norm, while in [3], it is local loss. These seem
to be two relevant metrics to quantify this “distance.” Also,
fairness matters. Though this issue has not been formally dis-
cussed by [20], their unbiased estimator helps maintain some
degree of fairness, since the real update of clients with less
selection probability is given higher aggregation weights (see
their formulation of the unbiased estimator). However, both of
these two concurrent works do not consider the volatility of
clients, and its subsequent impact on selection, which is the
main focus of this work.

D. Agnostic/Fair Federated Learning

The general average loss3 in FL can be given by

min�
1

K

K∑

i=1

E(x,y)∼Di f (�; (x, y)) (1)

where D = (1/K)
∑K

i=1 Di is the global data distribution
(Di is the local data distribution). However, in agnostic/fair
FL, the optimization objective of FL is no longer in this form.
Specifically, Mohri et al. [22] argued that it is too risky to
simply use this general loss as FL’s optimization target, as
it remains unspecified if the testing data distribution actu-
ally coincides with the average distribution among the training
clients [i.e., Dtest = (1/K)

∑K
i=1 Di may not trivially hold]. A

natural reformulation of the objective is to apply a min–max
principle, and change the global objective as follows:

min� maxλE(x,y)∼Dλ
f (�; (x, y)) (2)

where Dλ = ∑K
i=1 λiDi is a specific kind of mixture of

local data distribution. By this transformation, the goal of
optimization has transferred to find optimal weights �, which
minimizes the expected empirical loss under any possible
mixture of local data distribution (i.e., agnostic distribution).

However, agnostic FL applying the min–max principle
might be too rigid, as it maximizes the model’s worst
performance on any mixture of training data. Li et al. [23]
proposed to relax the problem by changing the optimization
objective to

min�
1

K

K∑

i=1

E(x,y)∼Di

1

q + 1
f q+1(�; (x, y)) (3)

where q is the fairness parameter. By this transformation,
the authors introduce good-intent fairness, making the goal is
instead to ensure that the training procedure does not overfit
a model to any one device at the expense of another. Or more
concretely, they like to acquire a global model that fits local
data from each client, thereby reducing the variance of testing
accuracy for each client. This new design is particularly fit to
the scenario that the obtained model is used by clients them-
selves (but not deployed elsewhere). Obviously, fairness has to
be nicely maintained in this case, since clients have no reasons
to participate if the acquired model has poor performance on

3Let us assume the data size of each client is the same for ease of narration.
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Fig. 2. Illustration of deadline-based aggregation mechanism of FL. �G, �A, �B, �C , and �D presented in the figure, respectively, correspond to the
global model, and the posttrained model of clients A, B, C, and D. In this example, three of four clients are chosen to participate in each round. In the first
round, the server selects clients A, B, and D to participate, and then distributes global model �G to them. But during the first round of training, client D
dropouts as a result of a system crash, so only the models from clients A and B are returned before the aggregation deadline, and both of them are counted
as effective participation. As no models are returned from client D, a force stop command is issued to her. After aggregation in server, a new global model
is produced, via weighted averaging like �G = ωA�A + ωB�B + (1 − ωA − ωB)�G, where ωA and ωB are the aggregation weights of a client [see (5) for
their definition]. The aggregated model then substitutes the old global model. Then, the second round of training ensues, in which clients A, B, and C are
chosen to participate. This time, all of the three return their models on time, so no force stop command needs to be issued. In the third round of training,
clients A, B, and D are chosen again, but unfortunately, no effective participation is produced in this round. Client A suffers from network failure, making the
model lost during transmission. Client B cannot fulfill the designated training epochs before the deadline, and client D crashes again during training. Then,
force stop commands are issued to all the three chosen clients. Obviously, this round of training is futile, as the global model is not updated and remains the
same as that in the previous round.

their local data. Moreover, this objective is indeed more flex-
ible than the agnostic min–max objective, in that the fairness
extent can be adjusted by tuning q, and therefore, should be
more applicable in some use cases of FL.

However, in this article, we stick to the optimization of gen-
eral FL, in which the optimization is still the general weighted
average loss. Note that the notion of fairness (i.e., good-intent
fairness) discussed in this section and the selection fairness
we mention in this article are not exactly the same notion,
since the objectives of maintaining them are different. For
good-intent fairness, the goal of maintaining it is to ensure
the training loss for different clients to be more uniform. For
the selection fairness we discuss in this article, it is maintained
in order to minimize the average loss (consider that bias selec-
tion might introduce difficulty in reducing average loss), but
we do not consider if the local empirical losses are uniform
or not.

III. DEADLINE-BASED AGGREGATION MECHANISM

To cope with the potential drop-out of clients, we adopt in
this article a deadline-based aggregation mechanism, in which
aggregation is made once a fixed deadline is met, such that the
issue of “perpetual waiting” could be nicely prevented. To be
specific, we involve the following stages in sequence during
one round of FL training.

Client Selection and Model Distribution: In this stage, the
server determines participants over the available clients and

correspondingly distributes the global model to them. After
distribution, the main process of the server would sleep and
wait until a fixed deadline is met.

Local Training: In this stage, the selected clients con-
duct designated epochs of training with a local optimizer
(e.g., SGD) on the basis of its local data and the dis-
tributed global model. The computing epochs of different
clients could be designated to different values in advance, as
clients may have different computing capacities (i.e., system
heterogeneity).

Model Transmission: Once the local training of the clients
completes successfully, the posttrained model would be trans-
mitted to the aggregation server immediately.

Force Stop: Once the deadline is met, the server
issues the “Force Stop” command to the selected clients,
after hearing which clients that are still on the stage
of training or model transmission will stop and abort
immediately. Models returned after the deadline will be
dropped.

Aggregation: The server will check the successful
returned model of their validity, after which aggrega-
tion based on FedAvg [1] (or possibly other aggrega-
tion schemes) is conducted. After this stage, the server
would repeat the above procedures to start a new training
round.

For a vivid understanding of the training process, we refer
the readers to Fig. 2, in which an example of three rounds of
FL training is demonstrated.
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IV. PROBLEM FORMULATION

Optimization over FL under the deadline-based
aggregation mechanism is characterized by a
tuple (K, {xi,t}i∈K,t∈T , o1(·), {At}t∈T ). Here, the set
K � {1, 2, . . . , K} represents the total number of K accessible
clients in the system, the training round is characterized
by t ∈ T � {1, . . . , T}, {xi,t}i∈K,t∈T is the success status
of a client in each round, o1 is the local update operation,
and {At}t∈T is a set that captures the selected clients each
round. We would specify how these components constitute
our optimization problem in the following.

A. Basic Assumption and Global Problem

In this section, we shall illustrate the basic setting of FL
with volatile clients, and the global optimization problem.

Client Dropout: There is a chance for the clients to drop-out
in the middle of training as a result of technical failures (or
the client proactively quits the training process). This dropout
phenomenon is quite common in IoT scenarios. To model this
critical concern, we introduce a binary number i.e., xi,t, to
capture the status of client i in round t. Formally, xi,t = 1
means the training of client i would succeed, and vice versa.

Cardinality Constraint: In each round of FL, only a frac-
tion of clients could be selected to participate due to limited
bandwidth (the same setting as in [2], [24], and [25]). Now,
we assume that we select k out of K clients in each round,
and formally, we need to ensure

|At| = k t ∈ T (4)

where At is the selection set in round t, and |At| is the
cardinality of the selection set.

Global Problem: The global optimization problem that we
like to solve within the total time frame T is as follows:

P1: min
o1,{At}t∈T

K∑

i=1

E(x,y)∼Diωif (�T+1; (x, y))

s.t. |At| = k (cardinality constraint)

�i,t = o1(�t,Di) (local update operation)

�t+1 =
∑

i∈At and xi,t �=0

ωi�i,t +
∑

i/∈At or xi,t=0

ωi�t

(aggregation operation for volatile context)

(5)

where:
1) Di is used to denote the local data distribution of client

i and (x, y) specifies one piece of data (with x being
input and y being label);

2) �t ∈ R
d and �i,t ∈ R

d are the global model weights
and the local model weights after local update (i.e.,
updated weights under the premise that local update has
been successfully accomplished);

3) ωi = |Di|/∑
i∈[K] |Di| is used to denote the proportion

of data of a specific client, where |Di| is the number of
data the ith client hosts;

4) f (�T+1; ·) is the empirical loss of a piece of data
given model weights �T+1. Our primary objective is to
minimize the average empirical loss over data residing
in all the clients;

5) o1(·) is the local update operation. Different schemes in
the literature apply different update techniques here. For
example, FedAvg [1] applies SGD over the general loss
function here. In another work, FedProx [11] employs
SGD over a proximal term-involved loss function during
the update.

P1 is a comprehensive global problem for FL in a volatile
context. It involves the optimization of two key processes of
FL, i.e., the local update scheme (o1) and the client selec-
tion scheme (At). The volatile context that we consider in
this article is directly reflected by the aggregation operation
shown in the third constraint. In order to accommodate the
volatile training context, the aggregation operation is slightly
modified from its original form of FedAvg (original formu-
lation is shown in (3) in [26]). In our modified version, the
updates from clients with unsuccessful participation (either not
selected or failed in the middle of training) are replaced by
the current global model, while in its original form, only those
not selected are replaced.

B. Alternative Optimization

The global problem P1 is a combinatorial optimization
problem, in which multiple variables are coupling together,
imposing great challenges for optimization. To lower the com-
plexity, we adopt the idea of alternating minimization to
decompose the problem. Specifically, we divide the variables
into two blocks, namely, the client selection block (i.e., At)
and the local operation block (i.e., o1). By the decomposition,
we are allowed to split the problem into two subproblems,
namely

P1-SUB1: min
o1

K∑

i=1

E(x,y)∼Diωif (�T+1; (x, y))

P1-SUB2: min{At}t∈T

K∑

i=1

E(x,y)∼Diωif (�T+1; (x, y))

s.t. same constraints with P1. (6)

P1-SUB1 is a standard optimization problem for FL, to which
multiple existing studies (e.g., [1], [11], and [12]) have given
concrete solutions, in order to cope with two notorious issues
in FL (i.e., system heterogeneity and statistical heterogene-
ity). However, it remains unexplored how to solve the client
selection subproblem P1-SUB2 in the presence of our third
constraint under volatile context. In this article, we shall focus
on the solution of P1-SUB2, while fixing existing solutions for
P1-SUB1 to alternatively optimize the problem.

C. Stochastic Optimization of Client Selection Subproblem

Inspired by [11], we consider to use multinomial sam-
pling4 to stochastically determine the selection combi-
nation each round. Specifically, we assume: 1) At ∼

4Drawing samples from a multinomial distribution with multiple trials is
equivalent to draw values from a set, say, {1, 2, . . . , K} in different probability
and for multiple times (quite like rolling for multiple times a special dice,
which has unequal probability for each side). No replacement specifies that
the drawn values between different trials cannot be the same (which reflects
the basic property of a combination). A simple implementation (or simulation)
of this multinomial distribution can be found in Section V of a draft textbook
(can be accessed through http://www.stat.cmu.edu/cshalizi/ADAfaEPoV/).
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multinomialNR(pt/k, k) ∀t ∈ T , where multinomialNR(·)
denotes a multinomial distribution without replacement;
2)

∑K
i=1 pi,t = k; and 3) 0 ≤ pi,t ≤ 1. These assumptions

suffice to ensure that |At| = k and E[I{i∈At}] = pi,t, which
means the probability that a client being selected is pi,t. By
this transformation, we obtain a stochastic version of P1-SUB2
as follows:

P2: min{pt}t∈T

K∑

i=1

E(x,y)∼Diωif (�T+1; (x, y))

s.t. At ∼ multinomialNR
(
pt/k, k

)

K∑

i=1

pi,t = k

0 ≤ pi,t ≤ 1

�i,t = o1(�t,Di)

�t+1 =
∑

i∈At and xi,t �=0

ωi�i,t +
∑

i/∈At or xi,t=0

ωi�t.

(7)

By this transformation, the problem’s optimization tar-
get has transferred to the probability allocation pt �
(p1,t, . . . , pK,t). However, after transformation, it is still much
complicated to derive a uniform solution to problem P2, given
that the local update operation o1 could be diversified, and
there is not a universal method to quantify their impacts on
the client selection policy.

D. Problem Relaxation Based on Empirical Findings

Then, we shall shed light on how we resort to an empirical
observation to further relax the problem. More specifically,
under the framework of both FedAvg and FedProx (i.e., fixing
o1 according to their setting), we find empirically that two
critical factors, i.e., expected cumulative effective participation
(CEP) and selection fairness, might impose a critical effect on
the optimization of pt in the presence of volatility. Now, we
shall introduce these two factors in sequence, as follows.

Expected Cumulative Effective Participation: Factually, the
training processes of volatile clients are not always bound to
succeed. In the course of training, there are various kinds of
reasons for the clients to drop-out (or crash), i.e., not capa-
ble of returning models to the server on time. For example,
clients might unintentionally shut down the training process
due to resource limitations, or perhaps clients are too slow to
return the posttrained model, leading to a futile participation.5

From the perspective of an FL server, a frequent failure of
the clients is the least desirable to see (since there are fewer
models available for aggregation), and therefore, those “sta-
ble” clients should be more welcome than the “volatile” ones.
Also, empirical observation given in the first FL paper [1]
indicates that increasing the client fraction (C in their con-
text) would accelerate the learning process,6 which means

5In our deadline-based aggregation scheme, FL server would set up a dead-
line for collecting models from clients and model submitted after which would
be dropped.

6See the conclusion made by [1, Table 1].

increasing the number of aggregated models would be benefi-
cial in our volatile context. To model this particular concern,
we define the metric named expected CEP, i.e., the expected
number of posttrained models that have been successfully
returned. Formally, we propose to maximize the expected CEP
as follows:

E

[
T∑

t=1

K∑

i=1

I{i∈At}xi,t

]
(8)

where I{i∈At}xi,t equals to one only if the ith client is selected
(i.e., i ∈ At) and the training is success (i.e., xi,t = 1).
Furthermore, considering the fact that E[I{i∈At}] = pi,t, we
obtain that

E

[
T∑

t=1

K∑

i=1

I{i∈At}xi,t

]
=

T∑

t=1

K∑

i=1

pi,txi,t. (9)

While maximizing expected CEP, conceivably, the model
would be biased toward data from clients that have higher
success rate. To control the extent of skewness, we introduce
the fairness metric in the following.

Selection Fairness: In the real training scenario, data
that reside in clients are normally statistically heterogeneous
and therefore, have its own value in promoting training
performance. If we intentionally skip the training of some
clients (perhaps those with a higher probability to drop-out),
then most likely, the final model accuracy would suffer an
undesirable loss, since the global model will lean toward the
local optimal models of those frequently selected. This train-
ing pattern is akin to consistently using a portion of data for
training in pure centralized machine learning. Conceivably,
with this biased pattern, the trained model will be overfitted
to a subset of the frequently involved data, thereby degrad-
ing model accuracy. Empirical observation of this performance
degradation phenomenon is reported in [2], and is theoretically
studied in [3].

As such, we need to ensure fairness to control (though not
eliminate) the selection bias. We achieve this goal by reserving
some probability for each client to be selected. More con-
cretely, we need to make sure the probability that each client
being selected should at least be σt, such that each client is at
least given some chances to get involved. Formally, we need
to make sure

pi,t ≥ σt ∀i ∈ K ∀t ∈ T . (10)

Obviously, we can find that the higher the value of σt is, the
evener the selection would become. In this regard, we refer
to σt as fairness quota,7 which directly measures the fairness
degree of this round of selection. Also, we need to ensure the
constraint 0 ≤ σt ≤ k/K holds for any t, since: 1) setting
σt < 0 is meaningless under the assumption pi,t ≥ 0 and
2) setting σt > k/K violates the assumption

∑K
i=1 pi,t = k.

Importantly, σt = k/K implies that pi,t = k/K holds for all
clients. In this case, all the clients share the same probability
to be selected, and selection would be reduced to uniform

7It is noticeable that we allow the fairness quota in each round not neces-
sarily be the same. This setting is associated with some intrinsic features of
FL training, which we will detail in our experimental part.
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sampling adopted by FedAvg. Therefore, the fairness quota σt

serves as a key hyperparameter to tradeoff selection skewness
and training efficiency (which could be promoted via biased
selection over the clients with higher success rate).

Relaxed Client Selection Problem: Putting all the pieces
together, now we shall introduce the relaxed client selection
problem, as follows:

P3: max{pt}
T∑

t=1

K∑

i=1

pi,txi,t

s.t.
K∑

i=1

pi,t = k ∀t ∈ T

σt ≤ pi,t ≤ 1 ∀t ∈ T ∀i ∈ K. (11)

However, the problem cannot be solved offline, since the
success status of a client, i.e., xi,t, is generally unknown by
the coordinator before round t. We in the following section
would introduce an adversary bandit-based online scheduling
solution for problem solving.

V. SOLUTION AND ALGORITHMS

In this section, we shall give a solution about how to deter-
mine the selection probability of different clients such that
the expected CEP is being maximized in P3. Before our for-
mal introduction, we shall first give a preliminary illustration
of Exp3, a rather intuitive solution of the adversarial bandit
problem, which serves as the base of our proposed solution.

A. Preliminary Introduction to Canonical Exp3

Subjecting to the selection constraint 0 ≤ pi,t ≤ 1 and∑
i pi,t = 1, the objective of adversary bandit is to maximize

the following objective: max{pt}
∑T

t=1
∑

i pi,txi,t where xi,t

is the reward of drawing the ith arm, and pi,t is the selection
probability.

As a solution to adversary bandit, Exp3 first defines the
unbiased estimator of the real outcome of arms as follows:

x̂i,t = I{i∈At}
pi,t

xi,t. (12)

It can be found that E[x̂i,t] = xi,t. Using the unbiased estima-
tor, the exponential weights, which reveals the future rewards
of an arm, can be formulated as follows:

wi,t+1 = wi,t exp
(
ηx̂i,t

)
. (13)

As the obtained weights reflect our estimation of each arm’s
potential outcome, intuitively, we might need to allocate more
selection probability to those with a higher weight. Moreover,
we need to ensure that the allocated probability sums up to 1.
An intuitive way to achieve this requirement is to calculate
the allocated probability as follows:

pi,t = wi,t∑
j∈K wj,t

. (14)

By this kind of probability allocation, the algorithm should
be able to identify the arm with higher rewards and allocate
them more probability. However, the canonical Exp3 could
only apply to the situation that only one arm is selected in

each round. Moreover, the canonical Exp3 cannot guarantee
that the selection probability of each arm is at least greater than
a constant. Therefore, we need to make necessary adaptations
toward it in order to enable multiple plays each round, and
accommodate the fairness constraint in our context. In the
next section, we shall introduce our adaptation based on an
elementary framework [27] for adversarial bandit with multiple
plays.

B. EXP3 With Multiple Play and Fairness Constraint

As can be found in problem P3, our formulated problem
is in the same form of the adversary bandit problem with
multiple plays, though with an extra constraint over the mini-
mum probability to be allocated to a client. In the following,
we propose an Exp3-based solution for problem solving.

Unbiased Estimator and Exponential Weights: We con-
sistently use the same unbiased estimator of xi,t as in the
canonical Exp3 solution, namely

x̂i,t = I{i∈At}
pi,t

xi,t. (15)

Intuitively, we can derive that x̂i,t ∈ (0,∞] and E[x̂i,t] = xi,t.
But the exponential weights update should be modified to

wi,t+1 =
{

wi,t exp
(

(k−Kσt)ηx̂i,t
K

)
i /∈ St

wi,t i ∈ St
(16)

where 0 < η < 1 denotes the learning rate of weights update.
St is the set of clients that experience probability overflow
during the probability allocation stages, which will be specified
later. The in-depth reason of this modification is available in
our proof of regret (see Appendix B in the supplementary
material).

Probability Allocation: Given the exponential weights of
clients, the way we derive probability allocation should be
revised to a more sophisticated form, in order to accom-
modate pi,t ≥ σt (i.e., the expected fairness constraint) and∑K

i=1 pi,t = k. In order to qualify these two constraints, our
idea is to first allocate a total amount of σt probability to each
client to accommodate the fairness constraint, and then further
allocate the residual amount of probability (i.e., k−Kσt, since∑K

i=1 pi,t = k, which is imposed by the cardinality constraint)
according to the clients’ weight. Formally, we give

pi,t = σt + (k − Kσt)
wi,t∑

j∈K wj,t
. (17)

However, a critical issue might persist in this form of proba-
bility allocation: the allocated pi,t would be possibly greater
than 1 if the exponential weight of a client is too large, which
violates the constraint pi,t ≤ 1 in P3. We refer to such an
unexpected phenomenon as probability overflow.

Capping the Probability: To address the probability over-
flow issue, we shall employ a capping-based technique for the
probability allocation.

Formally, we need to rewrite (17) as follows:

pi,t = σt + (k − Kσt)
w′

i,t∑
j∈K w′

j,t
(18)

where w′
i,t = min{wi,t, (1 − σt)αt}.
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By introducing the revised weights, we cap those weights
that are too large to a smaller value, i.e., αt, such that the
selection probability of those “overflowed” clients would be
capped to 1. Now, the problem has been transferred to choose
a proper αt, making pi,t ≤ 1 holds for all i. But before we
introduce how to derive αt, we shall first determine the exis-
tence of at least one qualified αt to ensure the applicability of
our capping method. Here, we need the following claim.

Claim 1: By the calculation indicated by (18), there exists
at least one qualified αt such that pi,t ≤ 1 holds for all i ∈ K.

Proof: To formally start our proof, we need the following
observation:

For any i ∈ K

pi,t ≤ σt + (k − Kσt)
(1 − σt)αt∑

j∈K w′
j,t

. (19)

Now, we let αt = mini∈K{wi,t/(1 − σt)}. Then, we know that∑
j∈K w′

j,t = Kαt(1 − σt). It follows that the right hand size
(R.H.S) of the above inequality is equivalent to σt + [(k −
Kσt)/K], by which we can ensure that pi,t ≤ 1 since k ≤ K. As
such, we conclude that there exist at least one αt that ensures
pi,t ≤ 1 for any i, which completes the proof.

By Claim 1, we justify the existence of αt such that pi,t ≤ 1
holds for all i. But to determine our selection of αt, we should
note that αt should be set as large as possible.8 As such, fol-
lowing the observation as per inequality (19), we indeed need
to set αt as follows:

σt + (k − Kσt)
(1 − σt)αt∑

j∈K w′
j,t

= 1. (20)

By this equation, we maximize αt while making pi,t ≤ 1 for
any client i, and it can be simplified as follows:

αt∑
j∈K w′

j,t
= 1

k − Kσt
. (21)

Then, we show the way to find the solution of (21). First, it is
noticeable that the possible “structures” of

∑
j∈K w′

j,t are finite.
Then, we can simply divide it into at most N − 1 cases. Let
�i,t = wi,t/(1 − σt). Formally, we assume case v satisfying:
�iv,t ≤ αt < �iv+1,t where iv denotes the vth smallest �i,t. As
the structure of

∑
j∈K w′

j,t is fixed for case v, we can derive

∑

wj,t≤�iv,t

wj,t

αt
+

∑

wj,t>�iv,t

(1 − σt) = k − Kσt. (22)

Reorganizing the term, we have

αt =
∑

j∈K:wj,t≤�iv,t
wj,t

k − Kσt − ∑
wj,t>�iv,t

(1 − σt)
. (23)

By iterating all the cases and checking if the calculated αt

satisfies the premise, i.e., �iv,t ≤ αt < �iv+1,t, finally we are
allowed to derive a feasible αt.

8Too see why we make this statement, considering the case when setting
αt → 0, then the allocation differentiation is completely eliminated (i.e., all
the clients share the same probability), which contradicts our tenet to give
more chances to the stable contributors.

Algorithm 1 Exp3-Based Client Selection (E3CS) for FL
Input:

The number of involved clients each round; k
Fairness quota; {σt}
Final round; T
Local data distribution; {Di}
Local update operation; o1(·)

Output:
Global network weights; �T+1

1: Initialize wi,1 = 1 for i = 1, 2, . . . , K
2: for t = 1, 2, . . . , T do
3: pt, St = ProbAlloc(k, σt, {wi,t})
4: At ∼ multinomialNR(pt/k, k)
5: for client i ∈ At in parallel do
6: �i,t = o1(�t,Di)

7: end for
8: for client i ∈ [K], xi,t = 1 if succeed; else, xi,t = 0
9: �t+1 = ∑

i∈Atandxi,t �=0 ωi�i,t + ∑
i/∈Atorxi,t=0 ωi�t

10: x̂i,t = I{i∈At}
pi,t

xi,t i ∈ K
11: for i ∈ K:

wi,t+1 =
{

wi,t exp
(

(k−Kσt)ηx̂i,t
K

)
i /∈ St

wi,t i ∈ St

12: end for

C. Algorithm

To enable a better understanding of our proposed selection
solution, we present the detailed procedure of our Exp3-based
client selection (E3CS) for FL in Algorithm 1. Explicitly,
E3CS runs in the following procedure.

Initialization: Initialize the exponential weights of all the
clients to 1 in the first round and then the algorithm formally
goes into the iterative training process.

Probability Allocation: In each iteration, Algorithm 2,
which calculates the probability allocation as per we describe
in Section V-B, is called into execution and return the
probability allocation {pi,t} and overflowed client set St.

Stochastic Selection: Then, our incoming task is to ran-
domly select the clients based on the obtained probability.
This specific task is done by drawing samples from a weighted
multinomial distribution with no replacement for k times. In
our implementation, we simply use the API in PyTorch,9 i.e.,
torch.multinomial(pt, k, replacement=False).

Local Training and Aggregation: Once At is drawn from the
multinomial distribution, our main algorithm would distribute
the global model �t to the selected clients, who will immedi-
ately start local training (e.g., conduct multiple steps of SGD).
This local training process could be different by using differ-
ent optimizers (or adding a proximal term to the local loss
function as FedProx [11] does). At the same time, the server’s
main process sleeps until the deadline is met, and after that,
models would be aggregated based on the returned models’
parameters. Specifically, clients with successful returns would

9Similar implementation of multinomial sampling is also available in scipy,
numpy, and R.
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Algorithm 2 Probability Allocation (ProbAlloc)
Input:

The number of involved clients each round; k
Fairness quota; {σt}
Exponential Weight for round t: {wi,t}

Output:
Probability allocation vector for round t: pt
Overflowed set for round t: St

1: if σt + (k − Kσt)
maxi∈K{wi,t}∑

j∈K wj,t
> 1 then

2: Decide αt such that: αt∑
j∈K w′

j,t
= 1

k−Kσt

3: St = {
i ∈ K : wi,t > (1 − σt)αt

}

4: w′
i,t = min{wi,t, (1 − σt)αt} for i = 1, 2, . . . , K

5: pi,t = σt + (k − Kσt)
w′

i,t∑
j∈K w′

j,t
for i = 1, 2, . . . , K

6: else
7: St = ∅
8: pi,t = σt + (k − Kσt)

wi,t∑
j∈K wj,t

for i = 1, 2, . . . , K

9: end if
10: Return pt, St

be involved in aggregation, and for those clients whose mod-
els are not successfully returned on time, or simply not being
chosen into training, the global model would take its place in
aggregation (see line 9 in Algorithm 1).

Exponential Weights Update: After the aggregation is done,
we need to update our “expectation” of clients (or arms). This
part of update process is consistent with (15) and (16).

D. Theoretical Regret Guarantee

In this section, we might need to evaluate our proposed
solutions at a theoretical level. Let us first define an optimal
solution of P3.

Definition 1 (Optimal Solution): The optimal solution for
P3 performs client selection based on the following probability
allocation:

p∗
i,t = q∗

i,t(k − Kσt) + σt (24)

where q∗
i,t is the optimal allocation quota of k−Kσt probability.

The definition is quite intuitive. We simply reserve σt proba-
bility for each client and optimally allocate the residual k−Kσt

probability. Based on our definition, it is not hard to derive
the optimal expected CEP until round T (CEP∗

T )

E
[
CEP∗

T

] =
T∑

t=1

∑

i∈K

(
q∗

i,t(k − Kσt) + σt
)
xi,t. (25)

Given E[CEP∗
T ], we like to compare the performance of E3CS

with the optimal solution, which motivates us to give the
following definition of regret.

Definition 2 (Regret of E3CS): Given E[CEP∗
T ], the regret

of E3CS (or performance gap to the optimal) is given by

RT = E
[
CEP∗

T

] − E

[
CEPE3CS

T

]
(26)

where E[CEPE3CS
T ] = ∑T

t=1
∑K

i=1 pi,txi,t.
Now, we introduce an upper bound of the defined regret, as

in Theorem 1.

Theorem 1 (Upper Bound of Regret): The regret of E3CS
is upper bounded by

RT ≤ η

T∑

t=1

(k − Kσt) + K

η
ln K (27)

and if η =
√

([K ln K]/[
∑T

t=1(k − Kσt)]), we have

RT ≤ 2

√√√√
T∑

t=1

K(k − Kσt) ln K. (28)

Proof: Complete proof is available in Appendix B in the
supplementary material.

Remark 1: Notably, the regret of E3CS would diminish
to 0 as σt → k/K. This phenomenon can be explained by
looking into what happens if σt = k/K: both E3CS and the
optimal solution yield the same solution, which is essentially
an even random selection among clients, so the regret would be
exactly 0. At the other extreme when σt = 0 for all t, the regret
would be reduced to RT ≤ 2

√
TKk ln K if η = √

[(K ln K)/Tk].
In this case, the derived bound of regret under multiple play
setting is

√
k times of that of the canonical single play Exp3

(see [28, Th. 11.1])

VI. EXPERIMENTS

In this section, we shall present the experimental results of
our proposed client selection solution. The evaluation is based
on numerical simulation and real training in two iconic public
data sets: 1) EMNIST-Letter [29] and 2) CIFAR-10 [5].

A. Setup

In this section, we shall illustrate the basic setup of our
experiment.

Programming and Running Environment: We have imple-
mented E3CS and the volatile training feature to an open-
source lightweighted FL simulator named FlSim,10 which is
built on the basis of PyTorch and has efficiently implemented
parallel training for the learning process. In terms of the run-
time environment, all the computation in our simulation is
run by a high-performance workstation (Dell PowerEdge T630
with 2xGTX 1080Ti).

Simulation of Volatile and Heterogeneous Clients: In our
simulation, a total number of K = 100 volatile clients are
available for selection, and in each round, k = 20 of which
are being selected. Under a volatile training context, clients
might suffer unexpected drop-out during their training. In our
experiment, we adopt a Bernoulli distribution to simulate the
training status of clients. Formally, we have xi,t ∼ Bern(ρi)

where ρi is the success rate of client i. To simulate the hetero-
geneous volatility of clients, we equally divide the whole set
of clients into four classes, with the success rate, respectively,
set as 0.1, 0.3, 0.6, and 0.9. In addition, we also allow the local
training epochs of clients to be different to simulate the client’s
heterogeneous computing capacity. Specifically, we designate

10Source code available in https://github.com/iQua/flsim.
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TABLE I
PARAMETERS SETTING OF FL TRAINING. NOTE: 1) SYMBOLS THAT DO

NOT APPEAR IN OTHER PLACES OF THIS ARTICLE WOULD BE

WRITTEN AS “−” AND 2) SGD IS ABBREVIATION OF

STANDARD STOCHASTIC GRADIENT DESCENT

different training epochs for different clients, and the desig-
nated epochs are randomly chosen from the set {1, 2, 3, 4}.
But note that we do not introduce correlation between het-
erogeneous volatility and heterogeneous computing capacity.
That is, a client that is asked to perform more rounds of train-
ing does not necessarily lead to a higher or lower failure rate.
These two properties are assumed to be independent in our
analyzed scenario.

Simulation of Data Distribution: We simulate the data dis-
tribution by both iid and non-iid setting:11 1) for an iid one,
each client independently samples |Di| pieces of data from the
data set and 2) for a non-iid distribution, we randomly select
one primary label for each client. Then, we sample 0.8 × |Di|
pieces of data from those that coincide with their primary label
and 0.2 × |Di| from those with the remaining labels. For both
the iid and non-iid settings, each client randomly reserves 10%
of the data for testing.

Data Sets and Network Structure: To evaluate the train-
ing performance, we prepare two tasks for FL to conquer:
1) EMNIST-Letter and 2) CIFAR-10. For EMNIST-Letter, we
employ a CNN with two 5×5 convolution layers (each with ten
channels), followed by 2 × 2 max pooling and two fully con-
nected layers with respective 1280 and 256 units, and finally,
a softmax output layer. For CIFAR-10, which is known to
be a harder task, we use another CNN model with two 5 × 5
convolution layers (each with 64 channels), also followed with
2×2 max pooling, two fully connected layers with 384 and 192
units, and finally, a softmax output layer. Other training-related
setting is available in Table I.

Baselines and Implementation Details: We prepare three
state-of-the-art client selection scheme, namely, FedCS [13],

11In FL, each client only has a small number of data for training. To mimic
the federated setting, we split the whole training data set (like 50 000 images
in CIFAR-10) into small portions (like 500 images per client), and send each
portion to different clients to simulate distributed training environment. Also,
in FL, the data of clients are usually heterogeneous. For example, consider a
simple MNIST FL task, in which the data of a client are mostly labeled as
“1,” while that of another is mostly labeled as “2.” Then, two of the clients
are said to have non-iid data, and a similar data distribution like this is pretty
common in reality (due to personalization). As such, we attempt to simulate
FL in both iid (the ideal learning case) and non-iid setting (the more realistic
case).

Random [1], and pow-d [3] for baselines. Detailed description
of these baselines is available in Appendix A in the supple-
mentary material. Based on different settings of σt, we like to
evaluate the performance of the following selection schemes.

1) E3CS-(number): Fairness quota σt of E3CS is stationary
and fixed to (number)×k/K. In this setting, the fairness
constraint would be ineffective and the algorithm would
seek to maximize the eCEP regardless of fairness.

2) E3CS-inc: We allow fairness quota σt to be incremental
with training round t. More explicitly, we let σt = k/K if
T ≥ t > T/4 and σt = 0 if 1 ≤ t ≤ T/4. The motivation
of our setting is that we want the algorithm to gain more
effective participation in the beginning stage, but when
training is approaching convergence, it should be better
to expand the selection scope (i.e., to be fair) in order
to improve the final accuracy. We will formally discuss
the motivation behind this setting after we present the
training result.

Besides, as we note that we in this article only focus on the
client selection subproblem, we need to borrow the update
schemes (see o1 in our global problem P1) from the state-of-
the-art methods. Explicitly, we mimic these two schemes.

1) FedAvg [1]: The local update scheme in FedAvg is SGD
with cross-entropy loss function.

2) FedProx [11]: The local update scheme in FedProx is
also SGD, but with a regularization involved loss func-
tion. It adds a proximal term (γ /2)‖�i,t −�t‖2 into the
typical cross-entropy loss.

In our simulation, we use “scheme+(A)” to denote
the selection scheme with update operation in FedAvg
[e.g., Random(A), E3CS-0(A), etc]. Similarly, we use
“scheme+(P)” to denote the scheme with the same opera-
tion with FedProx [e.g., Random(P), E3CS-0(P), etc]. For all
the FedProx-based schemes, the proximal coefficient is set to
γ = 0.5.

B. Numerical Simulation

In this section, we present the numerical evaluation to
show how different selection algorithms perform in terms of
important statistics, such as effective participation, times of
selection, and we further discuss the results combining the
working patterns of these algorithms.

By running 2500 rounds of simulation step, we obtain the
selection records of different selection schemes over different
groups of clients. The results are formally displayed in several
equal-scale box plots (see Fig. 3). From the figure, we can
derive the following observations.

Effectiveness of E3CS in Choosing Reliable Clients: One
observation is that E3CS algorithms are able to learn the most
reliable clients by only a modicum number of tries. E3CS-0,
a scheme that has no regard for fairness, only wrongly selects
suboptimal classes of clients dozens of times over a total of
2500 rounds of selection. Besides, by comparison of E3CS-0
and FedCS, we can observe another unexpected advantage of
E3CS, i.e., a certain degree of fairness would be reserved if
a sufficient amount of clients shares the same (or near) high
success ratio. Take our setting as an example. In our setting,
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Fig. 3. Under different selection schemes, the box plots display times of selection over four classes of clients, respectively, with success ratio 0.1, 0.3, 0.6,
0.9, and an equal division of a total number of 100 clients. The total simulated communication rounds are all set to 2500 and in each round, 20 clients are
to be selected. Note that for the FedCS scheme, all the selections are dedicated toward 20 of 25 class 4 clients, so the interquartile range (IQR) of class 4
(which is not displayed in the plot) is 2500, while the IQR of other classes is 0.

FedCS would consistently choose specific 20 out of 25 clients
belonging to Class 4, but in contrast, E3CS-0 would share the
most probability over all the 25 clients in Class 4 while giving
minor probability (resulting from the cost of learning) to others
classes of clients. This selection mechanism gives some degree
of fairness while not necessarily sacrificing a lot in terms of
CEP. It can be observed that pow-d is prone to select the
clients which are more likely to fail, which is directly against
the pattern of E3CS and FedCS. This phenomenon can be
explainable by the following analysis: 1) by its objective, we
know that pow-d tends to select the clients with higher losses
and 2) those clients that are more likely to fail typically have
a higher loss, since their local model has less chance to be
aggregated into the global model. Consequently, clients with
higher failure probability are more favored by pow-d.

Selection Fairness: As depicted, all the schemes barring
Random and pow-d would deliver more selection frequency
to the clients in Class 4, who boast the highest success rate.
By this biased selection, CEP could be maximized, but fair-
ness degree might correspondingly hurt. Obviously, the order
of fairness degree among all the selection schemes is: Random
> E3CS-0.8 > pow-d > E3CS-0.5 > E3CS-0 > FedCS.
This particular order of fairness might serve a critical func-
tion to reach effective training, which would be specified
later.

Success Ratio and CEP: We define two metrics to evaluate
the proposed solutions: 1) success ratio, explicitly formu-
lated as

∑T
t=1

∑
i∈At

xi,t/Tk and 2) the CEP, formulated as,∑T
t=1

∑
i∈At

xi,t. We present the evolvement of these two quan-
tities with communication rounds, as depicted in Fig. 4. From
the top subfigure, it is notable that the success ratio of all
the E3CS (except E3CS-inc) shares a similar trend of conver-
gence and the final convergence value is largely determined
by the constant setting of σt, indicating that fairness quota

Fig. 4. Communication rounds versus success ratio and CEP for different
selection schemes.

has a negative correlation on training success ratio. This
phenomenon is well justified since a larger fairness quota
might necessarily expand the selection of clients that are prone
to fail. Another interesting observation is that E3CS-inc under-
takes a significant turn in Round 625 i.e., the exact round
of 4/T . This phenomenon is as expected since E3CS-inc essen-
tially reduces to an unbiased random selection scheme after
4/T and therefore, its success ratio would be correspondingly
plunged. Theoretically, E3CS-inc will eventually converge to
the convergence value of Random if T goes sufficiently large.
Also, it is interesting to find that pow-d has a very low
CEP and success ratio throughout the whole training session.
This experimental result is in accordance with our previous
analysis, in that pow-d is prone to select clients with lower
success rates.
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(a) (b) (c) (d)

Fig. 5. Test accuracy versus communication rounds for EMNIST-Letter. (a) iid, FedAvg-based. (b) non-iid, FedAvg-based. (c) iid, FedProx-based. (d) non-iid,
FedProx-based.

TABLE II
PERFORMANCE EVALUATION FOR EMNIST-LETTER. NOTE: 1) ACCURACY@Number REPRESENTS THE FIRST ROUND TO REACH A CERTAIN TEST

ACCURACY AND 2) NAN MEANS THAT THE ACCURACY NEVER REACH THE CORRESPONDING SETTING OVER THE TRAINING SESSION (400 ROUNDS)

(a) (b) (c) (d)

Fig. 6. Test accuracy versus communication rounds for CIFAR-10. (a) iid, FedAvg. (b) non-iid, FedAvg. (c) iid, FedProx. (d) non-iid, FedProx.

C. Real Training on Public Data Set

We then show our experimental results of real training on
public data set EMNIST-Letter [29] and CIFAR-10 [5].

We, respectively, ran 400 and 2500 communication rounds
for EMNIST-L and CIFAR-10 data sets over different selection
schemes in order to evaluate the convergence speed as well as
the final model performance in the real training. Respectively
for the two data sets, we depict in Figs. 5 and 6 the training
performance of different schemes under both iid and non-
iid scenario, and we further present some statistical data in
Tables II and III. Based on the experimental results, we derive
the following observations.

Impact of CEP in the Initial Stage: It is interesting to see
that CEP has a conspicuous impact on convergence speed
in the initial training stage. For the FedAvg-based solution,
we see that FedCS(A), which consistently chooses the clients
with higher success rate, and is confirmed by Fig. 3 to be
the selection scheme with the highest CEP, obtains the fastest
growth of accuracy during the first stage of training for both
EMNIST-Letter and CIFAR-10 data set. It is followed closely
by E3CS-0(A) and E3CS-inc(A), which are also confirmed
as having relatively high CEP in that stage. The gap of con-
vergence speed over different schemes can also be observed
in Tables II and III, in which we found that E3CS-0(A),
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TABLE III
PERFORMANCE EVALUATION FOR CIFAR-10. NOTE: 1) DATA UNDER ACCURACY@Number REPRESENTS THE FIRST ROUND TO REACH A CERTAIN

TEST ACCURACY AND 2) NAN MEANS THE ACCURACY NEVER REACHES THE CORRESPONDING SETTING OVER THE WHOLE TRAINING SESSION

E3CS-inc(A), and FedCS(A) all have been accelerated to reach
a certain fixed accuracy, compared with the vanilla selection
scheme Random. In contrast, pow-d, which we confirm to
have a relatively low CEP, does not promise us a commen-
surate convergence speed in our simulated volatile context.
This may imply that when clients can drop out, the heuristic
idea of always selecting the clients with higher loss might not
necessarily accelerate convergence. Moreover, the impact on
convergence speed seems to grow more significant in non-iid
scenarios, as the gap between the “fastest” [i.e., FedCS(A)]
and the “slowest” [i.e., pow-d(A)] has further expanded under
this trend. Based on such an observation and since it is gen-
erally believed that non-iid data would further enhance the
training difficulty, we conjecture that the difficulty of the task
might have some sort of influence on CEP’s impact on conver-
gence speed, i.e., the more difficult the task is, the greater the
influence of CEP will be. This conjecture is also aligned with
another observation that the impact of CEP in accelerating
the training is more significant for training on the CIFAR-10
data set, a harder task compared with training on EMNIST-
L. Similar observations can also be found for FedProx-based
solutions, as depicted Figs. 5(c) and (d) and 6(c) and (d).

Diminished Impact of CEP: However, the effect of CEP
diminishes in the middle/later stage of training. When the
accuracy reaches a certain accuracy, aggregating more suc-
cessful returns does not benefit much to the FL process, as we
can observe that other fairer schemes, e.g., Random(A), though
with a smaller CEP, gradually emulates FedCS(A) and eventu-
ally dominates it with the evolvement of the training process.
A similar phenomenon is also observable for FedProx-based
training.

Impact of Fairness: The impact of the fairness factor is
visually observable when training reaches its convergence. For
all the experimental groups, we see that the final test accu-
racy of the most unfair scheme, FedCS, is the lowest among

the evaluated methods. The method with the second-lowest
accuracy is E3CS-0, which is also quite an “unfair” selection
scheme, as it does not reserve probability for each client to
ensure fairness.

Motivation Behind Incremental Fairness Quota: Based on
the above observations, we find that: 1) CEP is critical for
the initial stage of training in order to yield a faster conver-
gence speed, but; 2) the effect diminishes with the training
rounds goes, and that; 3) the importance of fairness reinforces
when the model approaches convergence. Our motivation to
propose E3CS-inc is exactly based on the above observations.
In E3CS-inc, we set σt = 0 during the first T/4 rounds, so
the algorithm will have no regard for fairness and put all the
focus on increasing CEP. For the later 3T/4 rounds, when
the model has some sort of “overfitting” on a portion of fre-
quently selected data, we expand the selection fairness by
making σt = k/K (which makes it exactly an unbiased ran-
dom selection), in order to make data on those seldom access
clients being available for FL training. According to our result,
E3CS-inc yields a performance as we have expected: it gets a
very promising convergence speed in the first stage while its
final test accuracy does not suffer an undesirable drop.

Varying Selection Cardinality: We test different selection
schemes based on varying selection cardinality k = 10, 20,
and 30. Due to the space limit, this part of content has been
moved to Appendix C in the supplementary material.

VII. CONCLUSION AND FUTURE PROSPECT

In this article, we have studied a joint optimization problem
under the volatile training context. During our investigation,
we empirically discovered a tradeoff between CEP and fairness
during the selection process, which in essence leads to another
tradeoff between training convergence speed and final model
accuracy. Aiming at optimizing the tradeoffs, we proposed
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E3CS, an efficient stochastic selection algorithm, for which we
further designed a practical setting of “fairness quota,” such
that the algorithm is enabled to tame the tradeoff between
training convergence speed and final model accuracy.

In this article, we proposed to decompose the global
problem P1 into two subproblems based on the idea of alter-
nating minimization. In our solution process, we focused
on optimization of the client selection subproblem (i.e., P1-
SUB2) while fixing the solution of another subproblem (i.e.,
P1-SUB1). However, as all the two essential components in
FL, i.e., the local update operation and the client selection
decision, are mutually coupling, joint optimization of them
needs to be further considered in future work.
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