
Refactor Business Process Models
with Maximized Parallelism

Tao Jin, Jianmin Wang, Yun Yang, Senior Member, IEEE, Lijie Wen, and Keqin Li, Fellow, IEEE

Abstract—With the broad use of business process management technology, there are more and more business process models.

Since the ability of different modelers is different, the quality of these models varies. A question arises here is that, can we refactor

these models to improve the quality as practised in software engineering? Business process modeling can be regarded as declarative

programming, and business process models can be used to drive the process aware information systems, which are generally

developed with model driven architecture, so business process models are crucial for the efficiency of process aware information

systems. In this paper, we propose a novel approach on how to systematically refactor business process models with parallel

structures for sequence structures for the first time. More specifically, we analyze the real causal relations between business tasks

based on data operation dependency analysis, and refactor business process models with process mining technology. After

comprehensive model refactoring, parallel execution of business tasks can be maximized, so the efficiency of business processing can

be improved, that is, the quality of business process models can be improved. Analysis and experiments show that our approach is

effective and efficient.

Index Terms—Business process, model, refactor, parallel

Ç

1 INTRODUCTION

BUSINESS process management (BPM) technology can be
used to construct and update process aware informa-

tion systems (PAISs) quickly [1]. The key idea of BPM tech-
nology is that business processes can be modeled in
businessprocess models, which describe what tasks should
be executed to complete some business objectives and what
their execution orders are (from a control flow perspective),
together with what data should be processed (from a data
perspective) and who should be responsible for what task
(from a resource perspective). With the help of BPM tech-
nology, process aware information systems can be
developed with model driven architecture. Although the
business processes in different enterprises are different, pro-
cess aware information systems have many things in com-
mon except the business process models. That is, on one
hand, different enterprises can use the same process aware
information system platform, and configure their own busi-
ness process models to drive their process aware informa-
tion systems respectively. On the other hand, when there
are some changes on the market, governmental policies and
so on, enterprises can update their process aware informa-
tion systems according to these changes quickly by only
changing the business process models instead of building

new process aware information systems. That is why BPM
technology can be used to speed up the construction and
updating of process aware information systems

With the broad use of BPM technology, there are more
and more business process models. In some enterprises,
there are thousands of models [2]. Since business process
modeling is time-consuming and error-prone [3], and the
ability of different modelers varies, the quality of busi-
ness process models varies. In the area of software engi-
neering, there are some works and tools on source code
refactoring. A question which arises here is that, can we
refactor business process models to improve the quality
as well? In fact, business process modeling can be
regarded as declarative programming. There are many
similarities between business process modeling and soft-
ware coding. For example, both activities must corre-
spond to some language syntax, and both business
process models and source codes can be executed by com-
puter systems to complete some objectives. So some exist-
ing refactor technologies in software engineering can be
adapted for workflow model refactoring. In this paper,
we attempt to solve a new refactoring problem for busi-
ness process models.

The problem to be solved in this paper is described infor-
mally as follows. Given a business process model, how to
refactor it with parallel structures?

To solve this problem, we analyze the data operation
dependency between tasks, and check whether there is a
real causal relation between two investigated tasks. For two
investigated tasks with a causal relation in the original
model, if there is not any data operation dependency
between them, we can refactor them into a parallel structure.

With parallelism refactoring, business tasks can be exe-
cuted in parallel as much as possible, so that the efficiency
of business processing can be improved, i.e., the quality of

� T. Jin, J. Wang, and L. Wen are with the School of Software, Tsinghua
University, Beijing 100084, China. E-mail: jintao05@gmail.com,
wenlj00@mails.thu.edu.cn, jimwang@tsinghua.edu.cn.

� Y. Yang is with the Faculty of Information and Communication
Technologies, Swinburne University of Technology, Melbourne 3122,
Australia. E-mail: yyang@swin.edu.au.

� K. Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561. E-mail: lik@newpaltz.edu.

Manuscript received 26 Feb. 2014; revised 24 Aug. 2014; accepted 9 Dec.
2014. Date of publication 17 Dec. 2014; date of current version 15 June 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2014.2383391

456 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2016

1939-1374� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:
mailto:

process models can be improved. Our contribution can be
summarized as follows.

� Problem. We propose the problem of refactoring busi-
ness process models with parallel structures for the
first time in the literature.

� Approach. We propose an approach to refactor busi-
ness process models with parallel structures. We
show how process mining technology can be used
for parallelism refactoring for the first time.

� Tool. We implement and evaluate our approach in
BeehiveZ system, which is an open source system.

The rest of this paper is organized as follows. Section 2
introduces a motivating example and analyzes the problem
to be solved in this paper. Section 3 introduces the defini-
tions used throughout this paper. Section 4 describes how
to refactor business process models with parallel structures
in detail. Section 5 addresses the implementation and evalu-
ation of our approach. Section 6 discusses the related work.
Section 7 concludes this paper and points out future work.

2 MOTIVATING EXAMPLE AND PROBLEM ANALYSIS

In this section, we first introduce a motivating example, and
then analyze the problem to be solved in this paper.

2.1 Motivating Example

Example 1. Fig. 1 shows a business process model exam-
ple represented as a Petri net. This example is adapted
from the example in [4]. The rectangles denote tasks,
and the circles denote states. Both control flow per-
spective and data perspective are considered in this
example model. This model describes an online-shop-
ping processing. First, the buyer orders goods (task A)
through the Internet, and the address of the buyer
(variable x) together with the money the buyer should
pay (variable y) are written. Next, the seller ships
goods (task B), the address of the buyer (variable x) is
read, and the goods shipped (variable z) is written.
When the buyer receives goods (task C), the goods
shipped (variable z) is read, and the buyer signs for
the goods (variable s is written). Then, the seller sends
the bill to the buyer (task D), the money the buyer
should pay (variable y) is read, and the requirement of
payment (variable p) is written. After that the buyer
pays the bill (task E), the requirement of payment (var-
iable p) is read, and the completion of payment (vari-
able q) is written. Finally, the seller archives this
transaction (task F), the signature of the buyer
(variable s) and the completion of payment (variable q)
are read.

All the tasks in Fig. 1 are arranged in a sequential struc-
ture, so the time for the whole business processing is the
sum of the time for processing each task. Intuitively, to exe-
cute task D, it is unnecessary to wait the completion of task
C, because there are no dependency relations between task
D and task C. If there is a causal relation between two tasks,
we can denote this causal relation through some data opera-
tion dependency. Based on the data operation dependency
analysis, there are no causal relations between tasks D and
C, so these two tasks are unnecessary to be executed
sequentially as they can be executed in parallel.

Based on the idea above, the model in Fig. 1 can be refac-
tored, and the refactored model is presented in Fig. 2. The
time for completing the new process is the time of the criti-
cal path. Compared to the model in Fig. 1, the completion
time of the refactored model should be less. So this refactor-
ing technology can improve the efficiency of business proc-
essing, in other words, this refactoring technology can
improve the quality of process models.

2.2 Problem Analysis

Let T ðAÞ denote the time of completing task A since it is
enabled to be executed. For the model in Fig. 1, the time
for completing a business case can be calculated as
Toriginal ¼ T ðAÞ þ T ðBÞ þ T ðCÞ þ T ðDÞ þ T ðEÞ þ T ðF Þ. For
the refactored model in Fig. 2, the time for completing a
business case can be calculated as Trefactored ¼ T ðAÞ þmax

ðT ðBÞ þ T ðCÞ; T ðDÞ þ T ðEÞÞ þ T ðF Þ. Obviously, Toriginal >

Trefactored. The efficiency of business processing can be
improved if the tasks involved can be executed in parallel.
So, to improve the efficiency of business processing for bet-
ter quality of process models, we need to refactor models
with parallel structures as much as possible.

Since the execution of tasks would consume some infor-
mation and produce some information, and information
can be encoded as data, if there is a real causal relation
between two tasks, there must be some data operation
dependency. For example, in the model in Fig. 1, task A
writes data x and task B reads data x, so task B can only be
executed after the completion of task A, i.e. , there is a real
causal relation between tasks A and B. Similarly, there is a
real causal relation between tasks B and C, C and F , A and
D,D and E, E and F .

If there is not any data operation dependency, the
causal relation or transitive causal relation between two
investigated tasks does not exist, and these tasks can be
refactored into parallel structures. For example, in the
model in Fig. 1, there is not any data operation depen-
dency between tasks C and D, so they can be executed in
parallel, similarly for tasks C and E, B and D, B and E.
Here, the causal relation between C and D does not exist,
and the transitive causal relations between B and D, B
and E, C and E do not exist.

Fig. 1. A business process model example represented as a Petri net.

Fig. 2. A refactored model with a parallel structure for the model in Fig. 1.

JIN ET AL.: REFACTOR BUSINESS PROCESS MODELS WITH MAXIMIZED PARALLELISM 457

For two tasks with a transitive causal relation, there is
some data operation dependency. After the tasks between
them on the causal chain are refactored into parallel struc-
tures, these two tasks may be connected directly. That is, the
transitive causal relation can be changed into a direct causal
relation. For example, in the model in Fig. 1, there is a transi-
tive causal relation between tasks C and F . Task C writes
data s, and task F reads data s. In the refactored model in
Fig. 2, there is a causal relation between C and F because
tasksD and E are refactored into a parallel structure.

As a conclusion, to improve the efficiency of business
processing for better quality of process models, we need
to refactor the models with parallel structures as much as
possible. To solve the refactoring problem proposed in
this paper, we need to extract all the causal relations and
transitive causal relations from the given models, analyze
data operation dependency, change some false causal
relations and false transitive causal relations to parallel
relations, and change some false transitive causal rela-
tions to causal relations.

There may be constraints from the resource perspective
that hinder the parallel execution, and this problem can be
solved by adding resources, so we think that the resource
perspective should not impact the models, especially our
primary goal is maximized parallelism. So we ignore the
resource perspective in this paper.

3 PRELIMINARIES

Since Petri net has a sound formalization foundation and is
easy to understand and use, it was introduced into business
process management area for modeling, verification and
analysis [5].

Definition 1 (Petri net). A petri net is a triple N ¼ ðP; T; F Þ,
where P and T are finite disjoint sets of places and transitions
ðP \ T ¼ ;Þ, and F � ðP � T Þ [ðT � P Þ is a set of arcs
(flow relation).

We write X ¼ ðP [T Þ for all nodes of a Petri net. For
a node x 2 X; �x ¼ fy 2 Xjðy; xÞ 2 Fg; x� ¼ fy 2 Xjðx; yÞ 2
Fg. A node x 2 X is an input (output) node of a node y 2 X,
iff x 2 �yðx 2 y�Þ.
Definition 2 (Petri net semantics). Let N ¼ ðP; T; F Þ be a

Petri net.

� M : P ! Z is a marking of N , where Z is the set of
nonnegative integer numbers. A marking indicates
that in some state what places have how many tokens.
M denotes all markings of N . MðpÞ denotes the num-
ber of tokens in place p. ½p� denotes the marking when
place p contains just one token and all the other places
contain no tokens.

� For any transition t 2 T and any markingM 2M, t is
enabled in M, denoted by ðN;MÞ½ti, iff 8p 2 �
t : MðpÞ � 1.

� Marking M 0 is reached from M by firing of t, denoted

by ðN;MÞ½tiðN;M 0Þ orM!t M 0 for simplicity, mean-
ing that M 0 ¼M � �tþ t�, i.e., one token is taken
from each input place of t and one token is added to
each output place of t.

� A firing sequence s ¼ t0t1 . . . tn�1 leads from marking

M0 to marking Mn, i.e. , M0!t0 M1!t1 � � � !tn�1 Mn. It

can be denoted asM0 !s Mn.
� For any two markings M;M 0 2M, M 0 is reachable

from M in N , denoted by M 0 2 ½N;Mi, iff there exists
a firing sequence s leading fromM toM 0.

� A net system is a pair S ¼ ðN;M0Þ, where N is a net
andM0 is the initial marking of N .

Workflow net (WF-net) is a subclass of Petri net designed
to represent business process models. A Workflow net is a
Petri net with two special places, source place i : �i ¼ ; and
sink place o : o� ¼ ;. All the nodes except the source place
and sink place are on the path from the start to the end. A
Workflow net system is a pair ðN;MiÞ, whereMi ¼ ½i�.
Definition 3 (Sound WF-net). A WF-net N ¼ ðP; T; F Þ is

sound iff:

� 8Mð½i� !	 M)!	 ½o�Þ. That is, each task/condition is
on the path from i to o.

� 8Mð½i� !	 M ^M � ½o�)M ¼ ½o�Þ. That is, for any
case, the process will terminate eventually and the
moment the process terminates there is only one token
in place o and all the other places are empty.

� 8t 2 T ð9M;M 0ð½i� !	 M!t M 0)). That is, there
should be no dead tasks.

If a WF-net is not sound, there must be some errors in
that model and these errors should be eliminated. There
would be at most one token in any place of a sound
workflow net during the execution. More details of Petri
net can be found in [6], and more details of workflow
net can be found in [5].

Definition 4 (Implicit place). Let N ¼ ðP; T; F Þ be a Petri net
with initial marking s. A place p 2 P is called implicit in
ðN; sÞ iff, for all reachable markings s0 2 ½N; si and transitions
t 2 p�, s0 � �t n fpg) s0 � �t.

The addition of implicit places does not change the
behavior of the net. Please see [7] for details.

Definition 5 (SWF-net). A WF-net N ¼ ðP; T; F Þ is a SWF-net
(Structured workflow net) iff:

� For all p 2 P and t 2 T with ðp; tÞ 2 F , jp � j > 1
implies j � tj ¼ 1.

� For all p 2 P and t 2 T with ðp; tÞ 2 F , j � tj > 1
implies j � pj ¼ 1.

� There are no implicit places.

SWF-net is a subclass of WF-net, and SWF-net is more read-
able and understandable. More information can be found in
[7]. It is suggested that the business process model should
be as structural as possible [9]. There are already some
work on structuring business process models, for example,
the work in [10] can structure acyclic business process mod-
els. So in this paper, we assume all the given business pro-
cess models are sound SWF-nets.

Definition 6 (Log based task relations). Let W be all the
traces (firing sequences) of a workflow net system N ¼ ðP;
T; F Þ with the initial marking asMi. For a; b 2 T :

458 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2016

� a4W b : 9s ¼ t1t2t3 � � � tn 2W;x 2 f1; 2; . . . ; n �
2g; tx ¼ txþ2 ¼ a, txþ1 ¼ b, that is, there is a trace like
� � � aba � � �.

� a
W b: a4W b ^ b4W a.
� a >W b :9s ¼ t1t2t3 � � � tn 2W;x 2 f1; 2; . . . ; n �

1g; tx ¼ a; txþ1 ¼ b.
� a!W b: a >W b ^ b 6>W a _ a
W b.
� a W b: a 6>W b ^ b >W a _ a
W b.
� a#Wb: a 6>W b ^ b 6>W a.
� ajjWb: a >W b ^ b >W a ^ a 6
Wb.

Definition 7 (a mining algorithm). Let W be a workflow log
over T . aðWÞ is defined as follows:
1) TW ¼ ft 2 T j9s 2Wðt 2 sÞg
2) TI ¼ ft 2 T j9s 2Wðt ¼ firstðsÞÞg, i.e., the set of

transitions executed first.
3) TO ¼ ft 2 T j9s 2Wðt ¼ lastðsÞÞg, i.e., the set of

transitions executed last.
4) XW ¼ fðA;BÞ j A � TW ^ B � TW ^ 8a 2 A8b 2

Bða!W bÞ ^ 8a1; a2 2 Aða1#Wa2Þ ^ 8b1; b2 2 Bðb1
#Wb2Þg

5) YW ¼ fðA;BÞ 2 XW j8ðA0; B0Þ 2 XW ðA � A0 ^
B � B0) ðA;BÞ ¼ ðA0; B0ÞÞg

6) PW ¼ fpðA;BÞjðA;BÞ 2 YWg [fiW ; oWg
7) FW ¼ fða; pðA;BÞÞ j ðA;BÞ 2 YW ^ a 2 Ag [fðpðA;BÞ;

bÞ j ðA;BÞ 2 YW ^ b 2 Bg [fðiW ; tÞ j t 2 TIg [fðt;
oW Þjt 2 TOg

8) aðWÞ ¼ ðPW; TW ; FW Þ

In brief, a mining algorithm tries to find all the places
between tasks and connect these places and tasks. In [7], it
is proved that, given a complete log based on the relations
of >W , amining algorithm can discover a unique SWF-net.

The above definitions are reused from other papers,
which are referenced accordingly. To explain our problem
and approach, we need new definitions as follows.

Definition 8 (Transitive causal relation). The relation of!W

in Definition 6 can be transitive. If a; b; c 2 T ^ a!W b^
b!W c; a H W c. The relation of H W can also be transitive.

Example 2. For the model in Fig. 1, since A!W

B ^B!W C, A H W C. Similarly, C !W D ^D!W E,
so C H W E. Since A H W C ^ C H W E, A H W E.

Since we refactor business process models based on data
operation dependency analysis in this paper, we introduce
data into WF-net as follows.

Definition 9 (DWF-net). DN ¼ ðP; T; F;D;Wt;RdÞ is a
DWF-net (workflow net with data), where:

� N ¼ ðP; T; F Þ is a WF-net.
� D is the set of data that are operated by WF-net

N ¼ ðP; T; F Þ.
� Wt : D Z 2T describes what data are written by which

task.
� Rd : D Z 2T describes what data are read bywhich task.

Example 3. The model in Fig. 1 is a DWF-net, where all the
circles are places, T ¼ fA;B;C;D;E; Fg, and all the
arrows connecting the places and transitions constitute
the set F , D ¼ fx; y; z; s; p; qg, and the Wt and Rd are

denoted on the transitions, for example, WtðxÞ ¼ fAg,
RdðxÞ ¼ fBg.

Definition 10 (Causal relation based on data operation). In
a DWF-netDN ¼ ðP; T; F;D;Wt;RdÞ, if t1; t2 2 T satisfy:

� t1 !W t2 _ t1H W t2
� 9x 2 Dðt1 2WtðxÞ ^ t2 2 RdðxÞ _ t1 2WtðxÞ ^

t2 2WtðxÞ _ t1 2 RdðxÞ ^ t2 2WtðxÞÞ
t2 must be executed after the completion of t1 based on read-
write operations of x, denoted as t1 >x t2.

Example 4. For the model in Fig. 1, since A!W B ^
A 2WtðxÞ ^B 2 RdðxÞ, A >x B. That is, B must be exe-
cuted after A based on read-write operation of x. Simi-
larly, B!W C ^B 2WtðzÞ ^ C 2 RdðzÞ, B >z C. That is,
C must be executed after B based on read-write opera-
tion of z.

Definition 11 (Transitive causal relation based on data). In
a DWF-net DN ¼ ðP; T; F;D;Wt;RdÞ; t1; t2; t3 2 T ^ x; y 2
D ^ t1 >x t2 ^ t2 >y t3) t1 >>	 t3: >>	 can also be
transitive.

Example 5. For the model in Fig. 1, since A >x B ^B >z C
(see Example 4), A >>	 C. That is, C must executed after
A based on read-write operations of data.

Definition 12 (Core causal relation based on data). In a
DWF-net DN ¼ ðP; T; F;D;Wt;RdÞ, if t1; t2 2 T ^ x 2 D ^
t1 >x t2 ^ :ðt1 >>	 t2Þ, there is a core causal relation based
on data operations between t1 and t2, denoted as t1 !x t2.

Example 6. For the model in Fig. 1, since A >x B^
:ðA >>	 BÞ, A!x B. That is, after completion of A, B
can be executed immediately, because there are no transi-
tive dependences between A and B based on read-write
operations of data.

Based on the above definitions, the problem to be solved
in this paper can be specified as follows. Given a sound
structured workflow net with data operations, how to refac-
tor the model with parallel structures so that the tasks in the
model can be executed in parallel as much as possible?
There are two assumptions here:

1) The given model is a sound structured workflow net with
data. Besides the work on structuring process models
aforementioned (e.g., the work in [10]), there are
some works on how to check whether a given work-
flow net is sound. For example, in [11], the authors
proposed a tool named woflan to check whether the
control flow is sound, and in [12] the authors pro-
posed an approach to check whether a WF-net with
data is sound.

2) If two tasks have causal or transitive causal relations,
there must be some data operation dependency. There is
data processing during business processing, and
different tasks have different data processing. The
execution order of tasks having causal relation or
transitive causal relation will affect the result of
data processing. If there is no data operation
dependency between two tasks, the execution
order of these two tasks does not matter for the
data processing result.

JIN ET AL.: REFACTOR BUSINESS PROCESS MODELS WITH MAXIMIZED PARALLELISM 459

4 REFACTORING PROCESS

The process of refactoring models with parallel structures is
presented in Fig. 3. There are five steps.

� Step 1: extract task relations from the original model.
� Step 2: analyze data operation dependency.
� Step 3: update task relations.
� Step 4: refactor the model with process mining

technology.
� Step 5: post process the mined model.
The details of how each step works can be found in the

following sections.

4.1 Extract Task Relations

At this stage, we try to find all task relations. Since we
assume that all the given models are sound structured
workflow nets, we can extract all the task relations from the
model directly. According to Definition 6, we can see that
the relation between every two tasks is unique, that is, one
relation in !W _ W , #W , jjW . Since the relation of W is
the inverse version of !W ; we only need to compute the
relations of !W . We can traverse all the places in the origi-
nal model to obtain the relations of !W directly. The rela-
tions between every predecessor transition and every
successor transition of the investigated place are !W . For
two transitions, if their nearest common ancestor (NCA) is a
third transition, the relation between these two transitions
is jjW . If the relation between two transitions is neither
!W _ W nor jjW , the relation must be#W .

Theorem 1. The relation between any two transitions in a sound
SWF-net is unique, that is, one relation in !W _ W , #W ,
jjW .

Proof. The relation of W is the inverse version of!W . The
relation of #W is commutative, that is, a#Wb) b#Wa,
the same to the relation of jjW . According to Definition 6,
the relations of !W _ W , #W and jjW are a partition
among all the relations between any two transitions
based on the relations of >W and
W . In Definition 6, if
we ignore the relation of
W , we can see the relations of
!W _ W ,#W and jjW are a partition among all the rela-
tions between any two transitions based on the relations
of >W . then, some pairs with the relation of
W are
removed from jjW and added to !W _ W , so the rela-
tions of !W _ W , #W and jjW are still a partition
among all the relations between any two transitions. tu

Example 7. The model in Fig. 1 is a sound SWF-net, the rela-
tion between any two transitions is unique, for example,
A!W B, A#WC.

Theorem 2. In a sound SWF-net N ¼ ðP; T; F Þ, t1; t2 2 T ,
9p 2 P ðt1 2 �p ^ t2 2 p�Þ , t1 !W t2. That is, if there is a
place p, t1 is an input transition of p and t2 is an output

transition of p, there must be a causal relation between t1 and
t2, and vice versa.

Proof.

�): After t1 is executed, it produces a token to p
that would be consumed by t2, so t1 >W t2. If
t2 >W t1, there must be another place connecting
t2 and t1, that is, t1 and t2 are involved in a length-
two loop (t1
W t2). If there is not such a place,
:ðt2 >W t1Þ. According to Definition 6, t1 >W

t2 ^ t2 6>W t1 _ t1
W t2) t1 !W t2. We can prove
this theorem in another way, when amining algo-
rithm (Definition 7) works, it will connect t1 and
t2 with t1 !W t2 through a place. So naturally,
t1 !W t2 if t1 2 �p ^ t2 2 p�.

� (: From a mining algorithm, we know that if
t1 !W t2, they will be connected through a place,
so there must be a place in the model that
t1 2 �p ^ t2 2 p�. tu

Example 8. The model in Fig. 1 is a sound SWF-net, since
there is a place between A and B, there is a causal rela-
tion between A and B.

Theorem 3. In a sound SWF-net, if the nearest common ancestor
of two transitions is a third transition, the relation between
these two transitions must be jjW . t1; t2 2 T , 9c 2 T ðc ¼
NCAðt1; t2Þ ^ c 6¼ t1 ^ c 6¼ t2Þ , t1jjWt2.

Proof.

�): Let t1; t2; c 2 T and c be the nearest common
ancestor of t1 and t2, after c is executed, the path
from c to t1 and the path from c to t2 are enabled,
and the execution of these two paths is not
affected by each other, that is, t1 can be executed
after t2 and t1 can also be executed before t2, so
there must be t1 >W t2 and t2 >W t1 in the log. If
t1
W t2, t1 and t2 are involved in a length-two
loop, the nearest common ancestor of t1 and t2
must be t1 or t2, which is not a third transition, so
t1 6
Wt2. According to Definition 6, t1 >W t2 ^
t2 >W t1 ^ t1 6
Wt2) t1jjWt2.

� (: If t1jjWt2, t1 and t2 can be executed in parallel,
so the path to t1 and the path to t2 can be enabled
at the same time. According to Petri net semantics
(Definition 2), there must be a transition produc-
ing tokens to enable these two paths at the same
time and this transition is the nearest common
ancestor of t1 and t2. tu

Example 9. The model in Fig. 2 is a sound SWF-net, the
nearest common ancestor of C and E is a third transition
A, so CjjWE.

To find the nearest common ancestor, we can backtrack
from the given two transitions in the model and stop when
their nearest common ancestor is found. To facilitate finding
the nearest common ancestor, we first traverse the model by
breadth-first algorithm and mark every node with level
information. The algorithm of marking every node in a
model with level information can be found in Algorithm 1,
where queue is a queue, and add means adding an element

Fig. 3. Refactoring process.

460 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2016

to the queue, removemeans retrieving and removing an ele-
ment from the queue.

Algorithm 1. Mark every node in a model with level
information

Input: a sound SWF-netN ¼ ðP; T; F Þ
Output: a map levels with nodes as keys and level informa-

tion as values
1 find the start place pSourcewith �pSource ¼ ;;
2 queue.add(pSource);
3 levels.put(pSource, 0);
4 while queue.size()> 0 do
5 node ¼ queue.remove();
6 level ¼ levels.get(node);
7 foreach n 2 node� do
8 if levels.containsKey(n) ¼¼ false then
9 queue.add(n);
10 levels.put(n, levelþ 1);

11 return levels;

The algorithm of finding the nearest common ancestor
can be found in Algorithm 2. Algorithm 2 backtracks
from two given nodes and then finds the common node
between two predecessor sets. During the common node
searching, the level information is used. First, only the
nodes with the same level in two predecessor sets are
compared. Second, the common node with the largest
level is found first, which is the nearest common
ancestor.

Algorithm 2. Find the nearest common ancestor

Input: two nodes in a model n1 and n2
Output: the nearest common ancestor node of n1 and n2

1 mark the model with level information and get levels;
2 queue1.add(n1);
3 queue2.add(n2);
4 while true do
5 backtrack from the first node in a queue with larger level

until the levels of the first nodes of two queues are the
same, during backtracking put the predecessors with
smaller levels into queue and keep the queue in a
descending order according to levels;

6 level1 ¼ levels.get(queue1.get(0));
7 level2 ¼ levels.get(queue2.get(0));

// level1 ¼¼ level2

8 for i ¼ 0 : queue1:sizeðÞ do
9 n1 ¼ queue1.get(i);
10 if levels:getðn1Þ < level1 then
11 break;
12 for j ¼ 0 : queue2:sizeðÞ do
13 n2 ¼ queue2.get(j);
14 if levels:getðn2Þ < level2 then
15 break;
16 if n1 ¼¼ n2 then
17 return n1;
18 delete the nodes with level as level1 from two queues, add

the predecessor nodes with smaller levels into queues and
keep queues in a descending order according to levels;

The algorithm of computing the task relations can be
found in Algorithm 3.

Algorithm 3. Compute task relations

Input: a sound SWF-net N ¼ ðP; T; F Þ
Output: the task relation matrix CM½jT j�½jT j�
// compute the relations of!W

1 foreach p 2 P do
2 foreach a 2 �p do
3 foreach b 2 p� do
4 set (a!W b),(b W a) in CM;

// compute the relation of jjW
5 foreach a 2 T do
6 foreach b 2 T do
7 if c 2 T is the nearest common ancestor of a and b and

a 6¼ c ^ b 6¼ c then
8 set (ajjWb),(bjjWa) in CM;

// compute the relations of#W

9 foreach a 2 T do
10 foreach b 2 T do
11 if the relation between a and b is not set before

then
12 set (a#Wb),(b#Wa) in CM;
13 return CM;

Let n be the number of nodes in a model, and let e be the
number of edges in a model. Since Algorithm 1 is a breadth-
first search algorithm, the time complexity is Oðnþ eÞ, and
OðeÞmay vary between OðnÞ and Oðn2Þ, the worst case time

complexity of Algorithm 1 is Oðn2Þ. Algorithm 2 backtracks
from two given nodes and then finds the common node
between two predecessor sets. The worst case time complex-
ity of backtracking isOðnÞ, and the worst case time complex-

ity of comparing two predecessor sets is Oðn2Þ, so the worst

case time complexity of Algorithm 2 is Oðn3Þ. In Algorithm
3, the worst case time complexity for computing the relations

of!W is Oðn3Þ, the worst case time complexity for comput-

ing the relations of jjW isOðn5Þ, and the worst case time com-

plexity for computing the relations of #W is Oðn2Þ, so the

worst case time complexity of Algorithm 3 isOðn5Þ.
Theorem 4. Algorithm 3 can compute all the task relations cor-

rectly and completely.

Proof.According to Theorem 2, the first stage of Algorithm 3
(Lines 1-4) can compute the relations of !W correctly
and completely. According to Theorem 3, the second
stage of Algorithm 3 (Lines 5-8) can compute the rela-
tions of jjW correctly and completely. According to Theo-
rem 1, the third stage of Algorithm 3 (Lines 9-12) can
compute the relations of#W correctly and completely. tu
After we obtain the relations of !W using Algorithm 3,

we can compute the relations of H W by using transitive clo-
sure algorithm (Algorithm 4). The core idea is similar to the
FloydWarshall algorithm [13]. Let n be the number of nodes

in the model. The worst case time complexity is Oðn3Þ.
Example 10.We can extract task relations from the model in

Fig. 1. There are causal relations between tasks A and B,
B and C, C and D, D and E, E and F , which means that
task B can be executed immediately after the completion
of A, and so on. There are transitive causal relations

JIN ET AL.: REFACTOR BUSINESS PROCESS MODELS WITH MAXIMIZED PARALLELISM 461

between tasksA andC,A andD,A andE,A and F ,B and
D, B and E, B and F , C and E, C and F , D and F , which
means that after taskA is executed, taskC can be executed
later instead of immediately, and so on. All the task rela-
tions are shown in Table 1. Since the relations of #W and
jjW are commutative, and the relation of W is the inverse
version of!W , we omit the lower triangularmatrix.

Algorithm 4. Compute transitive causal relations

Input: the task relation matrix CM½jT j�½jT j�
Output: the task relation matrix CM½jT j�½jT j�

1 foreach c 2 T do
2 foreach a 2 T do
3 foreach b 2 T ^ ða!W c _ a H W cÞ^
4 ðc!W b _ cH W bÞ ^ a 6 H W b do
5 set (a H W b);

4.2 Analyze Data Operation Dependency

To check whether there is a real causal relation or transitive
causal relation between two tasks having a causal relation
or transitive causal relation in the original model, we ana-
lyze the data operation dependency in this section. For the
operation on the same data, the preceding task may write
the data and then the succeeding task reads the data,
denoted as W-R for simplicity. Besides, there are three other
scenarios: W-W, R-W, R-R. The order of the execution of the
investigated two tasks will impact the data processing result
for W-R, W-W, R-W operations, so the causal relations
based on data operation dependency cannot be changed.

First, we compute the causal relations based on data
operation dependency according to Definition 10 (Algo-
rithm 5). Let jDj denote the number of data items operated
by a model, and let n denote the number of transitions in a
model. The worst case time complexity of Algorithm 5 is

OðjDj � n2Þ.
Theorem 5. Algorithm 5 can compute causal relations based on

data operation dependency correctly and completely.

Proof. This theorem follows Definition 10 directly. tu
Example 11. For themodel in Fig. 1, we obtain the causal rela-

tions based on data operation dependency, the result can
be found in Table 2. For example, since there is an opera-
tion dependency based on data x between tasks B and A,
B can only be executed after the completion ofA.

Second, we compute the transitive causal relations based
on data operation dependency according to Definition 11.
The transitive closure algorithm is similar to Algorithm 4,
so it is omitted here. Finally, we obtain the core causal

relations based on data operation dependency according to
Definition 12.

Algorithm 5. Compute causal relations based on data
operation dependency

Input: a DWF-netDN ¼ ðP; T; F;D;Wt;RdÞ and its task
relation matrix CM½jT j�½jT j�

Output: the causal relations based on data
operation dependency

1 foreach d 2 D do
2 foreach t2 2 RdðdÞ do
3 foreach t1 2WtðdÞ do
4 if t1 !W t2 _ t1 H W t2 then
5 set (t1 >d t2);
6 foreach t2 2WtðdÞ do
7 foreach t1 2WtðdÞ [RdðdÞ do
8 if t1 !W t2 _ t1 H W t2 then
9 set (t1 >d t2);

Example 12. For the model in Fig. 1, after we compute the
causal relations based on data operation dependency as
shown in Example 11, we compute the transitive causal
relations and the core causal relations based on data
operation dependency. The result can be found in Table 3.
For example, after task A is completed, task C can be exe-
cuted later instead of immediately since there is a data
operation dependency chain between these two tasks.

4.3 Update Task Relations

The goal of this paper is to refactor sound structured work-
flow models with parallel structures for sequence struc-
tures. Based on data operation dependency analysis, we can
find some tasks having causal relations or transitive causal
relations in the original model without any data operation
dependency. For these tasks, we can refactor them into

TABLE 3
Transitive and Core Causal Relations Based on

Data Operation for the Model in Fig. 1

A B C D E F

A !x >>	 !y >>	 >>	
B !z >>	
C !s

D !p >>	
E !q

F

TABLE 2
Causal Relations Based on Data Operation

Dependency for the Model in Fig. 1

A B C D E F

A >x >y

B >z

C >s

D >p

E >q

F

TABLE 1
Task Relations for the Model in Fig. 1

A B C D E F

A !W H W H W H W H W

B !W H W H W H W

C !W H W H W

D !W H W

E !W

F

462 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2016

parallel structures. Since some tasks on a sequence path can
be refactored into parallel structures, the other tasks on the
same path not adjacent before will be adjacent after refactor-
ing. So there are three types of relation changes:

1) change false causal relations to parallel relations,
2) change false transitive causal relations to parallel

relations,
3) change false transitive causal relations to causal

relations.

Theorem 6. The above three types of changes are complete.

Proof. We can enumerate all the possibilities as follows. For
causal relations, they can be changed into parallel rela-
tions or remain unchanged. For transitive causal rela-
tions, they can be changed into parallel relations or
causal relations, or remain unchanged. So there are three
types of changes in total. tu

The details of each type of changes can be found in the
following sections.

4.3.1 Change False Causal Relations to

Parallel Relations

Theorem 7. If a; b 2 T ^ a!W b ^ @x 2 Dða >x bÞ, we can
refactor the relation between a and b to ajjWb.

Proof. Since the execution order of a and b does not impact
any data processing result, it is unnecessary to execute b
only after the completion of a. tu

Example 13. In Table 1, C !W D, but in Table 2, @x
ðC >x DÞ, so we can refactor the relation between C and
D to CjjWD.

4.3.2 Change False Transitive Causal Relations

to Parallel Relations

Theorem 8. If a; b 2 T ^ a H W b ^ a 6 W b ^ @x 2 Dða >x

bÞ ^ :ða >>	 bÞ, we can refactor the relation between a and b
to ajjWb.

Proof. It is similar to Proof of Theorem 7. tu
Example 14. In Table 1, BH WD, but in Tables 2 and 3,

@xðB >x DÞ ^ :ðB >>	 DÞ, so we can refactor the rela-
tion between B and D to BjjWD. Similarly, in Table 1,
C H W E can be refactored to CjjWE, and BH WE can be
refactored to BjjWE.

4.3.3 Change False Transitive Causal Relations to

Causal Relations

Theorem 9. If a; b 2 T ^ a H W b ^ 9x 2 Dða!x bÞ, we can
refactor the relation between a and b to a!W b.

Proof. Between a and b, there is no transitive data operation
dependency. After a is finished, b can be executed imme-
diately and will not impact any data processing result. tu

Example 15. In Table 1, A H W D, and in Table 3, A!y D, so
we can refactor the relation between A and D to
A!W D. Similarly, in Table 1, C H W F can be refactored
to C !W F .

Example 16. After updating task relations with the above
three types of changes, the relations in Table 1 is
updated, as shown in Table 4.

For the above three types of changes, we only need to
scan two tables such as the running examples show. Let n
denote the number of transitions in a model. The time com-

plexity for updating task relations is Oðn2Þ.

4.4 Refactor Model with Process Mining
Technology

a mining algorithm first obtains the relations of !W , #W ,
jjW , and then finds the places and connects them with the
transitions to construct a Petri net. So we need to change
some relations of H W to #W first, and then use a mining
algorithm to build a new SWF-net.

Theorem 10. If a; b 2 T ^ a H W b ^ a 6 W b, a#Wb.

Proof. Since a H W b, there must be a path between a and b
on which there are at least two places, b cannot be exe-
cuted immediately after a, that is, a 6>W b. Since a 6 W b,
a cannot be executed after b, that is, b 6>W a. According to
Definition 6, a 6>W b ^ b 6>W a) a#Wb. tu

Example 17. Based on Table 4, after we change some rela-
tions of H W to #W , we obtain Table 5. Based on the rela-
tions in this table, a mining algorithm can build a new
SWF-net as shown in Fig. 2.

The time complexity of this stage mainly depends on a

mining algorithm. According to [7], the time complexity is
exponential in the number of tasks.

4.5 Post Process

After a mining algorithm is applied, there would be
some transitions without any input place or without any
output place. For the transitions without any input place,
it means that those transitions can be executed in parallel
from the start. For the transitions without any output
place, it means that those transitions can be executed in
parallel to the end. To keep the result models as work-
flow nets, we add a new source place and an invisible
transition to fire the parallel executions, and add a new
sink place and an invisible transition to synchronize the
parallel executions. Since we only need to scan every
transition at this stage to check its in-degree and out-
degree, the time complexity of this stage is OðnÞ, where
n denotes the number of transitions in a model.

TABLE 4
Updated Task Relations for the Model in Fig. 1

A B C D E F

A !W H W !W H W H W

B !W jjW jjW H W

C jjW jjW !W

D !W H W

E !W

F

JIN ET AL.: REFACTOR BUSINESS PROCESS MODELS WITH MAXIMIZED PARALLELISM 463

4.6 Discussion on Effectiveness

We have explained five steps of our approach in preceding
sections, and we have proved some theorems related to the
effectiveness of the corresponding steps. In this section, we
answer three questions.

1) Can our approach refactor process models with par-
allel structures at the utmost?

2) Are all data operation dependencies preserved in
refactored models?

3) Is there any new data operation dependency intro-
duced in refactored models?

Theorem 11. Our approach can refactor process models with par-
allel structures at the utmost.

Proof. At step 2 (analyze data operation dependency, see
Section 4.2), our approach can analyze all causal relations
based on data operation dependency correctly and
completely. At step 3 (update task relations, see Sec-
tion 4.3), our approach can find all the causal relations
and transitive causal relations that do not exist, and then
change them into parallel relations. So based on data
operation dependency, all the parallel relations are dis-
covered. In other words, our approach can refactor pro-
cess models with parallel structures at the utmost. tu

Theorem 12. All data operation dependencies are preserved in
refactored models.

Proof. At step 2 (analyze data operation dependency, see
Section 4.2), our approach can analyze all causal rela-
tions based on data operation dependency correctly
and completely. At step 3 (update task relations, see
Section 4.3), our approach preserves all causal relations
based on data operation dependency. At step 4 (refac-
tor the model with process mining technology, see
Section 4.4), our approach constructs the new model
with a mining algorithm. According to a mining algo-
rithm, all the relations of >W will be presented in the
model through places connecting the corresponding
two transitions. So all data operation dependencies are
preserved in refactored models. tu

Theorem 13. No new data operation dependency will be intro-
duced in refactored models.

Proof. At step 4 (refactor the model with process mining
technology, see Section 4.4), our approach constructs the
new model with a mining algorithm. According to a

mining algorithm, all the relations of >W will be pre-
sented in the new model through places connecting the

corresponding two transitions. On the other hand, all the
places in the new model denote relations of >W between
the corresponding two transitions connected by corre-
sponding places. No new relations of >W will be intro-
duced. So no new data operation dependency will be
introduced. tu

4.7 More Discussion

In this section, we answer two questions: (1) why our
approach limits the models to be sound structured work-
flow nets? (2) can our approach guarantee the refactored
models to be sound structured workflow nets?

4.7.1 Why Our Approach Limits the Models to be Sound

Structured Workflow Nets?

As we mentioned before, if a WF-net is not sound, there
must be some errors in that model and these errors should
be eliminated, and SWF-net is more readable and under-
standable [7]. It is suggested that the business process
model should be as structural as possible [9].

On the other hand, our approach depends on a mining
algorithm [7], which can only handle sound structured
workflow nets well, so our approach limits the models to be
sound structured workflow nets.

When we consider unstructured workflow net, for exam-
ple, the model in Fig. 4. According to Definition 5, since
jp3 � j > 1 (p3 has two outputs) while j � t3j > 1 (t3 has two
inputs), this model is an unstructured workflow net. Some
theorems cannot hold any more, for example, according to
Theorem 2, t2 2 �p3 ^ t3 2 p3�) t2 !W t3, which means
that t3 can be executed after t2, however, it is impossible to
execute t3 after t2, because t2 and t3 cannot be executed in
the same case. This model can only be executed as ðt1; t3Þ
and ðt2; t4Þ.

4.7.2 Can Our Approach Guarantee the Refactored

Models to be Sound Structured Workflow Nets?

Since our approach changes some relations between tran-
sitions, and based on the new set of relations, a algorithm
can construct an unstructured workflow net, our
approach cannot guarantee the refactored models to be
sound structured workflow nets. For example, given a
model as Fig. 5a, where t2 and t4 can be executed in paral-
lel, after refactored with our approach, we can get a
model as Fig. 5b. In Fig. 5b, since jp4 � j > 1 (p4 has two
outputs), and j � t5j 6¼ 1 (t5 has two inputs), according to
Definition 5, this model is not a SWF-net.

When the refactored models are not sound SWF-nets, we
need to let modelers intervene to make those models to be
sound SWF-nets and then the models can be used further.

In what scenarios cannot our approach refactor models to
be sound SWF-nets? And in these scenarios how can we

Fig. 4. A model which is not a structured workflow net.

TABLE 5
Final Task Relations for the Model in Fig. 1

A B C D E F

A !W #W !W #W #W

B !W jjW jjW #W

C jjW jjW !W

D !W #W

E !W

F

464 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2016

revise the task relations more to get sound SWF-nets? Those
problems are under investigation.

Since our primary goal is to refactor models with maxi-
mized parallelism, after refactoring the process models can
be very different from the original ones. The biggest advan-
tage of this research is that more tasks can be executed in par-
allel so that the efficiency of business processing can be
improved. Our approach points out what task relations have
been changed in the step 3, which shows why the refactored
models are different with the original ones. Moreover, there
are already some works on visualizing the difference
between twomodels such as thework presented in [8].

5 IMPLEMENTATION AND EVALUATION

In Section 5.1, we describe the implementation of our
approach. In Section 5.2, we present the evaluation results
to show that our approach can maximize parallel execution
of business tasks at a negligible extra effort.

5.1 Implementation

To evaluate our approach, we implement it in BeehiveZ sys-
tem, which can be accessed at http://code.google.com/p/
beehivez/. The screenshot of implementation can be found
in Fig. 6, in which the running example in this paper is
evaluated.

To store DWF-nets in files, we extend PNML schema1

with data operations. The part of data operations for the
model in Fig. 1 can be found in Fig. 7.

Similar to the refactoring work in the area of software
engineering, our approach proposes parallelism refactoring
suggestions, and it is up to the user to decide whether to
accept or not.

5.2 Evaluation

In this section, we evaluate the effectiveness and efficiency of
our approach on randomly generated models. During our
experiments, we used a computer with Intel(R) Pentium(R) 4
CPU 3.00 GHz and 2 GB memory. This computer ran Micro-
soft Windows XP Professional Service Pack 3 and JDK6. The
heapmemory for JVMwas configured as 1 GB.

5.2.1 Settings of Models

We generated 9,800 different DWF-nets randomly. In
every model, all the tasks are on a sequential path from

the start to the end. According to 7PMG proposed in [9],
models should be decomposed if they have more than
50 elements. Hence, the maximum number of transitions
per model is configured as 50. Since we want to refactor
process models with parallelism, the minimum number
of transitions per model is configured as 2. The numbers
of models with the number of transitions from 2 to 50 are
all configured as 200. We use n to denote the real number
of transitions in a model, the maximum number of data
items per model is configured as n, and the maximum
numbers of tasks for writing and reading one data item
are both configured as n.

5.2.2 Effectiveness

Since the effectiveness of our approach has been proved
in Section 4, in this section, we show the effectiveness of
our approach through experiments. When business tasks
can be executed in parallel as much as possible, the effi-
ciency of the corresponding business processing can be
improved accordingly. Hence, in this section, we show
how our approach can maximize the parallel execution
of business tasks instead of how the efficiency of
business processing can be improved. According to the
work in [14], we measure the degree of parallelism as
Equation (1), where doutðtÞ means the out degree of
transition t

TS ¼
X

doutðtÞ>1

doutðtÞ � 1: (1)

If TS ¼ �1, it means that no tasks can be executed in par-
allel. For those models with TS ¼ �1, we set TS ¼ 0 for
future computation. For every generated model, before it is
refactored, TS ¼ 0, because 8t 2 T ðdoutðtÞ ¼ 1Þ. After all the
generated models are refactored, MinðTSÞ ¼ 0, MaxðTSÞ ¼
49, AvgðTSÞ ¼ 3, StdevðTSÞ ¼ 6:1, which means that some
models are refactored with parallel structures. We can see
that our approach really works. In other words, after paral-
lelism refactoring, business tasks can be executed in parallel
as much as possible, so that the efficiency of business proc-
essing can be improved.

Fig. 6. The screenshot of our implementation.

Fig. 5. A refactored model which is not a structured workflow net.

1. see http://www.pnml.org/index.php for details

JIN ET AL.: REFACTOR BUSINESS PROCESS MODELS WITH MAXIMIZED PARALLELISM 465

http://code.google.com/p/beehivez/
http://code.google.com/p/beehivez/
http://www.pnml.org/index.php

5.2.3 Efficiency

The time complexity has been analyzed in Section 4. In this
section, we evaluate the efficiency of our approach through
experiments. We record the time for refactoring every gen-
erated model. The minimum time is 0.43 ms (we record the
time in nanoseconds), the maximum time is 926.26 ms, the
average time is 218.72 ms, and the standard deviation is
240.92 ms, which are negligible in general. The average time
for models with the same number of transitions can be
found in Fig. 8, in which, the different times are calculated
as follows. Let m denote a model, and jmj denote the num-
ber of transitions in the model m. Let TCðmÞ denote the
time for refactoring the model m with parallel structures.
We have the following results:

real timeðnÞ ¼
P
jmij¼n TCðmiÞP
jmij¼n 1

: (2)

Oðn2Þ timeðnÞ ¼ n2

22
� real timeð2Þ: (3)

Oðn3Þ timeðnÞ ¼ n3

23
� real timeð2Þ: (4)

real timeðnÞ calculates the average time for refactoring
all the models with the number of transitions as n.

Oðn2Þ timeðnÞ predicts the time cost if our refactoring algo-
rithm has a square time to the number of transitions, and

Oðn3Þ timeðnÞ predicts the time cost if our refactoring algo-
rithm has a cubic time to the number of transitions. Since
the minimum number of transitions in a model is config-

ured as 2, Oðn2Þ timeðnÞ and Oðn3Þ timeðnÞ start with the n

as 2. Since the curve of Oðn3Þ time grows fast, we only
show part of it. We can see that our approach can refactor
randomly generated models quickly, with the time com-

plexity between Oðn2Þ and Oðn3Þ, where n denotes the num-
ber of transitions in a model.

6 RELATED WORK

We review the related work in both areas of software engi-
neering and business process management as follows.

In the area of software engineering, there is some work
on parallelism refactoring. The goal is to improve the effi-
ciency of code execution on multi-core processors. For
example, in [15], the authors presented a tool that can refac-
tor an array to a ParallelArray. In [16], the author presented
the state-of-the-art tools and technologies for parallelism
refactoring. In [17], the author presented a toolset support-
ing parallelism refactoring. In [18], the authors presented a
refactoring support for X10 language to make user-selected
code in the loop body to run in parallel with other iterations
of the loop. In [19], the authors presented a tool that can
refactor sequential code into parallel code by using three
java.util.concurrent concurrent utilities.

However, on one hand, the technologies existing in the
area of software engineering cannot be used to solve the
problem proposed in this paper. On the other hand, the
idea used in this paper can be used to refactor the existing
source codes so that they can be executed in parallel on
multi-core CPU or multi machines such as cloud computing
platforms. Because source codes can be divided into single-
entry-single-exit blocks, and every block can be regarded as
a transition in our approach, we can analyze data depen-
dency between different blocks the same way and finally
refactor source codes with process mining technology to
enable parallel execution.

In the area of business process management, there is also
some work on refactoring process models. In [20], the

Fig. 8. The average time for refactoring generated models with the same
number of transitions.

Fig. 7. The file snippet with data operations for the model in Fig. 1.

466 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2016

authors presented a RPST-based refactoring technology to
make the model more structural. In [21], the authors sum-
marized the work on refactoring process models. In [22], the
authors proposed a technique that can automatically detect
four kinds of refactoring opportunities in process models.
In [23], the authors proposed an approach to refactor activ-
ity labels so that the label quality can be improved. In [10],
the authors proposed an approach that can structure acyclic
process models. All the work preserves the behavior of pro-
cess models, and the goal is to make process models more
understandable and maintainable. However, our work
focuses on improving the efficiency of process model execu-
tion, and the behavior of the refactored model is different
with the original one, but the data operation dependency is
preserved so that the data processing result of business
processing is preserved (see Section 4.6).

There have been some works on Project Evaluation and
Review Technique (PERT) [24], which is used in project
management to analyze and represent the tasks involved in
completing a given project, and it is commonly used in con-
junction with the critical path method (CPM). For example,
PERT can be used to analyze the earliest completion time of
some task or the whole project, and also can be used to tell
the critical task or critical path so that more attention can be
paid to in order to ensure that the project will not be post-
poned. However, the order between tasks cannot be
decided by PERT, and it is the topic of business process
model designing, which exists as an independent research
domain now. So our work can be used for PERT to decide
the order between tasks. In particular, we decide the order
between tasks based on data flow analysis. And after the
order between tasks is decided, PERT can be used to ana-
lyze and manage the project.

There are some work on workflow performance analysis,
for example, in [25], the authors proposed a method for
computing the lower bound of average turnaround time of
transaction instances. In [26], the authors present an analyti-
cal method to evaluate the performance of workflow sto-
chastic Petri nets based on block reduction. All these
methods can be used to evaluate the performance of refac-
tored models with our method. Our work is different with
these works in that our work focuses on how to refactor
models to improve the performance.

To the best of our knowledge, we are the first to propose
and solve the problem of parallelism refactoring for busi-
ness process models.

7 CONCLUSION AND FUTURE WORK

In this paper, we investigate the problem of parallelism
refactoring for business process models for the first time. To
solve this problem, we analyze data operation dependency
between tasks first, and then refactor some sequence struc-
tures to parallel structures. The causal relations and transi-
tive causal relations between tasks without any data
operation dependency are changed to parallel relations. Pro-
cess mining technology is used to construct newmodels. In a
refactored business process model, tasks can be executed in
parallel as much as possible, so the efficiency of business
processing can be improved. In other words, the quality of
process models can be improved. The effectiveness of our

approach is proved, and the approach is implemented in an
open-source tool. Experiments show that our approach has a
quadratic to cubic time complexity in terms of the number of
transitions in a model. In a conclusion, our approach can
maximize parallel execution of business tasks at a negligible
extra effort. Besides the application in the area of business
process management, our approach can also be potentially
used for software refactoring so that software systems can
exploit the power of multi-core processors or computer clus-
ter platforms such as cloud computing platforms.

Given a business process model, based on data operation
dependency analysis, some false causal relations and false
transitive causal relations are changed into parallel rela-
tions, and some false transitive causal relations are changed
into causal relations, then a new model is constructed by
a mining algorithm. The refactored model may not be a
sound SWF-net. In this case, the modelers may need to
intervene, which will be further investigated.

ACKNOWLEDGMENTS

The work was supported by the HGJ project of China
(No. 2010ZX01042-002-002-01), NSF Projects of China
(No. 61325008 and No. 61472207), and an Australian
Research Council Linkage Project (LP0990393). Tao Jin is
the corresponding author.

REFERENCES

[1] M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hofstede, Pro-
cess-Aware Information Systems: Bridging People and Software
Through Process Technology. New York, NY, USA: Wiley, 2005.

[2] M. Rosemann, “Potential pitfalls of process modeling: Part B,”
Bus. Process. Manag. J., vol. 12, no. 3, pp. 377–384, 2006.

[3] J. Herbst and D. Karagiannis, “Workflow mining with InWoLvE,”
Comput. Ind., vol. 53, no. 3, pp. 245–264, 2004.

[4] W. M. P. van der Aalst, “Generic workflow models: How to han-
dle dynamic change and capture management information?”
in Proc. IFCIS Int. Conf. Cooperative Inf. Syst., 1999, pp. 115–126.

[5] W. M. P. van der Aalst, “The application of petri nets to workflow
management,” J. Circuits, Syst., Comput., vol. 8, no. 1, pp. 21–66, 1998.

[6] T. Murata, “Petri Nets: Properties, analysis and applications,”
Proc. IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[7] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow
mining: Discovering process models from event logs,” IEEE Trans.
Knowl. Data Eng., vol. 16, no. 9, pp. 1128–1142, Sep. 2004.

[8] S. Kriglstein, G. Wallner, and S. Rinderle-Ma, “A visualization
approach for difference analysis of process models and
instance traffic,” in Proc. 11th Int. Conf. Bus. Process. Manage.,
2013, pp. 219–226.

[9] J. Mendling, H. A. Reijers, andW. M. P. van der Aalst, “Seven pro-
cess modeling guidelines (7PMG),” Inf. Softw. Technol., vol. 52,
no. 2, pp. 127–136, 2010.

[10] A. Polyvyanyy, L. Garc�ıa-Ba~nuelos, and M. Dumas, “Structuring
acyclic process models,” Inf. Syst., vol. 37, no. 6, pp. 518–538, 2012.

[11] H. M. W. E. Verbeek, T. Basten, and W. M. P. van der Aalst,
“Diagnosing workflow processes using woflan,” Comput. J.,
vol. 44, no. 4, pp. 246–279, 2001.

[12] N. Sidorova, C. Stahl, and N. Trcka, “Soundness verification for
conceptual workflow nets with data: Early detection of errors
with the most precision possible,” Inf. Syst., vol. 36, no. 7,
pp. 1026–1043, 2011.

[13] S. Warshall, “A theorem on Boolean matrices,” J. ACM, vol. 9,
no. 1, pp. 11–12, 1962.

[14] J. Mendling, Metrics for Process Models: Empirical Foundations of
Verification, Error Prediction, and Guidelines for Correctness, vol. 6.
New York, NY, USA: Springer, 2008.

[15] D. Dig, M. Tarce, C. Radoi, M. Minea, and R. E. Johnson,
“Relooper: Refactoring for loop parallelism in Java,” in Proc. 24th
ACM SIGPLAN Conf. Companion Object Oriented Programm. Syst.
Lang. Appl. Companion, 2009, pp. 793–794.

JIN ET AL.: REFACTOR BUSINESS PROCESS MODELS WITH MAXIMIZED PARALLELISM 467

[16] D. Dig, “A practical tutorial on refactoring for parallelism,”
in Proc. Int. Conf. Softw. Maintenance, 2010, pp. 1–2.

[17] D. Dig, “A refactoring approach to parallelism,” IEEE Softw.,
vol. 28, no. 1, pp. 17–22, Jan–Feb. 2011.

[18] S. Markstrum, R. M. Fuhrer, and T. D. Millstein, “Towards con-
currency refactoring for X10,” in Proc. 14th ACM SIGPLAN Symp.
Principles Practice Parallel Programm., 2009, pp. 303–304.

[19] D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential java
code for concurrency via concurrent libraries,” in Proc. 31st Int.
Conf. Softw. Eng., 2009, pp. 397–407.

[20] J. Vanhatalo, H. V€olzer, F. Leymann, and S. Moser, “Automatic
workflow graph refactoring and completion,” in Proc. 6th Int.
Conf. Service-Oriented Comput., 2008, vol. 5364, pp. 100–115.

[21] B. Weber, M. Reichert, J. Mendling, and H. A. Reijers,
“Refactoring large process model repositories,” Comput. Ind.,
vol. 62, no. 5, pp. 467–486, 2011.

[22] R. M. Dijkman, B. Gfeller, J. M. K€uster, and H. V€olzer, “Identifying
refactoring opportunities in process model repositories,” Inf.
Softw. Technol., vol. 53, no. 9, pp. 937–948, 2011.

[23] H. Leopold, S. Smirnov, and J. Mendling, “On the refactoring of
activity labels in business process models,” Inf. Syst., vol. 37, no. 5,
pp. 443–459, 2012.

[24] W. Fazar, “Program evaluation and review technique,” Amer. Stat-
ist., vol. 13, no. 2, p. 10, Apr. 1959.

[25] J. Li, Y. Fan and M. Zhou, “Performance modeling and analysis of
workflow,” IEEE Trans. Syst., Man, Cybern., Part A, vol. 34, no. 2,
pp. 229–242, Mar. 2004.

[26] L. C. Tsironis, D. S. Sfiris, and B. K. Papadopoulos, “Fuzzy perfor-
mance evaluation of workflow stochastic petri nets by means of
block reduction,” IEEE Trans. Syst., Man, Cybern., Part A, vol. 40,
no. 2, pp. 352–362, Mar. 2010.

Tao Jin received the bachelor’s degree from the
School of Information, Inner Mongolia University
of Science and Technology, China, in 2002, the
master’s degree from the School of Software,
Tsinghua University, China, in 2008, and the PhD
degree from the Department of Computer Sci-
ence and Technology, Tsinghua University,
China, in 2013, and currently is a postdoctor in
the School of Software, Tsinghua University,
China. His research focuses on business process
model management, including process model

retrieval, process model refactoring, process model difference, behavior
computing and so on. He leads the development of BeehiveZ system,
whose details can be found at http://code.google.com/p/beehivez/.

Jianmin Wang received the graduation degree
from Peking University, China, in 1990, and the
ME and PhD degrees in computer software from
Tsinghua University, China, in 1992 and 1995,
respectively. He is currently a professor at the
School of Software, Tsinghua University. His
research interests include unstructured data
management, workflow and BPM technology,
benchmark for database system, software water-
marking, and mobile digital right management.
He has published more than 100 DBLP indexed

papers in Journals, such as TKDE, TSC, DMKD, CII, DKE, FGCS, and
IJIIS, and in conferences, such as SIGMOD, WWW, ICDE, AAAI, IJCAI,
ICWS, and SAC. He has led to develop a product data/lifecycle manage-
ment system, which has been implemented in hundreds enterprises in
china. Nowadays, he leads to develop an unstructured data manage-
ment system, LaUDMS.

Yun Yang received the BSci degree from Anhui
University, Hefei, China, in 1984, the MEng
degree from the University of Science and Tech-
nology of China, Hefei, China, in 1987, and the
PhD degree from the University of Queensland,
Brisbane, Australia, in 1992, all in computer sci-
ence. He is currently a full professor in the School
of Software and Electrical Engineering at
Swinburne University of Technology, Melbourne,
Australia. Prior to joining Swinburne as an associ-
ate professor, he was a lecturer and a senior lec-

turer at Deakin University during 1996-1999. Before that, he was a
senior research scientist at DSTC Cooperative Research Centre for Dis-
tributed Systems Technology during 1993-1996. He was also at Beihang
University during 1987-1988. He has coauthored four monographs and
published more than 200 papers on journals and refereed conferences.
His current research interests include software engineering, cloud com-
puting, workflow systems, big data, and service-oriented computing. He
is a senior member of the IEEE.

Lijie Wen received the BS degree in 2000 and
the PhD degree in the Department of Computer
Science and Technology, Tsinghua University
in 2007. He has been an associate professor in
the School of Software, Tsinghua University
since January 2013. His research interests are
business process management technologies,
especially on process data management (such
as mining, integration, indexing, similarity,
retrieval and refinement). He was a postdoc in
the Department of Automation, Tsinghua Uni-

versity from 2007 to 2009. He was the organization chair of BPM
2013 as well as its colocated events, i.e., APBPM 2013 and CBPM
2103. By now, he has published more than 70 academic papers on
conferences and journals. All his papers have been cited more than
1,000 times by Google Scholar.

Keqin Li is a SUNY Distinguished professor of
computer science. His current research interests
include parallel computing and high-performance
computing, distributed computing, energy-effi-
cient computing and communication, heteroge-
neous computing systems, cloud computing, big
data computing, CPU-GPU hybrid and coopera-
tive computing, multicore computing, storage and
file systems, wireless communication networks,
sensor networks, peer-to-peer file sharing sys-
tems, mobile computing, service computing,

Internet of things and cyber-physical systems. He has published more
than 320 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He is currently or
has served on the editorial boards of IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Computers, IEEE Transac-
tions on Cloud Computing, Journal of Parallel and Distributed Comput-
ing. He is a fellow of the IEEE.

468 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 9, NO. 3, MAY/JUNE 2016

http://code.google.com/p/beehivez/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

