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with Maximized Parallelism
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Abstract—With the broad use of business process management technology, there are more and more business process models.
Since the ability of different modelers is different, the quality of these models varies. A question arises here is that, can we refactor
these models to improve the quality as practised in software engineering? Business process modeling can be regarded as declarative
programming, and business process models can be used to drive the process aware information systems, which are generally
developed with model driven architecture, so business process models are crucial for the efficiency of process aware information
systems. In this paper, we propose a novel approach on how to systematically refactor business process models with parallel structures
for sequence structures for the first time. More specifically, we analyze the real causal relations between business tasks based on data
operation dependency analysis, and refactor business process models with process mining technology. After comprehensive model
refactoring, parallel execution of business tasks can be maximized, so the efficiency of business processing can be improved, that is,
the quality of business process models can be improved. Analysis and experiments show that our approach is effective and efficient.

Index Terms—business process, model, refactor, parallel.
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1 INTRODUCTION
Business process management (BPM) technology can
be used to construct and update process aware infor-
mation systems (PAISs) quickly [1]. The key idea of
BPM technology is that business processes can be mod-
eled in business process models, which describe what
tasks should be executed to complete some business
objectives and what their execution orders are (from
a control flow perspective), together with what data
should be processed (from a data perspective) and who
should be responsible for what task (from a resource
perspective). With the help of BPM technology, process
aware information systems can be developed with model
driven architecture. Although the business processes in
different enterprises are different, process aware infor-
mation systems have many things in common except the
business process models. That is, on one hand, different
enterprises can use the same process aware information
system platform, and configure their own business pro-
cess models to drive their process aware information
systems respectively. On the other hand, when there
are some changes on the market, governmental policies
and so on, enterprises can update their process aware
information systems according to these changes quickly
by only changing the business process models instead of
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building new process aware information systems. That
is why BPM technology can be used to speed up the
construction and updating of process aware information
systems.

With the broad use of BPM technology, there are more
and more business process models. In some enterprises,
there are thousands of models [2]. Since business process
modeling is time-consuming and error-prone [3], and
the ability of different modelers varies, the quality of
business process models varies. In the area of software
engineering, there are some works and tools on source
code refactoring. A question which arises here is that,
can we refactor business process models to improve
the quality as well? In fact, business process modeling
can be regarded as declarative programming. There are
many similarities between business process modeling
and software coding. For example, both activities must
correspond to some language syntax, and both business
process models and source codes can be executed by
computer systems to complete some objectives. So some
existing refactor technologies in software engineering
can be adapted for workflow model refactoring. In this
paper, we attempt to solve a new refactoring problem
for business process models.

The problem to be solved in this paper is described
informally as follows. Given a business process model,
how to refactor it with parallel structures?

To solve this problem, we analyze the data operation
dependency between tasks, and check whether there is
a real causal relation between two investigated tasks.
For two investigated tasks with a causal relation in
the original model, if there is not any data operation
dependency between them, we can refactor them into a
parallel structure.

With parallelism refactoring, business tasks can be
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executed in parallel as much as possible, so that the
efficiency of business processing can be improved, i.e.,
the quality of process models can be improved. Our
contribution can be summarized as follows.
• Problem: We propose the problem of refactoring

business process models with parallel structures for
the first time in the literature.

• Approach: We propose an approach to refactor busi-
ness process models with parallel structures. We
show how process mining technology can be used
for parallelism refactoring for the first time.

• Tool: We implement and evaluate our approach in
BeehiveZ system, which is an open source system.

The rest of this paper is organized as follows. Sec-
tion 2 introduces a motivating example and analyzes the
problem to be solved in this paper. Section 3 introduces
the definitions used throughout this paper. Section 4
describes how to refactor business process models with
parallel structures in detail. Section 5 addresses the im-
plementation and evaluation of our approach. Section 6
discusses the related work. Section 7 concludes this
paper and points out future work.

2 MOTIVATING EXAMPLE AND PROBLEM
ANALYSIS

In this section, we first introduce a motivating example,
and then analyze the problem to be solved in this paper.

2.1 Motivating example

A:order goods
B:ship goods
C:receive goods
D:send bill
E:pay bill
F:archive

W:write
R:read

x:address
y:money amount
z:goods declaration
s:sign for receipt
p:ask for payment
q:pay

Fig. 1. A business process model example represented
as a Petri net.

Example 1: Fig. 1 shows a business process model
example represented as a Petri net. This example is
adapted from the example in [4]. The rectangles de-
note tasks, and the circles denote states. Both control
flow perspective and data perspective are considered
in this example model. This model describes an online-
shopping processing. First, the buyer orders goods (task
A) through the Internet, and the address of the buyer
(variable x) together with the money the buyer should
pay (variable y) are written. Next, the seller ships goods
(task B), the address of the buyer (variable x) is read,
and the goods shipped (variable z) is written. When
the buyer receives goods (task C), the goods shipped
(variable z) is read, and the buyer signs for the goods

(variable s is written). Then, the seller sends the bill to
the buyer (task D), the money the buyer should pay
(variable y) is read, and the requirement of payment
(variable p) is written. After that the buyer pays the bill
(task E), the requirement of payment (variable p) is read,
and the completion of payment (variable q) is written.
Finally, the seller archives this transaction (task F ), the
signature of the buyer (variable s) and the completion
of payment (variable q) are read.

All the tasks in Fig. 1 are arranged in a sequential
structure, so the time for the whole business processing
is the sum of the time for processing each task. Intu-
itively, to execute task D, it is unnecessary to wait the
completion of task C, because there are no dependency
relations between task D and task C. If there is a causal
relation between two tasks, we can denote this causal
relation through some data operation dependency. Based
on the data operation dependency analysis, there are no
causal relations between tasks D and C, so these two
tasks are unnecessary to be executed sequentially as they
can be executed in parallel.

Based on the idea above, the model in Fig. 1 can
be refactored, and the refactored model is presented in
Fig. 2. The time for completing the new process is the
time of the critical path. Compared to the model in Fig. 1,
the completion time of the refactored model should be
less. So this refactoring technology can improve the
efficiency of business processing, in other words, this
refactoring technology can improve the quality of pro-
cess models.

Fig. 2. A refactored model with a parallel structure for the
model in Fig. 1.

2.2 Problem analysis
Let T (A) denote the time of completing task A since it
is enabled to be executed. For the model in Fig. 1, the
time for completing a business case can be calculated as
Toriginal = T (A) + T (B) + T (C) + T (D) + T (E) + T (F ).
For the refactored model in Fig. 2, the time for complet-
ing a business case can be calculated as Trefactored =
T (A) + max(T (B) + T (C), T (D) + T (E)) + T (F ). Obvi-
ously, Toriginal > Trefactored. The efficiency of business
processing can be improved if the tasks involved can
be executed in parallel. So, to improve the efficiency of
business processing for better quality of process models,
we need to refactor models with parallel structures as
much as possible.

Since the execution of tasks would consume some
information and produce some information, and infor-
mation can be encoded as data, if there is a real causal
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relation between two tasks, there must be some data
operation dependency. For example, in the model in
Fig. 1, task A writes data x and task B reads data x,
so task B can only be executed after the completion of
task A, i.e. , there is a real causal relation between tasks
A and B. Similarly, there is a real causal relation between
tasks B and C, C and F , A and D, D and E, E and F .

If there is not any data operation dependency, the
causal relation or transitive causal relation between two
investigated tasks does not exist, and these tasks can
be refactored into parallel structures. For example, in
the model in Fig. 1, there is not any data operation
dependency between tasks C and D, so they can be
executed in parallel, similarly for tasks C and E, B
and D, B and E. Here, the causal relation between C
and D does not exist, and the transitive causal relations
between B and D, B and E, C and E do not exist.

For two tasks with a transitive causal relation, there
is some data operation dependency. After the tasks
between them on the causal chain are refactored into
parallel structures, these two tasks may be connected
directly. That is, the transitive causal relation can be
changed into a direct causal relation. For example, in
the model in Fig. 1, there is a transitive causal relation
between tasks C and F . Task C writes data s, and task
F reads data s. In the refactored model in Fig. 2, there is
a causal relation between C and F because tasks D and
E are refactored into a parallel structure.

As a conclusion, to improve the efficiency of business
processing for better quality of process models, we need
to refactor the models with parallel structures as much
as possible. To solve the refactoring problem proposed
in this paper, we need to extract all the causal relations
and transitive causal relations from the given models,
analyze data operation dependency, change some false
causal relations and false transitive causal relations to
parallel relations, and change some false transitive causal
relations to causal relations.

There may be constraints from the resource perspec-
tive that hinder the parallel execution, and this problem
can be solved by adding resources, so we think that
the resource perspective should not impact the models,
especially our primary goal is maximized parallelism. So
we ignore the resource perspective in this paper.

3 PRELIMINARIES
Since Petri net has a sound formalization foundation
and is easy to understand and use, it was introduced
into business process management area for modeling,
verification and analysis [5].

Definition 1 (Petri net): A petri net is a triple N =
(P, T, F ), where P and T are finite disjoint sets of places
and transitions (P ∩ T = ∅), and F ⊆ (P × T ) ∪ (T × P )
is a set of arcs (flow relation).

We write X = (P ∪ T ) for all nodes of a Petri net.
For a node x ∈ X , •x = {y ∈ X|(y, x) ∈ F}, x• = {y ∈
X|(x, y) ∈ F}. A node x ∈ X is an input (output) node
of a node y ∈ X , iff x ∈ •y(x ∈ y•).

Definition 2 (Petri net semantics): Let N = (P, T, F ) be
a Petri net.

• M : P → Z is a marking of N , where Z is the set of
nonnegative integer numbers. A marking indicates
that in some state what places have how many
tokens. M denotes all markings of N . M(p) denotes
the number of tokens in place p. [p] denotes the
marking when place p contains just one token and
all the other places contain no tokens.

• For any transition t ∈ T and any marking M ∈M, t
is enabled in M , denoted by (N,M)[t〉, iff ∀p ∈ •t :
M(p) ≥ 1.

• Marking M ′ is reached from M by firing of t, denot-
ed by (N,M)[t〉(N,M ′) or M t→ M ′ for simplicity,
meaning that M ′ = M − •t + t•, i.e. , one token is
taken from each input place of t and one token is
added to each output place of t.

• A firing sequence σ = t0t1 . . . tn−1 leads from mark-
ing M0 to marking Mn, i.e. , M0

t0→ M1
t1→ · · · tn−1→

Mn. It can be denoted as M0
σ→Mn.

• For any two markings M,M ′ ∈ M, M ′ is reachable
from M in N , denoted by M ′ ∈ [N,M〉, iff there
exists a firing sequence σ leading from M to M ′.

• A net system is a pair Σ = (N,M0), where N is a
net and M0 is the initial marking of N .

Workflow net (WF-net) is a subclass of Petri net de-
signed to represent business process models. A Work-
flow net is a Petri net with two special places, source
place i : •i = ∅ and sink place o : o• = ∅. All the nodes
except the source place and sink place are on the path
from the start to the end. A Workflow net system is a
pair (N,Mi), where Mi = [i].

Definition 3 (Sound WF-net): A WF-net N = (P, T, F )
is sound iff:

• ∀M([i]
∗→ M ⇒ M

∗→ [o]). That is, each
task/condition is on the path from i to o.

• ∀M([i]
∗→ M ∧ M ≥ [o] ⇒ M = [o]). That is, for

any case, the process will terminate eventually and
the moment the process terminates there is only one
token in place o and all the other places are empty.

• ∀t ∈ T (∃M,M ′([i]
∗→ M

t→ M ′)). That is, there
should be no dead tasks.

If a WF-net is not sound, there must be some errors in
that model and these errors should be eliminated. There
would be at most one token in any place of a sound
workflow net during the execution. More details of Petri
net can be found in [6], and more details of workflow
net can be found in [5].

Definition 4 (Implicit place): Let N = (P, T, F ) be a
Petri net with initial marking s. A place p ∈ P is called
implicit in (N, s) iff, for all reachable markings s′ ∈ [N, s〉
and transitions t ∈ p•, s′ ≥ •t \ {p} ⇒ s′ ≥ •t.

The addition of implicit places does not change the
behavior of the net. Please see [7] for details.

Definition 5 (SWF-net): A WF-net N = (P, T, F ) is a
SWF-net (Structured workflow net) iff:
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• For all p ∈ P and t ∈ T with (p, t) ∈ F , |p • | > 1
implies | • t| = 1.

• For all p ∈ P and t ∈ T with (p, t) ∈ F , | • t| > 1
implies | • p| = 1.

• There are no implicit places.

SWF-net is a subclass of WF-net, and SWF-net is more
readable and understandable. More information can be
found in [7]. It is suggested that the business process
model should be as structural as possible [9]. There
are already some work on structuring business process
models, for example, the work in [10] can structure
acyclic business process models. So in this paper, we
assume all the given business process models are sound
SWF-nets.

Definition 6 (Log based task relations): Let W be all the
traces (firing sequences) of a workflow net system N =
(P, T, F ) with the initial marking as Mi. For a, b ∈ T :

• a4W b: ∃σ = t1t2t3 · · · tn ∈W , x ∈ {1, 2, · · · , n− 2},
tx = tx+2 = a, tx+1 = b, that is, there is a trace like
· · · aba · · · .

• a �W b: a4W b ∧ b4W a.
• a >W b: ∃σ = t1t2t3 · · · tn ∈W , x ∈ {1, 2, · · · , n− 1},
tx = a, tx+1 = b.

• a→W b: a >W b ∧ b 6>W a ∨ a �W b.
• a←W b: a 6>W b ∧ b >W a ∨ a �W b.
• a#W b: a 6>W b ∧ b 6>W a.
• a||W b: a >W b ∧ b >W a ∧ a 6 �W b.
Definition 7 (α mining algorithm): Let W be a work-

flow log over T . α(W ) is defined as follows:

1) TW = {t ∈ T |∃σ ∈W (t ∈ σ)}
2) TI = {t ∈ T |∃σ ∈ W (t = first(σ))}, i.e. , the set of

transitions executed firstly.
3) TO = {t ∈ T |∃σ ∈ W (t = last(σ))}, i.e. , the set of

transitions executed lastly.
4) XW = {(A,B)|A ⊆ TW ∧ B ⊆ TW ∧ ∀a ∈ A∀b ∈

B(a →W b) ∧ ∀a1, a2 ∈ A(a1#Wa2) ∧ ∀b1, b2 ∈
B(b1#W b2)}

5) YW = {(A,B) ∈ XW |∀(A′, B′) ∈ XW (A ⊆ A′ ∧B ⊆
B′ ⇒ (A,B) = (A′, B′))}

6) PW = {p(A,B)|(A,B) ∈ YW } ∪ {iW , oW }
7) FW = {(a, p(A,B))|(A,B) ∈ YW ∧ a ∈ A} ∪
{(p(A,B), b)|(A,B) ∈ YW ∧ b ∈ B} ∪ {(iW , t)|t ∈
TI} ∪ {(t, oW )|t ∈ TO}

8) α(W ) = (PW , TW , FW )

In brief, α mining algorithm tries to find all the places
between tasks and connect these places and tasks. In
[7], it is proved that, given a complete log based on
the relations of >W , α mining algorithm can discover
a unique SWF-net.

The above definitions are reused from other papers,
which are referenced accordingly. To explain our prob-
lem and approach, we need new definitions as follows.

Definition 8 (Transitive causal relation): The relation of
→W in Definition 6 can be transitive. If a, b, c ∈ T∧a→W

b ∧ b →W c, a �W c. The relation of �W can also be
transitive.

Example 2: For the model in Fig. 1, since A →W B ∧
B →W C, A �W C. Similarly, C →W D ∧D →W E, so
C �W E. Since A�W C ∧ C �W E, A�W E.

Since we refactor business process models based on
data operation dependency analysis in this paper, we
introduce data into WF-net as follows.

Definition 9 (DWF-net): DN = (P, T, F,D,Wt,Rd) is
a DWF-net (workflow net with data), where:
• N = (P, T, F ) is a WF-net.
• D is the set of data that are operated by WF-net
N = (P, T, F ).

• Wt : D 9 2T describes what data are written by
which task.

• Rd : D 9 2T describes what data are read by which
task.

Example 3: The model in Fig. 1 is a DWF-net, where
all the circles are places, T = {A,B,C,D,E, F}, and
all the arrows connecting the places and transitions
constitute the set F , D = {x, y, z, s, p, q}, and the Wt
and Rd are denoted on the transitions, for example,
Wt(x) = {A}, Rd(x) = {B}.

Definition 10 (Causal relation based on data operation):
In a DWF-net DN = (P, T, F,D,Wt,Rd), if t1, t2 ∈ T
satisfy:
• t1 →W t2 ∨ t1 �W t2
• ∃x ∈ D(t1 ∈ Wt(x) ∧ t2 ∈ Rd(x) ∨ t1 ∈ Wt(x) ∧ t2 ∈
Wt(x) ∨ t1 ∈ Rd(x) ∧ t2 ∈Wt(x))

t2 must be executed after the completion of t1 based on
read-write operations of x, denoted as t1 >x t2.

Example 4: For the model in Fig. 1, since A →W

B ∧ A ∈ Wt(x) ∧ B ∈ Rd(x), A >x B. That is, B must
be executed after A based on read-write operation of x.
Similarly, B →W C ∧ B ∈ Wt(z) ∧ C ∈ Rd(z), B >z C.
That is, C must be executed after B based on read-write
operation of z.

Definition 11 (Transitive causal relation based on data):
In a DWF-net DN = (P, T, F,D,Wt,Rd),
t1, t2, t3 ∈ T ∧ x, y ∈ D ∧ t1 >x t2 ∧ t2 >y t3 ⇒ t1 >>∗ t3.
>>∗ can also be transitive.

Example 5: For the model in Fig. 1, since A >x B ∧
B >z C (see Example 4), A >>∗ C. That is, C must
executed after A based on read-write operations of data.

Definition 12 (Core causal relation based on data): In a
DWF-net DN = (P, T, F,D,Wt,Rd), if t1, t2 ∈ T ∧ x ∈
D∧ t1 >x t2∧¬(t1 >>∗ t2), there is a core causal relation
based on data operations between t1 and t2, denoted as
t1 →x t2.

Example 6: For the model in Fig. 1, since A >x B ∧
¬(A >>∗ B), A →x B. That is, after completion of A,
B can be executed immediately, because there are no
transitive dependences between A and B based on read-
write operations of data.

Based on the above definitions, the problem to be
solved in this paper can be specified as follows. Given
a sound structured workflow net with data operations,
how to refactor the model with parallel structures so that
the tasks in the model can be executed in parallel as
much as possible? There are two assumptions here:
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1) The given model is a sound structured workflow net
with data. Besides the work on structuring process
models aforementioned (e.g. , the work in [10]),
there are some works on how to check whether a
given workflow net is sound. For example, in [11],
the authors proposed a tool named woflan to check
whether the control flow is sound, and in [12] the
authors proposed an approach to check whether a
WF-net with data is sound.

2) If two tasks have causal or transitive causal relations,
there must be some data operation dependency. There
is data processing during business processing, and
different tasks have different data processing. The
execution order of tasks having causal relation or
transitive causal relation will affect the result of
data processing. If there is no data operation de-
pendency between two tasks, the execution order
of these two tasks does not matter for the data
processing result.

4 REFACTORING PROCESS

The process of refactoring models with parallel struc-
tures is presented in Fig. 3. There are five steps.
• Step 1: extract task relations from the original model.
• Step 2: analyze data operation dependency.
• Step 3: update task relations.
• Step 4: refactor the model with process mining

technology.
• Step 5: post process the mined model.

Fig. 3. Refactoring process

The details of how each step works can be found in the
following subsections.

4.1 Extract task relations
At this stage, we try to find all task relations. Since we
assume that all the given models are sound structured
workflow nets, we can extract all the task relations from
the model directly. According to Definition 6, we can
see that the relation between every two tasks is unique,
that is, one relation in →W ∨ ←W , #W , ||W . Since
the relation of ←W is the inverse version of →W , we
only need to compute the relations of →W . We can
traverse all the places in the original model to obtain the
relations of →W directly. The relations between every
predecessor transition and every successor transition
of the investigated place are →W . For two transitions,
if their nearest common ancestor is a third transition,
the relation between these two transitions is ||W . If the
relation between two transitions is neither →W ∨ ←W

nor ||W , the relation must be #W .

Theorem 1: The relation between any two transitions
in a sound SWF-net is unique, that is, one relation in
→W ∨ ←W , #W , ||W .

Proof: The relation of ←W is the inverse version
of →W . The relation of #W is commutative, that is,
a#W b ⇒ b#Wa, the same to the relation of ||W . Ac-
cording to Definition 6, the relations of →W ∨ ←W , #W

and ||W are a partition among all the relations between
any two transitions based on the relations of >W and
�W . In Definition 6, if we ignore the relation of �W ,
we can see the relations of →W ∨ ←W , #W and ||W
are a partition among all the relations between any two
transitions based on the relations of >W . then, some
pairs with the relation of �W are removed from ||W and
added to →W ∨ ←W , so the relations of →W ∨ ←W ,
#W and ||W are still a partition among all the relations
between any two transitions.

Example 7: The model in Fig. 1 is a sound SWF-net,
the relation between any two transitions is unique, for
example, A→W B, A#WC.

Theorem 2: In a sound SWF-net N = (P, T, F ), t1, t2 ∈
T , ∃p ∈ P (t1 ∈ •p ∧ t2 ∈ p•) ⇔ t1 →W t2. That is, if
there is a place p, t1 is an input transition of p and t2 is
an output transition of p, there must be a causal relation
between t1 and t2, and vice versa.

Proof:
• ⇒: After t1 is executed, it produces a token to p

that would be consumed by t2, so t1 >W t2. If
t2 >W t1, there must be another place connect-
ing t2 and t1, that is, t1 and t2 are involved in
a length-two loop (t1 �W t2). If there is not such
a place, ¬(t2 >W t1). According to Definition 6,
t1 >W t2 ∧ t2 6>W t1 ∨ t1 �W t2 ⇒ t1 →W t2. We can
prove this theorem in another way, when α mining
algorithm (Definition 7) works, it will connect t1
and t2 with t1 →W t2 through a place. So naturally,
t1 →W t2 if t1 ∈ •p ∧ t2 ∈ p•.

• ⇐: From α mining algorithm, we know that if
t1 →W t2, they will be connected through a place, so
there must be a place in the model that t1 ∈ •p∧t2 ∈
p•.

Example 8: The model in Fig. 1 is a sound SWF-net,
since there is a place between A and B, there is a causal
relation between A and B.

Theorem 3: In a sound SWF-net, if the nearest com-
mon ancestor (NCA) of two transitions is a third transi-
tion, the relation between these two transitions must be
||W . t1, t2 ∈ T , ∃c ∈ T (c = NCA(t1, t2) ∧ c 6= t1 ∧ c 6=
t2)⇔ t1||W t2.

Proof:
• ⇒: Let t1, t2, c ∈ T and c be the nearest common

ancestor of t1 and t2, after c is executed, the path
from c to t1 and the path from c to t2 are enabled,
and the execution of these two paths is not affected
by each other, that is, t1 can be executed after t2
and t1 can also be executed before t2, so there must
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be t1 >W t2 and t2 >W t1 in the log. If t1 �W t2, t1
and t2 are involved in a length-two loop, the nearest
common ancestor of t1 and t2 must be t1 or t2, which
is not a third transition, so t1 6 �W t2. According to
Definition 6, t1 >W t2 ∧ t2 >W t1 ∧ t1 6 �W t2 ⇒
t1||W t2.

• ⇐: If t1||W t2, t1 and t2 can be executed in parallel,
so the path to t1 and the path to t2 can be enabled
at the same time. According to Petri net semantics
(Definition 2), there must be a transition producing
tokens to enable these two paths at the same time
and this transition is the nearest common ancestor
of t1 and t2.

Example 9: The model in Fig. 2 is a sound SWF-net,
the nearest common ancestor of C and E is a third
transition A, so C||WE.

To find the nearest common ancestor, we can back-
track from the given two transitions in the model and
stop when their nearest common ancestor is found. To
facilitate finding the nearest common ancestor, we first
traverse the model by breadth-first algorithm and mark
every node with level information. The algorithm of
marking every node in a model with level information
can be found in Algorithm 1, where queue is a queue,
and add means adding an element to the queue, remove
means retrieving and removing an element from the
queue.

Algorithm 1: Mark every node in a model with level
information
input : a sound SWF-net N = (P, T, F )
output: a map levels with nodes as keys and level

information as values

1 find the start place pSource with •pSource = ∅;
2 queue.add(pSource);
3 levels.put(pSource, 0);
4 while queue.size()> 0 do
5 node=queue.remove();
6 level=levels.get(node);
7 foreach n ∈ node• do
8 if levels.containsKey(n)==false then
9 queue.add(n);

10 levels.put(n, level + 1);

11 return levels;

The algorithm of finding the nearest common ancestor
can be found in Algorithm 2. Algorithm 2 backtracks
from two given nodes and then finds the common node
between two predecessor sets. During the common node
searching, the level information is used. Firstly, only
the nodes with the same level in two predecessor sets
are compared. Secondly, the common node with the
largest level is found first, which is the nearest common
ancestor.

Algorithm 2: Find the nearest common ancestor
input : two nodes in a model n1 and n2
output: the nearest common ancestor node of n1

and n2

1 mark the model with level information and get
levels;

2 queue1.add(n1);
3 queue2.add(n2);
4 while true do
5 backtrack from the first node in a queue with

larger level until the levels of the first nodes of
two queues are the same, during backtracking
put the predecessors with smaller levels into
queue and keep the queue in a descending order
according to levels;

6 level1=levels.get(queue1.get(0));
7 level2=levels.get(queue2.get(0));

// level1 == level2
8 for i = 0 : queue1.size() do
9 n1=queue1.get(i);

10 if levels.get(n1) < level1 then
11 break;

12 for j = 0 : queue2.size() do
13 n2=queue2.get(j);
14 if levels.get(n2) < level2 then
15 break;

16 if n1 == n2 then
17 return n1;

18 delete the nodes with level as level1 from two
queues, add the predecessor nodes with smaller
levels into queues and keep queues in a
descending order according to levels;

The algorithm of computing the task relations can be
found in Algorithm 3.

Let n be the number of nodes in a model, and let e be
the number of edges in a model. Since Algorithm 1 is
a breadth-first search algorithm, the time complexity is
O(n + e), and O(e) may vary between O(n) and O(n2),
the worst case time complexity of Algorithm 1 is O(n2).
Algorithm 2 backtracks from two given nodes and then
finds the common node between two predecessor sets.
The worst case time complexity of backtracking is O(n),
and the worst case time complexity of comparing two
predecessor sets is O(n2), so the worst case time com-
plexity of Algorithm 2 is O(n3). In Algorithm 3, the worst
case time complexity for computing the relations of→W

is O(n3), the worst case time complexity for computing
the relations of ||W is O(n5), and the worst case time
complexity for computing the relations of #W is O(n2),
so the worst case time complexity of Algorithm 3 is
O(n5).

Theorem 4: Algorithm 3 can compute all the task re-
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Algorithm 3: Compute task relations
input : a sound SWF-net N = (P, T, F )
output: the task relation matrix CM [|T |][|T |]
// compute the relations of →W

1 foreach p ∈ P do
2 foreach a ∈ •p do
3 foreach b ∈ p• do
4 set (a→W b),(b←W a) in CM;

// compute the relation of ||W
5 foreach a ∈ T do
6 foreach b ∈ T do
7 if c ∈ T is the nearest common ancestor of a and

b and a 6= c ∧ b 6= c then
8 set (a||W b),(b||Wa) in CM;

// compute the relations of #W

9 foreach a ∈ T do
10 foreach b ∈ T do
11 if the relation between a and b is not set before

then
12 set (a#W b),(b#Wa) in CM;

13 return CM ;

lations correctly and completely.
Proof: According to Theorem 2, the first stage of

Algorithm 3 (Lines 1-4) can compute the relations of
→W correctly and completely. According to Theorem 3,
the second stage of Algorithm 3 (Lines 5-8) can compute
the relations of ||W correctly and completely. According
to Theorem 1, the third stage of Algorithm 3 (Lines
9-12) can compute the relations of #W correctly and
completely.

After we obtain the relations of →W using Algorith-
m 3, we can compute the relations of �W by using
transitive closure algorithm (Algorithm 4). The core idea
is similar to the FloydWarshall algorithm [13]. Let n be
the number of nodes in the model. The worst case time
complexity is O(n3).

Algorithm 4: Compute transitive causal relations
input : the task relation matrix CM [|T |][|T |]
output: the task relation matrix CM [|T |][|T |]

1 foreach c ∈ T do
2 foreach a ∈ T do
3 foreach b ∈ T∧(a→W c ∨ a�W c)∧
4 (c→W b ∨ c�W b)∧a 6�W b do
5 set (a�W b);

Example 10: We can extract task relations from the
model in Fig. 1. There are causal relations between tasks
A and B, B and C, C and D, D and E, E and F , which

means that task B can be executed immediately after the
completion of A, and so on. There are transitive causal
relations between tasks A and C, A and D, A and E, A
and F , B and D, B and E, B and F , C and E, C and
F , D and F , which means that after task A is executed,
task C can be executed later instead of immediately, and
so on. All the task relations are shown in Table 1. Since
the relations of #W and ||W are commutative, and the
relation of ←W is the inverse version of →W , we omit
the lower triangular matrix.

TABLE 1
Task relations for the model in Fig. 1

A B C D E F
A →W �W �W �W �W

B →W �W �W �W

C →W �W �W

D →W �W

E →W

F

4.2 Analyze data operation dependency

To check whether there is a real causal relation or
transitive causal relation between two tasks having a
causal relation or transitive causal relation in the original
model, we analyze the data operation dependency in
this section. For the operation on the same data, the
preceding task may write the data and then the succeed-
ing task reads the data, denoted as W-R for simplicity.
Besides, there are three other scenarios: W-W, R-W, R-
R. The order of the execution of the investigated two
tasks will impact the data processing result for W-R, W-
W, R-W operations, so the causal relations based on data
operation dependency cannot be changed.

Firstly, we compute the causal relations based on
data operation dependency according to Definition 10
(Algorithm 5). Let |D| denote the number of data items
operated by a model, and let n denote the number of
transitions in a model. The worst case time complexity
of Algorithm 5 is O(|D| × n2).

Theorem 5: Algorithm 5 can compute causal relations
based on data operation dependency correctly and com-
pletely.

Proof: This theorem follows Definition 10 directly.
Example 11: For the model in Fig. 1, we obtain the

causal relations based on data operation dependency, the
result can be found in Table 2. For example, since there is
an operation dependency based on data x between tasks
B and A, B can only be executed after the completion
of A.

Secondly, we compute the transitive causal relations
based on data operation dependency according to Def-
inition 11. The transitive closure algorithm is similar to
Algorithm 4, so it is omitted here. Finally, we obtain the
core causal relations based on data operation dependen-
cy according to Definition 12.
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Algorithm 5: Compute causal relations based on data
operation dependency
input : a DWF-net DN = (P, T, F,D,Wt,Rd) and

its task relation matrix CM [|T |][|T |]
output: the causal relations based on data operation

dependency

1 foreach d ∈ D do
2 foreach t2 ∈ Rd(d) do
3 foreach t1 ∈Wt(d) do
4 if t1 →W t2 ∨ t1 �W t2 then
5 set (t1 >d t2);

6 foreach t2 ∈Wt(d) do
7 foreach t1 ∈Wt(d) ∪Rd(d) do
8 if t1 →W t2 ∨ t1 �W t2 then
9 set (t1 >d t2);

TABLE 2
Causal relations based on data operation dependency

for the model in Fig. 1

A B C D E F
A >x >y

B >z

C >s

D >p

E >q

F

Example 12: For the model in Fig. 1, after we compute
the causal relations based on data operation dependency
as shown in Example 11, we compute the transitive
causal relations and the core causal relations based on
data operation dependency. The result can be found in
Table 3. For example, after task A is completed, task C
can be executed later instead of immediately since there
is a data operation dependency chain between these two
tasks.

TABLE 3
Transitive and core causal relations based on data

operation for the model in Fig. 1

A B C D E F
A →x >>∗ →y >>∗ >>∗
B →z >>∗
C →s

D →p >>∗
E →q

F

4.3 Update task relations
The goal of this paper is to refactor sound structured
workflow models with parallel structures for sequence
structures. Based on data operation dependency analy-
sis, we can find some tasks having causal relations or

transitive causal relations in the original model without
any data operation dependency. For these tasks, we
can refactor them into parallel structures. Since some
tasks on a sequence path can be refactored into parallel
structures, the other tasks on the same path not adjacent
before will be adjacent after refactoring. So there are
three types of relation changes:

1) change false causal relations to parallel relations,
2) change false transitive causal relations to parallel

relations,
3) change false transitive causal relations to causal

relations.
Theorem 6: The above three types of changes are com-

plete.
Proof: We can enumerate all the possibilities as fol-

lows. For causal relations, they can be changed into par-
allel relations or remain unchanged. For transitive causal
relations, they can be changed into parallel relations or
causal relations, or remain unchanged. So there are three
types of changes in total.

The details of each type of changes can be found in
the following subsections.

4.3.1 Change false causal relations to parallel relations
Theorem 7: If a, b ∈ T ∧ a→W b ∧ @x ∈ D(a >x b), we

can refactor the relation between a and b to a||W b.
Proof: Since the execution order of a and b does not

impact any data processing result, it is unnecessary to
execute b only after the completion of a.

Example 13: In Table 1, C →W D, but in Table 2,
@x(C >x D), so we can refactor the relation between
C and D to C||WD.

4.3.2 Change false transitive causal relations to parallel
relations

Theorem 8: If a, b ∈ T ∧ a �W b ∧ a 6←W b ∧ @x ∈
D(a >x b) ∧ ¬(a >>∗ b), we can refactor the relation
between a and b to a||W b.

Proof: It is similar to Proof of Theorem 7.
Example 14: In Table 1, B �W D, but in Table 2 and

Table 3, @x(B >x D) ∧ ¬(B >>∗ D), so we can refactor
the relation between B and D to B||WD. Similarly, in
Table 1, C �W E can be refactored to C||WE, and B �W

E can be refactored to B||WE.

4.3.3 Change false transitive causal relations to causal
relations

Theorem 9: If a, b ∈ T ∧ a�W b∧ ∃x ∈ D(a→x b), we
can refactor the relation between a and b to a→W b.

Proof: Between a and b, there is no transitive data op-
eration dependency. After a is finished, b can be executed
immediately and will not impact any data processing
result.

Example 15: In Table 1, A �W D, and in Table 3,
A→y D, so we can refactor the relation between A and
D to A →W D. Similarly, in Table 1, C �W F can be
refactored to C →W F .
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Example 16: After updating task relations with the
above three types of changes, the relations in Table 1
is updated, as shown in Table 4.

TABLE 4
Updated task relations for the model in Fig. 1

A B C D E F
A →W �W →W �W �W

B →W ||W ||W �W

C ||W ||W →W

D →W �W

E →W

F

For the above three types of changes, we only need to
scan two tables such as the running examples show. Let
n denote the number of transitions in a model. The time
complexity for updating task relations is O(n2).

4.4 Refactor model with process mining technology
α mining algorithm first obtains the relations of →W ,
#W , ||W , and then finds the places and connects them
with the transitions to construct a Petri net. So we need
to change some relations of �W to #W first, and then
use α mining algorithm to build a new SWF-net.

Theorem 10: If a, b ∈ T ∧ a�W b ∧ a 6←W b, a#W b.
Proof: Since a �W b, there must be a path between

a and b on which there are at least two places, b cannot
be executed immediately after a, that is, a 6>W b. Since
a 6←W b, a cannot be executed after b, that is, b 6>W a.
According to Definition 6, a 6>W b∧ b 6>W a⇒ a#W b.

Example 17: Based on Table 4, after we change some
relations of �W to #W , we obtain Table 5. Based on the
relations in this table, α mining algorithm can build a
new SWF-net as shown in Fig. 2.

TABLE 5
Final task relations for the model in Fig. 1

A B C D E F
A →W #W →W #W #W

B →W ||W ||W #W

C ||W ||W →W

D →W #W

E →W

F

The time complexity of this stage mainly depends on α
mining algorithm. According to [7], the time complexity
is exponential in the number of tasks.

4.5 Post process
After α mining algorithm is applied, there would be
some transitions without any input place or without
any output place. For the transitions without any input
place, it means that those transitions can be executed
in parallel from the start. For the transitions without
any output place, it means that those transitions can
be executed in parallel to the end. To keep the result

models as workflow nets, we add a new source place
and an invisible transition to fire the parallel executions,
and add a new sink place and an invisible transition to
synchronize the parallel executions. Since we only need
to scan every transition at this stage to check its in-degree
and out-degree, the time complexity of this stage is O(n),
where n denotes the number of transitions in a model.

4.6 Discussion on effectiveness
We have explained five steps of our approach in pre-
ceding subsections, and we have proved some theorems
related to the effectiveness of the corresponding steps.
In this subsection, we answer three questions.

1) Can our approach refactor process models with
parallel structures at the utmost?

2) Are all data operation dependencies preserved in
refactored models?

3) Is there any new data operation dependency intro-
duced in refactored models?

Theorem 11: Our approach can refactor process mod-
els with parallel structures at the utmost.

Proof: At step 2 (analyze data operation dependency,
see Section 4.2), our approach can analyze all causal
relations based on data operation dependency correctly
and completely. At step 3 (update task relations, see
Section 4.3), our approach can find all the causal relations
and transitive causal relations that do not exist, and
then change them into parallel relations. So based on
data operation dependency, all the parallel relations are
discovered. In other words, our approach can refactor
process models with parallel structures at the utmost.

Theorem 12: All data operation dependencies are pre-
served in refactored models.

Proof: At step 2 (analyze data operation dependency,
see Section 4.2), our approach can analyze all causal
relations based on data operation dependency correctly
and completely. At step 3 (update task relations, see
Section 4.3), our approach preserves all causal relations
based on data operation dependency. At step 4 (refactor
the model with process mining technology, see Sec-
tion 4.4), our approach constructs the new model with
α mining algorithm. According to α mining algorithm,
all the relations of >W will be presented in the model
through places connecting the corresponding two transi-
tions. So all data operation dependencies are preserved
in refactored models.

Theorem 13: No new data operation dependency will
be introduced in refactored models.

Proof: At step 4 (refactor the model with process
mining technology, see Section 4.4), our approach con-
structs the new model with α mining algorithm. Accord-
ing to α mining algorithm, all the relations of >W will be
presented in the new model through places connecting
the corresponding two transitions. On the other hand,
all the places in the new model denote relations of >W
between the corresponding two transitions connected by
corresponding places. No new relations of >W will be
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introduced. So no new data operation dependency will
be introduced.

4.7 More discussion
In this section, we answer two questions: (1) why our
approach limits the models to be sound structured work-
flow nets? (2) can our approach guarantee the refactored
models to be sound structured workflow nets?

Why our approach limits the models to be sound struc-
tured workflow nets?
As we mentioned before, if a WF-net is not sound, there
must be some errors in that model and these errors
should be eliminated, and SWF-net is more readable
and understandable [7]. It is suggested that the business
process model should be as structural as possible [9].

On the other hand, our approach depends on α mining
algorithm [7], which can only handle sound structured
workflow nets well, so our approach limits the models
to be sound structured workflow nets.

Fig. 4. A model which is not a structured workflow net

When we consider unstructured workflow net, for
example, the model in Fig. 4. According to Definition 5,
since |p3 • | > 1 (p3 has two outputs) while | • t3| > 1 (t3
has two inputs), this model is an unstructured workflow
net. Some theorems cannot hold any more, for example,
according to Theorem 2, t2 ∈ •p3 ∧ t3 ∈ p3• ⇒ t2 →W t3,
which means that t3 can be executed after t2, however,
it is impossible to execute t3 after t2, because t2 and t3
cannot be executed in the same case. This model can
only be executed as (t1, t3) and (t2, t4).

Can our approach guarantee the refactored models to be
sound structured workflow nets?
Since our approach changes some relations between
transitions, and based on the new set of relations, α
algorithm can construct an unstructured workflow net,
our approach cannot guarantee the refactored models to
be sound structured workflow nets. For example, given
a model as Fig. 5(a), where t2 and t4 can be executed
in parallel, after refactored with our approach, we can
get a model as Fig. 5(b). In Fig. 5(b), since |p4 • | > 1
(p4 has two outputs), and | • t5| 6= 1 (t5 has two inputs),
according to Definition 5, this model is not a SWF-net.

When the refactored models are not sound SWF-nets,
we need to let modelers intervene to make those models
to be sound SWF-nets and then the models can be used
further.

In what scenarios cannot our approach refactor models
to be sound SWF-nets? And in these scenarios how can

Fig. 5. A refactored model which is not a structured
workflow net

we revise the task relations more to get sound SWF-nets?
Those problems are under investigation.

Since our primary goal is to refactor models with max-
imized parallelism, after refactoring the process models
can be very different from the original ones. The biggest
advantage of this research is that more tasks can be
executed in parallel so that the efficiency of business
processing can be improved. Our approach points out
what task relations have been changed in the step 3,
which shows why the refactored models are different
with the original ones. Moreover, there are already some
works on visualizing the difference between two models
such as the work presented in [8].

5 IMPLEMENTATION AND EVALUATION
In Section 5.1, we describe the implementation of our
approach. In Section 5.2, we present the evaluation re-
sults to show that our approach can maximize parallel
execution of business tasks at a negligible extra effort.

5.1 Implementation
To evaluate our approach, we implement it in BeehiveZ
system, which can be accessed at http://code.google.
com/p/beehivez/. The screenshot of implementation
can be found in Fig. 6, in which the running example
in this paper is evaluated.

To store DWF-nets in files, we extend PNML schema1

with data operations. The part of data operations for the
model in Fig. 1 can be found in Fig. 7.

Similar to the refactoring work in the area of software
engineering, our approach proposes parallelism refac-
toring suggestions, and it is up to the user to decide
whether to accept or not.

5.2 Evaluation
In this section, we evaluate the effectiveness and effi-
ciency of our approach on randomly generated model-
s. During our experiments, we used a computer with
Intel(R) Pentium(R) 4 CPU 3.00GHz and 2GB memory.
This computer ran Microsoft Windows XP Professional
Service Pack 3 and JDK6. The heap memory for JVM was
configured as 1GB.

1. see http://www.pnml.org/index.php for details

http://code.google.com/p/beehivez/
http://code.google.com/p/beehivez/
http://www.pnml.org/index.php
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Fig. 6. The screenshot of our implementation

Fig. 7. The file snippet with data operations for the model
in Fig. 1

5.2.1 Settings of models
We generated 9800 different DWF-nets randomly. In
every model, all the tasks are on a sequential path from
the start to the end. According to 7PMG proposed in [9],
models should be decomposed if they have more than
50 elements. Hence, the maximum number of transitions
per model is configured as 50. Since we want to refactor
process models with parallelism, the minimum number
of transitions per model is configured as 2. The numbers
of models with the number of transitions from 2 to 50 are
all configured as 200. We use n to denote the real number
of transitions in a model, the maximum number of data
items per model is configured as n, and the maximum
numbers of tasks for writing and reading one data item
are both configured as n.

5.2.2 Effectiveness
Since the effectiveness of our approach has been proved
in Section 4, in this section, we show the effectiveness
of our approach through experiments. When business
tasks can be executed in parallel as much as possible,
the efficiency of the corresponding business processing
can be improved accordingly. Hence, in this section,
we show how our approach can maximize the parallel
execution of business tasks instead of how the efficiency
of business processing can be improved. According to
the work in [14], we measure the degree of parallelism
as Equation 1, where dout(t) means the out degree of
transition t.

TS =
∑

dout(t)>1

dout(t)− 1 (1)

If TS = −1, it means that no tasks can be executed
in parallel. For those models with TS = −1, we set
TS = 0 for future computation. For every generat-
ed model, before it is refactored, TS = 0, because
∀t ∈ T (dout(t) = 1). After all the generated models are
refactored, Min(TS) = 0, Max(TS) = 49, Avg(TS) = 3,
Stdev(TS) = 6.1, which means that some models are
refactored with parallel structures. We can see that our
approach really works. In other words, after parallelism
refactoring, business tasks can be executed in parallel
as much as possible, so that the efficiency of business
processing can be improved.

5.2.3 Efficiency
The time complexity has been analyzed in Section 4. In
this section, we evaluate the efficiency of our approach
through experiments. We record the time for refactoring
every generated model. The minimum time is 0.43ms
(we record the time in nanoseconds), the maximum
time is 926.26ms, the average time is 218.72ms, and
the standard deviation is 240.92ms, which are negligi-
ble in general. The average time for models with the
same number of transitions can be found in Fig. 8,
in which, the different times are calculated as follows.
Let m denote a model, and |m| denote the number of
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transitions in the model m. Let TC(m) denote the time
for refactoring the model m with parallel structures. We
have the following results.

real time(n) =

∑
|mi|=n TC(mi)∑
|mi|=n 1

. (2)

O(n2) time(n) =
n2

22
× real time(2). (3)

O(n3) time(n) =
n3

23
× real time(2). (4)
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Fig. 8. The average time for refactoring generated models
with the same number of transitions

real time(n) calculates the average time for refactor-
ing all the models with the number of transitions as n.
O(n2) time(n) predicts the time cost if our refactoring
algorithm has a square time to the number of transi-
tions, and O(n3) time(n) predicts the time cost if our
refactoring algorithm has a cubic time to the number
of transitions. Since the minimum number of transi-
tions in a model is configured as 2, O(n2) time(n) and
O(n3) time(n) start with the n as 2. Since the curve of
O(n3) time grows fast, we only show part of it. We can
see that our approach can refactor randomly generated
models quickly, with the time complexity between O(n2)
and O(n3), where n denotes the number of transitions
in a model.

6 RELATED WORK

We review the related work in both areas of software en-
gineering and business process management as follows.

In the area of software engineering, there is some work
on parallelism refactoring. The goal is to improve the
efficiency of code execution on multi-core processors. For
example, in [15], the authors presented a tool that can
refactor an array to a ParallelArray. In [16], the author
presented the state-of-the-art tools and technologies for
parallelism refactoring. In [17], the author presented a
toolset supporting parallelism refactoring. In [18], the
authors presented a refactoring support for X10 language
to make user-selected code in the loop body to run in
parallel with other iterations of the loop. In [19], the

authors presented a tool that can refactor sequential code
into parallel code by using three java.util.concurrent
concurrent utilities.

However, on one hand, the technologies existing in
the area of software engineering cannot be used to solve
the problem proposed in this paper. On the other hand,
the idea used in this paper can be used to refactor the
existing source codes so that they can be executed in
parallel on multi-core CPU or multi machines such as
cloud computing platforms. Because source codes can
be divided into single-entry-single-exit blocks, and every
block can be regarded as a transition in our approach, we
can analyze data dependency between different blocks
the same way and finally refactor source codes with
process mining technology to enable parallel execution.

In the area of business process management, there
is also some work on refactoring process models. In
[20], the authors presented a RPST-based refactoring
technology to make the model more structural. In [21],
the authors summarized the work on refactoring process
models. In [22], the authors proposed a technique that
can automatically detect four kinds of refactoring oppor-
tunities in process models. In [23], the authors proposed
an approach to refactor activity labels so that the label
quality can be improved. In [10], the authors proposed
an approach that can structure acyclic process models.
All the work preserves the behavior of process models,
and the goal is to make process models more under-
standable and maintainable. However, our work focuses
on improving the efficiency of process model execution,
and the behavior of the refactored model is different with
the original one, but the data operation dependency is
preserved so that the data processing result of business
processing is preserved (see Section 4.6).

There have been some works on PERT (Project Evalua-
tion and Review Technique) [24], which is used in project
management to analyze and represent the tasks involved
in completing a given project, and it is commonly used
in conjunction with the critical path method (CPM).
For example, PERT can be used to analyze the earliest
completion time of some task or the whole project, and
also can be used to tell the critical task or critical path so
that more attention can be paid to in order to ensure that
the project will not be postponed. However, the order
between tasks cannot be decided by PERT, and it is the
topic of business process model designing, which exists
as an independent research domain now. So our work
can be used for PERT to decide the order between tasks.
In particular, we decide the order between tasks based
on data flow analysis. And after the order between tasks
is decided, PERT can be used to analyze and manage the
project.

There are some work on workflow performance anal-
ysis, for example, in [25], the authors proposed a method
for computing the lower bound of average turnaround
time of transaction instances. In [26], the authors present
an analytical method to evaluate the performance of
workflow stochastic Petri nets based on block reduction.
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All these methods can be used to evaluate the perfor-
mance of refactored models with our method. Our work
is different with these works in that our work focuses
on how to refactor models to improve the performance.

To the best of our knowledge, we are the first to
propose and solve the problem of parallelism refactoring
for business process models.

7 CONCLUSION AND FUTURE WORK

In this paper, we investigate the problem of parallelism
refactoring for business process models for the first
time. To solve this problem, we analyze data operation
dependency between tasks first, and then refactor some
sequence structures to parallel structures. The causal
relations and transitive causal relations between tasks
without any data operation dependency are changed to
parallel relations. Process mining technology is used to
construct new models. In a refactored business process
model, tasks can be executed in parallel as much as
possible, so the efficiency of business processing can be
improved. In other words, the quality of process models
can be improved. The effectiveness of our approach is
proved, and the approach is implemented in an open-
source tool. Experiments show that our approach has
a quadratic to cubic time complexity in terms of the
number of transitions in a model. In a conclusion, our ap-
proach can maximize parallel execution of business tasks
at a negligible extra effort. Besides the application in the
area of business process management, our approach can
also be potentially used for software refactoring so that
software systems can exploit the power of multi-core
processors or computer cluster platforms such as cloud
computing platforms.

Given a business process model, based on data op-
eration dependency analysis, some false causal relations
and false transitive causal relations are changed into par-
allel relations, and some false transitive causal relations
are changed into causal relations, then a new model
is constructed by α mining algorithm. The refactored
model may not be a sound SWF-net. In this case, the
modelers may need to intervene, which will be further
investigated.
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