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a b s t r a c t

Mobile edge computing (MEC) has emerged as an effective paradigm that delivers cloud services and
functions to edge devices, with the objective to further enhance quality of service (QoS) of terminal
users by offloading their computation-intensive tasks. In this article, a multi-user and multi-server MEC
system is considered and each user can choose one MEC server to execute its computation task. We
try to minimize the system delay (i.e., the maximum server delay). The problem is decomposed into
task offloading problem and transmit power allocation problem which are solved by matching theory
and a heuristic idea, respectively. The experimental results show that the proposed algorithm can not
only obtain less delay, but also generate less energy consumption compared with the decomposed
computation offloading and resource allocation algorithm, the shortest distance based scheduling
algorithm and the random scheduling algorithm, especially when the data amount of tasks is the
same but the workload is random.

© 2020 Published by Elsevier B.V.

1. Introduction

Nowadays, the ubiquitous smart phones, tablets, and other
mobile devices have become a necessity for people’s daily life [1–
3]. As a result, all kinds of mobile applications are springing
up including online gaming, image processing [4], augmented
reality [5,6], and so on [7–9]. Usually, these applications are
computation-intensive and energy-intensive for mobile devices.
However, to improve computing services of users, satisfying their
computation (or energy) demands and addressing them with low
latency are necessarily pursued. MEC is an expected technique
to mitigate this problem, which tries to enhance service perfor-
mance by delivering cloud services [10–13] to the proximity of
the internet edge devices [14–16]. With MEC, users can offload
computation-intensive or energy-intensive tasks to MEC servers
for execution.

The efficiency of MEC systems is greatly affected by task
offloading decision and resource allocation. Therefore, many re-
searchers have worked on offloading in MEC. Based on the num-
ber of servers involved in MEC, the existing researches can be
divided into studies on single-server systems and multi-server
systems. The single-server system accounts for the majority [17–
20]. In [17], the authors considered the resource allocation prob-
lem of multiple users with different computing loads sharing one
MEC server. The MEC system considered in [18] consists of one
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MEC server and multiple IoT devices. The authors designed a
perturbed Lyapunov function to maximize the network utility.
The optimal scheduling problem per slot is solved as a knapsack
problem. In [19], mobile applications are executed locally or
transmitted to the MEC server with the objective to conserve
energy for the mobile device. The delay-optimal computation task
scheduling problem of single-server MEC systems is handled by
adopting a Markov decision process approach in [20]. However,
as mentioned, all the above listed works focus on one MEC server.

There are also some works on multi-server MEC systems [21–
23]. In [21], a multi-cell and multi-server system is considered.
The joint task offloading and resource allocation problem is stud-
ied with the objective of minimizing the task execution delay and
energy consumption of users. The authors decomposed the prob-
lem into task offloading problem which is settled by convex and
quasi-convex optimization techniques, and resource allocation
problem which is solved by a heuristic algorithm. In [22], users
can offload its task to one MEC server through a heterogenous
network. The authors tried to optimize the offloading decisions
of users, the power of users and the computation frequency of
servers to minimize system overhead. The problem of joint opti-
mization of the radio resources and the computational resources
in an MIMO multi-server system is considered in [23].

However, both the studies of single-server and multi-server
systems tend to consider the system efficiency issue from the
perspective of users [24–26]. Few studies consider the system
efficiency from the operators’ perspective. Nevertheless, in some
cases, we want to complete all the computation tasks in the
system with less time. In this way, the servers’ computing re-
sources can be devoted to the other computing tasks earlier, and,
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Fig. 1. A MEC system with multiple MEC servers and multiple mobile devices.

naturally, the MEC system can serve more users. Our study is to
optimize the latency of MEC system.

In our work, we consider a MEC system with multiple servers
and mobile devices (users). Each user comes with a computation
task that needs to be offloaded to a MEC server for execution.
The system is considered using orthogonal frequency division
multiple access (OFDMA) as the access technique. Our problem
is to find a task offloading and transmit power allocation scheme
for each user, with the objective to minimize the maximum
server delay of the system. This problem is found to be a mixed
integer non-linear problem (MINLP), which is NP-hard. To solve
this problem, we propose two sub-optimal algorithms. The task
offloading part adopts the method of matching theory and the
transmit power allocation part adopts a heuristic idea.

2. System model

We consider a multi-user and multi-server MEC system. In the
system, there are multiple mobile devices such as mobile phone.
Each mobile device is regarded as a user. Each user has one com-
putation task, which is expected to be offloaded to a MEC server
for processing. There are also multiple MEC servers which are
deployed by telecom operators. With a certain amount of memory
capacity and computing power, MEC servers can store task input
data of users and compute the tasks. Fig. 1 shows a MEC system
with two servers and three mobile devices, where the three
mobile devices can choose any server to offload their computing
tasks. We summarize the primary notations used throughout this
paper in Table 1.

2.1. Network model

The MEC servers are deployed at different base stations (BSs).
Each server can receive data wirelessly from mobile devices
through corresponding BS. As a MEC server usually serves mul-
tiple users, the entire spectrum is reused by every BS. We use
OFDMA as multiple access scheme. The whole spectrum is divided
into N subchannels. Each task is assigned to one subchannel so
that uplink transmissions among users who offloaded its task to
the same MEC server are orthogonal. The operational frequency
band is represented as B. The band of a subchannel denoted as W
can be calculated by W = B/N . The subchannel set of each BS is
represented as N = {1, 2, . . . ,N}, and we use n stands for the nth
subchannel. We suppose the network is quasi-static, that means
users do not quit or join midway through the offloading period.

Table 1
The summary of constants and variables in the model.
Expression Physical meaning and/or reference.

U The set of users.

U The number of users.

u The index of a user.

du The task input data size of task u.

cu The amount of CPU circles needed to compute per unit
data of task u.

pu The transmit power of mobile device u.

S The set of MEC servers.

Su The MEC servers list that can be chosen by user u.

S The number of MEC servers.

s The index of a MEC server.

fs The work frequency of MEC server s.

N The set of subchannels for each BS.

N The number of subchannels for each BS.

n The index of a subchannel.

Us The set of users choosing MEC server s.

Un The set of users choosing subchannel n.

B The operational frequency band.

W The band of a subchannel.

hn
us The channel gain for transmitting task u to MEC server s

through subchannel n.

pmax The maximum of transmission power.

A The offloading decision profile of all users.

anus The offloading decision of user u related to MEC server s
and subchannel n.

aus The offloading decision between user u and MEC server s.

P The transmit power profile of all users.

σ 2 The power spectral density of the background noise.

Φs The sequence of tasks in Us by their arrival order.

φi
s The task index number of the ith task on MEC server s.

P The set of transmission power options for users.

L The number of options in P .

2.2. Computation task and MEC server model

The number of users and MEC servers are represented by U
and S respectively. We use set U = {1, 2, . . . ,U} to collect all the
mobile devices (i.e., U tasks of the devices) in the system and u to
denote the uth device (i.e., uth task). For task u, we use du for its
input data size and cu for its workload which represents the CPU
circles needed to compute per unit data. The value of cu reflects
the nature of the computation task data and can be measured
offline. The set of S MEC servers is written as S = {1, 2, . . . , S}
and we use s stand for the sth server. For server s, we use fs to
denote its work frequency. Each MEC server can accept multiple
tasks and execute the tasks by the order of their arrival time (first
come, first execute).

2.3. Communication model

In the MEC system, each user can choose one MEC server to
offload its computation task via one of the subchannels of the
corresponding BS. We denote the offloading decision profile of
users as A = {anus|u ∈ U, s ∈ S, n ∈ N}. The value of anus can only be
0 or 1. When anus equals to 1, it means user u chooses to transmit
its computation task to MEC server s through subchannel n and
anus equals to 0 means task u is not transmitted to MEC server s
or/and is not transmitted through subchannel n. Since a user can
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only select one MEC server and one subchannel, we can derive
S∑

s=1

N∑
n=1

anus = 1, ∀u ∈ U. (1)

For each MEC server, a subchannel carries only one task at a time,
so
U∑

u=1

anus = 1, ∀s ∈ S, n ∈ N. (2)

Sometimes we use aus to represent the offloading relationship
between user u and MEC server s. Likewise, aus = 1 means user
u offloads its task to MEC server s and aus = 0 means user u does
not offload its task input data to MEC server s. The value of aus
equals to

∑N
n=1 a

n
us. The number of users that a MEC server can

serve at the same time is constrained by
U∑

u=1

aus ≤ N, ∀s ∈ S. (3)

The set of users choosing MEC server s is denoted by Us = {u|u ∈
U, aus = 1}, and the set of users choosing subchannel n by Un

=

{u|u ∈ U,
∑S

s=1 a
n
us = 1}.

2.4. Task offloading and mobile-edge execution model

To utilize the computation resource of the MEC servers, each
user needs to transmit its task to one of the servers. After receiv-
ing the data, each MEC server accomplishes the computational
process for the users who offload its task to it. The computing
order of the tasks is the same as their arrival order. After comput-
ing, the MEC servers send the results back to the corresponding
mobile devices. As the data size of computation results is rela-
tively smaller, downloading the results can be fast, the time for
downloading results is neglected in this research. We focus on the
uplink transmission time which is related to the data rate and the
data size, and the execution time which has a correlation with
task data size, task workload and the execution frequency of the
MEC server. Here we give the derivation of the data rate below.
For user u, hn

us is the channel gain for transmitting its task to
MEC server s through subchannel n. The transmit power of mobile
device u is written as pu and P = {pu|u ∈ U} is the transmit power
profile of all users. The transmission rate of task u offloaded to
MEC server s through subchannel n is

Rn
us(A, P) = W log2

(
1+

puhn
us

σ 2 +
∑

k∈S,k̸=s
∑

j∈Uk
anjkpjh

n
js

)
, (4)

where σ 2 represents the power spectral density of the back-
ground noise and the second term in the denominator stands
for the accumulated inter-channel interference. The transmission
rate of user u to MEC server s is given by Rus =

∑N
n=1 a

n
usR

n
us,∀u ∈

U, s ∈ S.
The handling capacity of a MEC system refers to the amount of

task data processed per unit time in the system and it reflects the
ability of the entire system to handle user tasks. To increase the
handling capacity, we need to minimize the system delay caused
by completing all tasks. In the next section, we formulate an
optimization problem to minimize the system delay by allocating
the computation tasks to the MEC servers and adjusting the
transmitting power of mobile devices.

3. Problem formulation

In this section, we first analyze the completion process of each
task using two time slots and one time point. Then we manage

to calculate the delay of the MEC servers. At last we formulate
an optimization problem for joint task offloading and transmit
power allocation (JTOTPA), with the objective of minimizing the
maximum MEC server delay.

The completion of each task goes through three phases: input
data transmission, queue wait and server execution. According to
the three phases, we define transmission time, execution time
(two time slots) and ready time (one time point) for each task.
The transmission time is the time needed for the task being
transmitted from the mobile device to the MEC server. We use
tu,strans to represent the transmission time for task u offloaded to
MEC server s, it can be calculated as

tu,strans =
ausdu
Rus

. (5)

The execution time refers to the duration that the task is executed
at the MEC server. tu,sexe represents the execution time for task u
processed at MEC server s and is given by

tu,sexe =
ausducu

fs
. (6)

We refer to the time at which the MEC server begins to execute
a task as the task’s ready time. A task is ready when (1) its
input data has been transmitted to the chosen MEC server (2)
the prior tasks on the same MEC server have been completed.
The execution order of each MEC server is fixed by the arrival
order of the tasks. For MEC server s, we need to work out the
transmission time of tasks in Us, and sort them from small to
large. Consequently, we get a sequence of ordered tasks for MEC
server s represented as Φs = [φ

1
s , φ

2
s , . . . , φ

|Us|
s ], where |Us| is the

number of tasks allocated to MEC server s. We use φi
s representing

the index (in set U) of the ith task executed on MEC server s. The
ready time of task u on MEC server s is denoted as tu,sready. So that
we can put the ready time of task φi

s (φ
i
s ∈ Us) as

tφ
i
s,s

ready =

⎧⎨⎩ tφ
i
s,s

trans i = 1;

max{tφ
i−1
s ,s

trans + tφ
i−1
s ,s

exe , tφ
i
s,s

trans} 1 < i ≤ |Us|.

(7)

Server latency is equal to the summation of the ready time of
the last task and its execution time. So the delay of MEC server s
is represented as

tscomp = tφ
|Us |
s ,s

ready + tφ
|Us |
s ,s

exe , ∀s ∈ S. (8)

Our optimization goal is to minimize the maximum server
latency, so we formulate the optimization problem as

P1 : min
A,P

max
s∈S

tscomp(A, P), (9)

s.t. aus = {0, 1}, ∀u ∈ U, s ∈ S, (10)
S∑

s=1

N∑
n=1

anus = 1, ∀u ∈ U, (11)

U∑
u=1

anus ≤ 1, ∀s ∈ S, n ∈ N, (12)

U∑
u=1

aus ≤ N, ∀s ∈ S, (13)

0 < pu ≤ pmax, ∀u ∈ U. (14)

The constraints (10) and (11) make sure a task can only be
offloaded to one MEC server using one of its subchannels. We can
also learn from constraint (12) that each BS can at most serve
one user per subchannel. The constraint (13) tells that a MEC
server cannot accept tasks exceeding the subchannel number N .
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The constraint (14) specifies the maximum of transmission power
for each mobile device which is represented as pmax.

This problem is an mixed-integer nonlinear programming
(MINLP) problem because it has integer variables in A and con-
tinuous variables in P. Logically speaking, the best solution of P1
can be get by exhaustive search. If the MEC system contains 20
mobile devices and 8 MEC servers each with 4 subchannels, the
exhaustive search time of offloading decision can be as high as

32!
(32−20)! ≈ 5.49×1026 and for each scheduling scheme the optimal
transmit power needs to be settled. As we can see, finding the
optimal result can be costly so we propose a low complexity sub-
optimal method and compare the method with other approaches
in the following sections.

Here we summarize the difficult points of the considered
problem:

• The task offloading problem and the transmit power allo-
cation problem are related to each other. It is necessary to
know the transmit power of each mobile device in order
to calculate the transmission time of each task, thereby
making a task offloading scheme. On the other hand, we
must know the task offloading decisions so that we can
adjust the devices’ transmit power.
• The accumulated inter-channel interference in the denom-

inator in (4) makes the calculation of data rate extremely
complicated. Once a user changes its offloading decision or
transmit power, some of the other users’ data rate will be
affected and so as the object of the problem formulated in
P1.

In the next section, we will analyze the difficulties above and then
propose our solutions.

4. Sub-optimal algorithm for joint task offloading and trans-
mit power allocation

The proposed problem is NP-hard and it is difficult to solve
the objective function directly. There is a binary vector A and a
continuous vector P which make the problem complicated, so we
want to solve the binary part and the continuous part separately.
We observe that the constraints (10)–(13) in P1 are used to
constrain A, and the constraint (14) is to constrain P and they
are decoupled from each other. Thus, we decompose the JTOTPA
problem into two subproblems: one for the task offloading (TO)
decision and the other for transmit power allocation (TPA). The
two subproblems are going to be optimized alternately. Here we
form the task offloading subproblem as

P2 : min
A

max
s∈S

tscomp(A), (15)

s.t. (10), (11), (12), (13),

and the transmit power allocation subproblem as

P3 : min
P

max
s∈S

tscomp(P), (16)

s.t. (14).

We will perform the two subproblems in sequence and then
iterate the process to get the sub-optimal result for P1.

4.1. Task offloading

A user’s task offloading decision is made of two parts: server
selection and subchannel selection. In a MEC system with 5 users
and 2 servers (Fig. 2(a)), users’ choosing results of servers are
shown in Fig. 2(b) and their choosing decisions of subchannels are
depicted in Fig. 2(c). Afterwards, the execution order and ready
time of the tasks are displayed in Fig. 2(d). As we can see, the

maximum server delay equals to the completion time of task 3
on server 1. Obviously, the delay will change if these users have
different server choices. And from expressions (4) and (5) we
know that different subchannel choices make the arrival time of
tasks different, therefore make the tasks’ execution order and the
gaps between tasks changed. So, making a proper task offloading
scheme is critical to minimize the system delay.

In this part, we further divide the TO problem into two sub-
problems: (1) server allocation problem that decide to which
server each user offloads its task, and (2) subchannel alloca-
tion problem that decide through which subchannel each user
transmits its task input data.

The two allocation problems both can be posed as user–
resource matching problems [27]. The purpose of a matching
problem is to get a mutually beneficial combination for two-sided
agents according to their preferences. Servers and subchannels
can be unified as resources. As each user/resource can only match
with one resource/user, our problem boils down to a one-to-one
matching problem.

One-to-one matching: Each agent can at most match to one
agent in the other set.

We use deferred acceptance (DA) algorithm to find a stable
matching for each problem. Here we first introduce the concept
of stable matching, then we give an overview of DA algorithm in
the next section.

Stable matching: A matching has no blocking pair (BP).
In a user–resource matching problem, if a user and a resource

are not matched with each other but prefer each other than their
current partner, they make up a BP .

4.1.1. Deferred acceptance algorithm
The DA algorithm is an iterative procedure. We summarize it

into the following four stages.
Initialize: For each user, initialize its selection list of resources.

At start, each user can select any resources, so every selection list
contains all the resources.

Propose: Each user (who is not kept by any resources) pro-
poses to its favorite resource in its selection list and delete it from
the list.

Reject/keep: Each resource rejects all but its favorite proposer.
Here the resource does not accept this favorite user but keeps it
as a candidate in case a better choice may come along later.

Terminate: If there are no users rejected by any resources, the
iteration ends. If not, these rejected users go to propose stage.

The matching obtained by DA algorithm is proved to be sta-
ble [28] and the procedure takes polynomial time in one-to-one
matching problem.

4.1.2. Server allocation
In the user–server matching part, the servers are the resources

in DA algorithm. For subchannel n, the users in Un and the MEC
servers match one to one. The user–server matching game is
formally defined as follow.

Definition 4.1. Given two disjoint nonempty sets of players, Un

and S, a one-to-one matching function Φ: Un
→ S is defined such

that for all u ∈ Un and s ∈ S
(1) Φ(u) ⊆ S and |Φ(u)| = 1;
(2) Φ(s) ⊆ Un and |Φ(s)| ∈ {0, 1};
(3) u = Φ(s)↔ s = Φ(u).

The first two conditions imply that each user can only choose
one MEC server to offload its task and each MEC server can accept
at most one task on the subchannel. The third condition means
if user u chooses MEC server s, MEC server s chooses user u too.
That means a two-way match between user u and MEC server s.
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Fig. 2. The tasks’ offloading scheduling and execution. 2(a) shows a system with 5 users and 2 MEC servers. 2(b) represents the server selection part of TO scheduling.
2(c) shows the subchannel selection part of TO scheduling. 2(d) reveals the execution order and time consuming of users on MEC servers.

After defining the matching game for server allocation, we
then define αu(s) representing the preference of user u to MEC
server s. If αu(s1) is greater than αu(s2), we consider that user u
prefers server s1 to server s2. In the same way, we define αs(u) to
measure the preference of MEC server s to user u. When αs(u1)
is less than αs(u2), we think that MEC server s prefers user u1 to
user u2.

We define the preference value of user u to server s as

αu(s) = Rn
us − ω1

∑
i∈S,i̸=s

puhn
ui, (17)

where ω1 is an equilibrium parameter. The first term is the data
rate of user u transmitting its task to server s on subchannel n. It
is reasonable because the higher the user’s data rate, the shorter
the transfer time. The second term is the sum of the interference
of user u to the other users on the same subchannel n. The smaller
the value of the second term is, the less user u will interfere
with the other users. Thus, the transmission rate of the other
co-subchannel users will increase.

The preference of MEC server s to user u is

αs(u) =
∑

k∈S,k̸=s

∑
j∈Uk

anjkpjh
n
js + ω2

⏐⏐⏐⏐ducuθ0
/
fs
f0
− 1

⏐⏐⏐⏐ , (18)

where θ0 =
∑

u∈Un ducu
|Un| is the average amount of CPU circles

needed for every task, f0 =
∑S

s=0 fs
S is the average work frequency

of all the MEC servers, ω2 is also an equilibrium parameter. ducu
θ0

reflects the level of CPU circles required to process task u among
all the tasks on subchannel n. If ducu

θ0
> 1, it means finishing

task u needs more CPU circles than the average level, we can
think of task u as computationally intensive. And if ducu

θ0
< 1,

it means task u is computationally sparse. The denominator fs
f0

reflects the level of work frequency of server s among all the
servers. If fs

f0
> 1, it represents the work frequency of MEC server

s is greater than the average level. Thus, we believe that MEC
server s has a strong computing capacity. If fs

f0
< 1, it signifies that

MEC server s is relatively weak in terms of computing capacity.
We can see from the formula, the closer ducu

θ0
/

fs
f0

is to 1, the greater
the sth MEC server’s preference to user u. That is because we
want to match the tasks with the same level servers. The MEC
server with more powerful computing capacity prefers the user
whose task is computationally intensive, and the MEC server with
weak computing power prefers computationally sparse task. This
avoids the situation that the server with weak computing power
processes computationally intensive tasks while other servers
with strong computing power stay idle.

We design Algorithm 1 to perform the matching of users and
MEC servers. Before matching, we initialize the to-be-matched
server list of each user Su (∀u ∈ Un) to S, the unmatched set of
users Uunmatched to Un. For every MEC server, there is a requesting
list of users applying for matching which is given as U req

s (∀s ∈
S). These requesting lists are set to be empty in initialization.

Algorithm 1 User-server matching algorithm

Require:
The set of to-be-matched servers of each user u, Su = S, u ∈
Un;
The set of unmatched users on subchannel n, Uunmatched = Un;
The set of users requesting MEC server s, U req

s = ∅, s ∈ S.
Ensure:

Find a one-to-one matching Φ∗ for users and servers;
1: while Uunmatched ̸= ∅ do
2: for all u ∈ Uunmatched do
3: Construct the preference of user u by (17);
4: Find s← argmax

s∈Su
αu(s);

5: Remove s from Su;
6: Put u into set U req

s ;
7: end for
8: Uunmatched ← ∅

9: for all s ∈ S do
10: Construct the preference of MEC server s by (18);
11: Find u← arg min

u∈Ureq
s

αs(u);

12: Put the rejected users into unmatched user set
Uunmatched ← Uunmatched ∪ U req

s \ u;
13: MEC server s keeps user u by setting U req

s ← {u};
14: end for
15: end while
16: Each MEC server matches to the user in its request list.
17: return Φ∗.

After that, we proceed the matching part. For u in Uunmatched,
we calculate its preference to MEC servers in Su according to
(17), select the MEC server with the largest preference value and
delete it from Su, and then we add user u to the requesting
set of the chosen server. For each MEC server we construct its
preference to users in its requesting list via (18), keep its favorite
user and reject the rest in its request set. Then all the rejected
users continue to propose to their next favorite MEC server. The
matching steps are repeated until Uunmatched is empty.

4.1.3. Subchannel allocation
For a user who offloads its task to MEC server s, we say that

the user is associated with MEC server s. We need to assign every
user associated with MEC server s a subchannel to transmit its
task input data. Here, we will match each user with a subchannel
in the subchannel allocation part.

Definition 4.2. Given two disjoint nonempty sets of players, Us
and N, a one-to-one matching function Ψ : Us → N is defined
such that for all u ∈ Us and n ∈ N

(1) Ψ (u) ⊆ N and |Ψ (u)| = 1;
(2) Ψ (n) ⊆ Us and |Ψ (n)| ∈ {0, 1};
(3) u = Ψ (n)↔ n = Ψ (u).
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Algorithm 2 Transmit power allocation algorithm

Require:
The transmission time of user u, tutrans(pu)
The ready time of user u, tuready
The subchannel on which user u transmits data, n
The profile of candidate powers, P
The set of users transmitting data on subchannel n, Un.

Ensure:
Find a transmission power p∗u for user u.

1: if tutrans(pu) < tuready then
2: Find pl satisfies tutrans(p

l) ≤ tuready
3: and tutrans(p

l+1) > tuready;
4: Update pu ← pl;
5: end if
6: return p∗u.

The first two conditions tell that a user can only select one
subchannel to complete data transmission, and a subchannel can
only serve one user at most for each server. The third condition
means if user u is matched with subchannel n, then subchannel n
is matched with user n. In other words, the users and subchannels
are in a one-to-one relationship.

Likewise, we define the preference of user u to subchannel
n as βu(n). If βu(n1) is greater than βu(n2), we say that user u
prefers subchannel n1 to subchannel n2. And βn(u) represents the
preference of subchannel n to user u. We think of subchannel n
prefers user u1 to user u2 if βn(u1) is greater than βn(u2). The
preference of user u to subchannel n is defined as

βu(n) = W log2(1+ γ n
us)− ω3

∑
i∈S,i̸=s

puhn
ui, (19)

where ω3 is a weighted parameter, and γ n
us =

puhnus
σ2+

∑
k̸=s max{pjhnjs|j∈Uk}

.
The preference in (19) implies that users tend to choose sub-
channels offering higher transmit rate and it also controls users’
interference to other users on the same subchannel. To sum up,
users want their own transmission rate to be high, and they want
to bring as little interference as possible to other users.

Subchannel selections mainly influence the transmission rate
and the interference within the same subchannel. So we set the
preference of subchannel n to user u the same as (19). That is

βn(u) = W log2(1+ γ n
us)− ω3

∑
i∈S,i̸=s

puhn
ui. (20)

And the procedure of user–subchannel matching is the same
as user–server matching except that the resource is changed
from servers to subchannels and the preference formulas are
replaced from (17) and (18) to (19) and (20). The description of
user–subchannel matching algorithm is omitted here.

4.2. Transmit power allocation

We notice that the change of a user’s transmit power will not
only change its own data rate, but also affect the data rate of
other users on the same subchannel. Setting the transmit power
to maximum for all the users is not a good choice. If the transmit
power pu of user u is increased, the task will arrive at the target
MEC server faster. However, at the same time, the interference
of user u on other users over the same subchannel will increase,
thus will reduce the data transmit speed of these users. In this
section, we propose a discretization method to allocate the users’
transmit power.

Algorithm 3 JTOTPA algorithm

Require:
U, S, N, P , maxIter .

Ensure:
A∗ and P∗.

1: Initialization and preprocessing before computation
2: Set loop← 0;
3: Set the transmit power of all users in U to pmax;
4: Randomly select a MEC server for each user and make sure

(13) is satisfied;
5: Task offloading scheduling and transmit power allocation
6: repeat
7: loop← loop+ 1;
8: Objold ← Objnew;
9: Users–subchannels matching in a single MEC server

10: for s = 1 to S do
11: Obtain the optimal matching Φ∗ via Algorithm 1;
12: end for
13: Users–servers matching over a single subchannel
14: for n = 1 to N do
15: Obtain the optimal matching Ψ ∗ via Algorithm 1;
16: end for
17: Transmit power allocation for each user
18: for u = 1 to U do
19: Obtain the optimal transmit power p∗u via Algorithm 2;
20: end for
21: Evaluate the target function in (9);
22: Objnew ← maxs∈S tscomp(A

∗, P∗);
23: until Objold − Objnew > ϵ and loop ≤ maxIter .

4.2.1. Method
By observing, we find out that not all tasks are immediately

executed when they arrive at the MEC server. Some tasks, espe-
cially those that arrive relatively late at the MEC server, need to
wait for the early arrival tasks to complete before they can be
computed. For this part of users, we can reduce their transmit
power appropriately, as long as they can arrive at the MEC server
before the completion of the previous tasks. In this way, other
users in the same subchannel will have a larger transmission
rate due to the reduction of inter-channel interference. We set
a series of power values P ≜ [p1, p2, . . . , pL] as the transmit
power choices. L stands for the number of the options and l is
an integer which satisfies 1 ≤ l ≤ L. The relation of these values
is constrained by pmax

= p1 > p2 > · · · > pL > 0. If the power pl
meets conditions tutrans(p

l) ≤ tuready(pu) and tutrans(p
l+1) > tuready(pu),

it is selected as the transmit power of user u.
In principle, user u can adjust the transmission power to peq

which satisfies tutrans(p
eq) = tuready(pu). Intuitively, this allows task

u to be executed as soon as it arrives at the MEC server. But the
value is so tight. Since we adjust the transmit power of users one
by one, after the power adjustment of user u, the transmit time of
user u may still be affected when other users on the same server
make the adjustment. Our method leaves some room for such
variations.

4.2.2. Algorithm
In this part we propose Algorithm 2 for transmit power allo-

cation. For user u, we keep the original transmit power if tutrans =
tuready is satisfied. As for tutrans < tuready, we find a transmit power
pl(1 ≤ l ≤ L) in P as the new transmit power for user u if
tutrans(p

l) ≤ tuready < tutrans(p
l+1). Since the adjustment of user u

affects the data rate of all the inter-subchannel users, we need to
update the correspondingly changed transmission time of these
users.
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Fig. 3. The effect of task input data size on the system delay.

4.3. The alternating minimization algorithm

The task offloading decision and the transmit power allocation
will be performed in an alternating way and the key steps are
summarized in Algorithm 3. The proposed algorithm consists of
two parts. Since the matching game between users and subchan-
nels is based on known transmit power of users and a given
user–server scheduling, phase one performs the initialization and
preprocessing part. The second phase performs task offloading
and transmit power allocation iteratively. The algorithm termi-
nates until the object error between two consecutive iterations
is less than ϵ or until the number of iterations reaches the
maximum maxIter .

5. Experimental evaluation

In this section we first investigate JTOTPA’s performance in
terms of system delay, and then assess its performance in terms
of energy expenditure. In our experiments, the area of the MEC
system is zoned within a 200×200 m2 square. The mobile devices
and servers are randomly distributed in the region, subject to
uniform distribution. The path loss is −140.7 − 36.7lg(dis), in
which dis means the distance between the user and the server.
All else being equal, the further away a mobile device is from the
server, the lower its data rate. Each mobile device has an image
processing task. The image number of each task is randomly
selected from {1, 2, 3, 4, 5, 6, 7}. The size of each image
is 420 KB. Therefore the task input data size du is randomly
chosen from {420, 840, 1260, 1680, 2100, 2520, 2940} KB. The
task workload cu is chosen from the closed interval [1, 1595] by
random. The maximum transmit power of all the mobile devices
is 20 dBm. The work frequency of each server is a random value in
{1, 2, 3, 4, 5} GHz. We use the following methods as comparative
experiments:

• The decomposed computation offloading and resource allo-
cation approach (DCORA) [29]: the task offloading scheme
is confirmed by a many-to-one matching and a one-to-one
matching while the transmit power allocation is founded by
a bisection method.
• The shortest distance based scheduling approach (SDS): all

the tasks are offloaded to the nearest MEC server for com-
putation. All the mobile devices adopt the max transmit
power.
• The random scheduling approach (RS): the task offloading

decision of each user is chosen randomly. All the mobile
devices adopt the max transmit power.

The time complexity of RS is the least, which is O(U), followed
by SDS, which is O(SU). For JTOTPA and DCORA, the time com-
plexity of user–subchannel matching process is O(SN3), and that
of transmit power allocation part is O(U). The difference lies in
the user–server matching process. JTOTPA’s time complexity is
O(S3N) and DCORA’s time complexity is O(SU2). If the number of
users in the MEC system reaches the state of full saturation, that
is, when U = S ∗N , the time complexity of DCORA is O(S3N2). At
this time, JTOTPA has more advantages in time expenditure.

We have summarized the parameters in Table 2.

5.1. Evaluation on system delay

In this section we explore the relationship between the system
delay and the features of task input data. Task input data size
has an impact on the transmit time and the execution time of
the task. Task workload influences the execution time of the task
too. So here we take these two factors into consideration. In all
of the experiments, the value of S is 10, the value of N is 4 and
the geographical position of MEC servers and mobile devices stays
unchanged.
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Fig. 4. The effect of task workload on the system delay.

Table 2
The summary of parameter settings.
Expression Value

S 10
N 4
U {10, 20, 30, 40}
du {420, 840, 1260, 1680, 2100, 2520, 2940} KB
cu [1, 1595] cir/bit
fs {1, 2, 3, 4, 5} GHz
W 5 MHz
pmax 20 dBm

5.1.1. Task input data size
In this part, the effect of task input data size on the system

delay is discussed. The task workload of each task is fixed to 800
r/bit. We perform the experiment under different user saturations
(user number/user capacity), which are 25% (10 users), 50% (20
users), 75% (30 users) and 100% (40 users). For each experiment,
the total task input data size in the system gradually increased,
each experiment was divided into 6 sets: for ∀u ∈ U, (1) du =
420 KB, (2) du ∈ {420, 840, 1260} KB, (3) du = 1260 KB, (4)
du ∈ {1260, 1680, 2100} KB, (5) du = 2100 KB, (6) du ∈
{2100, 2520, 2940} KB.

From the experimental results shown in Fig. 3, we can see that,
the system delay obtained by JTOTPA algorithm is much lower
than the other methods in most cases. And SDS algorithm has
good performance at low user saturation (25%, 50%), while has
relatively bad performance at high user saturation (75%, 100%).
That is because as the user saturation increases the influence
among users grows enormous and complicated, choosing the
nearest MEC server for users can make the inter-channel inter-
ference extremely large. In this case, DCORA has considered the
interference so it has better performance than SDS in high user
saturation groups.

For JTOTPA algorithm, the system delay only increases with
the increase of task input data size in the cases of 25% and 50%
user saturation, while there is no unified upward trend in the
cases of 75% and 100% user saturation. As can be seen from
Figs. 3(c) and 3(d), sets 1, 3 and 5 show an upward trend, while
sets 2, 4 and 6 do not follow this trend. This is because the input
data size of every task in 1, 3 and 5 sets is exactly the same,
while the input data size of tasks in 2, 4 and 6 sets is random
within a certain range. According to our matching game for TO,
the scheduling scheme of task offloading in 1, 3, 5 experiments
remains unchanged, so the system delay naturally increases with
the increase of transmission time and execution time. However,
when the task input data size is in a random state, the MEC
server will adjust its user selection accordingly, and when the
user saturation is high (75%, 100%), this adjustment forces some
mobile users to choose another MEC server, which may extend
the system delay, may shorten the delay.

5.1.2. Task workload
For different images (even with the same size), due to their

different picture quality, the processing consumes different com-
puting resources, so it is necessary to take task workload, which
describes the amount of CPU circles needed per unit data, into
consideration. We talk about the effect of task workload on the
system delay in this part. The input data size of each task is
fixed to 420 KB. Same as in the previous part, we set four levels
of the user saturation of the system, and conducted four ex-
periments. For each experiment, the total task workload in the
system gradually increased, which was graded into 7 sets: (1)
cu ∈ [1, 400] r/bit, (2) cu = 400 r/bit, (3) cu ∈ [400, 800] r/bit,
(4) cu = 800 r/bit, (5) cu ∈ [800, 1200] r/bit, (6) cu = 1200 r/bit,
(7) cu ∈ [1200, 1595] r/bit.

From the four bar charts in Fig. 4, the system delay of the
7 sets of experiments changes slightly for DCORA, SDS and RS
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Fig. 5. The effect of task input data size on the energy consumption.

Fig. 6. The effect of task workload on the system energy consumption.

algorithms. On the one hand, the task offloading scheme stays
unchanged because these three methods have not taken the task
workload into account when making offloading decisions. On
the other hand, the decision making of the transmit power has
not taken into account the task workload factor either. Thus the
increase of task workload only affects the users’ execution time

on the MEC servers which is relatively short as the MEC servers
operate at a high frequency.

As for JTOTPA algorithm, we have considered the task work-
load factor in Eq. (18). The system delay of the 7 sets of exper-
iments in Figs. 4(a) and 4(b) shows an upward trend, while it
has some ups and downs in Figs. 4(c) and 4(d). This is caused
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by the combination of user saturation and tasks’ geographical
distribution. When the system’s user saturation is high (75%,
100%), the randomness of users’ task workload distribution has
a stronger impact on the system delay.

When it comes to the comparison of these methods, we can
see that SDS has good performance in the case of low user
saturation. The proposed method JTOTPA obtains the least system
delay in high user saturation (75%, 100%). And the system delay
of JTOTPA is very close to that of SDS in low user saturation (25%,
50%). The position of method DCORA lies between JTOTPA and
SDS in high user saturation (75%, 100%). As for RS, the system
delay is the longest in all sets of the four experiments which
shows the necessity to develop an offloading strategy rather than
using a stochastic strategy.

5.2. Evaluation on energy consumption

In this section, we use energy consumption as the assessment
criteria of these four algorithms. Here we only consider the power
consumption generated by the users transferring the tasks, not
the consumption of the MEC servers processing the data. We
define the energy cost of the system as

E(A, P) =
∑
u∈U

∑
s∈S

ausput
u,s
trans. (21)

Energy consumption is not only related to the time it takes
each user to transmit its task, but also related to the transmit
power of the mobile devices. In this part, we explore the rela-
tionship between energy cost and the features of task data like
the previous part.

We mainly examine the advantages and disadvantages of the
four methods in terms of the amount of task input data size and
task workload. First of all, both of the two factors have an impact
on the task offloading scheme and the execution time of the tasks.
Second, the task input data size will also affect the task transfer
time. At last, the transit power is also influenced by the ready
time and the transmit time of users. Consequently, these effects
will be reflected in the energy cost. All experimental settings are
the same as in Section 5.1.

5.2.1. Task input data size
The experimental results are shown in Fig. 5. Among the four

groups of experiments, the performance of the RS algorithm is
the worst, because the energy cost generated by RS is much
higher than that of the other three methods. In the experiments
of the system delay part, it is not difficult to find that the system
delay obtained by RS is also the maximum. In addition, this
algorithm employs the max transmit power (20 dBm) for users,
so it generates greater energy consumption.

In the cases of low user saturation (25%, 50%), SDS algorithm
has a small energy consumption, and in the cases of high user
saturation (75%, 100%), the energy consumption generated by SDS
algorithm increases a lot. This shows that the algorithm is not
suitable for high saturation system. When the user saturation
is low, the influence between users is small, SDS algorithm can
better play its advantages.

With the increase of task data size, the energy consumption
obtained by RS and SDS methods gradually increases. Different
from RS and SDS, the energy consumption of JTOTPA and DCORA
fluctuates irregularly with the increase of task data size. This
is because the latter two methods change their task offloading
schemes and adjust the transmit power of users according to the
amount of data of the tasks. It can be seen from Fig. 5 that these
changes and adjustments make the latter two methods better
than RS and SDS in terms of energy consumption.

Table 3
The G value of the four methods.
Method Average value of G

JTOTPA 3.1402
DCORA 3.0161
SDS 2.9691
RS 0.8327

In the first group of experiments, we can see that DCORA
produces less energy consumption, while in the second group of
experiments, JTOTPA obtains better performance. In the third and
fourth group of experiments, the best performance is generated
by the two methods alternately. It is hard to say which method
is better as the geographical distribution of data size plays an
important role. Both approaches have their own focus and would
produce different results for different geographical distributions
of data size.

5.2.2. Task workload
The effect of task workload on the system energy consumption

is shown in Fig. 6. Obviously, of the four algorithms we compare,
three of them (DCORA, SDS, RS) are insensitive to the workload of
the tasks, so their line graphs show horizontal curves. The worst
performer is still the RS algorithm. And the energy consumption
of SDS and DCORA algorithms is much lower than that of RS,
while SDS is better than DCORA in the cases of low user saturation
(25%, 50%), and worse than DCORA in the cases of high user
saturation (75%, 100%).

In these four groups of experiments, we can see that JTOTPA
performs best in most cases by getting the least energy cost.
When the data amount of every task in the system is the same
but their workload is different, JTOTPA can effectively adjust the
transmit power and the task offloading scheme to keep the delay
and the energy consumption of the system at a low level. With
the increase of task workload, energy consumption of JTOTPA
does not show a consistent rule. This is due to the complex
changes in the geographic distribution of task workload, which
we will not analyze in detail in this paper.

5.3. Comprehensive evaluation

In the last two parts, we performed experiments about the sys-
tem delay and the energy consumption of the mobile devices, and
compared the advantages and disadvantages of the four methods.
In this part, we will further consider the tradeoff between delay
and energy [30,31]. We use a proportion G [32] to evaluate the
four methods. The proportion G is defined as

G = Gρ

1G
1−ρ

2 , (22)

where G1 refers to the ratio of the execution time (local/remote),
G2 is the ratio of energy consumption (local/remote) and ρ is the
weight coefficient (0 ≤ ρ ≤ 1).

Both time and energy saving is considered in G. As a perfor-
mance indicator, a larger G means a better offloading system [32].
We have calculated the G value of each user when there are 40
users in the system and averaged the value. The results obtained
by the four methods are as Table 3.

Considering the experimental performance of both system de-
lay and energy consumption, JTOTPA still has certain advantages
compared to the other three methods, while the RS method
has the smallest G value and a larger gap with the other three
methods, which again illustrates the necessity of developing an
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offload strategy. DCORA also has a better performance than SDS
which indicates that choosing the nearest server for each user is
not a good choice either.

6. Conclusion

In this paper, we settled the problem of joint task offloading
and transmit power allocation of multiple mobile users in MEC
systems with multiple servers. Based on matching theory and a
heuristic approach, we proposed two sub-optimal algorithms to
alternately minimize the maximum server delay. The proposed
method mainly has the following two innovations: (1) consid-
ering the balance between the total computation workload of
tasks and the computing capacity of the MEC servers; (2) using
power discretization for the allocation of users’ transmit power.
The experimental results show that JTOTPA cannot only obtain
less delay, but also generate less energy consumption when the
data amount of tasks is the same but the workload is random in
the MEC system.

During the experiments, we found that the geographical distri-
bution of task data in the system also had an important impact on
the system delay. Therefore, we want to further study and adopt
different task offloading and power allocation methods to opti-
mize the system delay under different geographical distribution
modes. In addition, we also consider the inclusion of task deadline
in the system for research.
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