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A B S T R A C T

Hashing has produced enormous potentials in cross-modal image–text search, which learns
compact binary codes by exploring the correlations between distinct modalities. However,
there still exist some limitations. First, most existing methods neglect the relation between
the data characteristics and supervised information. Second, a relaxation strategy results in
large quantization errors. Third, constructing large 𝑛 × 𝑛 (a.k.a. training size) similarity graphs
increases computational load. To address these issues, we propose a novel discrete supervised
hashing method, termed Efficient Discrete Class Alignment Hashing (EDCAH), which integrates
class alignment and matrix factorization for hashing learning. Specifically, it exploits the
semantic consistency of data instances and informative labels to simultaneously learn the hash
codes and hash functions. Meanwhile, a discrete optimization strategy is developed to solve
the EDCAH, which is beneficial to generate high-quality hash codes. Furthermore, to improve
the learning efficiency of EDCAH, we propose a fast and efficient variant dubbed EDCAH-t
that utilizes a two-step hashing strategy. Extensive experiments demonstrate the superiority of
EDCAH and EDCAH-t in both search accuracy and learning efficiency.

. Introduction

.1. Background and motivation

Cross-modal image–text search, a fundamental but popular research topic (Lu, Zhu, Cheng, Song, & Zhang, 2019; Wang, Ou,
iang, & Sun, 2021; Zhang, Li, Jiang, Yuan, & Zhang, 2018) that aims to realize accurate retrieval across different data modalities,
as attracted considerable attention in machine learning (Li, 2017; Wang, Shen, Zhang, & Liu, 2020), information retrieval (Han,
hang, Ren, & Schuller, 2019; He & Zhao, 2017; Zhao, Cao, Xu, & Lu, 2020), and multimedia modeling (Liang, He, Sun, & Tan, 2019;
eng, Zhang, & Zhu, 2020). Due to the tremendous growth of multimedia data (e.g., images, texts, and videos) in social networks,
erforming accurate and fast searches has become an intractable challenge on the search engines due to its limited search ability
nd storage resource (Peng, Huang, & Zhao, 2018; Zhang & Peng, 2018). Thus, Cross-modal Image–Text Hashing (CMITH) (Li,
ang, Wang, Song, & Li, 2021; Wang, Zhang, Song, Sebe, & Shen, 2018; Yao et al., 2020; Zhao, Wang, She, & Su, 2020), has been
roposed to transform multimedia data into compact hash codes while preserving the semantic similarity of the data instances. Such
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a method greatly promotes learning efficiency and reduces storage costs based on the generated hash codes (Ding, Wong, Lai, &
Zhang, 2020; Huang et al., 2020). Due to the efficiency in both search speed and storage cost, CMITH has been widely applied in
various large-scale cross-modal image–text search scenarios.

Existing CMITH methods can be classified into two categories according to the dependence on supervised information:
nsupervised hashing (Ding, Guo, & Zhou, 2014; Gui, Liu, Sun, Tao, & Tan, 2017; Li et al., 2017; Shen et al., 2018; Wang, Sun, Zhao,
Su, 2017; Zhang & Peng, 2020; Zhou, Ding, & Guo, 2014) and supervised hashing (Chen et al., 2020; Chen, Shen, Yang, Xu, & Song,

017; Jiang & Li, 2019; Li, Yan, Luo, Nie, & Xu, 2019; Lin, Ding, Han, & Wang, 2016; Liu, Ji, Wu, & Hua, 2016; Tang, Wang, & Shao,
016; Wang, Gao, Wang, & He, 2019). The former achieves the search tasks by exploring the data distribution and characteristics
f the original instances to construct the hash functions, which encodes the instances into the hash codes. The latter supervised
ashing, performs the search tasks by employing the supervision information (i.e., semantic labels or pairwise data constraints) to
btain the hash functions. Generally speaking, the supervised methods obtain better performance than the unsupervised ones in the
asks of cross-modal image–text search.

A variety of supervised hashing methods (Shen et al., 2016; Wang et al., 2019; Wang, Liang, Cao, & Sun, 2019; Ye & Peng, 2018;
heng et al., 2020) has been designed for cross-modal image–text search. These methods learn unified hash codes or modality-specific
ash functions by taking advantage of the similarity graphs or matrix factorization techniques. For example, several typical works
nclude Supervised Matrix Factorization Hashing (SMFH) (Liu et al., 2016), Semantic Correlation Maximization (SCM) (Zhang & Li,
014), Semantics-preserving Hashing (SePH) (Lin et al., 2016), and Label Consistent Matrix Factorization Hashing (LCMFH) (Wang
t al., 2019). Recently, deep learning-based supervised hashing (Jiang & Li, 2017; Li et al., 2018; Su, Zhong, & Zhang, 2019; Wu
t al., 2019; Yang et al., 2017) has been proposed to adopt the supervised learning strategy. Although achieving state-of-the-art
erformance, such deep hashing methods only come at the expense of heavy computational costs and substantial hyperparameters
djustments. These challenges make the corresponding deep hashing methods impractical in large-scale data search applications.
herefore, in this paper, we primarily focus on the shallow supervised hashing methods with the applications to cross-modal

mage–text search.
Despite obtaining promising performance, existing supervised hashing methods are still limited in several respects. (1) They

erform the hash code learning procedure without fully considering the relation between the data instances and label supervision.
or example, the methods in Wang et al. (2019), Wang, Gao, Wang, He, and Yuan (2016) and Xu, Shen, Yang, Shen, and Li (2017)
nly encode the semantic label information to directly generate unified hash codes for search tasks, leading to information loss
f the data instances. As a result, it cannot well preserve the semantic correlations of the original data and shared class labels
o deliver better performance. (2) The discriminability of the hash codes would be weakened when using a continuous relaxation
trategy to solve the objective function. In Ding et al. (2014), Liu, Ji, Wu, Huang, and Zhang (2017), Zhang and Li (2014) and Zhou
t al. (2014), adopting a relaxation strategy (Li et al., 2017) for the hash optimization, such methods directly convert the original
ontinuous features into unified hash codes by discarding the discrete constraints of their models. Consequently, they inevitably
ause the quantization loss of final hash codes and subsequent suboptimal search accuracy. (3) Most approaches are with limited
earning efficiency due to the heavy computational load during training. Specifically, Lin et al. (2016), Liu et al. (2016) and Tang
t al. (2016) design the training models by constructing large 𝑛 × 𝑛 similarity graphs based on the semantic labels or pairwise data
onstraints, where 𝑛 denotes the number of training instances. Generally, 𝑛 × 𝑛 similarity graphs with a large value of 𝑛 usually

produce high computational complexity, which causes the training to be time-consuming and eventually compromises the learning
efficiency of hashing methods.

1.2. Research objectives and contributions

Generally, it is convenient to retrieve in the same modality by unimodal search (a.k.a. text-based or image-based retrieval). How
to use one modality to search the other modality (i.e., cross-modal search) is more complicated, which is the focus of this paper. As
a result, we mainly focus on achieving accurate and fast matching with applications to cross-modal image–text search. Besides, this
research has received extensive concentrations for revealing the semantic consistency between vision and language. However, due
to the modality gap (a.k.a. the characteristics of heterogeneous data), the most critical challenge is how to transform the image–
text data into binary space and also preserve the correspondence between modalities. Therefore, we conclude the main research
objectives of this paper and propose a novel supervised hashing method, termed Efficient Discrete Class Alignment Hashing (EDCAH).
It not only integrates class alignment and matrix factorization to simultaneously learn unified hash codes and hash functions, but
it also utilizes a discrete optimization strategy to solve the proposed algorithm without adopting the relaxation strategy. Moreover,
to enhance the learning efficiency of the proposed model, a fast and efficient variant of EDCAH, i.e., EDCAH-t, is further presented
by exploiting a two-step hashing scheme to accelerate the EDCAH model. Concretely, the main contributions of this work are as
follows:

• We propose a novel supervised hashing method EDCAH. By integrating class alignment, matrix factorization, and optimization
strategy, our method simultaneously learns discrete unified hash codes and modality-specific hash functions. And thus it can
jointly exploit the correlations of the training instances and semantic labels to improve the discriminative capability of the
hash codes.

• A fast and efficient variant of EDCAH, i.e., EDCAH-t, is developed to reduce the training complexity of the proposed model.
Specifically, it presents a two-step hashing scheme to learn compact hash codes and effective hash functions. Due to the
advantage in learning efficiency, EDCAH-t can be applied to rapid yet practical large-scale cross-modal image–text search
applications.
2
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• We develop a novel discrete optimization strategy to efficiently solve the EDCAH model. This strategy optimizes the proposed
objective function by a fast and simple operation, which contributes to enhancing the learning efficiency during training.
Extensive experimental results on popular datasets validate the superiority of the proposed EDCAH and its variant against
state-of-the-art methods.

The remainder of this paper is organized as follows: Section 2 introduces the related works on hashing methods. Section 3
resents the details of the proposed method. Section 4 provides experimental results and analyses. Section 5 concludes this paper.

. Related work

Research work on cross-modal image–text hashing search methods can be broadly classified as follows: (1) unsupervised hashing
ethods; (2) supervised hashing methods.

.1. Unsupervised hashing methods

Unsupervised hashing methods learn the hash codes or hash functions by capturing the training data characteristics for cross-
odal image–text search tasks. For instance, Kumar and Udupa (2011) and Song, Yang, Yang, Huang, and Shen (2013) produced
ross-view hashing (CVH) and Inter-media hashing (IMH) methods, respectively. They learn the hash functions by extending spectral
ashing (Weiss, Torralba, & Fergus, 2009) from unimodal to multimodal retrieval scenarios. Zhu, Huang, Shen, and Zhao (2013)
onstructed Linear Cross-modal Hashing (LCMH) which utilizes the anchor maps to maintain the similarity between modalities for
ashing learning. Zhou et al. (2014) presented Latent Semantic Sparse Hashing (LSSH), to first obtain the image and text features by
parse coding and matrix factorization and then project these features into a common space to learn unified binary codes. Ding et al.
2014) proposed Collective Matrix Factorization Hashing (CMFH), which learns unified hash codes by adopting matrix factorization
o discover the correlations between modalities. Long, Cao, Wang, and Yu (2016) formulated Composite Correlation Quantization
CCQ) to project different modalities into a shared space and express composite quantizers that transform common representations
nto compact binary codes. Other typical of methods can be referred to Liu et al. (2017) and Weiss et al. (2009). However, these
bove methods cannot preserve well-learned semantic similarities of the original data without supervised information, obtaining
uboptimal search performance.

.2. Supervised hashing methods

In contrast, supervised hashing methods study the hash codes or hash functions by exploring the semantic correlations from
upervised information. For instance, Liu et al. (2016) offered Supervised Matrix Factorization Hashing (SMFH), which generates
graph regularized matrix factorization model to obtain the hash codes. Tang et al. (2016) outlined a homologous supervised
atrix factorization hashing (SMFH) method to maintain the local geometric consistency regarding each modality and the semantic

imilarity from the labels for generating unified hash codes. Zhang and Li (2014) reported Semantic Correlation Maximization (SCM),
hich explores the semantic similarities between modalities by joining the class matrices of the instances. Lin et al. (2016) illustrated
emantics-preserving Hashing (SePH), which achieves the binary codes via the Kullback–Leibler divergence of the probability
istributions, and then learns the hash functions by leveraging the predictive models. However, these above methods possess heavy
omputation costs by constructing large 𝑛 × 𝑛 (a.k.a. training size) similarity graphs, making them unsuitable for large-scale datasets.

To tackle the optimization problem in learning efficiency, Xu et al. (2017) created Discriminative Cross-modal Hashing (DCH), to
obtain the unified hash codes by a discrete coordinate descent strategy and then to produce the different hash functions via learned
codes. Wu, Luo, Xu, Guo, and Shi (2018) devised Dictionary Learning based Supervised Discrete Hashing (DLSDH), which learns
the sparse representations for distinct data modalities, and then final hash codes are obtained by using a bit-by-bit operation. Wang
et al. (2019) designed Label Consistent Matrix Factorization Hashing (LCMFH), which yields the discriminative unified hash codes
by integrating the shared label matrix and collective matrix factorization. Shen et al. (2021) implemented a novel Subspace Relation
Learning for Cross-modal Hashing (SRLCH) method by leveraging the transformed labels and subspace relation information to deliver
the unified hash codes. However, such methods fail to consider the joint relationship between distinct modalities and thus formulate
less effective hash codes for cross-modal image–text search applications. Meanwhile, several methods learn the unified hash codes
by a bit-by-bit optimization strategy, making the training procedure rather time-consuming.

Different from the aforementioned studies, the proposed EDCAH and its variant EDCAH-t accomplish the search tasks by
integrating the hash code learning procedure, a two-step hashing scheme, and discrete optimization strategy into a unified
framework, which contributes to improving the search performance and learning efficiency. Despite obtaining promising results,
existing supervised hashing methods still have much room to enhance the field of cross-modal image–text search.

3. The proposed approach

In this section, we elaborate on the details of the proposed EDCAH method and its variant EDCAH-t, and their pipeline is
presented in Fig. 1. This study mainly focuses on the image and text modalities for cross-modal image–text search. For convenience,
we present the main notations used in the study in Table 1.
3
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Fig. 1. The pipeline of the proposed EDCAH. The training procedure consists of two subsections: hash code learning (red dotted box) and hash function learning
(black dotted arrow). Specifically, EDCAH simultaneously learns the hash codes and hash functions by integrating class alignment and matrix factorization to
generate unified hash codes while preserving the semantic consistency of data instances and label supervision. The proposed variant EDCAH-t employs the
two-step hashing scheme by the linear regression to learn the modality-specific hash functions. The two ways of learning hash functions are the main difference
between EDCAH and EDCAH-t. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Notations used in this study for the proposed method.
Notation Definition

 Training instances of image–text data  = {𝑋, 𝑌 }
𝐗,𝐘 Image feature matrix 𝐗 ∈ R𝑑1×𝑛, text feature matrix 𝐘 ∈ R𝑑2×𝑛

𝐂 Semantic label matrix based on pairwise image–text data 𝐂 ∈ R𝑐×𝑛

𝐇 Unified hash code matrix of the training instances 𝐇 ∈ R𝑙×𝑛

𝐔1 ,𝐔2 Basic matrices for the matrix factorization 𝐔1 ∈ R𝑑1×𝑙 , 𝐔2 ∈ R𝑑2×𝑙

𝐖1 ,𝐖2 Projection matrices for the class alignment 𝐖1 ∈ R𝑙×𝑐 , 𝐖2 ∈ R𝑙×𝑐

𝐏1 ,𝐏2 Projection matrices for the hash functions 𝐏1 ∈ R𝑙×𝑑1 , 𝐏2 ∈ R𝑙×𝑑2

𝜙 (∙) Kernel function for the input of feature matrices
𝑑1 , 𝑑2 Dimensions of the image, text feature matrices
𝑛 Number of the training instances
𝑐 Number of the label classes
𝑙 Length of unified hash codes

3.1. Model formulation for EDCAH

Given the feature matrices 𝐗, 𝐘 and the corresponding class label matrix 𝐂, we first have the m-dimensional feature vectors by
𝜙(𝐊(𝑡)) =

{

𝜙
(

𝐤𝑡𝑖
)}𝑛

𝑖=1 for the model input, where 𝐊(𝑡) = {𝐗, 𝑌 }, and such vectors are computed by Gaussian kernel function

𝜙(𝑘(𝑡)) =
[

exp
(

−‖‖
‖

𝑘(𝑡) − 𝑝(𝑡)1
‖

‖

‖

2
∕𝜀

)

,… , exp
(

−‖‖
‖

𝑘(𝑡) − 𝑝(𝑡)m
‖

‖

‖

2
∕𝜀

)]𝑇
, (1)

where
{

𝑘(𝑡)𝑗
}𝑚

𝑗=1
includes 𝑚 randomly selected anchor points, 𝜀 is the kernel width. The main idea of EDCAH is to adopt class

alignment and matrix factorization to learn unified hash codes 𝐇 and hash functions 𝐏1, 𝐏2 in the same optimization manner, where
𝐇 ∈ {−1, 1}𝑙×𝑛 in the following. The overall objective function of EDCAH is as follows:

min
𝐔1 ,𝐔2 ,𝐖1 ,𝐖2 ,𝐏1 ,𝐏2

{𝐽
(

𝐔1,𝐔2,𝐖1,𝐖2,𝐏1,𝐏2
)

}. (2)

The detailed formulation of Eq. (2) is represented as follows:

𝐽 =𝜆1 ‖‖𝜙 (𝐗) − 𝐔1𝐖1𝐂‖‖
2
𝐹 + (1 − 𝜆1) ‖‖𝜙 (𝐘) − 𝐔2𝐖2𝐂‖‖

2
𝐹

+ 𝜆2
(

‖

‖

𝐖1𝐂 −𝐇‖

‖

2
𝐹 + ‖

‖

𝐖𝟐𝐂 −𝐇‖

‖

2
𝐹

)

+ 𝜆3 ‖‖𝐖1𝐂 −𝐖2𝐂‖‖
2
𝐹

+ 𝜆4
(

‖

‖

𝐇−𝐏1𝜙 (𝐗)‖
‖

2
𝐹 + ‖

‖

𝐇−𝐏2𝜙 (𝐘)‖
‖

2
𝐹

)

+ 𝜆5𝑅𝑒
(

𝐔1,𝐔2,𝐖1𝐂, 𝐖2𝐂, 𝐏1, 𝐏2
)

,

(3)

where the parameters 𝜆1, 𝜆2, 𝜆3, 𝜆4 and 𝜆5 are trade-off coefficients, and 𝑅𝑒 (⋅) = ‖⋅‖2𝐹 denotes the regularization term to avoid
4

the over-fitting of our model. The first four terms definite the hash code learning procedure. The five term represents the task of
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learning the hash functions, while the last term is the regularization formulation. In the following, we explain each part of the above
Eq. (3) in detail.

Hash Code Learning
The proposed EDCAH learns unified hash codes by the first four terms of Eq. (3). As previously mentioned, matrix factorization

s essentially an unsupervised algorithm that is inapplicable for supervised hashing methods. Therefore, we combine class label
lignment with matrix factorization to learn the semantic relations of image–text data. Given the feature matrices 𝐗, 𝐘 and the

class label matrix 𝐂, our method uses class alignment matrix factorization to find the basic matrices 𝐔1 ∈ R𝑑1×𝑙 and 𝐔2 ∈ R𝑑2×𝑙 and
the different latent modality-specific representation matrices 𝐖1𝐂 ∈ R𝑙×𝑛 and 𝐖2𝐂 ∈ R𝑙×𝑛. Specifically, we define the following
formula:

min
𝐔1 ,𝐔2 ,𝐖1 ,𝐖2

{

𝜆1 ‖‖𝜙 (𝐗) − 𝐔1𝐖1𝐂‖‖
2
𝐹 + (1 − 𝜆1) ‖‖𝜙 (𝐘) − 𝐔2𝐖2𝐂‖‖

2
𝐹

+𝜆2
(

‖

‖

𝐖1𝐂 −𝐇‖

‖

2
𝐹 + ‖

‖

𝐖2𝐂 −𝐇‖

‖

2
𝐹

)

+ 𝜆3 ‖‖𝐖1𝐂 −𝐖2𝐂‖‖
2
𝐹

}

.
(4)

The first two items denote class alignment matrix factorization for correlating distinct modalities. The last two items directly
produce unified hash codes by embedding the semantic label matrix into the binary code learning procedure, which circumvents
the use of large similarity graphs.

Hash Function Learning
In the hash function learning, the two hash functions are obtained by linear regression and transferred to the querying stage for

out-of-sample instances. The mathematical definition is as follows:

min
𝐏1 ,𝐏2

𝜆4
{

‖

‖

𝐇−𝐏1𝜙 (𝐗)‖
‖

2
𝐹 + ‖

‖

𝐇−𝐏2𝜙 (𝐘)‖
‖

2
𝐹

}

. (5)

3.2. Model formulation for EDCAH-t

To improve the learning efficiency of the EDCAH, we further propose its variant EDCAH-t, which adopts a two-step hashing
scheme to reduce the model complexity. The overall objective function of EDCAH-t is formulated as:

min
𝐔1 ,𝐔2 ,𝐖1 ,𝐖2

{𝐹
(

𝐔1,𝐔2,𝐖1,𝐖2
)

}. (6)

The detailed formulation of Eq. (6) is as follows:

𝐽 =𝜇1 ‖‖𝜙 (𝐗) − 𝐔1𝐖1𝐂‖‖
2
𝐹 + (1 − 𝜇1) ‖‖𝜙 (𝐘) − 𝐔2𝐖2𝐂‖‖

2
𝐹

+ 𝜇2
(

‖

‖

𝐖1𝐂 −𝐇‖

‖

2
𝐹 + ‖

‖

𝐖𝟐𝐂 −𝐇‖

‖

2
𝐹

)

+ 𝜇3 ‖‖𝐖1𝐂 −𝐖2𝐂‖‖
2
𝐹

+ 𝜇5𝑅𝑒
(

𝐔1,𝐔2,𝐖1𝐂, 𝐖2𝐂
)

,

(7)

where 𝜇1, 𝜇2, 𝜇3 and 𝜇5 are trade-off coefficients. Analogous to the model formulation of EDCAH, the objective function of EDCAH-t
is composed of two terms. Its optimization target is to first generate the hash codes by minimizing Eq. (7) and then to learn the
hash functions by minimizing Eq. (16).

3.3. Optimization strategy

The optimization problems of Eqs. (2) and (6) are non-convex for all matrix variables but convex for any variable when the others
are fixed (Ding et al., 2014). In the following, we solve these optimization problems through the proposed optimization strategy.

Optimization Strategy for EDCAH: The optimization problem of Eq. (2) can be solved by the proposed optimization strategy.
The detailed description consists of four iterated main steps.

1. Updating 𝐔1 and 𝐔2. By fixing the other variables and letting 𝜕𝐽
𝜕𝐔1

= 0, 𝜕𝐽
𝜕𝐔2

= 0, we have

𝐔1 = 𝜆1𝜙(𝐗)𝐂T𝐖1
T(𝜆1𝐖1𝐂𝐂T𝐖1

T + 𝜆5𝐈
)−1,

𝐔2 = 𝜆1𝜙(𝐘)𝐂T𝐖2
T(𝜆1𝐖2𝐂𝐂T𝐖2

T + 𝜆5𝐈
)−1.

(8)

2. Updating 𝐖1 and 𝐖2. By fixing the other variables and letting 𝜕𝐽
𝜕𝐔1

= 0, 𝜕𝐽
𝜕𝐔2

= 0, we obtain

𝐖1 =
[

𝜆1𝐔1
T𝐔1 +

(

𝜆2 + 𝜆3 + 𝜆5
)

𝐈
]−1

×
[

𝜆1𝐔1
T𝜙(𝐗)𝐂T + 𝜆2𝐇𝐂T + 𝜆3𝐖2𝐂𝐂T] [𝐂𝐂T]−1,

𝐖2 =
[

𝜆1𝐔2
T𝐔2 +

(

𝜆2 + 𝜆3 + 𝜆5
)

𝐈
]−1

×
[

𝜆1𝐔2
T𝜙(𝐘)𝐂T + 𝜆2𝐇𝐂T + 𝜆3𝐖1𝐂𝐂T] [𝐂𝐂T]−1.

(9)

3. Updating 𝐏1 and 𝐏2. By fixing the other variables and letting 𝜕𝐽
𝜕𝐏1

= 0, 𝜕𝐽
𝜕𝐏2

= 0, the solutions are

𝐏1 =𝜆4𝐇𝜙
(

𝐗T)(𝜆4𝜙 (𝐗)𝜙
(

𝐗T) + 𝜆5𝐈
)−1,

( T)( ( T) )−1 (10)
5

𝐏2 =𝜆4𝐇𝜙 𝐘 𝜆4𝜙 (𝐘)𝜙 𝐘 + 𝜆5𝐈 .
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4. Updating 𝐇. By fixing the other variables, Eq. (2) can be rewritten as follows:

min
𝐇

{

𝜆2
(

‖

‖

𝐖1𝐂 −𝐇‖

‖

2
𝐹 + ‖

‖

𝐖𝟐𝐂 −𝐇‖

‖

2
𝐹

)

+𝜆4
(

‖

‖

𝐇−𝐏1𝜙 (𝐗)‖
‖

2
𝐹 + ‖

‖

𝐇−𝐏2𝜙 (𝐘)‖
‖

2
𝐹

)}

.
(11)

The two terms in Eq. (11) are equivalent to the following Eq. (12):

‖

‖

𝐖1𝐂 −𝐇‖

‖

2
𝐹 = 𝑡𝑟

[

(

𝐖1𝐂 −𝐇
)T (𝐖1𝐂 −𝐇

)

]

= 𝑡𝑟
(

𝐂T𝐖1
T𝐖1𝐂

)

− 2𝑡𝑟
(

𝐇T𝐖1𝐂
)

+𝑡𝑟
(

𝐇T𝐇
)

,

‖

‖

𝐇 − 𝐏1𝐗‖‖
2
𝐹 = 𝑡𝑟

[

(

𝐇 − 𝐏1𝐗
)T (𝐇 − 𝐏1𝐗

)

]

= 𝑡𝑟
(

𝐇T𝐇
)

− 2𝑡𝑟
(

𝐇T𝐏1𝐗
)

+𝑡𝑟
(

𝐗T𝐏1
T𝐏1𝐗

)

.

(12)

Similarly, the other two terms can be easily obtained, analogous to Eq. (12). Notably, 𝑡𝑟(𝐇T𝐇) is constant under the condition
∈ {−1, 1}𝑙×𝑛 in Section 3.1. Therefore, these four trace matrices 𝑡𝑟

(

𝐂T𝐖1
T𝐖1𝐂

)

, 𝑡𝑟
(

𝜙
(

𝐗T)𝐏1
T𝐏1𝜙 (𝐗)

)

, 𝑡𝑟
(

𝜙
(

𝐘T)𝐏2
T𝐏2𝜙 (𝐘)

)

and 𝑡𝑟
(

𝐂T𝐖2
T𝐖2𝐂

)

are constant when updating 𝐇 by fixing the other variables. Consequently, Eq. (11) can be rewritten as:

−min
𝐇

{

𝜆2𝑡𝑟
(

𝐇T𝐖1𝐂
)

+ 𝜆2𝑡𝑟
(

𝐇T𝐖2𝐂
)

+𝜆4𝑡𝑟
(

𝐇T𝐏1𝜙 (𝐗)
)

+ 𝜆4𝑡𝑟
(

𝐇T𝐏2𝜙 (𝐘)
)}

.
(13)

Finally, we obtain the closed-form solution of H:

𝐇 = sgn
(

𝜆2𝐖1𝐂 + 𝜆2𝐖2𝐂 + 𝜆4𝐏1𝜙 (𝐗) + 𝜆4𝐏2𝜙 (𝐘)
)

, (14)

where sgn (⋅) is a sign function that converts a continuous value into binary code.
According to Eq. (14), the unified hash codes can be learned discretely during the optimization procedure. Thus, rather than

dopting the continuous relaxation strategy, 𝐇 avoids the large quantization errors of the hash codes by implementing the proposed
discrete optimization strategy. The training procedure of EDCAH is summarized in Algorithm 1. The time complexity of Algorithm
1 is determined mainly by the number of iterations (lines 2–7).

Algorithm 1 EDCAH Training Procedure
Input:

Feature matrices 𝐗, 𝐘, label matrix 𝐂, parameters 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, and number of iterations 𝑤.
Output:

Hash codes 𝐇, projection matrices 𝐏1 and 𝐏2.
1: Randomly initialize 𝐔1, 𝐔2, 𝐖1, 𝐖2, 𝐏1, 𝐏2.
2: for 𝑗 = 1 to 𝑤 do
3: Calculate 𝐔1 and 𝐔2 by using Eq. (8);
4: Calculate 𝐖1 and 𝐖2 by using Eq. (9);
5: Calculate 𝐏1 and 𝐏2 by using Eq. (10);
6: Calculate 𝐇 by using Eq. (14).
7: end for
8: return 𝐔1, 𝐔2, 𝐖1, 𝐖2, 𝐏1, 𝐏2, and 𝐇.

Optimization Strategy for EDCAH-t: By observing the form of Eqs. (2) and (6), we find that the process for generating the
hash codes of EDCAH is similar to that of EDCAH-t. The main difference is the learning procedure of the hash functions in Eq. (16).
Analogous to Algorithm 1, the optimization procedure of Eq. (6) includes three main steps. Specifically, the solutions of 𝐔1, 𝐔2, 𝐖1
nd 𝐖2 are the same as those in Eqs. (8) and (9), respectively. Analogous to Eq. (14), we can obtain the closed-form solution of the
ash codes 𝐇 for EDCAH-t as follows:

𝐇 = sgn
(

𝜇2𝐖1𝐂 + 𝜇2𝐖2𝐂
)

. (15)

oreover, we learn the hash functions based on Eq. (15) by employing linear regression in the two-step hashing scheme:

‖

‖

𝐇−𝐏𝑡𝜙 (𝐀)‖
‖

2
𝐹 + 𝜇4 ‖‖𝐏𝑡

‖

‖

2
𝐹 , (16)

here 𝐏𝑡 =
{

𝐏1,𝐏2
}

, 𝐀 = {𝐗,𝐘}. Thus, the final closed-form solution of the hash function is:

𝐏𝑡 = 𝐇𝜙
(

𝐀T) (𝜙 (𝐀)𝜙
(

𝐀T) + 𝜇4𝐈
)−1. (17)

The optimization process for EDCAH-t is shown in Algorithm 2, and the time complexity depends on the number of iterations
n lines 2–6. Algorithm 2 has two main advantages against Algorithm 1: (1) it obtains more compact hash codes; (2) it converges
aster that contributes to shortening the training time of EDCAH in hashing learning efficiency.
6
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Algorithm 2 EDCAH-t Training Procedure
Input:

Feature matrices 𝐗, 𝐘, label matrix 𝐂, parameters 𝜇1, 𝜇2, 𝜇3, 𝜇4, 𝜇5, and number of iterations 𝑤.
Output:

Hash codes 𝐇.
1: Randomly initialize 𝐔1, 𝐔2, 𝐖1, and 𝐖2.
2: for 𝑗 = 1 to 𝑤 do
3: Calculate 𝐔1 and 𝐔2 by using Eq. (8);
4: Calculate 𝐖1 and 𝐖2 by using Eq. (9);
5: Calculate 𝐇 by using Eq. (15).
6: end for
7: return 𝐇.

3.4. Out-of-sample extension for querying

For any a new query data 𝑥 or 𝑦, the hash codes ℎ are formulated by the learned projection matrices 𝐏1 and 𝐏2. For EDCAH, we
mplement the hash functions ℎ (𝑥) and ℎ (𝑦) under out-of-sample extension via Eq. (18):

ℎ (𝑥) = sgn
(

𝐏1𝑥
)

,

ℎ (𝑦) = sgn
(

𝐏2𝑦
)

.
(18)

For EDCAH-t, according to Eq. (17), the hash functions are obtained as follows:

ℎ (𝑎) = sgn
(

𝐏𝑡𝑎
)

, here 𝑎 ∈ {𝑥, 𝑦} . (19)

4. Experiments and analysis

To validate the superiority of EDCAH and its variant EDCAH-t, we conduct extensive experiments on three public datasets and
make comparisons with several state-of-the-art hashing methods regarding both search accuracy and learning efficiency.

4.1. Experimental setups

In this subsection, we introduce popular datasets, evaluation metrics, baselines and implementation details for a series of
cross-modal image–text search experiments.

Datasets: We evaluate the search performance of the proposed EDCAH and its variant on Wiki (Pereira et al., 2013), MIRFLICKR-
25K (Huiskes & Lew, 2008), and NUS-WIDE (Chua et al., 2009). The first is a single-label dataset and the last two are multi-label
datasets. The detailed descriptions of these public datasets are reported in Table 2.
Wiki is composed of 2866 image–text pairs collected from Wikipedia. Each instance belongs to one of ten frequently used topics,
such as warfare, art, or sky. For an instance, each image is represented as a 128-dimensional scale-invariant feature transform
feature vector, and each text is denoted by a 10-dimensional Latent Dirichlet Allocation topic vector. We follow Wang et al. (2019)
to randomly pick up 2173 instances as the training and retrieval set, and the remaining instances as the query set.
MIRFILCKR-25K includes approximately 25,000 instances from Flickr. Each image is annotated by several user-assigned tags with
some of the 24 provided labels. For each instance, the image is represented by a 512-dimensional generalized search trees feature
vector, and the text is expressed as a 1386-dimensional bag of words vector. Following Ji et al. (2017), we randomly select 2000
instances as the query set and use the remaining instances as the training and retrieval set.
NUS-WIDE contains approximately 270,000 images with annotated tags from 81 provided semantic concepts. Following the setting
in Jiang and Li (2019), we choose the 10 most widely-used semantic concepts (including 186,577 images) as the research data.
Each image is represented as a 500-dimensional bag of visual words vector, and the corresponding text is represented as a 1000-
dimensional bag of words vector. Based on the protocol in Jiang and Li (2019), we randomly select 2000 instances as the query set,
and rest instances as the retrieval set. Besides, we sample 10,000 instances from the remaining 184,577 instances as the training
set.

Evaluation Metrics: We adopt three standard evaluation metrics (Gong, Lazebnik, Gordo, & Perronnin, 2013), namely, mean
Average Precision (mAP), Precision–Recall curve (PR) and topN-precision curve (topN), to evaluate the performance of the proposed
method. The mAP value is the mean of the average precision (AP) of each instance:

𝐴𝑃 = 1
𝐿

𝑅
∑

𝑟=1
𝑃 (𝑟)𝜉(𝑟), (20)

where 𝐿 is the number of relevant instances in the retrieved results, 𝑃 (𝑟) denotes the precision of the top 𝑟 training instances, and
𝑅 is the size of the query set in the experimental setting. 𝜉(𝑟) is an indicator function. If the 𝑟th instance is similar to 𝑞, 𝜉(𝑟) = 1;
otherwise, 𝜉(𝑟) = 0.
7
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Table 2
The details of the three evaluated datasets.
Dataset Wiki MIRFILICKR-25K NUS-WIDE

Total 2866 20,015 186,577
Query set 693 2000 2000
Training set 2173 18,015 10,000
Retrieval set 2173 18,015 184,577
Image feature 128-d SIFT 512-d GIST 500-d BOVW
Text feature 10-d LDA 1386-d BOW 1000-d BOW

The PR curve and the topN curve are widely used as metrics in the existing hashing-based cross-modal image–text search studies.
he former reflects the precision at different recall levels, and the latter denotes the variation in precision among the top-ranked

image or text instances. For these evaluation metrics, a larger score indicates better performance by the hashing method (Chen
t al., 2020).
Baselines and Implementation Details: We select several state-of-the-art hashing methods as baselines for comparison with

ur method, including unsupervised hashing (LSSH (Zhou et al., 2014), CMFH (Ding et al., 2014)) and supervised hashing (SCM-
eq (Zhang & Li, 2014), SePH (Lin et al., 2016), SMFH (Liu et al., 2016), LCMFH (Wang et al., 2019), SRLCH (Shen et al., 2021)). The
orresponding source codes of all the baselines were kindly provided by the authors, while we complete the code implementation
or LCMFH based on the CMFH source. We implement such baselines with suggested by their papers and report their best results.
he parameter settings of the proposed EDCAH and its variant are obtained by the grid search method (Wang et al., 2021; Zheng
t al., 2020). Specifically, the best performance of EDCAH is obtained when {𝜆1 = 0.5, 𝜆2 = 100, 𝜆3 = 10, 𝜆4 = 1, 𝜆5 = 0.001},
𝜆1 = 0.5, 𝜆2 = 0.1, 𝜆3 = 10, 𝜆4 = 0.1, 𝜆5 = 0.001} and {𝜆1 = 0.5, 𝜆2 = 0.1, 𝜆3 = 10, 𝜆4 = 0.1, 𝜆5 = 0.001} on Wiki, MIRFLICKR-25K and
US-WIDE, respectively. And the best performance of EDCAH-t is achieved when {𝜇1 = 0.5, 𝜇2 = 10, 𝜇3 = 0.1, 𝜇4 = 0.1, 𝜇5 = 0.001},
𝜇1 = 0.5, 𝜇2 = 1, 𝜇3 = 0.01, 𝜇4 = 0.1, 𝜇5 = 0.001} and {𝜇1 = 0.5, 𝜇2 = 1, 𝜇3 = 0.01, 𝜇4 = 0.1, 𝜇5 = 0.001} on Wiki, MIRFLICKR-25K and
US-WIDE, respectively. Due to space limitations, we present the experimental results for only two hash bit sizes (32 bits and 64
its) in the evaluation metrics.

In the experiments, we conduct two cross-modal image–text search tasks: I→T and T→I, where I→T denotes that the images are
sed as queries to retrieve relevant texts, and T→I indicates that the texts are used as queries to search for relevant images. All
omparison methods are implemented on MATLAB 2016a, whose server configurations are a workstation equipped with an Intel(R)
ore(TM) CPU i9-9820X @ 3.3 GHz, 128 GB memory.

.2. Search accuracy comparison

Accuracy on Wiki: To demonstrate the feasibility of EDCAH, we compare it with all the baselines on Wiki. Table 3 shows the
AP values of all comparison methods. We can observe that: (1) EDCAH achieves the best scores compared to all the baselines

n both search tasks. For example, EDCAH improves the mAP value from 21.86% (LSSH), 25.16% (SMFH), 24.91% (SePH),
2.88% (LCMFH), 34.55% (SRLCH) to 37.10% for 32 bits in the I→T task. The main reason for this improvement is that the joint
earning of class alignment and matrix factorization produces high-quality hash codes. (2) Moreover, the mAP scores of all the
ompared methods gradually improve as the hash code length increases from 16 to 128. Specifically, the mAP scores of EDCAH-t
re increased in a progression of 35.52% (16 bits), 37.90% (32 bits), 39.85% (64 bits) and 40.04% (128 bits). This result shows
hat longer hash codes contain more useful information. (3) For all the baselines, the mAP scores of the T→I tasks work better than
hat of I→T tasks. The main explanation is that the text features of the image–text pairs can better express the semantic information
e.g., structural characteristics, attribute characteristics) against the image features.

Figs. 2 and 3 show the PR and topN results of all comparison methods @ 32 bits and 64 bits hash codes on Wiki. The following
an be observed: (1) The proposed EDCAH and its variant achieve the best and second-best precision on both search tasks, similar
o the mAP results. (2) As the recall improves, the precision scores of all the baselines show a sharp decreasing tendency. However,
DCAH and EDCAH-t still outperform other methods. (3) EDCAH and its variant also outperform the comparison methods in terms
f the topN metric, which is consistent with that of the PR and mAP. To summarize, EDCAH yields the best results of all the tested
ashing methods concerning the mAP, PR, and topN metrics, demonstrating the effectiveness of the proposed method.

ccuracy on MIRFLICKR-25K: Table 4 shows the mAP values of all comparison methods at four code lengths. We observe that
1) EDCAH and its variant outperform all baselines on both search tasks. For example, EDCAH improves the mAP values from
8.85% (LSSH), 69.93% (SePH), 76.03% (LCMFH), 71.70% (SRLCH) to 78.89% @ 32 bits on the T→I task. (2) Specifically, the
AP values of EDCAH can be up to 14.66% for I→T and 19.99% for T→I compared to unsupervised hashing (LSSH), and 2.97%

or I→T, 2.69% for T→I against supervised hashing (LCMFH). One potential explanation is that EDCAH utilizes the class alignment
atrix factorization and optimization strategy to generate unified discrete hash codes. (3) The difference between the mAP results

f two cross-modal image–text search tasks on the MIRFLICKR-25K dataset is smaller than that of the Wiki dataset. One possible
eason is that the image quality of Wiki is poor, and the relevance between image and semantic tag is not high. Another possible
eason may be that the images of MIRFLICKR-25K have corresponding tags and attached annotations while the size of this dataset
s 25,000, which greatly reduces the difference between different modalities to improve search performance.
8
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Table 3
The mAP scores of all comparison methods on Wiki.
Methods I→T T→I

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

LSSH (Zhou et al., 2014) 0.242 0.219 0.230 0.249 0.620 0.636 0.632 0.633
CMFH (Ding et al., 2014) 0.245 0.261 0.259 0.267 0.605 0.638 0.632 0.649
SMFH (Liu et al., 2016) 0.232 0.252 0.228 0.247 0.579 0.630 0.649 0.670
SCM-seq (Zhang & Li, 2014) 0.247 0.236 0.239 0.259 0.382 0.448 0.442 0.441
SePH (Xu et al., 2017) 0.242 0.249 0.260 0.261 0.682 0.694 0.698 0.690
LCMFH (Wang et al., 2019) 0.327 0.329 0.352 0.364 0.698 0.688 0.703 0.735
SRLCH (Shen et al., 2021) 0.332 0.346 0.365 0.372 0.715 0.728 0.730 0.755
EDCAH 0.359 0.371 0.387 0.390 0.739 0.753 0.759 0.769
EDCAH-t 0.355 0.379 0.399 0.400 0.732 0.759 0.760 0.772

Fig. 2. PR curves of different methods @ 32 bits and 64 bits on Wiki.

Fig. 3. topN curves of different methods @ 32 bits and 64 bits on Wiki.

Figs. 4 and 5 show the PR and topN curves of all comparison methods @ 32 bits and 64 bits on MIRFLICKR-25K, respectively.
DCAH and EDCAH-t achieve better precision but slightly underperform SRLCH on both search tasks respectively. The possible
xplanation may be that SRLCH employs the transformed label information to obtain more discriminative hash codes for the search
9

asks. Although EDCAH and EDCAH-t are slightly inferior to SRLCH on topN metric, they still perform better on mAP and PR, and
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Table 4
The mAP scores of all comparison methods on MIRFLICKR-25K.
Methods I→T T→I

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

LSSH (Zhou et al., 2014) 0.577 0.575 0.574 0.576 0.586 0.589 0.589 0.588
CMFH (Ding et al., 2014) 0.583 0.582 0.580 0.578 0.588 0.586 0.586 0.583
SMFH (Liu et al., 2016) 0.612 0.620 0.642 0.664 0.623 0.621 0.666 0.698
SCM-seq (Zhang & Li, 2014) 0.625 0.634 0.643 0.649 0.639 0.650 0.659 0.665
SePH (Xu et al., 2017) 0.652 0.652 0.655 0.660 0.692 0.699 0.705 0.704
LCMFH (Wang et al., 2019) 0.679 0.693 0.697 0.701 0.735 0.760 0.774 0.775
SRLCH (Shen et al., 2021) 0.654 0.668 0.693 0.705 0.691 0.717 0.745 0.758
EDCAH 0.698 0.724 0.730 0.737 0.758 0.789 0.797 0.807
EDCAH-t 0.688 0.721 0.729 0.735 0.759 0.787 0.799 0.807

Fig. 4. PR curves of different methods @ 32 bits and 64 bits on MIRFLICKR-25K.

Fig. 5. topN curves of different methods @ 32 bits and 64 bits on MIRFLICKR-25K.

consume less training time reflected by Section 4.4. Furthermore, all the methods obtain a higher precision on MIRFLICKR-25K
than they do on Wiki. The main reason is that the sample instances on MIRFLICKR-25K possess smaller semantic differences than
do those of Wiki, which allows the models to obtain greater semantic correlation from the label supervision. Overall, these results
10
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Table 5
The mAP scores of all comparison methods on NUS-WIDE.
Methods I→T T→I

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

LSSH (Zhou et al., 2014) 0.397 0.391 0.393 0.396 0.422 0.422 0.422 0.418
CMFH (Ding et al., 2014) 0.378 0.381 0.376 0.379 0.385 0.387 0.384 0.392
SMFH (Liu et al., 2016) 0.430 0.418 0.418 0.423 0.464 0.465 0.449 0.459
SCM-seq (Zhang & Li, 2014) 0.574 0.589 0.571 0.600 0.562 0.591 0.604 0.624
SePH (Xu et al., 2017) 0.548 0.550 0.563 0.563 0.637 0.648 0.667 0.670
LCMFH (Wang et al., 2019) 0.610 0.613 0.621 0.638 0.692 0.710 0.719 0.735
SRLCH (Shen et al., 2021) 0.610 0.625 0.643 0.649 0.721 0.748 0.762 0.777
EDCAH 0.625 0.634 0.640 0.651 0.722 0.743 0.773 0.776
EDCAH-t 0.624 0.631 0.638 0.649 0.722 0.743 0.772 0.777

Fig. 6. PR curves of different methods @ 32 bits and 64 bits on NUS-WIDE.

show that the proposed methods outperform most baselines in terms of search accuracy except that they are slightly slower than
SRLCH on topN metric.

Accuracy on NUS-WIDE: The mAP values of all comparison methods on NUS-WIDE are shown in Table 5. Figs. 6 and 7 plot the
R and topN curves, respectively. According to these experimental results, EDCAH obtains the best mAP and PR scores and they are
imilar to those of EDCAH-t on both search tasks, which are consistent with the results on MRIFLICKR-25K. The main reason may
e that EDCAH produces effective hash codes or hash functions by utilizing the class alignment matrix factorization and discrete
ptimization. In addition, we observe that EDCAH and EDCAH-t yield comparable performance over SRLCH on mAP but are slightly
lower topN scores than SRLCH. However, SRLCH requires a heavy training time and as the number of hash bits increases, the time
ncreases exponentially. To summarize, we can conclude that EDCAH and its variant have superior search accuracy and are suitable
or practical large-scale cross-modal image–text search applications.
Bootstrap estimates in search performance: To validate the performance reliability of the proposed EDCAH and EDCAH-t,

we perform the bootstrap estimates experiment by following the settings in Bisani and Ney (2004) and Li (2019). Concretely, we
adopt the bootstrap method with 99% confidence intervals (1000 sampling) accompanied by 100, 200 repeated experiment results,
respectively. Table 6 reports the average mAP values of selected competitive LCMFH, SRLCH and our method with 32 and 64 code
lengths fixed on Wiki and NUS-WIDE. The maximum 99% confidence interval (a.k.a. C.I.) of all map scores is ±0.49212%. As shown
in Table 6, we note that all the average mAP scores on two datasets agree on the level of 99%. And the obtained ±0.49212% possesses
narrow confidence interval and considerable standard error, which demonstrate that all the data of Table 6 is trustworthy. The above
observations further show the reliability of Tables 3–5.

4.3. Learning efficiency comparison

To verify the efficiency of EDCAH and EDCAH-t, we make comparisons with the baselines in terms of the training time and
training size.

Training Time Comparison: Table 7 lists the training time of all comparison methods on MIRFLICKR-25K. It is clear that EDCAH-t
requires the least amount of time compared to all the baselines. For example, EDCAH-t is approximately 6-times faster than LCMFH,
11
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Fig. 7. topN curves of different methods @ 32 bits and 64 bits on NUS-WIDE.

Table 6
The mAP scores of selected methods with the bootstrap estimates on Wiki and NUS-WIDE. (99% C.I. = ±0.49212%).

Methods Times Wiki (I→T) NUS-WIDE (I→T) Wiki (T→I) NUS-WIDE (T→I)

32 bits 64 bits 32 bits 64 bits 32 bits 64 bits 32 bits 64 bits

LCMFH (Wang et al., 2019) 100 0.330 0.350 0.615 0.622 0.689 0.703 0.710 0.717
200 0.326 0.354 0.613 0.624 0.686 0.701 0.709 0.720

SRLCH (Shen et al., 2021) 100 0.342 0.362 0.627 0.640 0.729 0.732 0.743 0.765
200 0.348 0.366 0.624 0.644 0.725 0.729 0.748 0.763

EDCAH 100 0.369 0.389 0.636 0.643 0.756 0.760 0.745 0.769
200 0.372 0.385 0.638 0.637 0.753 0.758 0.743 0.774

EDCAH-t 100 0.380 0.400 0.632 0.641 0.755 0.763 0.747 0.770
200 0.375 0.394 0.631 0.639 0.759 0.761 0.743 0.773

Table 7
Training time (seconds) comparison of all comparison methods on MIRFLICKR-25K.

Methods MIRFLICKR-25K

16 bits 32 bits 64 bits 128 bits

LSSH (Zhou et al., 2014) 42.08 44.27 45.37 51.25
CMFH (Ding et al., 2014) 22.22 24.97 24.71 26.33
SMFH (Liu et al., 2016) 18.93 21.28 20.99 22.98
SCM-seq (Zhang & Li, 2014) 10.16 20.05 33.83 69.23
SePH (Xu et al., 2017) 106.66 198.03 372.42 708.91
LCMFH (Wang et al., 2019) 9.71 10.12 11.18 14.85
SRLCH (Shen et al., 2021) 114.60 115.34 119.09 125.43
EDCAH 5.93 6.64 8.78 11.96
EDCAH-t 1.48 1.57 1.99 3.07

100-times faster than SRLCH, and 4-times faster than EDCAH under four hash bits. The possible reason is that the two-step hashing
scheme employs fewer matrix variables to reduce the computational complexity of the EDCAH model and lower the equipment load
during training. Thus, EDCAH-t can further improve the learning efficiency of our method.

Table 8 shows the comparison results of the training time when the training size is varied from 2000 to 50,000 for 64 bits on
US-WIDE. Thereinto, the training time of SRLCH under 2000 samples is not given because such a method adopts 5000 kernel
nchors to train the model. Specifically, EDCAH-t achieves the shortest training time than all comparison methods. For example, it
educes the training time from 442.59 (CMFH), 27.89 (LCMFH), 234.87 (SRLCH), and 21.59 (EDCAH) to 9.47 at a training size of
0,000. Based on the above observations, EDCAH-t has the fastest training speed among all the baselines on the MIRFLICKR-25K
nd NUS-WIDE datasets, further demonstrating its superiority about learning efficiency.

ffect of Training Size: Table 9 shows the mAP scores for EDCAH and EDCAH-t under different training sizes (from 2000 to
80,000) at 64-bit hash codes. It reveals from Table 9 that EDCAH and EDCAH-t tend to converge rapidly when the training size is
pproximately 10,000. Thus, the use of 10,000 samples (that is, approximately 5% of the training set) on NUS-WIDE yields desirable
12
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Table 8
The variation of training time (seconds) under different training set sizes @ 64 bits on NUS-WIDE.
Methods Training size (K = 1000)

2K 5K 10K 20K 50K

LSSH (Zhou et al., 2014) 5.59 13.55 24.35 47.48 73.41
CMFH (Ding et al., 2014) 33.42 66.60 187.88 228.68 442.59
SMFH (Liu et al., 2016) 2.09 8.63 34.68 149.43 1122.47
SCM-seq (Zhang & Li, 2014) 17.92 16.79 21.06 24.33 25.20
SePH (Xu et al., 2017) 148.62 157.66 167.86 167.86 186.90
LCMFH (Wang et al., 2019) 1.10 1.94 4.32 7.33 27.89
SRLCH (Shen et al., 2021) – 43.49 68.27 110.73 234.87
EDCAH 0.76 1.62 3.23 6.40 21.59
EDCAH-t 0.69 1.23 1.25 3.99 9.47

Table 9
The mAP scores of EDCAH and its variant @ 64 bits with varying training sizes on NUS-WIDE.
Task Methods Training size (K = 1000)

0.2K 0.5K 7.5K 10K 20K 50K 100K 150K 180K

I→T EDCAH 0.600 0.614 0.635 0.640 0.645 0.649 0.650 0.652 0.656
EDCAH-t 0.595 0.627 0.636 0.638 0.640 0.649 0.648 0.654 0.654

T→I EDCAH 0.742 0.758 0.763 0.773 0.780 0.782 0.783 0.7850 0.787
EDCAH-t 0.746 0.762 0.769 0.772 0.781 0.782 0.784 0.782 0.785

Fig. 8. The variation in training time with different training sizes @ 64 bits and 128 bits on NUS-WIDE.

esults, and further increasing training set sizes does not substantially affect the search performance. However, as the training set
ize increases, the training time increases gradually as well.

To further validate the effect of training size on training time, Fig. 8 shows the training time comparison of EDCAH, EDCAH-t,
nd the two competitive methods LCMFH, SRLCH under different training sizes for both 64-bit and 128-bit on NUS-WIDE. We
ind that our method achieves similar results with LCMFH when the training size is less than 10,000; however, when the training
ize exceeds 20,000, the training time of EDCAH and LCMFH increases exponentially, while that of EDCAH-t increases linearly.
pecifically, EDCAH-t is about 3.1-times faster than the other two methods with 180,000 training sizes regarding 64-bit and 128-bit.
s for SRLCH, EDCAH-t still keeps a linear growth while SRLCH increases exponentially from 5000 to 180,000 samples. Fig. 8 and
ables 8 and 9 indicate that EDCAH-t has the fastest training speed among all the baselines on NUS-WIDE, highlighting its critical
dvantage in terms of learning efficiency, making it suitable for rapid large-scale cross-modal image–text search applications.

.4. Empirical analysis

Ablation Experiment: To verify the efficacy of the EDCAH and EDCAH-t, we design two variants for comparison: EDCAH-
(EDCAH-t-C) and EDCAH-R (EDCAH-t-R). Specifically, EDCAH-C does not utilize the class alignment matrix factorization term

i.e., 𝜆1 = 0), and EDCAH-R adopts a continuous relaxation strategy to optimize the proposed algorithm (i.e., relaxing the discrete
onstraints for real-value variables when generating the hash codes). The mAP results of these variants are presented in Tables 10
nd 11.

Compared to EDCAH-C, EDCAH achieves better mAP values. For example, the mAP scores of EDCAH are increased by 1.96%
Wiki), 3.45% (MIRFLICKR-25K), and 2.46% (NUS-WIDE) for the I→T task, and 2.27% (Wiki), 3.06% (MIRFLICKR-25K) and 2.39%
NUS-WIDE) for the T→I task. The main reason for these results is that the EDCAH combines matrix factorization and class label
lignment to generate discriminative hash codes that contribute to preserving better correlations between modalities. Moreover, the
AP values of EDCAH-t are similar to those of EDCAH.
13
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Table 10
The mAP scores of EDCAH, EDCAH-t and their variants on Wiki.

Methods I→T T→I

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

EDCAH-C 0.337 0.350 0.366 0.376 0.715 0.724 0.738 0.751
EDCAH-t-C 0.333 0.352 0.364 0.375 0.709 0.728 0.730 0.752
EDCAH-R 0.335 0.346 0.366 0.371 0.713 0.725 0.740 0.753
EDCAH-t-R 0.330 0.344 0.367 0.384 0.713 0.727 0.737 0.757
EDCAH 0.359 0.371 0.387 0.390 0.739 0.753 0.759 0.770
EDCAH-t 0.355 0.379 0.399 0.400 0.732 0.759 0.760 0.772

Table 11
The mAP scores of EDCAH, EDCAH-t and their variants on MIRFLICKR-25K and NUS-WIDE.

Task Methods MIRFILCKR-25K NUS-WIDE

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

I→T

EDCAH-C 0.663 0.681 0.693 0.713 0.605 0.604 0.616 0.627
EDCAH-t-C 0.664 0.689 0.692 0.713 0.610 0.601 0.614 0.625
EDCAH-R 0.675 0.683 0.701 0.714 0.602 0.614 0.623 0.632
EDCAH-t-R 0.666 0.673 0.703 0.714 0.593 0.616 0.624 0.629
EDCAH 0.698 0.724 0.730 0.737 0.625 0.634 0.640 0.651
EDCAH-t 0.688 0.721 0.729 0.735 0.624 0.631 0.638 0.649

T→I

EDCAH-C 0.720 0.759 0.773 0.777 0.695 0.720 0.748 0.756
EDCAH-t-C 0.717 0.753 0.772 0.775 0.700 0.723 0.749 0.756
EDCAH-R 0.713 0.735 0.772 0.780 0.6983 0.726 0.747 0.759
EDCAH-t-R 0.705 0.728 0.773 0.7844 0.691 0.725 0.749 0.757
EDCAH 0.758 0.789 0.797 0.807 0.722 0.743 0.773 0.776
EDCAH-t 0.759 0.787 0.799 0.807 0.722 0.743 0.772 0.777

Compared to EDCAH-R, EDCAH obtains higher mAP scores. Specifically, the mAP values of EDCAH can be up to 2.27% (Wiki),
.88% (MIRFLICKR-25K), and 1.99% (NUS-WIDE) for the I→T task, and 2.20% (Wiki), 3.80% (MIRFLICKR-25K) and 2.11% (NUS-

WIDE) for the T→I task. And the experimental observations for EDCAH-t are similar to those of EDCAH. Overall, these results
demonstrate the efficacy of the proposed method and its variant.

Parameter Analysis: To analyze the impact of the parameters in search performance, we conduct experiments on three datasets
w.r.t. 64 bits. The results with 64 hash bits are similar to those at other hash bits (a.k.a. 16-bit, 32-bit, and 128-bit). Due to space
limitations, we only show the EDCAH results at 64 bits, as plotted in Fig. 9. Concretely, 𝜆1 controls the influence of class alignment
matrix factorization, 𝜆2 impacts the hash code learning procedure, 𝜆3 influences the contribution of association matching, 𝜆4 controls
the hash function learning process, and 𝜆5 is a regularization term that controls model convergence. Here, we set 𝜆1 = 0.5 because
the impact of input image data is equivalent to that of text data for our method (Chen et al., 2020).

Fig. 9 indicates that for Wiki, the parameter settings of 𝜆2 ∈ [1, 100], 𝜆3 ∈ [1, 10], 𝜆4 ∈ [0.01, 1] and 𝜆5 ∈
[

10−6, 1
]

apparently
do not affect the search performance; for MIRFLICKR-25K and NUS-WIDE, the insensitive regions for the parameter settings are
𝜆2 ∈ [0.1, 100], 𝜆3 ∈ [1, 10], 𝜆4 ∈

[

10−3, 10−1
]

, and 𝜆5 ∈
[

10−6, 10−1
]

. The parameter setting results for EDCAH-t are consistent with
those of EDCAH. These results show that the proposed EDCAH and its variant EDCAH-t maintain stable search performance when
these parameter values in these ranges are employed.

Convergence Analysis: To validate that the designed optimization strategy can converge, we further carry out a convergence
study of our method on the three datasets w.r.t. 64 bits, as plotted in Fig. 10. Following the setting in Luo et al. (2018), the objective
values are normalized by dividing the maximum on each dataset. It is observed that: (1) The proposed method and its variant show
a good tendency to converge; EDCAH converges in approximately 25 iterations and EDCAH-t about 20 iterations. Thus, these results
verify the convergence abilities of the EDCAH and EDCAH-t models. (2) Besides, EDCAH-t converges faster than EDCAH on all three
datasets, indicating the superiority of the two-step hashing scheme in improving the learning efficiency of our method.

4.5. Theoretical and practical implications

In summary, the implications of this work are mainly manifested in two aspects.
Theoretically, this work is a fundamental but hot research top for exploring the correlation between distinct modalities. And

enabling the bi-directional search of images and texts is rather significant to understand the correspondences between vision and
language in the multimedia and computer vision communities. Meanwhile, for our method, the extension of multiple modalities is
simple and easy by constructing the proposed objective function, which is a very interesting topic worthy of further exploration and
research.

Practically, performing fast and accurate searches is a challenging problem while faced with limited storage memory and search
capability. For this reason, our study fully captures the similar semantics of data instances and supervised information, which further
14

enhances the search performance and promises the accuracy of hashing methods. Besides, our approach is not only effective, but
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Fig. 9. Parameter analysis curves of EDCAH on three benchmark datasets.

Fig. 10. Convergence analysis of EDCAH and its variant @ 64 bits on all datasets.

also has made progress in learning efficiency. Specifically, the study is a scalable hashing method and reduces the training time,
making it feasible and practical for large-scale cross-modal image–text datasets.

When training hashing model, we adopt the hand-crafted shallow features rather than the deep features for search tasks. The main
explanation is that deep hashing methods benefit model performance at the expense of heavy computational cost and substantial
hyperparameters adjustments. Therefore, it is worth noting that our approach displays a tradeoff between search accuracy and
training speed.

5. Conclusion

This paper presents a novel discrete supervised hashing method (EDCAH). Our method can generate discrete discriminative hash
codes for cross-modal image–text search because of two main characteristics: (1) it designs the hash code learning by integrating
matrix factorization and class alignment; (2) it adopts discrete optimization strategies to obtain closed-form solutions of the hash
codes during training. (3) to reduce the computational complexity of EDCAH, a fast and efficient variant EDCAH-t is further proposed
to boost and optimize the learning efficiency of the EDCAH model that adopts a two-step hashing scheme. Extensive experimental
results on three widely used benchmark datasets demonstrate that EDCAH and EDCAH-t outperform the state-of-the-art hashing
15

methods in both search accuracy and learning efficiency. Besides, EDCAH-t possesses better learning efficiency of hashing model
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than all the baselines on large-scale datasets, making it suitable for rapid yet practical cross-modal image–text search applications
in precision-first and high-speed situations. In the future, we consider to extend our method by integrating embedded learning to
generate more compact, precise hash codes to improve the search performance.
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