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Cross-modal hashing has gained popularity in similarity search due to its excellent query efficiency and
economical storage costs. However, current models frequently overlook the distinctive property of each
modality, resulting in reduced accuracy due to inadequate utilization of these attributes. Moreover, there
is a weak semantic relevance between modality attributes and multiple supervision knowledge (the labels
and similarity constraints constructed by labels), accompanied by a cumulative quantization of the models. To
address these issues, we propose an Individual Mapping and Asymmetric Dual Supervision method (IMADS). It
merges specific and shared information to effectively learn a cross-modal representation space. Furthermore,
we present an asymmetric dual supervision learning framework to produce discriminative hash codes. This
framework achieves two primary goals: (1) Combing cross-modal representation and multiple supervision
information to enhance the consistent relation of distinct modalities, and (2) developing a discrete optimization
algorithm to mitigate the information loss caused by the hash code. Comprehensive experimental results

illustrate that the introduced IMADS outperforms other stat-of-the-art hashing methods.

1. Introduction

Cross-modal search, a basic yet widely studied topic, aims to explore
the semantic correlation between distinct modalities (Li et al., 2022;
Seyed, Mohammad, & Miiller, 2023; Shen, Sun, Wei, Hu, & Chen, 2022;
Wang, Wang, Xu, Cao, & Cai, 2022; Yang, Yao, Liu, & Deng, 2022).
Nowadays, as the amount of data increases dramatically on social
platforms, cross-modal hashing (CMH) search approaches that convert
high-dimensional real features into low-dimensional binary codes, are
attracting considerable attention because of their rapid query efficiency
and cost-saving storage capability (Qin, Xian, et al., 2022; Tran, Wang,
Chen, & Xiao, 2021; Wang, Zhao, & Li, 2022). While CMH is applicable
to any combination between modalities, this paper particularly concen-
trates bidirectional search tasks between images and texts. It intends
to bridge the gap between the computer vision and natural language
processing communities. Therefore, it is quite significant to conduct an
in-depth study over CMH techniques.

Generally, pioneering CMH methods can be broadly grouped into
classical unsupervised and supervised categories based on whether
labels are utilized. The former (Cheng, Jing, & Ng, 2020; Ding, Guo,
& Zhou, 2014; Fang, Jiang, Han, Teng, Zhou et al., 2022; Wang,
Gao, Wang, & He, 2015; Wang, Wang, He, Gao, & Tian, 2020; Yao
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et al.,, 2023; Zhang, Luo, Huang, Xu, & Song, 2021) conducts the
search task by only considering the topological structure of the original
data. By contrast, the latter (Chen et al., 2019; Liu, Wang, & Cheung,
2022; Wang & Peng, 2022; Wang, Zareapoor, Yang, & Zheng, 2022;
Zhang, Li, Gao, & Chen, 2023; Zhang & Wu, 2022a, 2022b) utilizing
the label supervision evidently improves the accuracy of the hashing
models in comparison to the unsupervised one. Therefore, leveraging
the supervision knowledge proves advantageous for the majority of
supervised CMH methods in designing effective hashing models.
Despite the significant breakthroughs, most current supervised CMH
search methods still encounter the following challenges. (1) Exist-
ing models cannot well address the individual information of each
modality. For example, many approaches (Liu, Ji, Wu, & Hua, 2016;
Shen et al., 2020; Wang, Gao, Wang, & He, 2019) perform the search
tasks by learning the shared feature information of input modalities
without considering the inner specific property of each modality. Sub-
sequently, although several supervised CMH methods (Chen, Zhang,
Tian, Wang, Zhang et al., 2022; Wang, Zhao, & Nai, 2021b; Wang,
Zhao, Wang, Huang, & Li, 2022; Zhang & Wu, 2022b; Zhang, Wu,
& Yu, 2021) endeavour to introduce the individual attribute, they
give up the original shared attributes. Thus, neither of these can fully
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explore the specific and shared properties to construct good learning
paradigms, which weaken the accuracy of the cutting-edge models.
(2) Most state-of-the-art methods cannot correlate feature information
and multiple supervision knowledge well. For example, conventional
way (Qin, Fei, et al., 2022; Shen et al., 2020; Wang et al., 2019; Zhang,
Wu, & Yu, 2021) to accomplish the search tasks is to connect simple
shared supervision and common feature representation. However, this
strategy neglects the importance of other supervised knowledge and
individual feature information. To address this, several models (Fang
& Ren, 2020; Ma, Liang, He, & Kong, 2017; Mandal, Chaudhury, &
Biswas, 2019) incorporate the common representation and symmetric
pairwise semantic similarity matrix builded by the labels to conduct
the search tasks. Furthermore, some methods (Chen et al., 2019, 2022;
Lin, Ding, Han, & Wang, 2016; Qin, Fei, et al.,, 2022) have made
attempts to merge the common representation and asymmetric multi-
ple supervision knowledge to achieve the hashing framework. Despite
promising results, the aforementioned three paradigms have always
been unable to construct a good correlation between common represen-
tation, individual representation, supervised label, and linear pairwise
semantic similarity matrix. Meanwhile, such models often encounter
the cumulative quantization of the learned hash code because of the
simple treatment over discrete constraints when training optimization.

To cope with above problems, a novel supervised CMH dubbed
Individual Mapping and Asymmetric Dual Supervision (IMADS) is pro-
posed. For one thing, this method sufficiently employs the distinc-
tive characteristics of each modality as well as the common prop-
erty between modalities to acquire the beneficial cross-modal feature
representation, going beyond traditional simple shared attribute. For
another thing, the IMADS integrates the shared supervise labels, linear
asymmetric semantic similarity matrix and the cross-modal feature
representation while well reducing the quantization loss by discrete op-
timization algorithm. The primary advantages of this study are outlined
as follows.

+ Different from most current supervised methods, we simulta-
neously capture the specific features of each modality and the
shared feature between modalities to maximize the cross-modal
representation of the input instance, which well produces discrim-
inative hash code for efficient search.

IMADS leverages an asymmetric dual supervision learning frame-
work to yield effective hash functions by the labels, linear pair-
wise semantic similarity, and the specific and shared feature
representations while developed discrete optimization algorithm
can alleviate cumulative quantization of this framework.
Abundant experiments managed on three standard datasets sub-
stantiate the superiority of our IMADS against several competitive
hashing methods and the effectiveness of the proposed learning
modules.

The remainder of this study is organized as follows. The related
work of supervised hashing models and the framework construction
of the IMADS are respectively illustrated in Section 2 and Section 3.
Section 4 unveils comparison experiments while the conclusion part is
in Section 5.

2. Related work

We roughly survey the literature work of supervised cross-modal
hashing methods, namely, common or individual hashing, symmetric
or asymmetric hashing.

2.1. Common or individual hashing

Common supervised cross-modal hashing methods utilize supervi-
sion knowledge and the shared feature descriptor between modalities
to create the hash codes for search tasks. For example, SMFH (Liu et al.,
2016) highlights the label-similarity supervision and shared feature of
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the original instances to build the hashing model. LCMFH (Wang et al.,
2019) considers the labels and common feature to directly generate the
hash functions and hash codes. SCRATCH (Chen, Li, Luo, Nie, Zhang
et al., 2020) adopts the collective matrix factorization technique and
the semantic supervision label to discretely obtain the latent hash repre-
sentations while proposing three learning models including two shallow
SCRATCH-o, SCRATCH-t algorithms and a deep SCRATCH-d algorithm.
Thereafter, SRLCH (Shen et al., 2020) and SDMSA (Zhang & Wu, 2022c)
both devise the learning mapping of labels to the hash codes to design
the hashing framework. Differently, individual supervised cross-modal
hashing methods exploit the supervision knowledge and the unique
geometric distributions to obtain the hash codes. FS-CMFH (Liu, Li, Du,
Peng, & Fan, 2018) leverages supervision, the individual information,
and the matching relation between individual features to achieve the
hashing model. MSLF (Wang et al., 2021b) and LFMH (Zhang, Wu, &
Yu, 2021) widely utilize the specifics of each modality and the match-
ing relationship constraint between distinct modalities to produce the
hash code so that the obtained code well degrades the quantization
loss of the models. EDCAH (Wang, Zhao, Wang, et al., 2022) makes
use of the common and unique feature distributions of image-text pairs
to construct the efficient unified hashing paradigm. SCLCH (Qin, Fei,
et al., 2022) first formulates different feature representations, and then
uses the relationship between label-similarity mapping, unique features
and hash codes to constitute the hashing paradigm.

2.2. Symmetric or asymmetric hashing

Symmetric supervised cross-modal hashing methods leverage the
inner product from two identical matrices to deliver the hash codes
during searching. For example, DCMH (Ma et al., 2017) designs the
labels and pairwise similarity matrix to gain the unique hash code
of each modality. GPSH (Mandal et al., 2019) explores the seman-
tic correlation between data items to develop a generalized hashing
framework, making it suitable many applications. SDCH-KDA (Fang &
Ren, 2020) integrates multiple supervision information and kernel dis-
criminant to achieve cross-modal hashing retrieval. Despite satisfactory
performance, symmetric hashing methods such as DCMH, GPSH, and
SDCH-KDA have high complexity in training the model, and meanwhile
it is difficult to directly optimize the matrix variables of hashing model.
To tackle this, some asymmetric hashing works have been proposed and
shown its better search results than symmetric hashing (Da et al., 2017;
Meng, Wang, Yu, Chen, & Wu, 2021).

Unlike symmetric hashing, asymmetric supervised cross-modal
hashing methods utilize asymmetric inner product paradigm to consti-
tute the hashing model. For example, MTFH (Liu, Hu, Ling, & Cheung,
2021) creates a generalized and efficient cross-modal hashing frame-
work by supervised Matrix Tri-Factorization with varying hash lengths
to the representation scalability of original paired or unpaired multi-
modal data, which can be highly applied to many challenging search
scenarios. BATCH (Wang et al., 2021) employs the semantic-level infor-
mation via distance-distance difference optimization, and asymmetric
similarity-preserving scheme to build a two-step hashing model. ZS-
CMR (Wang, Wang, et al., 2022) achieves the tasks of cross-modal
search by efficiently combining the adequate instance-level semantic
information and Zero-Shot learning, to address the ignorance problem
of intra-modal variance. ADCH (Luo, Zhang, Wu, Chen, Huang et al.,
2018) adopts the strategy of substituting a hash code with a real matrix
variable to yield discrete hash code, and then also well circumvents
quantization errors of the encoding form. Ulteriorly, DJSAH (Wang,
Zhao, & Li, 2022), FDCH (Yao et al., 2020), and FADCH (Teng, Ning,
Zhang, Wu, & Zeng, 2022) combine the same replacement strategy with
multiple supervision knowledge to form a unified hashing framework.
TECH (Chen et al., 2019) and EDMH (Chen et al., 2022) individually get
binary hash code and hash functions by debasing the model complexity
in the pairwise similarity matrix from square terms to linear terms.
Despite considerable success, such methods still possess ample room
for further upgrading.
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3. Proposed approach

This paper takes the boldface uppercase letters to describe the
matrices (a.k.a. M) employed in this study. Accordingly, M; and M;; are
the ith column matrix and the matrix variable at row i and column ;.
XT is the transpose of matrix X. ||-|| , ¢r(-) separately denote Frobenius
norm and trace matrix. ¢(-), exp(-), and sgn(-) individually depict the
kernel function, the exponential function, and the element-wise sign
function.

Assume that a training set O = {o,-}:':1 produces the image and text
data matrices, which o; = {x’l,xg,l,-}. Thereinto, x! € R41, x e R4
and /; € R" express the feature vectors of image, text and shared label
data, respectively (generally d; # d,). Set X; = {x!}" & R, X, =
{xg}l'_'zl € R%*" respectively mean image and text feature matrices.
To well excavate the high-dimensional nonlinear feature information
of cross-modal instances, we introduce Gaussian kernel function to con-
duct the original image and text features, that is, nucleating X, and X,
to ¢(X;) and ¢(X,) as the input of our training model, which ¢ (X;) =
{¢ (x’l)};;l, b (Xy) = {0 (x}) }:=1' Thereinto, the kernelization features
are calculated via

&, (x1) =exp <—Z ”x11 ~ b Hi) ’
¢y (x2) = exp (‘Z |- b2H§> ’

where {x{,, }t_
j=
kernel width o = 1/n)]_, Z;zl “xi - bj”

In this work, we utilize two supervision knowledge, namely, the
label matrix L € R and pairwise semantic similarity matrix S, to
achieve the cross-modal search tasks. The matrix L is easily obtained
from the original datasets. For matrix S, most methods define that two
different samples are similar when §;; = 1; otherwise, S;; = —1. To
reduce the computational complexity and well correlate the relation
between labels, IMADS gets the formulation by cosine similarity:

@

denotes ¢ random anchor points, z = 1/262, and the

S, =L{L,,. 2

i

where L,; = L,;/||Ly|l,- We employ matrix L to save the label
characteristics and subsequent the semantic similarity S = LTL. As
shown in Eq. (2), the S value belongs to [0, 1]. To ensure that the value
falls between —1 and 1, defining the pairwise semantic similarity S by
S=2§-E=2L"L-1,1" (3)

n+p’

where 1, € {1}" express the all-one matrix. Benefiting from Eq. (3),
there is no need to directly calculate the matrix S during optimization.
Accordingly, the computational cost of the IMADS is transformed from
0O(n?) to O(n) while also fully leveraging dual supervision knowledge.
Given the length of binary code /, this work aims to learn the
unified hash code B € {-1,1}" and the hash functions f,(-), f,(-)
among similarity search tasks. As shown in Fig. 1, the proposed IMADS
includes two components: Individual Mapping Learning and Asymmet-
ric Dual Supervision Learning. The following subsections explain the
motivational formulations of two learning parts in detail.

3.1. Individual mapping learning

The purpose of individual mapping learning is to yield the optimal
common feature representations by considering the individual property
of each modality in our hashing model. Collective matrix factorization
technique has been proved that it delivers good performance in unsu-
pervised methods. Up to now, many supervised CMH methods (Shen
et al., 2020; Wang et al., 2019; Wang, Zhao, Wang, et al., 2022; Zhang
& Wu, 2022c) usually adopt collective matrix factorization theory to
produce the shared feature representation of image-text pairs. That
is to say, X,, ~ U,V,m € {1,2}, where X, denotes cross-modal

instances, U,, is the projection matrix, and V is the shared feature
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representation. However, this basic way ignores the specific geometric
information from each modality, resulting in the suboptimal accuracy
of models. Thus, we design a new learning constraint to better correlate
the individual and shared feature representations of the cross-modal
data in hashing model by:

2 ) 2
U,,,,\I’I,:i,{’lvm,vmz::] . H¢ (X)) - U, V,, HF +A3 Z‘. [V=W,,V,.|[% 4
where V,, is the individual feature, U,,, W,, are the projection matrices.
To employ the available label knowledge, we build an equivalent rela-
tionship between labels and shared feature descriptor as a constraint in
Eq. (4), that is V = UL, in which U is the projection matrix.

Additionally, we consider to well connect the image and text feature
descriptors. Thus, a correlation matrix Q € R/ is devised to achieve
this goal:

G A V2= QY - )

Combining Egs. (4) and (5) by a linear way, we constitute the
formulation of individual mapping learning part:

2 2
Ji=y Jmin o % A (X) = UV, HZF + 43 Z‘l [UL-W, V|5 ©

+ A4 |[V2—QV, ||} + 4sRe (U,,. V,,. W,,, UL, Q) ,

where Re() = || - ||’fp for avoiding over fitting of Eq. (6).
3.2. Asymmetric dual supervision learning

Asymmetric dual supervision learning aims to produce the dis-
criminative hash code and effective hash functions while improving
the semantic correlation the optimal shared feature and multiple su-
pervision. After obtaining the optimal shared feature V by Eq. (6),
most methods (Ding et al., 2014; Wang et al., 2019, 2020; Wang,
Zhao, Wang, et al., 2022; Yao et al., 2023) can generate the hash
code B or hash functions an=l P,. They directly leverage the label
L and transformed linear pairwise semantic similarity formulation
||IS—BTV||§r + ||B—V||fr to guide the learning of the hash codes.
However, this learning scheme suffers from two problems. (1) There is
weak connection between the optimal representation V which enriches
the individual and common features, and multiple supervision L and
S. Although possessing some semantic relevance, many studies cannot
deliver the high-quality discriminative cross-modal representation and
then obtain effective hash codes. (2) Many hashing models learn the
hash code B by minimizing minge(_; 1y o ||B—V||2F+ﬂ ||IS—BTV||3,. For
simple optimization, they usually discard the constraint term related to
the discrete hash code B or transform B € {—1,1}*" as B € [—1, 1]"*".
This simple scheme may bring in the available information loss and
consequent hash quantization error.

Motivated by these, previous works provide the possibility of con-
tinuing to study the supervision knowledge in depth. In specific, we
construct the constraint relation between the optimal cross-modal rep-
resentation contained in common and individual features, multiple
supervision L and S. We first thought of dimensionality reduction
while avoiding traditional optimization strategies. Then, we convert
symmetric form to asymmetric form by replacing one of the hash
codes with an auxiliary matrix. Finally, to better correlate the dual
supervision knowledge and learned cross-modal feature representation,
we design:

pemin IB-UL|% + 5 “lS—BTUL”i : %)

Meanwhile, the hash functions for querying can be easily computed
by the above obtained hash code:

2
min " 0, [Pt (X,) = B +7 [P, 13 ®)
m om=1
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LA+HVI

B(X1)
Image Feature ‘ ll;

Iv.-Qv, H; -0

| e
1T Uzamvz ® | hb

B(X2)

Text Feature

Individual Mapping Learning

Asymmetric Dual Supervision Learning

Fig. 1. The primary pipeline of the proposed IMADS. It contains Individual Mapping Learning for mutually obtaining optimal feature representation from image-text instances
and Asymmetric Dual Supervision Learning to deliver the effective hash code and hash functions. Meanwhile, this pipeline takes both image and text feature matrices as model

input, and generates the hash code and hash functions as model output.

Integrating Egs. (7) and (8) by a linear way, we define the related
form of asymmetric dual supervision learning part:

. 2 Taor |2
L= min _ a|B-UL|A+f ”lS—B UL”

Pm,BE{—l,l}’X" F
(C)]

2
+ X [Pus (%) =B+ 7 Pl

To reduce the cumulative quantization of the asymmetric dual super-
vision learning during training optimization, we introduce two auxil-
iary matrices C and D to measure the difference with B and further
discretely obtain the closed-form hash code matrix B.

To summarize, the final objective function of our IMADS includes
two components: individual mapping learning for Eq. (6) and asymmet-
ric dual supervision learning for Eq. (9). Thereinto, the former aims to
obtain the optimal common feature descriptor (a.k.a. V) via combining
the labels, individual and shared feature descriptors. The intention of
latter component is to produce the hash code B and hash functions P,
by the generated matrix V and multiple supervision knowledge.

3.3. Optimization algorithm

We aim to seek the solution of the matrix variables in Egs. (6)
and (9). Evidently, solving Eq. (6) is a simple optimization problem
without any discrete condition. However, directly optimization Eq. (9)
is sophisticated because of the discrete constraints attached to the hash
code. Thus, we develop a novel optimization algorithm to solve Eq. (9)
instead of traditional relaxation scheme.

1. U,,-Subproblem. By fixing V,, V,, W, , V and setting dJ,/dU,, = 0,
the solution of U,,:

Uy, = 4 (X,) Vi T (A ViV, T 45T) 7 (10
where I is defined as identity matrix.
2. V,-Subproblem. Taking V, as only argument and letting 4J,/0V, =0,
we get:

Vy = AU, U + W, "W, +2QTQ+4s1] !

11
x [40;T¢ (X;)+2;W,TUL+1,Q"V,]. an
3. V,-Subproblem. As V,-Subproblem does, we obtain
-1
V, = [AU, U+ A3 W, TWo + (4 + 45) 1 a2

X [4,U,T o (X5) + AW, TUL+4,QV | .

4. W, -Subproblem. Fixing the other variables and setting dJ, /0W,, =0,
we possess the solution as

W, = ULV, (1,V,,V,,T + 451) . (13)

5. U-Subproblem. By fixing other variables and setting dJ, /0U = 0, we
have

U= A3W,,V,.LT[(45 + 45) LLT] 7. (14

6. Q-Subproblem. Analogous to U-Subproblem, we have
Q=4VoV,T(AV,V, T+ 251) 7 (15)

7. B-Subproblem. With B as the only matrix variable, Eq. (9) is reduced
as:

2
Be(rfl]iﬁl}lxn a|B-ULI3 +p st - BTULHZF + mzzl . HP,,,¢ (X,,) - BHZF.

(16)
Further, Eq. (16) can be derived as
min tr (BTA + pBTUL(UL)"B)
0 D
& mintr (BTA+ pBTUL(UL)'C) + 3 [B-C+5 an
F
& mintr (BTA+ pBTUL(UL)"C- ¢B"C+B'D),
where A = -2aUL - 2p/ULST — 24,P, ¢ (X,). According to the
formulation of Eq. (17), we obtain
B =sgn (2aUL + 28/ULS” +24,,P,.¢ (X,,) a8
—-pUL(UL)'C +6C - D).
Further, we leverage S = 2LTL - 1,17 to transform Eq. (18) as

Eq. (19), which ensures that the complexity of computing Eq. (19) can
be reduced from O(n?) to O(n).

B =sgn (2¢UL + 28/QULL™L - UL1,1") + 24,,P, ¢ (X,,)

T 19
—pUL(UL)'C +6C - D).
8. C-Subproblem. As Eq. (17) does, we deliver the solution:
C = sgn (~fUL(UL)"B + ¢B + D). (20)

9. D-Subproblem. Fixing the others and setting dJ,/0C = 0, matrix D
present:

D=D+0B-C). @D
10. P,,-Subproblem. Fixing the others and setting dJ, /0P = 0, we get
P, = 4, BX,,(44,, X, X,, T + D71 (22)

Evidently, we have easily the closed-form solutions of the to-be
updated matrix variables over Egs. (6) and (9) by the proposed opti-
mization algorithm. Moreover, different from the traditional way that
expressed in Section 3.3, our work promises to acquire the discrete
hash code B by mathematical expression of Eq. (19) while effectively
weakening the cumulative quantization error of IMADS model. The
detailed training stage is depicted in Algorithm 1 and the calculation
time of IMADS is resolved via the iteration number w; in lines 4-11
and the iteration number w, in lines 12-17.
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Algorithm 1 The IMADS Training Process

Input: Features 2,2=1 X, label L, parameters A,, 4,, 43, A4, A4, @, B, 4y,
Ha, ¥, 0, iteration number w,, w,, binary length /.
Output: Code matrix B, projection matrices U, P,,,.

1: Random initialize U,,, W, B, P,,.
: Acquire the pairwise similarity matrix S via L.
3: Convert X, into nonlinear kernel features ¢ (X;).

% Individual Mapping Learning

4: for iterl =1, ,w, do
5. U, « the value computed by Eq. (10).
6: V, « the value computed by Eq. (11).
7:  V, « the value computed by Eq. (12).
8:
9

N

W,, < the value computed by Eq. (13).
: U « the value computed by Eq. (14).
10:  Q « the value computed by Eq. (15).
11: end for
% Asymmetric Dual Supervision Learning
12: for iter2 =1,---,w, do
13: B « the value computed by Eq. (19).
14:  C « the value computed by Eq. (20).
15: D « the value computed by Eq. (21).
16: P, < the value computed by Eq. (22).
17: end for
18: return B, U, P,,.

3.4. Out-of-sample learning

As mentioned earlier, IMADS has attained unified hash code during
training. When a new query instance x or y appears, the IMADS studies
the hash functions & (x) or A (y) to retrieve the homologous samples.

h(x) = sgn (P,x) s
h(y) =sgn(Pyy),

where P, P, are projection matrices, which are learned by using
Eq. (22). Afterwards, the querying hash codes are

(23)

b, = h(x)=sgn (Plx) R
by, =h(y)=sgn (sz) .
When searching any a instance, we calculate the distance between

querying hash code b, or b, and unified hash code B and then rank
the output results.

(24

4. Experiments and results
4.1. Experimental configuration

Datasets. We have conducted experiments on three widely-used
datasets, including Wiki (Zhang & Li, 2014) which involves single-
label small instance, Flickr25K (Wang, Zhao, & Li, 2022) consisting
of multilabel documents, and NUS-WIDE pertaining to large-scale sce-
narios (Wang et al., 2021b). Therefore, we can comprehensively assess
the performance of our proposed IMADS from multiple aspects. The
descriptions of all datasets are summarize in Table 1, where d notes
the dimension. It is worth noting that based on previous research
principles (Wang, Zhao, & Li, 2022; Wang, Zhao, Wang, et al., 2022),
we conduct sampling processing about NUS-WIDE to ensure that all
comparison methods acquire a stable balance in both performance and
efficiency.

Evaluation and Baselines. Our experiments utilize three publicly rec-
ognized metrics (Shen et al., 2020; Wang et al., 2020), i.e., mean Aver-
age Precision (mAP), Precision-Recall curve (PR), and topN-Precision
curve (topN) to verify the effectiveness of the proposed IMADS. In
general, higher values of these metrics depict better performance of
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Table 1

The statistics explanations of datasets employed in experiments.
Datasets Wiki Flickr25K NUS-WIDE
Total 2,866 20,015 186,577
Class 10 24 10
Training Set 2,173 18,015 10,000
Query Set 693 2,000 2,000
Retrieval Set 2,173 18,015 184,577
Image Feature 128-d SIFT 512-d GIST 500-d BOVW
Text Feature 10-d LDA 1,386-d BOW 1,000-d BOW

all methods. This paper compares our IMADS with some compet-
ing and state-of-the-art alternatives, including CMFH (Ding et al.,
2014), SMFH (Liu et al., 2016), SCMs (Zhang & Li, 2014), SePH (Lin
et al., 2016), LCMFH (Wang et al., 2019), JIMFH (Wang et al., 2020),
SRLCH (Shen et al., 2020), SCRATCH (Chen et al., 2020), LFMH (Zhang,
Wu, & Yu, 2021), RDMH (Zhang & Wu, 2022b), and EDCAH (Wang,
Zhao, Wang, et al., 2022). Thereinto, such methods (CMFH, LCMFH,
JIMFH, SRLCH, SCRATCH, LFMH, EDCAH) belong to common or
individual hashing, and other approaches (SMFH, SCMs, SePH, RDMH,
DRMFH) pertain to symmetric or asymmetric hashing. The description
of these baselines can be found in the Section of related work. The
experimental codes for these baselines are generously provided by the
authors, while we independently implemented the SRLCH method.
Implementation Details. We mainly perform the two types of cross-
modal search tasks: I2T (query images retrieving similar texts) and T2I
(query texts retrieving similar images). In experiments, all comparison
alternatives are executed on MATLAB version 202la version on a
workstation equipped with an Intel(R) Core(TM) i9-9820X CPU running
at 3.3 GHz, 128 GB of memory. We operate the comparison baselines
that recommended by the parameter setups of the original literatures,
while recording the best scores of the hashing models. When optimizing
the proposed IMADS, this work employs the grid search method to
get the experimental parameter values of the objective function. For
Eq. (6), IMADS takes {4, = 4, = 05,4 = 1072 } on three datasets.
IMADS performs the best when {A; = 10* A5 = 10~® } for Wiki and
{43 = 10°, A; = 10~* } for Flickr25K and NUS-WIDE. For Eq. (9), IMADS
conducts the best when {a = 103, = 1073, 4, = 4, = 1073,y = 1073, =
1073} on Wiki and {a = 10°,4 = 107, 4y = u, = 1073,y = 1073,0 =
10~%} under Flickr25K and NUS-WIDE. In this paper, we set the kernel
width as + = 500 for Wiki, + = 1500 for Flickr25K, and ¢ = 1000 for
NUS-WIDE. The iteration number w; = 40, w, = 10. For fairness, the
generation results of all approaches freely run 15 times for reducing
the effects of randomness and subsequent average output.

4.2. Results and analysis

Search accuracy. Table 2 and Fig. 2 respectively report the mAP
values and PR curves of all alternatives using distinct hash bits on
three datasets. Obviously, our proposed IMADS outperforms the other
baselines in most cases (20 of 24 on mAP metric and 23 of 24 over PR
metric). For example, in comparison with the best competitor EDCAH,
the mAP values of IMADS have improved by about 2.50% (T2I) on
Flickr25K, and 2.21% (I2T) & 2.88% (T2I) on NUS-WIDE. As for the
second RDMH method, our IMADS has shown significant improvements
in mAP values, with approximately 4.78% (I2T) & 2.00% (T2I) on
Wiki, 4.73% (I2T) & 7.35% (T2I) on Flickr25K, and 2.19% (I2T) &
1.46% (T2I) on NUS-WIDE. The main explanation may be that proposed
IMADS model enriches distinct feature distributions and reinforcement
correlation with multiple supervision. Obviously, the proposed IMADS
shows superior performance in most situations against other coun-
terparts, demonstrating the effectiveness of our IMADS and proposed
learning modules. Moreover, one finding is that the mAP scores of
IMADS are slightly weaker than the SCRATCH model in such cases (16-
bit & I2T & Wiki, 16-bit & all tasks & Flickr25K) and than EDCAH model
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Table 2
The mAP comparisons among all baselines with distinct binary lengths.
Task Method Wiki Flickr25K NUS-WIDE
16 32 64 128 16 32 64 128 16 32 64 128

CMFH (Ding et al., 2014) 0.2411 0.2532 0.2519 0.2567 0.5741 0.5763 0.5772 0.5785 0.3913 0.3925 0.3944 0.3967
SMFH (Liu et al., 2016) 0.2310 0.2492 0.2653 0.2581 0.6122 0.6254 0.6432 0.6645 0.4614 0.4647 0.4525 0.4686
SCMs (Zhang & Li, 2014) 0.2474 0.2363 0.2407 0.2601 0.6235 0.6357 0.6451 0.6482 0.5778 0.5859 0.5765 0.6022
SePH (Lin et al., 2016) 0.2436 0.2568 0.2565 0.2612 0.6532 0.6567 0.6571 0.6595 0.5473 0.5512 0.5624 0.5631
LCMFH (Wang et al., 2019) 0.3213 0.3382 0.3524 0.3621 0.6812 0.6901 0.7011 0.7042 0.6087 0.6124 0.6222 0.6365
JIMFH (Wang et al., 2020) 0.2351 0.2425 0.2517 0.2533 0.5914 0.5925 0.5957 0.6022 0.4164 0.4213 0.4176 0.4223

12T SRLCH (Shen et al., 2020) 0.3310 0.3424 0.3647 0.3706 0.6571 0.6865 0.6980 0.7026 0.5952 0.6230 0.6326 0.6459
SCRATCH (Chen et al., 2020) 0.3601 0.3722 0.3816 0.3901 0.7016 0.7044 0.7052 0.7101 0.6010 0.6123 0.6235 0.6310
LFMH (Zhang, Wu, & Yu, 2021) 0.3329 0.3335 0.3433 0.3413 0.6607 0.6583 0.6682 0.6735 0.6090 0.6168 0.6190 0.6279
RDMH (Zhang & Wu, 2022b) 0.3238 0.3311 0.3310 0.3332 0.6525 0.6593 0.6761 0.6872 0.6002 0.6233 0.6261 0.6319
DRMFH (Yao et al., 2023) 0.2129 0.2193 0.2318 0.2337 0.6281 0.6253 0.6381 0.6410 0.5069 0.5104 0.5180 0.5268
EDCAH (Wang, Zhao, Wang, et al., 2022) 0.3572 0.3710 0.3802 0.3903 0.6976 0.6940 0.7130 0.7138 0.6022 0.6174 0.6321 0.6339
IMADS 0.3517 03770 0.3834 0.3981 0.6956 0.7082 0.7235 0.7368 0.5993 0.6344 0.6543  0.6583
CMFH (Ding et al., 2014) 0.6073 0.6247 0.6385 0.6436 0.5874 0.5882 0.5893 0.5874 0.3875 0.3890 0.3911 0.3920
SMFH (Liu et al., 2016) 0.5764 0.6385 0.6568 0.6683 0.6201 0.6375 0.6712 0.7014 0.4295 0.4281 0.4273 0.4269
SCMs (Zhang & Li, 2014) 0.3819 0.4479 0.4312 0.4328 0.6368 0.6502 0.6577 0.6683 0.5634 0.5924 0.6041 0.6238
SePH (Lin et al., 2016) 0.6776 0.6841 0.6972 0.6846 0.6944 0.6953 0.7018 0.7039 0.6372 0.6475 0.6683 0.6701
LCMFH (Wang et al., 2019) 0.6972 0.7128 0.7269 0.7310 0.7361 0.7533 0.7745 0.7759 0.6921 0.7104 0.7197 0.7352
JIMFH (Wang et al., 2020) 0.5203 0.5424 0.5536 0.5570 0.6024 0.6045 0.6037 0.6107 0.4331 0.4230 0.4225 0.4242

T21 SRLCH (Shen et al., 2020) 0.7154 0.7222 0.7454 0.7508 0.6969 0.7388 0.7466 0.7558 0.7221 0.7475 0.7628 0.7758
SCRATCH (Chen et al., 2020) 0.7211 0.7301 0.7534 0.7569 0.7602 0.7682 0.7722 0.7829 0.7255 0.7357 0.7572 0.7607
LFMH (Zhang, Wu, & Yu, 2021) 0.7094 0.7127 0.7228 0.7267 0.6870 0.6930 0.7023 0.7276 0.7143 0.7487 0.7526 0.7662
RDMH (Zhang & Wu, 2022b) 0.7129 0.7239 0.7316 0.7384 0.6964 0.7027 0.7256 0.7425 0.7374 0.7571 0.7664 0.7763
DRMFH (Yao et al., 2023) 0.3913 0.4067 0.4504 0.4595 0.6291 0.6308 0.6466 0.6482 0.5302 0.5332 0.5412 0.5535
EDCAH (Wang, Zhao, Wang, et al,, 2022) 0.7224 0.7317 0.7424 0.7516 0.7329 0.7689 0.7722 0.7873 0.7103 0.7232 0.7550 0.7683
IMADS 07335 0.7343  0.7581 0.7606 0.7545 0.7866 0.8025 0.8174 0.7395 0.7674 0.7878 0.7885

in 16-bit & 12T & NUS-WIDE case. This phenomenon indicates that
our IMADS has limited performance improvement under small code
lengths, possibly due to the mixture of noise information in encoding.
Although our method possesses only a marginal improvement against
RDMH and EDCAH on T2I task & NUS-WIDE, it considerably outper-
forms them in other evaluation metrics. An intriguing observation is
that the mAP scores of nearly all methods exhibit a gradual increase as
the length grows. We deem that the training model struggles to extract
sufficient informative features from a shorter code length, resulting in
the suboptimal outcomes. To sum up, the acquired results depict the
advantages of IMADS over some competing approaches in mAP metric.

Regarding PR curves, it is evident that the precision of IMADS
always remains a higher position over the other baselines as the recall
number increases except for the competing LFMH and SCRATCH about

the I2T task @ 128-bit on NUS-WIDE. Meanwhile, the trend observed
in the PR curves aligns consistently with that of mAP, clearly proving
better performance of IMADS in cross-modal search tasks compared
to other methods. Fig. 3 reveals the topN curves of all experimental
algorithms leveraging 64 and 128 hash lengths. The topN results of
our IMADS are better than that of other approaches in the majority
of cases (20 of 24), except for slightly weaker precision against the
competitor EDCAH (I2T task @ 128-bit on Flickr25K), the SRLCH (12T
tasks @ 64-bit) and LFMH (I2T task @ 128-bit) and RDMH (T2I task
@ 128-bit) on NUS-WIDE. In addition, IMADS consumes less training
time than two competing SRLCH and RDMH methods and similar to
EDCAH method described Fig. 4, indicating that our IMADS possesses
fast learning efficiency in the cross-modal search applications. In short,
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128 bits across three datasets.

Table 3
The mAP comparisons of IMADS and four variants among three datasets.
Task  Method Wiki Flickr25K NUS-WIDE
16 32 64 128 16 32 64 128 16 32 64 128
IMADS-C  0.3441  0.3532  0.3694 0.3896 0.6723  0.6888  0.7126  0.7128  0.5948  0.6213  0.6415  0.6468
IMADS-L 0.3515  0.3687  0.3741  0.3789  0.6731 0.7028 07215  0.7238  0.5892  0.5959  0.6257  0.6390
12T IMADS-S 0.1123 0.1121 0.1119 0.1132 0.5594 0.5593 0.5596 0.5560 0.3455 0.3457 0.3459 0.3467
IMADS-R  0.2830  0.2753  0.3044  0.3137  0.5908  0.5653  0.5809  0.5949  0.4824  0.5107  0.5225  0.4902
IMADS 0.3517 0.3770 0.3834 0.3981 0.6956 0.7082 0.7235 0.7368 0.5993 0.6344 0.6543 0.6583
IMADS-C 0.7296 0.7314 0.7509 0.7584 0.7110 0.7281 0.7596 0.7615 0.6868 0.7127 0.7322 0.7413
IMADS-L 0.7404  0.7472  0.7569  0.7465 0.7316  0.7755  0.7842  0.7961 0.7158  0.7401 0.7684  0.7779
T2I IMADS-S 0.1164  0.1194  0.1238  0.1345  0.5592  0.5596  0.5600  0.5610  0.3457  0.3463  0.3469  0.3484
IMADS-R 0.4429 0.5177 0.6443 0.6575 0.5727 0.5876 0.6131 0.6161 0.5546 0.5424 0.6052 0.6203
IMADS 0.7335 0.7343 0.7581 0.7606 0.7545 0.7866 0.8025 0.8174 0.7395 0.7674 0.7878 0.7885

these observations derived from Table 2, Fig. 2, and Fig. 3 collectively
highlight the effectiveness of our IMADS across three assessments.

4.3. Comprehensive analysis

Ablation Study. To confirm the efficacy of each learning component
in IMADS, we have formulated four variants for comparative analysis.
The IMADS-C is the variant that only exploits the shared feature to
train the model reflected in V, = V, = V, ie, 4, = 13 = 0. The
IMADS-L is the variant which simply leverages the label supervision
knowledge (f = 0). The IMADS-S variant is produced by pairwise
semantic similarity matrix, and thus most current studies (Wang, Zhao,
& Li, 2022; Yao et al., 2020) only take a = 0 to obtain the variant.
The IMADS-S is constructed by deleting the constraint V = ZL. The
IMADS-R variant utilizes the traditional relaxation scheme to solve the
model by dJ,/dB = 0 on condition of B € [-1, 1],

Table 3 unveils the mAP results of the whole variants with four
different hash bits. As anticipated, the IMADS attains the highest mAP
values over the other four variants across all comparison datasets. In
specific, IMADS outperforms IMADS-C illustrating that merging the
shared and individual feature descriptors is conducive to boosting
accuracy, which demonstrates the significance of the individual infor-
mation. Similarly, compared with the variant IMADS-L & IMADS-S, and
IMADS-R, the IMADS obtain better performance showing the effective-
ness of the asymmetric dual supervision term and discrete optimization
algorithm, respectively. Consequently, these findings of Table 3 prove
the efficacy of the learning part in our IMADS.

Computational Cost. An excellent model should simultaneously carry
good accuracy and fast learning efficiency (a.k.a. computational cost).
Thereinto, the computational cost of this paper is mainly determined

by the training process of hashing models. Fig. 4 depicts the training
time comparisons of four competing alternatives (SCRATCH (Chen
et al., 2020), SRLCH (Shen et al., 2020), RDMH (Zhang & Wu, 2022b),
EDCAH (Wang, Zhao, Wang, et al., 2022)) and our IMADS on Flickr25K
and NUS-WIDE. The training time of all the baselines is very close on
small dataset Wiki and is not comparable. We conclude from Fig. 4
that RDMH and SRLCH possess the worst and second worst training
efficiency over other methods, respectively because they employ the
high-dimensional kernel features as model input and consequent heavy
computational burden. The computational cost of our IMADS is similar
to that of SCRATCH on Flickr25K, and similar to that of SCRATCH and
EDCAH on NUS-WIDE, where the main explanation is that the IMADS
adopts the linear hashing computing during training and optimization.
Despite analogous results in training time, IMADS shows better mAP
and PR values than SCRATCH and EDCAH. Thus, these results indicate
the superiority of our IMADS in fast learning efficiency.

Parameter Sensitivity. Analyzing the data parameters in the objective
function cannot only help to determine the parameter sensitivity in-
terval, but also contribute to acquiring the optimal parameter settings.
Fig. 5 exhibits the parameter analysis results in Egs. (6) and (9) that in-
fluenced our IMADS on three datasets. Thereinto, parameters anzl A
A3, 44, A5 over Eq. (6) make effect on the individual mapping learning
part and a, f, an=1ym, and 6 in Eq. (9) impact the asymmetric dual
supervision learning. We can observe from Fig. 5 that: (1) as for individ-
ual mapping learning procedure, our IMADS yields stable yet preferable
retrieval results when parameters Y- _, 4,, € [0.3,0.7], 4; € [1072,10]
and 1, € [103,10°], and A5 € [107%,1]. and (2) during asymmetric
dual supervision learning, this study also the similar phenomenon in
the insensitivity region of a € [10%,10°], g € [1073,1071], an:l”m e
[1073,107!], y € [1073,1], and 6 € [107*,1073] about the IMADS. That
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is to say, these wide insensitivity regions produce the optimal scores
and meanwhile indicate good generalization performance.

For clear representation, we have shown the graphical network
structure of training matrix variables in Fig. 6 while the red circles are
main sensitivity parameters and the blue circles denote the to-learned
matrices. We conclude from Figs. 5 and 6 that in fact, the five sensitivity
parameters (A3, A4, 4y = py, a, p) greatly impact the performance of
IMADS.

stage of the individual mapping learning and the asymmetric dual
supervision learning, respectively. For clear and intuitive presentation,
the ordinate label in Fig. 7 is normalized by dividing the largest value in
the objective function by the other values. Concretely, the first finding
is that the two learning procedures of the IMADS both achieve conver-
gence on three datasets, where they hold the fastest rate of convergence
on Wiki and the slowest on NUS-WIDE. The fundamental reason is due
to the size of these datasets. Besides, the second interesting finding is
that iter 1 (around 40) converges much less than iter 2 (within 10)
in terms of iteration number. We analyze the possible statements that
iter 1 consumes much time to tackle the original features and iter 2
adopts discrete and asymmetric linear optimization.

Cross-modal Visualization. To intuitively display the search results,
this study carries out two kinds of cross-modal search cases against the
proposed IMADS on Wiki. Fig. 8 reports the top 10 nearest query text
and image results on the 12T and T2I tasks, where these green and red
boxes respectively denote the right and wrong query samples. Referring
to this figure, we gather the following observations: (1) Concerning
to the query music class, the IMADS obtains the whole correct top-10
searched results for both two tasks. (2) Regarding the art and biology
query categories, there are 1 or 2 incorrect samples in the search cases,
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Top-10 Searched results

Fig. 8. The visualization display of the search

but they rank lower. We analyze that the original data may be mixed
with noise or outliers and subsequent deviations in the search results.
Overall, above visual phenomena prove that the IMADS can promote
inter-data similarity and semantically correlation between supervision
knowledge and data to maintain into the hash codes during querying.
Comparing with deep hashing. To evaluate the functionality of the
IMADS, we construct a deep hashing variant (IMADScnn) to com-
pare with some competitive deep cross-modal hashing approaches
(PRDH (Yang, Deng, Liu, Liu, Tao et al.,, 2017), ADAH (Zhang, Lai,
& Feng, 2018), EGDH (Shi, You, Zheng, Wang, & Peng, 2019), MLCAH
(Ma, Zhang, & Xu, 2020), DADH (Bai, Zeng, Ma, Zhang, & Chen, 2020))
on Flickr25K, which is shown in Fig. 9. The input to the IMADScnn
model comprises a 4096-dimensional CNN image feature while retain-
ing the same shallow text feature. From Fig. 9, a significant observation
is that IMADScnn performs better than other baselines on I2T task
while slightly works worse than EGDH, MLCAH, and DADH w.r.t.
32-bit on T2I task. The primary reason is that the input deep image
feature holds a wealth of information, which in turn aids in enhancing
accuracy. Besides, it takes three more hours to train all deep models,
while the training time of IMADScnn at 32, 64 bits is 3.05, and 3.20
(in seconds) respectively. To sum up, our variant IMADScnn attains
the high learning efficiency while delivering comparable accuracy over
latest deep hashing alternatives.

Study Limitations and possible explorations. Despite the remarkable
experimental performance improvement, there are still two limitations
that need to be further promoted in this research work. In specific, the
partial failure cases of our IMADS occur in Table 2 and Fig. 3, where
four limited mAP scores show in small 16-bit length and the topN scores
separately weaker than that of comparative EDCAH (I2T @ 128-bit
on Flickr25K), the SRLCH (I2T @ 64-bit) and LFMH (I2T @ 128-bit)
and RDMH (T2I @ 128-bit) on NUS-WIDE. Moreover, the visualization
of the querying art class (see Fig. 8) shows two incorrect samples

results by our IMADS (Wiki for example).

on the I2T task (one error on T2I). After deriving the source code,
computational optimization, and training process, we find that these
two limitations share a common cause, namely the sorting learning
problem, which in turn leads to the similarity problem, with the source
resorting to data noise and class label noise problems.

According to the aforementioned analysis, we plan to carry out the
possible solutions from two aspects. One is to reduce the data noise by
eliminating redundant information except for the common and individ-
ual features, and the second one is to remove the erroneous supervision
tag to well maintain the beneficial knowledge of the corresponding data
in the original labels. Thereinto, the key techniques involve discrete
optimal transport theory and Bayesian personalized ranking matrix
factorization in the follow-up explorations.

5. Conclusion

This work presents a novel supervised hashing method called
IMADS, specifically designed for cross-modal search applications. Ex-
tensive experiments show that our IMADS works more efficient than
other state-of-the-art alternatives. Specifically, the IMADS highlights
three main advantages: (1) it better excavates the individual features of
each modality while fusing the shared feature between modalities, and
(2) the asymmetric dual supervision framework can well strengthen
the semantic correlation between multiple supervision knowledge,
the common and individual features, and (3) different from current
relaxation paradigm, this work develops a novel optimization scheme
to optimization the model IMADS. The upcoming plan contains build-
ing a knowledge graph modality for cross-modal instances, aiming
to effectively maximize the similarity correlation between distinct
modalities and the robust semantic relationship between modality and
supervision.
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