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Enhancing Herbal Medicine-Drug Interaction
Prediction Using Large Language Models

Sisi Yuan®, Zhecheng Zhou, Xinyuan Jin

Abstract—Investigating potential interactions between
drugs and herbal medicines helps optimize combined treat-
ment strategies and supports personalized and precision
medicine. Deep learning-based methods have been suc-
cessful in predicting drug-related interactions. However,
these methods face challenges such as low data quality
and uneven distribution. Large language models (LLMSs)
effectively address these challenges through their exten-
sive knowledge bases. Motivated by this, we integrate
LLMs, one-hot encoding, and variational graph autoen-
coders (VGAESs) to propose a herbal medicine-drug inter-
action (HDI) prediction model. First, LLMs are employed to
extract features from drug SMILES, generating high-quality
molecular representations. Second, one-hot encoding is
applied to herbal medicines with multiple natural prod-
ucts to construct feature vectors and improve model inter-
pretability. Finally, VGAEs are utilized to reconstruct herbal
medicine-drug graphs and predict unknown HDIs. Addition-
ally, we differentiate between herbal medicine-drug similar-
ity and the degree of individual drug or herbal medicine
nodes to mitigate the dominance of high-degree nodes in
VGAE message flow. Multiple experiments were conducted
to validate the significance of the proposed model and
its key components. This method shows great potential
for applications in traditional Chinese medicine formula-
tion optimization, new drug development, and precision
medicine.

Index  Terms—Herbal medicine-drug interaction
(HDI), large language models (LLMs), variational graph
autoencoders (VGAEs), uneven distribution.

I. INTRODUCTION

ERBAL medicine is fundamental to traditional Chinese
medicine (TCM) theory, with its efficacy often relying on
the synergistic effects of multiple components [1]. The prepara-
tions of TCM compounds are complex and diverse, comprising
multiple components of plants, animals, or minerals that achieve
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therapeutic effects through specific compatibility [2]. Unlike
modern drugs that typically act on a single target, the multicom-
ponent and multitarget characteristics of herbal medicine pro-
vide unique advantages in the treatment of complex diseases [3].
With advances in modern medicine, an increasing number of
patients use herbal medicines along with modern drugs, raising
concerns about potential interactions [4]. HDIs may alter drug
metabolism, distribution, and excretion, impacting both the effi-
cacy and safety of treatments [5]. For example, certain compo-
nents of herbal medicines can enhance or inhibit the metabolic
enzyme activity of specific drugs, altering drug concentrations
in the body and thus affecting therapeutic effects or causing
adverse reactions [6]. Identifying potential HDIs is essential for
ensuring safe clinical drug use. The complex composition of
herbal medicines means their interactions with modern drugs
remain insufficiently studied. Identifying potential HDIs is cru-
cial for ensuring drug safety in clinical practice. Traditional
TCM research methods predominantly depend on empirical
knowledge and qualitative approaches, including clinical effect
observation and herbal combinations derived from centuries of
practice. However, these methods frequently lack quantitative
data, reproducibility, and standardized protocols, limiting their
precision in identifying and understanding herbal ingredient
interactions and their mechanisms of action [7]. Moreover, the
complexity and variability of herbal formulations hinder stan-
dardization efforts and accurate assessment of their therapeutic
potential [8]. The intricate composition of herbal medicines
results in incompletely understood interactions with modern
drugs. Developing computational models for HDI prediction
enables rapid identification of potential risks from combined
drug use, supporting clinical decision-making and advancing
integrated Chinese-Western medicine research.

The rapid advancements in artificial intelligence (AI) and
machine learning (ML) technologies have significantly accel-
erated progress in biomedicine. In biological network interac-
tion prediction, computational models effectively predict and
elucidate complex regulatory mechanisms. For example, Wei
et al. employed a sampling method and graph neural networks
(GNNp5) to predict unknown non-coding RNA-protein interac-
tions [9]. Subsequently, Zhou et al. utilized a Transformer model
to extract features from k-mer sequences of non-coding RNA
(ncRNA) and proteins, which were concatenated to represent
ncRNA-protein pairs. The scores of ncRNA-protein pairs were
then predicted by stacking multiple fully connected networks,
allowing the identification of potential interactions [10]. Zhou
et al. incorporated a random masking strategy based on the
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Bernoulli distribution into a graph autoencoder, proposing the
JMSS-MMA model [11]. The model employed a degree decoder
to learn node structures, further enhancing node representations.
In a similar line of work, Xu et al. applied a semi-supervised
graph autoencoder model to miRNA-disease networks, uncov-
ering potential miRNA-disease interactions [12]. They utilized
variational autoencoders and graph embedding techniques for
tasks like molecular network reconstruction, demonstrating high
usability and performance [13]. Additionally, Liu et al. con-
structed heterogeneous graphs and employed metapaths and
contrastive learning techniques to predict potential circRNA-
disease associations [14]. These methods not only show strong
performance but also inspire new research directions, offering
valuable tools to advance biomedical science.

Similarly, numerous efficient computational models have
been developed for drug development and repositioning [15],
[16], [17], [18]. For example, Li et al. proposed the MS-EDM
model for miRNA-based drug discovery, introducing an effi-
cient similarity fusion strategy to model the miRNA-drug graph
topology from multiple perspectives [19]. Zhou et al. proposed
the JDASA-MDR model to predict microbial-drug interactions,
addressing the “over-smoothing” problem caused by message
passing on the entire graph. The model improves prediction
accuracy by extracting local features through subgraph feature
enhancement [20]. In the context of drug-protein interaction pre-
diction, Zhou et al. employed an energy-constrained diffusion
mechanism to extract global features and used subgraphs to ex-
tract local features, yielding high-quality drug and protein node
representations and enhancing prediction accuracy [21]. Addi-
tionally, Wei et al. proposed a drug-target interaction prediction
method leveraging an integrated deep learning framework to
reduce excessive false negatives [22]. Han et al. introduced
a tensor decomposition method combined with deep neural
networks to develop the CTF-DDI model, providing a robust
tool for accurately predicting drug-drug interactions [23].

The aforementioned models demonstrate strong performance
in interaction prediction and offer valuable insights for drug-
related interaction prediction tasks. However, their performance
is constrained by several limitations. First, these models heav-
ily rely on high-quality data features, which are often diffi-
cult to obtain due to data scarcity or inherent noise. Second,
They rely on feature extraction techniques tailored to specific
datasets, such as similarity fusion. As a result, biases within
particular datasets can lead to features that lack generalizabil-
ity, thereby reducing the models’ ability to generalize across
different contexts. Additionally, these models face challenges
in interpretability. Although they perform well in drug-related
interaction prediction, they often function as “black boxes,”
producing predictions without detailed explanations. This lack
of interpretability hinders the understanding of the reasoning
behind predictions, increasing the risk of false negatives and
false positives, and limiting the models’ practical applicability
in real-world scenarios.

We propose a novel model that integrates LLLM, one-hot en-
coding, and VGAE technologies to address the aforementioned
challenges. First, LLMs are employed to extract shared features
from the SMILES sequences of drugs and herbal medicine
components, thereby mitigating challenges such as data scarcity

and noise. Next, K-Means clustering is applied to the features
extracted by the pre-trained model for herbal components, and
one-hot encoding is subsequently utilized to generate the initial
features for herbal medicines. Finally, a VGAE model incor-
porating decoupling technology is employed to reconstruct the
herbal medicine-drug graph and predict unknown HDIs. This
decoupling technology reduces the dominance of high-degree
nodes, thereby enhancing the interpretability of the model. To
further enhance performance, we differentiate between herbal
medicine-drug similarity and the degree of individual drug or
herbal medicine nodes, thereby minimizing the influence of
high-degree nodes on message propagation within the VGAE.
Overall, our contributions are as follows:

1) LLM technology is introduced to extract common fea-
tures of drugs and the natural products in herbal
medicines, effectively addressing challenges related to
data scarcity and noise.

2) A novel feature extraction method for herbal medicines
is proposed, integrating K -means clustering and one-hot
encoding to generate high-quality representations.

3) A VGAE with decoupling technology is introduced to
reconstruct the herbal medicine-drug graph, mitigating
the dominance of high-degree nodes in VGAE message
flow.

4) The HDI dataset, extracted from the Diet-Drug Inter-
action Database (DDID), is made freely accessible on
GitHub. A series of experiments conducted on this dataset
validate the effectiveness of the proposed method and its
key components.

This study proposes a model to accurately predict poten-
tial HDIs. Section I provides a brief introduction to herbal
medicines, reviews methods for predicting drug-related inter-
actions, and analyzes the challenges in HDI prediction. Sec-
tion II details the dataset collection process, the architecture of
the proposed model, and the key components. Section III out-
lines the implementation of the proposed method and presents
comparative experiments to validate the model’s effectiveness.
Additionally, ablation experiments are conducted to analyze the
contribution of each key component, while parameter experi-
ments and case studies evaluate the model’s stability and robust-
ness. Section I'V provides a detailed discussion of the proposed
method and an analysis of the experimental results. Section V
summarizes the findings and contributions of the study.

II. MATERIALS AND METHODS

This study aims to predict the labels of unknown herbal
medicine-drug pairs using observed HDIs. We integrate LLMs,
one-hot encoding, and VGAE techniques to propose a model
designed to accurately identify potential HDIs. This study
differentiates from similar research in two key aspects.
First, a novel method is adopted to extract initial features of
herbal medicines. Specifically, LLMs are employed to extract
common features of natural products in herbal medicines, fol-
lowed by K -means clustering and one-hot encoding to generate
initial representations. Second, we incorporate a VGAE with
decoupling technology to reconstruct the herbal medicine-drug
graph, addressing the issue of high-degree nodes dominating the
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Fig. 1.

The proposed model architecture consists of two primary modules: (a) Feature extraction and (b) Herbal medicine-drug graph recon-

struction. In Module A, natural product (NP) features in herbal medicines and drug features are extracted from SMILES sequences using LLMs.
Subsequently, K-means clustering and one-hot encoding techniques are applied to integrate NP features and generate initial herb representations.
In Module B, initial drug and herb features, along with the known herbal medicine-drug adjacency matrix, are fed into the D-VGAE model [25]
to reconstruct the herbal medicine-drug graph. The D-VGAE model initially attempts to predict HDIs based on herbal medicine-drug similarity.
If unsuccessful, it then attempts to predict interactions in node neighbor density case. NP refers to natural products. Encoder1 and Encoder2
correspond to encoders based on herbal medicine similarity and node neighbor density, respectively.

message flow in VGAE. Next, we present detailed statistics of
the extracted HDI dataset. Finally, we will describe the principles
and techniques behind the key modules of our model.

A. Data Preparation

The data for this study were primarily sourced from the
latest DDID database [24], which compiles data from litera-
ture, FDA labels, and various online repositories. The database
includes 1,338 foods and herbal medicines (from plant and
animal sources), 1,516 widely used drugs, and 23,950 inter-
action records. These interactions are categorized into food-
drug interactions and HDI. For HDI, DDID includes 1,068
herbal medicines from 155 families, along with their respective
natural products. This study focused on HDIs, filtering out
incomplete data and retaining only drug names and SMILES,
herbal medicine names, and their associated natural products
with SMILES. Ultimately, 7,591 HDI records were obtained,
encompassing 1,424 drugs, 681 herbal medicines, and 43,517
natural products. The extracted dataset has been made publicly
available on GitHub for free access.

B. Model Overview

Fig. 1 illustrates the architecture of the proposed model, which
consists of two main modules: (A) Feature extraction and (B)
Herbal medicine-drug graph reconstruction. In module A, drugs,
natural products of herbal medicines, and their corresponding
HDIs are obtained from the DDID database. Subsequently,
initial features are extracted from the SMILES sequences of

the natural components in herbal medicines and the drugs
using the LLM technique. Additionally, /{-means clustering
and one-hot encoding are applied to the natural products of
herbal medicines to generate their initial features. In module
B, the feature matrices of drugs and herbal medicines, along
with the known herbal medicine-drug adjacency matrix, are ini-
tially input. Subsequently, the herbal medicine-drug adjacency
matrix is reconstructed using an encoder-decoder architecture
under herbal medicine-drug similarity measures and node degree
information, respectively.

C. LLM Technology for Initial Feature Extraction

LLM technology has achieved significant success in com-
puter vision [26], natural language processing [27], protein
sequence analysis [28], and other domains. This advancement
has indirectly facilitated the application of LLM technology
in representing compound SMILES sequences. In drug-related
interaction prediction, current models typically employ two
approaches to generate initial node representations. First, many
models rely on observed adjacency matrices to directly calculate
similarity. This approach selectively ignores unknown elements
in adjacency matrices, inevitably introducing bias [29]. Second,
some models utilize convolutional neural networks, GNNs,
or Transformers to extract node representations. This depen-
dency often ties extracted node representations to downstream
tasks, limiting model generalization [30]. Fortunately, several
pre-trained models based on SMILES sequences have been
developed recently, helping to mitigate these issues.

Authorized licensed use limited to: Macao Polytechnic University. Downloaded on October 05,2025 at 06:54:38 UTC from IEEE Xplore. Restrictions apply.



6974

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 29, NO. 10, OCTOBER 2025

This study extracted SMILES sequences of natural products in
herbal medicines and the drugs from DDID, enabling pre-trained
models to directly generate their initial representations. Specifi-
cally, ChatGPT [27] was selected for representation generation.
Like the BERT model, ChatGPT employs a stacked Transformer
architecture. ChatGPT, a large language model trained to process
sequential data, was employed to interpret SMILES sequence
syntax and semantics in this study. Unlike traditional meth-
ods that rely on manually crafted features or predefined rules,
ChatGPT automatically captures complex relationships among
atoms, bonds, and functional groups in SMILES sequences,
enhancing its effectiveness in learning molecular structures from
raw data. This capability enables ChatGPT to better compre-
hend both local and global structural information in chemical
compounds. First, the SMILES sequence is normalized using
RDK:it to ensure a standardized format. Key chemical features,
such as functional groups, molecular weight, aromaticity, and
hydrogen bond donors/acceptors, are extracted and converted
into natural language descriptions. Finally, the OpenAl API
(text-embedding-ada-002) is utilized to generate embeddings
from the text descriptions, with a default dimensionality of 768.
For drugs, these initial representations are directly used as input
for subsequent models.

D. Feature Extraction of Herbal Medicines

The extracted HDI dataset contains 681 herbal medicines
and 43,517 natural products. Previous research [31] identifies
two primary strategies for extracting herbal medicine represen-
tations. The first method calculates similarity between herbal
medicines based on observed HDI data to serve as the initial
representation. However, this approach neglects unknown el-
ements in the adjacency matrix, potentially introducing bias.
The second method utilizes randomly generated embeddings,
but this introduces excessive uncertainty and fails to accurately
capture the features of herbal medicines. To address these
limitations, we propose a novel method for extracting herbal
medicine representations using /-means clustering and one-hot
encoding.

First, K-means clustering is applied to the 768-dimensional
features of natural products output by the pre-trained model. Ad-
ditionally, the number of categories is set to 768 to align with the
dimensionality of the initial drug representation. As a result, the
43,517 natural products are grouped into 768 categories. Next,
one-hot encoding is applied to extract initial representations of
herbal medicines. Specifically, the 768 categories are sorted,
with each category treated as a dimension. Let h represent a
herbal medicine, d a dimension (or category) with an initial value
of 0, and m a natural products. If & contains m, and m belongs
to d, then the value of d is incremented by 1. Consequently, a
768-dimensional feature vector for herbal medicine is generated
and input into the prediction model alongside the drug feature.

E. HDI Prediction

Based on the above feature extraction method, initial repre-
sentations of drugs and herbal medicines are extracted from the
HDI dataset. A model is then constructed to predict the labels

of unknown herbal medicine-drug pairs using known HDIs.
GNNs have proven effective in uncovering and understanding
topological structures in graph data [32]. However, compared
to GNNs, graph autoencoder (GAE) technology enables self-
supervised training, making it more efficient for graph recon-
struction tasks, which is why it is considered a promising ap-
proach [33]. VGAE technology, in particular, generates new data
from existing inputs, introducing model uncertainty and helping
mitigate the impact of noise or data scarcity [34]. Furthermore,
VGAE integrates regularization and learns latent probability
distributions, making it highly suitable for HDI prediction
tasks.

VGAE is a GNN-based generative model designed to gener-
ate node representations by learning latent variable probability
distributions, enabling graph reconstruction. Similar to GAE,
VGAE comprises two main components: an encoder and a
decoder. In VGAE, the GNN encoder learns an approximate
Gaussian distribution, and node representations are obtained
through sampling. The decoder then computes the inner product
of the herbal medicine-drug pair based on the provided node
representations, followed by applying the sigmoid function to
estimate the probability of an edge. Model training is guided
by two primary optimization objectives: reconstruction loss,
which quantifies the difference between the predicted and actual
labels of herbal medicine-drug pairs; and KL divergence, which
measures the divergence between the learned latent probability
distribution and the normal distribution.

Studies have demonstrated that in GNNs, high-degree nodes
can dominate information flow propagation when neighborhood
density varies significantly [35]. This issue is also evident in
the herb medicine-drug interaction graph. To address this issue,
we employ DVGAE [25], a variant of the Variational Graph
Autoencoder (VGAE) based on decoupling technology, to en-
hance HDI prediction. The key of DVGAE lies in decoupling
node representations into two components: node similarity and
neighborhood density (degree). First, a high similarity between
two nodes suggests a higher probability of interaction. Second,
high-degree nodes are often more popular, thereby increasing
the likelihood of interactions with other nodes. This dual feature
encoding improves the model’s ability to capture complex inter-
actions between drugs and herbal medicines, which is essential
for accurate HDI prediction. The key technologies and principles
are elaborated in the following sections.

1) Graph Normalized Convolutional Network: The DVGAE
framework employs a Graph Convolutional Network (GCN)
encoder to approximate the Gaussian distribution. DVGAE uses
node similarity and neighborhood density to guide the recon-
struction of the herbal medicine-drug graph. Consequently, the
GCN encoder generates two sets of similar probability distri-
butions. One set represents herbal medicines (or drugs) based
on herbal medicine-drug similarity (p°,3*), while the other
represents them based on neighborhood density (1%, $¢). This
idea comes from the fact that the degree of a node is a feature of
the node itself. This study introduces the regularized encoder
from the VGNAE framework [36], as the L2 normalization
method mitigates issues caused by sparse neighborhoods dis-
rupting gradient propagation. Specifically, a graph normalized
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convolutional network (GNCN) [36] is proposed:

GNCN(X, A, c) = cDiag(A)~2 ADiag(A) "= f(XW),
(D
where A denotes the adjacency matrix, while Diag(A) denotes
the diagonal matrix derived from A. And f([z1, 22, . .., 2,]T) =
[ﬁ, Hi—zn, e Hi—ZH]T W represents a learnable parameter
matrix, and c is a tuning factor typically set to 1.8.

2) Decoupling-Based Generation Process: In the herbal
medicine-drug graph G =< H, D, E >, H denotes the set of
herbal medicine nodes, D the set of drug nodes, E the observed
HDIs, and A is the adjacency matrix derived from FE. Each
herbal medicine (or drug) is assumed to interact with drugs (or
herbal medicines) under two conditions: high node similarity
or high node degree. Instead of randomly selecting a condition
to determine interactions for each herbal medicine-drug pair, a
Bernoulli distribution is used to sample conditions for estab-
lishing interactions. Specifically, the probability distributions
(1, %%) and (u?, ©%) of herbal medicines (or drugs) under these
two conditions are derived from the GNCN encoder. Subse-
quently, herbal medicine (or drug) representations are generated
by sampling from two Gaussian distributions:

he ~ N (pf,2%), bt ~ N (p, 5, )

where v € H U D, N denotes a Gaussian distribution. Let ¢
represent a herbal medicine and j a drug. For the < 1,5 >
pair, Bernoulli sampling is used to determine the condition
for generating an interaction. The process begins by attempt-
ing to generate an interaction based on herbal medicine-drug
similarity:

Ajij ~ Bernoulli(o(sim(hj, hj))), 3)
where o represents the sigmoid function, and sim() denotes the
cosine similarity measurement function. /; and h; denote the
embeddings of herbal medicine 7 and drug j in the similarity
case, respectively. If A;; = 11is derived from (3), the interaction
is established under the similarity condition, and no further at-
tempts are made under the node neighborhood density condition.
Otherwise, if A;; = 0, the interaction is evaluated based on the
node neighborhood density condition:

Ayj ~ Bernoulli(o(snd(hd, h?))), 4)

197
where snd() represents the node neighborhood density mea-
surement function, which specifically counts the node degree.
h¢ and h? denote the embeddings of herbal medicine 7 and drug
7 in the similarity case, respectively.

Based on the above measures, interactions for herbal
medicine-drug pairs are generated independently under the
two conditions through sampling. This independence ensures
that high-degree nodes do not dominate the similarity-based
modeling process.

F. Optimization Objectives

The model’s optimization objectives primarily involve mini-
mizing the discrepancy between the predicted and true labels of
herbal medicine-drug pairs, as well as the divergence between
the predicted probability distribution and the posterior Gaussian

distribution. These objectives are reformulated as optimizing the
evidence lower bound (ELBO) on the variational parameter:

L(¢,0,A) = Eyg(pacx,a)log po(A[H"*)]
— KL(q¢(H|1, A)||p(H?))
— K L(qp(H®| X, A)|lp(H?)), 5)

where the first term represents the label prediction loss, while
the second and third terms correspond to the losses associ-
ated with the probability distributions of predicted similarity
and node neighborhood density, respectively. K L() measures
the Kullback-Leibler (KL) divergence between two variables.
H< and H*® denote the node embeddings of drugs and herbal
medicines, derived from node degree and herbal medicine-drug
similarity, respectively. go(H%*| X, A) denotes the model that
generates the node matrix H%* using input features and the
known adjacency matrix, given parameter ¢. py(A|H®*) de-
notes the probability of generating the adjacency matrix A
based on the node matrix H%*. Following previous work [37],
p(h;) = N (h;|0,1) is used to represent the Gaussian prior, and
the posterior is assumed to approximate q(h;|x;, A) as a Gaus-
sian distribution. Notably, the GNN encoder uses [ instead of X
as input (see the second term in (5)) to guide the generation of
the probability distribution based on node neighborhood density.
This approach is adopted because node neighborhood density is
an intrinsic feature of the node itself, eliminating the dependency
on X. The first term is expressed as follows:

Ego(r4.x,4) l0g pe: (A|H*)p*
+ E o (rras x4y log poa (A|H)p?, (6)

where pg: (A|H*) and pga (A|H?) are derived from (3) and (4),
respectively, and p® and ¢° = 1 — p® are Bernoulli parameters,
representing the probabilities of establishing interactions based
on similarity and node neighborhood density, respectively.
Subsequently, the optimization process based on the EM
algorithm is completed following the “winner-take-gradient”
training strategy [38]. The detailed procedure is provided in [39].

[ll. RESULTS
A. Experimental Settings

This study evaluates the performance of the proposed method
and comparative methods using the extracted HDI dataset. Com-
parative methods include common approaches such as MLP,
GCN [40], GAT [41], and specific interaction prediction models
like CTE-DDI [23], DPI-GLP [21], MS-EMD [19], and JDASA-
MDR [20]. The extracted HDI dataset is split into training,
validation, and test sets with an 8:1:1 ratio. Negative samples,
equal in number to positive samples, are selected from unknown
herbal medicine-drug pairs, ensuring no duplicate data. To en-
sure fairness, the same data partitioning is applied across all
methods. The initial drug features for all models are obtained
from the proposed model. The proposed method employs one-
hot encoding to extract features of herbal medicines, whereas
other methods utilize randomly generated features. The model
dimension is set to 256, with a scaling factor of 1.8. The Adam
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TABLE |
RESULTS OF ALL MODELS ON THE HDI DATASET (%).
Methods/Metrics AUC  AUPR ACC SEN PRE SPE  Fl-score
MLP 78.75 74.83 67.92  53.89 7491 8195 62.68
GCN 92.66 91.77 87.55  92.75 84.01 82.35 88.17
GAT 92.64 92.42 7134 9354 6478  49.14 76.55
CTF-DDI 83.12 77.65 77.10  95.02 6996  59.19 80.58
DPI-GLP 94.50 96.78 93.18 91.70 9450  94.66 93.08
JDASA-MDR 96.74 96.98 92.14 9324  91.23 91.04 92.23
Mask GAE 97.39 96.90 92.53  93.19 9197 91.86 92.58
Ours 98.48 98.21 9520 9453 9581  95.87 95.17
1.80 The impact of different encoded features on AUC 2100 The impact of different encoded features on AUPR
) mmm One-hot . mmm  One-hot
0.95 4 @ Random 0.95 4 B Random
0.90 0.90
0.85 0.85
[°4
S 0.80 1 & 0.80-
< <
0.75 + 0.75 +
0.70 1 0.70 A1
0.65 0.65 |
0.60 - 0.60 -
ours GAT GCN MLP GAT GCN
(A) Model (B) Model
Fig. 2. AUC and AU PR Performance of ablation experiments.

optimizer is employed during training, and the learning rate is
fixed at 0.01. Performance is evaluated using AUC, AUPR,
accuracy (ACC), sensitivity (SEN), precision (PRFE), speci-
ficity (SPFE), and F'1-score as indicators [42], [43], [44] for the
proposed method and comparative methods.

B. Performance Comparison

The performance of all methods was evaluated on the HDI
dataset, with results presented in Table I. MLP and CTF-DDI,
which do not utilize GNN technology, exhibited the poorest
performance, whereas models incorporating GNN technology
performed significantly better. This can be attributed to GNN’s
capability to capture the topology of the herbal medicine-drug
graph, allowing for more accurate representation of relationships
between unknown herbal medicine-drug pairs. The DPI-GLP
model extracts global features from the herbal medicine-drug
graph and accounts for potential dependencies among herbal
medicine-drug pairs that are not directly connected. By extract-
ing local features, DPI-GLP mitigates the “over-smoothing”
issue typically encountered in message propagation mecha-
nisms, thus improving the identification of potential HDIs.

JDASA-MDR integrates self-supervised training and masking
strategies, further boosting its performance. Notably, the pro-
posed method outperformed all other models, achieving 98.48%
AUC,98.21% AUPR, 95.20% ACC,94.53% SEN, 95.81%
PRE,95.87% SPE, and 95.17% F'1-score. The only slight lag
was observed in the SEN metric, where it trailed CTF-DDI.
These results demonstrate that the proposed method is a reliable
tool for accurately identifying potential HDIs.

C. Ablation Experiments

As described in Section II-C, this study employed LLM to
extract initial features from the SMILES representations of nat-
ural products in herbal medicines and the drugs. Subsequently,
clustering technology and one-hot encoding were applied to
extract initial features of herbal medicines from their natural
products. To investigate the role of the proposed feature extrac-
tion module based on one-hot encoding, an ablation experiment
was conducted. In addition to the proposed method, common
models such as GAT, GCN, and MLP were also included for
comparison. In Fig. 2, “One-hot” indicates that one-hot encoding
was used to extract initial features of herbal medicines, while
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Fig. 3.

“Random” refers to a random method for generating initial
features. The results demonstrate that the performance of all
models significantly improved after adopting one-hot encoding,
validating the effectiveness and rationale of the proposed feature
extraction module.

D. Parameter Experiments

1) Testing Different Feature Dimensions: To evaluate the
model’s robustness and sensitivity to parameters, a series of
experiments were designed to analyze the impact of parameter
variations. Specifically, we focused on the linear transformation
layer defined by (3), which maps input data to a new feature space
and generates a regularized feature vector for subsequent pro-
cessing. In the experimental design, a control variable method
was employed, where all other parameter settings were fixed,
and only the dimension size of the linear transformation layer
was adjusted. The experimental results, presented in Fig. 3(a),
reveal that when the dimension of this layer is set between 64 and
256, model performance steadily improves. However, when the
dimension exceeds 256, model performance slightly declines.
We speculate two potential reasons for this trend. On one hand,
a narrow dimension may prevent the model from fully capturing
key feature information; on the other hand, an excessively high
dimension may introduce redundant information, hindering fur-
ther performance improvement. Therefore, to ensure good gen-
eralization on new data while avoiding performance degradation,
a balanced dimension size should be selected.

2) Testing Different Scaling Factor: This study evaluated the
effect of variations in the scaling factor cin (3) on model stability.
The scaling factor is designed to expand the feature vector after
regularization. In this experiment, a control variable approach
was employed, where all other conditions were fixed, and only
the scaling factor was adjusted to observe its direct impact on
model performance. The experimental results (Fig. 3(b)), reveal

Impact of scaling factor
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(B) Scaling Factor

Evaluating model’s performance with different dimensions and scaling factors.

that the model achieves optimal performance when the scaling
factor is set to 1.8. When the scaling factor slightly deviates
from 1.8, either increasing or decreasing, model performance
marginally declines. These findings indicate that the model
exhibits tolerance to variations in the scaling factor and is
not overly sensitive to its specific value. This highlights the
model’s reliability, demonstrating its robustness and adaptability
in practical applications.

3) Testing Different Input Features: Additionally, a series
of parameter experiments were conducted to investigate the
contribution of different drug and natural product features to
the model’s performance (Fig. 4). Fig. 4(a) illustrates the use of
LLM technology to extract molecular fingerprint features from
drugs and natural products of herbal medicines, while Fig. 4(b)
demonstrates the extraction of SMILES features using LLM
technology. Using the SMILES sequence yields 98.48% AUC
and 98.21% AU PR, whereas using molecular fingerprints re-
sults in slightly lower results, with 97.80% AUC and 97.83%
AU PR. For clarity, the clustering category was set to 20. The
results of using molecular fingerprints and SMILES are shown
in Fig. 4(c) and (d), respectively, while the feature distributions
after PCA-based dimensionality reduction are depicted in Fig.
4(e) and (f). Notably, the results indicate that using SMILES
sequences for clustering results in more distinct and separable
feature representations.

4) Testing Different Clustering Methods: Owing to the com-
plexity of natural products in herbal medicines, conventional
feature extraction methods are often inadequate. Therefore, this
study employs K-means clustering to group natural products
in herbal medicines, followed by one-hot encoding to generate
their initial representations. K -means clustering plays a critical
role in this process. Several clustering methods are available,
including hierarchical clustering and DBSCAN. An optimized
clustering algorithm could potentially enhance model perfor-
mance significantly. To explore this possibility, we implemented
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TABLE I
EVALUATING MODEL'S PERFORMANCE WITH DIFFERENT CLUSTERING
METHODS (%).

Methods/Metrics AUC  AUPR
Hierarchical clustering  98.42  98.03
DBSCAN 98.36 9791
K-means 98.48  98.21

hierarchical clustering and DBSCAN as alternatives to K-means
and conducted a comparative analysis. Table II compares the
model’s performance using hierarchical clustering, DBSCAN,
and K -means clustering algorithms. It is evident that the choice
of clustering technique has a minor impact on model perfor-
mance. Therefore, a simple and practical clustering strategy can
be selected based on specific requirements.

E. Performance Evaluation

To further evaluate the model’s performance and reduce the
impact of random errors, a five-fold cross-validation was per-
formed on the dataset. Table III presents the detailed five-fold
cross-validation results of the proposed model. The data reveal
that the model achieves excellent performance metrics: an av-
erage AUC of 95.84%, an AUPR of 97.23%, an ACC of
92.01%,a PRE 0f93.65%,a SEN 0f90.14%, and an F'1-score
of 91.86%. Notably, the performance across the five validation

folds is highly consistent, with minimal fluctuations, underscor-
ing the stability of the proposed model. This consistency further
highlights its adaptability and reliability, ensuring that the model
is robust and performs well under various dataset splits.

F. Case Study

St. John’s Wort is a perennial herb in the Garcinia fam-
ily [45]. The flowers and leaves of St. John’s Wort are com-
monly used in herbal therapy. Its primary active ingredients,
including hypericin, hyperoside, and flavonoids, are known to
exhibit various biological activities, including antidepressant,
antibacterial, antiviral, and anti-inflammatory effects [46]. St.
John’s Wort is typically used as dried herbs, capsules, tablets,
tea, or tinctures. However, despite its potential health benefits,
attention must be paid to possible side effects and drug inter-
actions. St. John’s Wort can alter the hepatic metabolism of
certain drugs, potentially reducing their efficacy or increasing
side effects, particularly when combined with antidepressants,
oral contraceptives, anticoagulants, or anti-epileptic drugs. To
evaluate the model’s ability to predict drugs interacting with
St. John’s Wort, an experiment was designed. During model
training phase, all drugs known to associate with St. John’s
Wort were excluded from the dataset. In the testing phase, St.
John’s Wort and all drug combinations were input into the trained
model. The top 20 drugs were selected based on model-predicted
probabilities, 19 of which were validated as known interactions
in the database. Acebutolol was the only drug not verified in
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TABLE IlI
RESULTS OF THE PROPOSED MODEL ON THE HDI DATASET (%).

Folds/Metrics AUC AUPR ACC SEN PRE SPE  Fl-score

1 98.48 98.21 95.20 94.53 95.81 95.87 95.17

2 98.36 98.19 94.40 94.53 9428  94.27 94.41

3 98.37 98.17 94.73 94.13 9528 9533 94.70

4 98.42 98.23 94.80 95.33 94.33 94.27 94.83

5 98.43 98.14 94.93 94.27 95.54  95.60 94.90

Avg 98.41 98.18 94.81 94.56 95.05 95.07 94.80
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o
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Fig. 5.
scores with St. John’s Wort.

TABLE IV
RESULTS OF CASE STUDY (%).

Name Score Name Score
Dihydrocodeine  98.40 Ivabradine 70.48
Elexacaftor 97.43 Fexofenadine 68.92
Delamanid 97.19 Dexfenfluramine 67.16
Maraviroc 96.30  Dextromethorphan  66.39
Pemigatinib 95.32 Atorvastatin 65.93
Neratinib 90.67 Pitolisant 62.63
Brexpiprazole 89.98 Voxilaprevir 62.07
Clarithromycin ~ 83.99 Acebutolol 61.73
Cobimetinib 79.42 Ifosfamide 60.92
Doxycycline 78.70 Milnacipran 60.43

the database, as indicated in bold in Table IV. These results
demonstrate the effectiveness and reliability of the proposed
model in accurately identifying potential HDISs.

We selected the top five drugs with the highest scores from
the prediction results: DOO897, D01497, D00978, D00838,
and D01293. A similarity matrix, based on the feature vectors
of these drugs, was computed and visualized as a heat map
in Fig. 5(a). Additionally, the chemical structures of the five
drugs were plotted using their SMILES representations in Figs.
5(b)~(f). The analysis revealed that these five compounds ex-
hibit high similarity, with the exception of DO0897 and D01293,

D00838 D01293

(E) (F)

(a) Similarity matrix for drugs (b) D00897, (c) D01497, (d) D00978, (e) D00838, and (f) D01293 showing the highest predicted association

which show lower similarity to D0O0838. This suggests that
structurally similar drugs may share properties, such as a higher
likelihood of interacting with the same herbal medicine.

IV. DISCUSSION

Investigating potential interactions between herbal medicines
and drugs facilitates the development of integrated Chinese and
Western medicine treatment strategies. Currently, there are few
methods available to identify potential HDIs among the vast
array of herbal medicine-drug pairs. Furthermore, existing drug-
related network prediction methods have specific limitations.
For instance, in the herbal medicine-drug bipartite graph, the
number of neighbor nodes for drugs and herbal medicines varies
significantly, leading to uneven data distribution. The limited
number of known HDIs complicates the extraction of accurate
and generalized node representations. Additionally, effective
methods for extracting features of herbal medicines are lacking.
To address these challenges, we propose a novel model that
integrats LLM, VGAE, and “one-hot” encoding technologies to
efficiently and reliably identify potential HDIs among extensive
herbal medicine-drug pairs.

This study evaluates the proposed model’s performance
against several comparison models using the collected HDI
dataset, demonstrating its effectiveness. Ablation experiments

Authorized licensed use limited to: Macao Polytechnic University. Downloaded on October 05,2025 at 06:54:38 UTC from IEEE Xplore. Restrictions apply.



6980

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 29, NO. 10, OCTOBER 2025

were conducted to validate the effectiveness of the proposed
herbal medicine feature extraction module, which leverages
clustering and “one-hot” encoding technologies. The results of
multiple parameter experiments confirm the proposed model’s
robustness to varying parameter settings and the reliability of
its predictions. Additionally, a series of case studies were con-
ducted to further highlight the proposed model’s exceptional
performance in isolated scenarios.

V. CONCLUSION

Herbal medicine plays a central role in traditional medicine,
and integrating modern medical research can significantly en-
hance the development of integrative medicine. A thorough
investigation into the relationship between drugs and herbal
medicines aids in optimizing combined treatment plans and
advancing personalized precision medicine. Building on this
context, this study introduces an innovative deep learning model
leveraging LLM and VGAE technologies. The study first gath-
ered and organized the HDI dataset from the latest herbal
medicine-drug database. LLM technology was then employed
to extract high-quality features from the SMILES representa-
tions of the natural components of drugs and herbal medicines.
Concurrently, clustering and “one-hot” encoding techniques
were innovatively applied to construct features derived from the
natural components of herbal medicines, greatly enhancing the
model’s interpretability. Compared to traditional methods, the
proposed model demonstrated substantial improvements in HDI
prediction.

However, the model has several limitations. First, it does
not incorporate 2D or 3D structural information of the natural
products in herbal medicines or the drugs. Second, the dataset
does not account for factors such as bias, and the random
selection of negative samples may result in false negatives. In
future work, we plan to employ advanced multimodal fusion
techniques to integrate SMILES sequences with 2D or 3D struc-
tural information of natural products in herbal medicines or the
drugs, enabling a more comprehensive representation. Second,
we aim to debias the dataset and integrate relevant clinical
information with LLM technology to improve the collection of
negative samples, thereby minimizing false negatives. Through
these improvements, the proposed model might demonstrate
significant potential in various domains, such as optimizing
Chinese medicine formulations, developing new drugs, planning
personalized treatments, and advancing precision medicine.
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