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a b s t r a c t 

Knowledge extraction from data streams has received increasing interest in recent years. However, most 

of the existing studies assume that the class distribution of data streams is relatively balanced. The reac- 

tion of concept drifts is more difficult if a data stream is class imbalanced. Current oversampling methods 

generally selectively absorb the previously received minority examples into the current minority set by 

evaluating similarities of past minority examples and the current minority set. However, the similarity 

evaluation is easily affected by data difficulty factors. Meanwhile, these oversampling techniques have 

ignored the majority class distribution, thus risking class overlapping. 

To overcome these issues, we propose an ensemble classifier called Gradual Resampling Ensemble 

(GRE). GRE could handle data streams which exhibit concept drifts and class imbalance. On the one hand, 

a selectively resampling method, where drifting data can be avoidable, is applied to select a part of pre- 

vious minority examples for amplifying the current minority set. The disjuncts can be discovered by the 

DBSCAN clustering, and thus the influences of small disjuncts and outliers on the similarity evaluation 

can be avoidable. Only those minority examples with low probability of overlapping with the current 

majority set can be selected for resampling the current minority set. On the other hand, previous com- 

ponent classifiers are updated using latest instances. Thus, the ensemble could quickly adapt to a new 

condition, regardless types of concept drifts. Through the gradual oversampling of previous chunks us- 

ing the current minority events, the class distribution of past chunks can be balanced. Favorable results 

in comparison to other algorithms suggest that GRE can maintain good performance on minority class, 

without sacrificing majority class performance. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Motivation 

With the explosive growth of information, traditional methods

f extracting knowledge have been far from meeting the needs

f actual researches, thus contributing to the emergence of data

treams. Streaming data have been widely adopted in many appli-

ations, such as wireless sensor network, web click streams, and

cientific data. Traditional data mining techniques extract useful

nformation from limited data. They require to scan the training

ata several times, which consumes a significant amount of time

nd memory [1] . In a streaming condition, the supplement of data
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tems is unbounded, and only a small summary can be loaded into

emory. Therefore, only approximate results can be obtained. The

peed of data generation is high, and thus streaming models fo-

us on applying data mining techniques with linear/sublinear time

omplexity by incrementally handling data items [2] . Concept drift

s a crucial characteristic of data streams, which describes the dy-

amic property of data items [3] . Consequently, models should be

djusted or even rebuilt to adapt to a new concept. 

Class imbalance exists in many real-world applications, such as

etwork intrusion detection and credit card transactions. Learning

rom skewed data refers to the situation where certain types of ob-

ervations are seriously underrepresented compared with others.

he decision boundary of a traditional classifier is likely to incline

o minority samples, which inevitably leads to a poor predictive

ccuracy on the underrepresented data. Data difficulty factors, in-

luding small sub-concepts [4] , class overlapping [5] , and outliers

6] , have been treated as more influential elements than the im-
alance ratio. 

emble for mining imbalanced data streams with concept drift, 
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The issues of concept drifts and class imbalance have been

studied separately. However, the joint problem has been mostly

underexplored. The following issues need to be resolved in this

area: 

1. Modifying the model timely: removing obsolete knowledge and

capturing new data to catch up with the changing concepts. 

2. Preserving valuable information: storing minority instances for

oversampling the current underrepresented data. 

3. Balancing the predictive accuracies of models on minority and

majority instances: intensifying the underrepresented class con-

cept without sacrificing the predictive accuracy on majority

samples. 

4. Considering data difficulty factors in the resampling procedure:

excluding the influences of outliers and small disjuncts on the

similarity evaluation and avoiding the class overlapping issue. 

1.2. Contribution 

This paper aims to create a framework for learning concept

drifts from imbalanced data. In summary, the key contributions are

as follows: 

1. The Gradual Resampling Ensemble (GRE) algorithm is a new

hybrid ensemble that integrates the operations of chunk-based

ensembles with those of online ensembles. GRE gradually over-

samples minority samples of past chunks using the current mi-

nority set, thus improving the predictive powers of past com-

ponent classifiers on minority instances. In general, the latest

chunk is the best role to describe the current and near-future

data distributions. Therefore, GRE can quickly adapt to a new

condition, regardless of types of drifts. Meanwhile, GRE period-

ically amplifies the data sets of previous blocks using the obser-

vations in the latest block. Thus, GRE is robust against different

predefined chunk sizes. 

2. For the latest block, a selectively resampling technique is em-

ployed to improve the recognition ratio of the ensemble on mi-

nority events. Most of the existing resampling techniques ig-

nore the influences of data difficulty factors on the similarity

evaluation among minority samples. In GRE, the small disjuncts

are discovered by clustering, and thus the similarity evalua-

tion cannot be affected by outliers and disjoints. Meanwhile,

those past minority samples that have small distances from the

current minority set have the priority to be absorbed into the

training sets of candidate hypotheses, which can avoid intro-

ducing drifting data. Different from previous studies, GRE also

considers the similarities between past minority sets and the

current majority set to reduce the probability of class overlap-

ping. 

3. The final decision of a testing instance is supported by a com-

bination result obtained from all the ensemble members, in

which each past member is weighted by its prediction accu-

racy on the observations in the candidate block. GRE maintains

a part of previous component classifiers in the ensemble group,

thereby preventing forgetting catastrophically. Where a cross-

validation procedure is avoidable, the weights of candidate hy-

potheses are designated as a supreme value, regardless of their

performances. Treating the candidate classifiers as best mem-

bers is especially important in the presence of sudden changes

when only the latest chunk can represent the distribution of

testing data [7] . 

4. Through the Massive Online Analysis (MOA) platform [8] , char-

acteristics of GRE are analyzed. The statistical results demon-

strate that different chunk sizes cannot have a significant effect

on the performance of GRE. Using a small number of candidate

classifiers can obtain good predictive performance by preserv-

ing more knowledge of data streams. The comparative study is
Please cite this article as: S. Ren et al., The Gradual Resampling Ens
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conducted to analyze the effectiveness of GRE. The statistical

tests show that our method can well learn concept drifts from

imbalanced data. 

.3. Paper organization 

The rest of the paper is organized as follows. Section 2 reviews

elated works on classifiers for dynamic data streams. In Section 3 ,

e present the popular techniques for classifying imbalanced data

treams. Section 4 provides a detailed introduction of our pro-

osed algorithm. Experimental analysis and results are presented

n Section 5 . Section 6 concludes the paper and suggests a direc-

ion for future researches. 

. Classifiers for data streams with concept drifts 

A streaming classifier requires to process incoming data sequen-

ially and make its result as accurate, or nearly as accurate, as a

odel trained on the whole data. In a nonstationary environment,

he underlying data distribution changes over time, and this phe-

omenon is referred to as concept drift [9] . To capture the evolu-

ion of underlying concepts, streaming classifiers should develop a

trategy for capturing new data and eliminating obsolete knowl-

dge in the training set. 

A wide variety of data stream classifiers, which can be charac-

erized as single classifiers and ensembles, have been developed.

ingle classifiers are generally equipped with a forgetting mecha-

ism to cope with dynamic data streams. Many forgetting mech-

nisms are designed to weaken the effect of obsolete data, such

s windowing techniques that remove obsolete knowledge [10,11] ,

nstance weighting methods that weaken the importance of obso-

ete data [12] , and change detectors that discover concept drifts

13–15] . Very Fast Decision Tree (VFDT) [1] proposed by Domin-

os and Hulten is a single model for static data streams. VFDT

annot obtain all the data, thus using the Hoeffding bound to de-

ermine the number of instances for splitting a node with a cer-

ain probability. Furthermore, Concept-adapting Very Fast Decision

ree (CVFDT) [16] extends VFDT with a fixed-size sliding window

o handle concept drifts. 

When tackling nonstationary concepts, ensemble-based models

re advantageous over single classifiers. First, ensembles provide

 natural way of coping with concept drifts without the need for

ny forgetting mechanisms. Second, they are easy to scale and par-

llelize. Third, they can quickly adapt to changes by pruning badly-

ehaved ensemble members. Finally, the good generalization abil-

ty can be obtained as previous information of data streams can be

eused. Nevertheless, ensembles often require several times more

rocessing time than single classifiers, plus the procedures of se-

ecting members referred to as ensemble pruning and importance

valuation of every hypothesis known as component weighting can

ake the process even longer. 

The ensemble-based classifiers can be divided into two cate-

ories based on the amount of data to be processed during each

raining step: chunk-based ensembles and online ensembles. For

hunk-based ensembles, fixed-size chunks are divided and hy-

otheses are trained over a certain amount of data. Thus, they are

ot purely online approaches. By adjusting the weights of hypothe-

es, Accuracy Weighted Ensemble (AWE) [17] and Streaming En-

emble Algorithm (SEA) [18] can gradually forget outdated knowl-

dge, thus providing preferable manipulations for gradual drifts.

oreover, the weights of components in Learn ++ .NSE [19] are dy-

amically updated with the time-changing errors of classifiers on

he current and past concepts to handle various kinds of concept

rifts. 

Unlike the above approaches, online ensembles update models

fter receiving a single example, which strictly comply with the
emble for mining imbalanced data streams with concept drift, 
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equirements of online learning. Online Bagging [20] , which is an

nline version of Bagging [21] , presents every incoming instance to

 component several times. Online Boosting [20] , which can be ap-

lied to a large volume of streaming data, is the online version of

oosting [22] . The probability of an instance used for training mod-

ls is determined by the Poisson distribution in Online Boosting.

n Dynamic Weighting Majority (DWM) [23] , the weight of every

omponent classifier is set to one initially and adjusted after every

bservation. Considering the two schemes previously mentioned,

 hybrid approach has been developed. Accuracy Updated Ensem-

le (AUE) [7] is a famous approach for learning data streams with

ultiple kinds of concept drifts. The ensemble system can quickly

ccommodate new circumstances by assimilating new knowledge

nto past component classifiers. 

. Previous work on handling data streams with imbalanced 

lass distribution 

The issue of concept drift is further complicated if the class

istribution of a data set is imbalanced. The minority instances,

hich are underrepresented in static circumstances, tend to be se-

iously neglected in a dynamic learning framework. As a branch

f data steam mining, intensifying the underrepresented class con-

epts when classifying skewed data streams has raised concerns in

ecent years. Thus, a classifier for dealing with the joint problem

f concept drifts and class imbalance is a necessity. 

Many existing methods process data items in chunks and

alance the class distribution of the latest chunk using various

trategies, such as oversampling the current minority set using

inority events of the previous chunks [24–27] , oversampling the

urrent minority set using minority samples in a sliding window

28] , and undersampling the current majority set [29] . Gao et

l. presented a representative of block-based algorithms called

ncorrelated Bagging (UB) [24] . In UB, all minority examples of

onsecutive blocks are preserved and used to supplement the cur-

ent minority set. Therefore, drifting data are likely to be absorbed

nto the latest block. An ensemble is generated through dividing

he post-balanced chunk into several sub-blocks. The majority ob-

ervations are randomly propagated into sub-blocks to ensure the

iversity. SElectively Recursive Approach (SERA) [25] was proposed

o selectively oversample minority examples from previous chunks

o balance the class distribution of the candidate chunk. Consider-

ng the evolution of concepts, SERA uses the Mahalanobis distance

o evaluate the probabilities of past minority data to be selected.

ased on SERA, Multiple Selectively Recursive Approach (MuSeRA)

27] and Recursive Ensemble Approach (REA) [30] were developed.

ompared with SERA, MuSeRA maintains the hypotheses built over

ll the chunks, and then the combination result is leveraged to pre-

ict an incoming observation. Targeted for handling sub-concepts

ithin the minority set, REA adopts k -nearest neighbors to esti-

ate the similarities among minority samples. In Dynamic Feature

roup Weighting with Importance Sampling (DFGW-IS) [28] , a

xed-size window is maintained to collect the latest minority data

or amplifying the current minority set, which assumes that the

atest data can best represent current and near-future concepts. 

Learn ++ for Nonstationary and Imbalanced Environments

Learn ++ .NIE) and Learn ++ for Concept Drift with SMOTE

Learn ++ .CDS) do not need to access previous data [31] .

earn ++ .CDS is a natural combination of Learn ++ .NSE [19] and

ynthetic Minority class Oversampling TEchnique (SMOTE) [32] , in

hich Learn ++ .NSE handles concept drifts and SMOTE balances

he distribution by generating new data. Furthermore, Learn ++ .NIE

odifies the weighting mechanism with a penalty constraint to

alance the importances of different classes. Without creating

ynthetic data, it replaces SMOTE with bagging-based sub-

nsembles. Oversampling-based Online Bagging (OOB) and
Please cite this article as: S. Ren et al., The Gradual Resampling Ens

Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.01.063 
ndersampling-based Online Bagging (UOB), which are based

n resampling and time-decayed metrics, are two online ap-

roaches [33] . The sampling rates of them are consistent with the

mbalance degree of data. The study shows that UOB is good at

andling static data streams, whereas OOB is more robust against

ynamic conditions. 

. The Gradual Resampling Ensemble (GRE) algorithm 

In this section, we first present the details of the GRE algorithm.

hen, the inherent handling mechanisms of GRE, which cover

he selectively resampling mechanism, ensemble update mecha-

ism, weighting mechanism, and final decision, are respectively

escribed. The frequently used symbols and their descriptions in

his paper are summarized in Table 1 . 

lgorithm 1 Gradual Resampling Ensemble (GRE). 

.1. The proposed learning framework 

The complete procedure of GRE is provided in Algorithm 1 . The

RE algorithm involves four key phases. First, a selectively resam-

ling technique is applied to the current block, which is described

n Section 4.2 (lines 4–6 of Algorithm 1 ). The pseudo-code of the

electively resampling mechanism is presented in Algorithm 2 . To

imit the memory usage, only minority samples in the previous

 blocks are preserved in M to resample the minority set of the

atest block. This is based on the assumption that the latest ex-

mples can well represent the current and near-future concepts.

f the number of examples in M cannot balance the current class

istribution, the entire samples in M are added into the current

raining chunk S m 

( m > 1) (lines 1 and 2 of Algorithm 2 ). On the

ontrary, a clustering procedure is applied to the current minority

et P m 

to obtain a series of clusters (line 5 of Algorithm 2 ). Then,

he similarity between each of past minority samples X u ∈ M and

 m 

is based on the Mahalanobis distances of X u from clusters of

 m 

(line 6 of Algorithm 2 ). In this way, the influences of small dis-

uncts and outliers on the similarity evaluation can be avoidable.
emble for mining imbalanced data streams with concept drift, 
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Algorithm 2 Selectively Resampling Procedure. 

Input: B m 

: the latest data chunk 

S m 

: the latest training data chunk 

r m 

: the imbalanced ratio specifying the proportions between 

the minority samples and majority samples in the latest train- 

ing chunk 

f : the post-balance ratio specifying the imbalance ratio after 

resampling the minority set of the latest training chunk 

a : the number of training data in the latest training data chunk 

M and | M| : the set containing minority data in the previous w 

blocks and its cardinality, obviously M = ∅ when m =1. 

P m 

: a dataset containing minority data of the latest training 

chunk 

Output: P 
′ 
m 

: the updated minority set in the latest training chunk 

1: if | M| < ( f − r m 

) × a then 

2: M m 

← M 

3: else 

4: for u = 1 , 2 . . . do 

5: cluster P m 

into several clusters 

6: obtain distances d X u ,c of an instance X u ∈ M from clusters 

of P m 

7: d X u ← min d X u ,c 
8: sort { d X u } in ascending order and obtain the order q 1 ,X u 

for X u 
9: cluster N m 

into several clusters 

10: obtain distances d 
′ 
X u ,c 

of an instance X u ∈ M from clusters 

of N m 

11: d 
′ 
X u 

← min d 
′ 
X u ,c 

12: sort { d 
′ 
X u 

} in descending order and obtain the order q 2 ,X u 
for X u 

13: end for 

14: determine the order of X u of being selected, which is corre- 

sponding to the sum q X u ← q 1 ,X u + q 2 ,X u 
15: select a minority set M m 

with respect to the first ( f − r m 

) 

× a terms from M 

16: end if 

17: P 
′ 
m 

← P m 

∪ M m 
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onsequently, d X u is the distance of X u from its nearest cluster cen-

er, which can be used to judge the rank of X u to be selected for

versampling P m 

(lines 7 and 8 of Algorithm 2 ). Meanwhile, the

issimilarity between a past minority event X u ∈ M and the current

ajority set N m 

should be estimated to reduce the risk of overlap-

ing between different classes. Similarly, through clustering sam-

les in N m 

(line 9 of Algorithm 2 ), the dissimilarity between X u 

nd N m 

can be represented as d 
′ 
X u 

(lines 10 and 11 of Algorithm 2 ).

he orders of distances d X u and d 
′ 
X u 

are sorted in ascending and

escending manners, respectively (lines 8 and 12 of Algorithm 2 ).

onsequently, the order of a past minority sample X u to be selected

or oversampling the latest minority set P m 

depends on the sum of

wo orders of distances (line 14 of Algorithm 2 ). Only those data

oints, which are close to the current minority set P m 

and rela-

ively deviate from the current majority set N m 

, are selected and

bsorbed into P m 

(lines 15 and 17 Algorithm 2 ). After resampling

he training minority set of the latest block, the training set in the

mplified block, denoted by S 
′ 
m 

, is divided into p sub-blocks. All

he minority instances and a certain number of majority instances

re involved in each sub-block. Then, p candidate hypotheses K 

′ 
l 

(l = 1 , 2 , . . . , p) are built (line 7 of Algorithm 1 ). 

Second, the weights of new hypotheses and previous hy-

otheses are respectively evaluated, which are described in

ection 4.4 (lines 8 − 11 of Algorithm 1 ). A performance-based

runing technique is adopted to limit the memory and time us-
emble for mining imbalanced data streams with concept drift, 
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Fig. 1. The learning flow of Gradual Resampling Ensemble algorithm. 
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ge in the ensemble framework. The newly built hypotheses should

eplace the p poorest performing ones in the ensemble group

lines 12 and 13 of Algorithm 1 ). Third, a majority set N is ran-

omly selected from the current majority set N m 

to update past

ypotheses, which is described in Section 4.3 (lines 14 − 17 of

lgorithm 1 ). The number of examples in N , denoted by | N |, is

qual to | P m 

| + | P t, j | − | N t, j | (line 15 of Algorithm 1 ). | P m 

| denotes

he number of training minority examples in the current block.

eanwhile, | P t, j | and | N t, j |, respectively, denote the numbers of

inority and majority examples of the training set of the j th hy-

othesis in the t th block. Then, previous ensemble members are

pdated using the latest events, which can further balance the

lass distributions of training data of past members and makes the

nsemble quickly react to different kinds of concept drifts (line 16

f Algorithm 1 ). Finally, the final decision for a testing event x 
′ 
i 

is

erived from all the prediction results of hypotheses, which is de-

cribed in Section 4.4 (lines 19 − 21 of Algorithm 1 ). 

Fig. 1 provides the system level framework of the proposed al-

orithm. First, a data stream is divided into equal sized blocks,

here B m 

is the block at time t = m . The data set M conserves

he minority samples in the previous w blocks. Second, at time

 = 1 , k component classifiers are built over the first block, where

 is the predefined ensemble size. At time t = m, a certain number

(( f − r m 

) × a ) of minority examples are selected from M based on

he selectively resampling mechanism, where f is the post-balance

atio specifying the imbalance ratio after resampling the minority

et of the latest training chunk, r m 

is the imbalance ratio speci-

ying the proportions between the minority samples and major-

ty samples in the latest training chunk, and a is the number of

raining examples of candidate hypotheses. These minority exam-

les are added into B m 

so that the imbalance ratio of the am-

p

Please cite this article as: S. Ren et al., The Gradual Resampling Ens

Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.01.063 
lified candidate training block is equal to f . Then, p hypotheses

re built over the amplified training block S 
′ 
m 

and then added into

he ensemble. Previous p hypotheses are replaced with new hy-

otheses to limit the time and memory consumption based on

he performance-based pruning technique. Third, past hypotheses

re updated using instances in the recent chunk, which makes

he ensemble quickly adapt to new conditions. Finally, the en-

emble members are weighted to predict the label of a testing

nstance. 

.2. Selectively resampling mechanism 

In the chunk-based framework, several existing techniques are

roposed to resample the minority set of the latest chunk, includ-

ng reusing past minority data to amplify the latest block, generat-

ng novel data according to the data distribution, and oversampling

inority data randomly. Reusing previous data and generating syn-

hetic events can really absorb novel knowledge into the candidate

hunk compared to that in the random oversampling technique.

esides, the minority data of past chunks are more suitable for

reating the current concept than the synthetic data generated by

ome strategies [25] . 

Data difficult factors and concept drift impose difficulties on

he selection of an appropriate subset of past minority data. First,

RE can avoid absorbing drifting data into the current minor-

ty set by measuring the similarities between past minority data

nd the current minority set. Those minority examples that are

lose to the latest minority set have the priority to be selected.

he Mahalanobis distance is treated as the evaluation standard

o measure such similarities. Considering the data correlation,

ahalanobis distance is suitable for evaluating similarities com-

ared to Euclidean distance [27] . 
emble for mining imbalanced data streams with concept drift, 

https://doi.org/10.1016/j.neucom.2018.01.063


6 S. Ren et al. / Neurocomputing 0 0 0 (2018) 1–17 

ARTICLE IN PRESS 

JID: NEUCOM [m5G; February 12, 2018;21:42 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

t  

b  

M  

b  

t  

X  

a  

X  

o  

c

c  

b

 

r  

c  

f  

T  

j  

c  

i  

e  

o  

t  

b  

a  

d  

p  

i

4

 

o  

s  

t  

o  

i  

c  

a  

h  

b  

o  

d

 

w  

f  

c  

i  

t  

a  

i  

m  

h  

e  

j  

s

 

h  

H  

t  

p  

c  

c  

r  

d  
Second, to avoid the influences of outliers and small disjuncts

on the similarity evaluation, GRE divides the current minority set

into several clusters based on the Density-Based Spatial Clustering

of Applications with Noise (DBSCAN) [34] . DBSCAN is a density-

based clustering algorithm, which can find arbitrarily shaped

clusters and is robust to outliers. Instead of regarding the recent

minority set as a whole, each cluster is conceived as a unit for

assessing similarities between itself and past minority events. The

effect arising from sub-concepts on the similarity evaluation could

be avoidable by calculating Mahalanobis distances of past minority

samples from cluster centers. For every past minority event, the

distance derived from its nearest cluster is employed to describe

its probability of being selected for balancing the current class

distribution. 

Third, aiming at refraining the class boundaries of minority

events from spreading further into the majority class area, a strict

selection strategy should be applied to past minority samples that

are close to the latest minority set. The dissimilarities between

past minority samples and the current majority set should be

evaluated. The clustering procedure based on DBSCAN [34] is used

to discover sub-concepts of the current majority set. For each past

minority event, the dissimilarity is transformed into the Maha-

lanobis distance from the nearest cluster center of the current ma-

jority set. Consequently, a past minority instance with a small dis-

tance from the current minority set but a large distance from the

current majority set has a high probability of being recognized as a

valuable data point for resampling the latest minority samples set.

It should be noted that sub-concepts of minority and majority

samples of the latest chunk are discovered by the DBSCAN cluster-

ing. In the chunk-based framework, the clustering method operates

the training events of consecutive blocks. The indexing structure

based on k -d trees [35] is used to improve the efficiency of the

DBSCAN clustering. The time consumption of clustering processes

in the current block is O (| P m 

| log | P m 

| + | N m 

| log | N m 

| ) . Thus, the up-

per bound of the time complexity of clustering phases in a block is

O ( a log a ), where a is the size of training block. The processing time

of DBSCAN in a block is limited since the value of a is small. Then,

the overall runtime complexity of O ( ac log a ) is needed, where c is

the number of chunks in a data stream. If the clustering method

processes the entire data items at once, then O (| S |log | S |) time is

required, where | S | is the number of instances in a data stream.

When handling high-volume data streams, GRE can significantly

reduce the time consumption of clustering phases in a chunk-by-

chunk manner ( O ( ac log a ) � O (| S |log | S |)), which could satisfy the

time requirements of data streams. Accordingly, we can use the k -d

tree structure and operate instances in blocks to improve the effi-

ciency of the DBSCAN clustering. In order to automatically detect

two parameters (MinPts and Eps) required by DBSCAN, we use the

k -distance graph [36] . 

The learning process of the selectively resampling mechanism

in GRE can be visualized to gain a deeper understanding of its

behavior, as shown in Fig. 2 . Among all the data points, squares

represent the minority instances collected from the previous

w chunks, circles denote the instances in the current minority

set, triangles are the samples in the current majority set, and

stars are the centers of clusters. Fig. 2 (a) shows that X 0 deviates

from the current minority set and deeply locates in the majority

class region, thus being regarded as an outlier. The similarity

evaluation of common methods is seriously affected by outliers

and sub-concepts as it treats a specific class of samples as a

single cluster. In Fig. 2 (b), DBSCAN is utilized to divide a specific

class of instances into several sub-concepts. The data points that

are closely packed together are grouped into a cluster, which

makes outliers fall alone in the low-density regions and to be

easily detected. Then, two clusters of the minority class and three

clusters of the majority class are obtained. O i (1 ≤ i ≤ 5), which is
Please cite this article as: S. Ren et al., The Gradual Resampling Ens

Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.01.063 
arked using a star, is the center of the i th cluster. In Fig. 2 (c),

he similarity between a square and the latest minority set is

ased on the distance from its nearest minority class cluster.

eanwhile, the oversampling procedure considers dissimilarities

etween the collected minority data and the current majority set

o overcome the class overlapping issue. For data points X 1 and

 2 , the first cluster is their nearest cluster of the minority class,

nd thus d X 1 and d X 2 can be obtained. If d X 1 is equal to d X 2 , then

 1 and X 2 have the same probability of being selected, regardless

f the underlying issue of class overlapping. Moreover, the fourth

luster is the closest one of the current majority set for X 1 and X 2 

ompared with other clusters. Consequently, X 2 has the priority to

e selected if d 
′ 
X 2 

is larger than d 
′ 
X 1 

. 

In UB [24] , all the past minority samples are added into the cur-

ent minority set, and thus the accumulated minority data may be-

ome a majority class. However, GRE applies the post-balance ratio

 to proportionally select a certain number of past minority data.

herefore, the size of minority class can never surpass that of ma-

ority class in the amplified candidate block. After resampling the

urrent minority set, the amplified data chunk is randomly divided

nto p sub-blocks, where each sub-block includes all the minority

xamples and a certain number of majority examples. The number

f majority examples in each sub-block is designated according to

he post-balance ratio f . Then, a candidate component classifier is

uilt over a sub-block. Only limited minority events of past blocks

re reused, which may fail to obtain a block with balanced class

istribution. Thus, GRE needs to readjust the imbalance ratios of

ast chunks by updating previous hypotheses, which is described

n Section 4.3 . 

.3. Ensemble update mechanism 

Oversampling techniques normally either collect all the previ-

us minority samples or select only a portion of previous minority

amples to obtain an amplified block with relatively balanced dis-

ribution. The former method may obtain enough minority samples

f previous chunks, whereas drifting data are likely to be involved

n the candidate block. In fact, only those minority data that are

onsistent with the target concept can actually be treated as valu-

ble information for enhancing the predictive ability of candidate

ypotheses. On the contrary, the latter strategy may not achieve a

alanced chunk when the class distribution is extremely skewed as

nly limited minority events are absorbed into the current training

ata set. 

Conservatively, the selectively resampling mechanism of GRE,

hich simultaneously considers concept drifts and data difficulty

actors, only selects a certain number of minority events that are

lose to the current minority set and far from the current major-

ty set to amplify the training sets of candidate hypotheses. Thus,

he class distribution of the amplified block is likely to experience

n imbalanced condition. To overcome this issue, resampling train-

ng minority sets of previous ensemble members using the current

inority examples is an effective strategy. When updating previous

ypotheses, all the minority instances and a majority class set are

xtracted from the most recent block. The number of selected ma-

ority examples should make class distributions of past amplified

ub-blocks balanced. 

Once balanced training sets of previous component classifiers

ave been achieved, the resampling process is no longer required.

owever, GRE also updates the corresponding hypotheses using

he entire minority samples and an equal number of majority sam-

les in the latest block. It is often assumed that the most re-

ent block is the best representative of the current and near-future

oncepts. Therefore, updating previous hypotheses using the cur-

ent data set can make the ensemble quickly adapt to new con-

itions, regardless of the types of drifts. In general, the predictive
emble for mining imbalanced data streams with concept drift, 
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Fig. 2. The selectively resampling procedure. (a) Similarity evaluation of the common methods, (b) achieving clusters of the current majority and minority sets, and (c) 

similarity evaluation of GRE. 
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erformances of chunk-based ensembles, such as MuSeRA [27] and

WE [17] , largely rely on the predefined size of data chunks. On

he contrary, the sizes of previous blocks are constantly enlarged

n GRE. Therefore, the predefined chunk size could not have a con-

iderable effect on the final decision (discussed in more detail in

ection 5.4 ). As GRE is required to periodically update past mem-

ers, the base learner should be an online classifier to be up-

ated conveniently. VFDT [1] is a famous classifier for incremen-

ally learning massive data streams, which is treated as the base

odel of GRE. 

.4. Weighting mechanism and final hypothesis 

Ensemble-based classifiers can utilized past information of data

treams to show better robustness and higher recognition ratios of

xamples than single classifiers. To adapt to a new condition, ob-

olete knowledge should be removed even if it might be relevant

o the current concept in the future. Unfortunately, single classi-

ers cannot retrieve those data, thus resulting in the catastrophic

orgetting. On the contrary, ensembles can hold the relevant infor-

ation within ensemble members without storing a large amount

f data. GRE maintains a fixed-size ensemble framework using a

erformance-based pruning technique to limit the time and mem-

ry usage. Each block can obtain a certain number of hypotheses. If

he number of components is limited to k , then the candidate hy-

otheses should replace a part of past members. The predictions of

omponent classifiers are aggregated using a weighted voting rule

o make final decisions. 
Please cite this article as: S. Ren et al., The Gradual Resampling Ens
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In this paper, we only consider the binary classification issue.

he set of sample labels is Y = { +1 , −1 } , where +1 and −1 denote

he labels of minority data and majority data, respectively. When

valuating the weights of component classifiers, an existing com-

onent that wrongly identifies a minority instance should be pe-

alized more than the one that has mistaken a majority instance.

or the candidate block B m 

( m > 1), a examples are selected as the

raining set S m 

and the remaining events are used as the testing

et T m 

. ( x i , y i ) ∈ S m 

is the i th training example, where x i is the vec-

or of attribute values and y i is its class label. The misclassification

ost of x i , denoted by C i , is defined as follows: 

 i = 

{
1 , if y i = +1 

r m 

, otherwise 
(1) 

here r m 

is the imbalance ratio of the latest training block S m 

. It

escribes the proportions between minority instances and majority

nstances, which is defined as 

 m 

= 

| P m 

| 
| N m 

| (2) 

here | P m 

| and | N m 

| are the numbers of minority and majority in-

tances in the current training block, respectively. 

The candidate classifiers, denoted by K 

′ 
l 

(l = 1 , 2 , . . . , p) , are

rained over the most recent training data chunk and assigned

eights as follows: 

 

K 
′ 
l 

= exp ( MSE r ) (3) 
emble for mining imbalanced data streams with concept drift, 
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MSE r = 

∑ 

y i 

p(y i ) (1 − p(y i )) 
2 
. (4)

The weight of candidate classifiers, denoted by w 

K 
′ 
l 

, is proportional

to MSE r . MSE r denotes the mean square error of a randomly pre-

dicted classifier, which is based on the class distribution of exam-

ples within the latest training block. Thus, the importances of can-

didate hypotheses only consider the factor of class distribution. A

candidate component classifier with a relatively balanced training

set can obtain a higher weight than others. At t = 1 , k candidate

components are created from examples within the first training

block, where weights of all the ensemble members can be com-

puted in Eq. (3) . 

For each incoming chunk B m 

, K t, j denotes the j th component

of the t th block. The weight of K t, j , denoted by w 

m 

t, j 
, is determined

by its predictive power on the training set in the most recent block

B m 

, which can be expressed by 

w 

m 

t, j = exp ( MSE r − MSE 

m 

t, j ) (5)

MSE 

m 

t, j = 

1 

a 

a ∑ 

i =1 

C i (1 − f m 

t, j (x i )) 
2 (6)

MSE m 

t, j is the mean square error of the j th hypothesis in the t th

data block, which is evaluated over the examples in S m 

. MSE r ,

which is a preference value, is obtained in Eq. (4) . For an exam-

ple ( x i , y i ) ∈ S m 

, f m 

t, j 
(x i ) describes the probability of x i being classi-

fied as category y i by the j th hypothesis in the t th data block. C i 
presented in Eq. (1) is the misclassification cost of x i . 

After obtaining all the weights of component classifiers, the fi-

nal decision for a testing observation x 
′ 
i 

is determined as 

ˆ y i = arg max 
x 
′ 
i 
∈ T m ,y ′ i ∈ Y 

( m −1 ∑ 

t=1 

∑ 

j 

w 

m 

t, j × f (K t, j (x 
′ 
i ) , y 

′ 
i ) + 

p ∑ 

l=1 

w 

K 
′ 
l 

× f ( K 

′ 
l ( x 

′ 
i ) , y 

′ 
i )

(7)

in which K t, j (x 
′ 
i 
) and K 

′ 
l 
(x 

′ 
i 
) are the predictive labels of x 

′ 
i 

using

K t, j and K 

′ 
l 
, respectively. y 

′ 
i 

and ˆ y i are the true label and the pre-

dictive label of x 
′ 
i 
, respectively. f (K t, j (x 

′ 
i 
) , y 

′ 
i 
) and f (K 

′ 
l 
(x 

′ 
i 
) , y 

′ 
i 
) are

the indicator functions and can be defined as follows: 

f (K t, j (x 
′ 
i ) , y 

′ 
i ) = 

{
1 , if K t, j (x 

′ 
i 
) = y 

′ 
i 

0 , otherwise 
(8)

f ( K 

′ 
l ( x 

′ 
i ) , y 

′ 
i ) = 

{
1 , if K 

′ 
l 
( x 

′ 
i 
) = y 

′ 
i 

0 , otherwise. 
(9)

It is worth pointing out that the weighting mechanism of can-

didate hypotheses as shown in Eq. (3) is different from that of

the existing components as shown in Eq. (5) . The weights of exist-

ing components should be continuously adjusted according to their

predictive powers on the training examples in the latest block.

However, if it is also applied to candidate classifiers, the cross-

validation procedures are required, which is not suitable for han-

dling high-speed data streams. The highest possible weight is di-

rectly given to the candidate classifiers, which especially makes

GRE obtain good performances in the presence of sudden drifts.

This setting is based on the assumption that the latest block pro-

vides the best representation of the current and near-future data

distributions. The weighting formula presented in Eq. (3) does not

consider a classifier’s performance, and thus no validation sets are

required. 
Please cite this article as: S. Ren et al., The Gradual Resampling Ens
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. Experiments 

In this section, we empirically demonstrate the effectiveness

f the proposed algorithm. GRE is compared with other six ap-

roaches proposed for learning concept drifts from imbalanced

ata on six synthetic datasets and one real-world dataset using

ultiple evaluation metrics. 

.1. Datasets 

Table 2 presents the details of synthetic and real-world datasets

sed in our experiments. In the following section, we describe the

rocedures of each streaming data preparation. 

.1.1. Synthetic dataset 

There is a shortage of suitable and public real-world datasets

or evaluating data stream classification methods. For this rea-

on, the synthetic datasets, in which concept drifts and imbal-

nced class distribution are involved, are particularly useful to ver-

fy whether the proposed algorithm can successfully address the

oint issue. Compared with real-world datasets, the details of con-

ept drifts on the synthetic datasets can be acquired in advance. 

Two families of synthetic datasets are designed. On the one

and, one artificial two-class dataset called Square, which con-

ains small disjuncts and sudden drifts, are generated according to

37] . Fig. 3 provides the structure of the Square dataset. First, we

qually divide the unit square in a two-dimensional feature plane

nto 3 × 3 square grids. The input of each dimension is represented

s three equal sized intervals and the contiguous intervals have

ifferent labels, but the middle one is kept empty. Second, three

oncepts, denoted by D a , D b , and D c are designed. The inputs of

 a and D b are in the interval [0, 1]. However, the input of D c is

n the interval [0, 3]. Third, we design a sudden drift by chang-

ng the sample labels within grids in addition to that of the mid-

le one. Then, D b replaces the concept D a . Meanwhile, a concept

rift can be generated by changing the range of samples attributes.

hus, a concept drift occurs if D c replaces D a . Concept drifts occur

ach 250,0 0 0 instances, then 4 concepts and 3 changes are on the

quare dataset. The generating probability of majority examples is

9 times that of minority examples, and thus the imbalance ratio

f Square is 1: 19. 

On the other hand, synthetic datasets generated by data stream

enerators are leveraged to validate the effectiveness of the pro-

osed method on a broad spectrum of concept drift scenarios. A

rief description of each dataset created by the data stream gener-

tors is presented below. 

SEA: the SEA generator [18] is leveraged to create three

atasets, each containing 10% of noise. Three features are random-

zed in the interval [0,10], in which only two features are relevant.

he sample labels are determined by comparing the sum of two

elevant feature values with a predefined threshold. Then, concept

rifts can be simulated by modifying the threshold. First, SEA S con-

ains three sudden drifts. Second, SEA SR is designed to contain four

udden recurrent drifts. The fifth concept is the recurrent concept

f the first one. Third, nine gradual drifts are introduced on the

EA G dataset. We then induce class imbalance by undersampling

ne of the classes every 10 0 0 observations, which ensures the mi-

ority data cardinality 5% of the total data size. 

RanRBF: the random Radial Basis Function (RBF) generator cre-

tes new examples by selecting a center randomly, in which each

enter has a weight. The center with a high weight has a high

robability of being selected. We use this generator to create the

anRBF GR dataset of 791,0 0 0 instances described by 20 attributes

nd two classes. We simulate four gradual recurrent drifts by mov-

ng the centroids with constant speed. This dataset is particularly
emble for mining imbalanced data streams with concept drift, 
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Table 2 

Datasets description. 

Dataset #Inst #Attrs #Classes Noise Imbalance ratio #Drifts Drift type 

SEA S 646k 3 2 10% 1:19 3 Sudden 

SEA G 541k 3 2 10% 1:19 9 Gradual 

Hyper 100k 10 2 5% 1:19 1 Incremental 

RanRBF GR 791k 20 2 0% 1:19 4 Gradual recurrent 

SEA SR 664k 3 2 10% 1:19 4 Sudden recurrent 

Square 1M 2 2 0% 1:19 3 Sudden 

Elec 26k 8 2 – 1:19 – –

Fig. 3. Figure describing the Square dataset. 
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seful for analyzing an algorithm’s ability to learn data in recur-

ing environments. Then, we undersample one of the classes every

0 0 0 observations. The cardinality of the minority class is set to

% of total data. 

Hyper: the Hyperplane generator [16] could simulate the incre-

ental concept drifts by adjusting the orientation and the position

f the rotating hyperplane smoothly. We use this generator to cre-

te the Hyper dataset that contains 10 0,0 0 0 observations describ-

ng by 10 attributes and two classes. An incremental drift is sim-

lated through the modification weight that changes by 0.1 with

very instance, and then 5% of noise is added to the data. One of

he classes is undersampled every 10 0 0 instances to create an im-

alance ratio of 1: 19. 

.1.2. Real-world dataset 

The Electricity Pricing dataset (Elec) was collected from the

lectricity market in New South Wales, Australian. The electricity

rices are affected by the demand and the supply of electricity.

herefore, the natural occurrence of concept drifts has resulted in

elated problems [15,38] . The Elec dataset can be used to predict

he fluctuating situation of electricity prices. To verify the ability of

he proposed algorithm for learning imbalanced data, observations

escribing rising prices are undersampled to create an imbalance

atio of 1: 19 (minority data are 5% of the total data size). 

.2. Evaluation metrics 

Several figures of merit can be used to evaluate the classifica-

ion performances. Accuracy describes the total recognition perfor-

ances of algorithms on testing observations, which is commonly

sed in traditional classification. Accuracy is primarily determined

y the majority class, and thus it is not an adequate metric for im-

alanced datasets. 

Several metrics for evaluating classification performances in

kewed mining problems have been put forward. First, the recall

erformance of the minority class is used for measuring the scal-

ng of correctly classified minority events compared to the total

ize of minority data, which is often utilized to evaluate the recog-

ition ability of algorithms on minority data. Second, the G -mean

alue is an important and commonly used metric for analyzing

he imbalanced datasets, which integrates the majority class recall

ith the minority class recall. A high G -mean value indicates that

he classifier performs equally well on examples of both classes.

hird, F -measure combines precision and recall for measuring the
Please cite this article as: S. Ren et al., The Gradual Resampling Ens

Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.01.063 
erformance of a classifier on the minority samples. Finally, AUC

escribes the area under the ROC curve. By adjusting the classifica-

ion threshold, AUC provides a single average value of a classifier’s

erformance. We exploit accuracy, recall, F -measure, G -mean, and

UC for analyzing the performances of tested algorithms from the

ifferent aspects in our simulation. 

.3. Experimental setup 

We use several state-of-the-art algorithms to compare their

bility to learn concept drifts from imbalanced data. All the tested

lgorithms were implemented in Java as part of the MOA frame-

ork [8] . The tested algorithms are listed as follows: 

1. AWE [17] . AWE is strictly designed for concept drifts and

included as a benchmark algorithm. In the chunk-by-chunk

framework, each component classifier is trained over one

chunk. Then, k = 10 ensemble members are preserved in the

ensemble group. 

2. SERA [25] . SERA only selects those minority data that are simi-

lar to the current minority class set to balance the current class

distribution. The Mahalanobis distance is employed to measure

such similarities. The post-balance ratio f is equal to 0.5. k = 10

ensemble members are built over the amplified training set in

the latest block. 

3. MuSeRA [27] . MuSeRA is proposed for learning imbalanced

datasets in the concept drift scenario. Compared with SERA, the

ensemble members of MuSeRA are derived from all the blocks

rather than just the latest one. Thus, MuSeRA can utilize past

information of data streams, which avoids forgetting knowledge

excessively. All the ensemble members based on consecutive

blocks are preserved, which is same as the setting of the pa-

per’s authors. Similarly, the similarity between each of past mi-

nority events and the current minority set is measured by the

Mahalanobis distance. The sample size parameter, f , is set to

0.5. 

4. SMOTE [32] . In the chunk-by-chunk framework, SMOTE is first

used to balance the class distribution of the current block by

creating the novel data, disregarding the distribution of ma-

jority examples. Then, a single classifier based on VFDT [1] is

trained over a data chunk. The chunk size is equal to 10 0 0 and

the post-balanced ratio f is set to 0.5. 

5. UB [24] . UB is employed to blindly propagate all the past mi-

nority examples into the latest block, regardless of their simi-

larities of the current minority set. Thus, drifting data are likely
emble for mining imbalanced data streams with concept drift, 
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Table 3 

AUC values (%) and average ranks of GRE using different chunk sizes d . 

d = 500 d = 800 d = 10 0 0 d = 1250 d = 20 0 0 

SEA S 87.28(1) 87.00(3) 86.97(4) 87.14(2) 86.68(5) 

SEA G 88.99(2) 88.87(5) 89.06(1) 88.95(4) 88.97(3) 

Hyper 99.07(5) 99.28(4) 99.31(2) 99.40(1) 99.29(3) 

RanRBF GR 98.86(4) 99.01(1) 98.98(3) 98.99(2) 98.85(5) 

SEA SR 87.28(2) 87.38(1) 87.17(4) 87.15(5) 87.20(3) 

Square 98.59(2) 98.54(4) 98.64(1) 98.57(3) 98.53(5) 

Elec 73.57(3) 71.71(5) 74.87(2) 71.79(4) 76.06(1) 

Average rank 2.71 3.29 2.43 3.00 3.57 

The best result is in boldface. 

Table 4 

AUC values (%) and average ranks of GRE using different values of p . 

p = 1 p = 2 p = 4 p = 6 p = 8 

SEA S 86.97(1) 86.86(2) 85.51(3) 84.22(4) 82.55(5) 

SEA G 89.06(1) 88.61(2) 87.49(3) 86.24(4) 84.58(5) 

Hyper 99.31(1) 99.18(2) 98.80(3) 98.29(4) 96.31(5) 

RanRBF GR 98.98(1) 98.82(2) 98.09(3) 96.64(4) 94.37(5) 

SEA SR 87.17(1) 86.76(2) 84.99(3) 83.45(4) 82.17(5) 

Square 98.64(2) 98.70(1) 98.60(3) 97.57(4) 95.78(5) 

Elec 74.87(1) 74.22(4) 74.34(3) 74.70(2) 73.62(5) 

Average rank 1.14 2.14 3.00 3.71 5.00 

The best result is in boldface. 
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to be absorbed into the candidate block. k = 10 ensemble mem-

bers are built over the candidate block. 

6. OOB [33] . In OOB, the oversampling technique and time-

decayed metrics are leveraged to overcome class imbalance

and concepts drifts. The ensemble size is set to 10. The time-

decayed class size can determine the resampling rate and the

decay factor is set to 0.9 (same as suggested by the paper’s au-

thor). 

To make the comparisons more meaningful, we use VFDT [1] as

the base classifiers for all the ensembles. The parameters of VFDT

are adopted as default values of the MOA framework. The block

sizes of all the chunk ensembles (e.g., AWE, SERA , MuSeRA , and

UB) are 10 0 0 for all the datasets. The minority examples of the

previous w = 50 blocks are preserved in the set M . The post-

balanced ratio f in our method is set to 0.5. For fair comparison,

the GRE algorithm creates a new block every 10 0 0 observations,

and then p = 1 new hypothesis is trained over the amplified train-

ing set in the latest chunk. The number of component classifiers is

set to k = 10 . The effects of different chunk sizes and the number

of candidate component classifiers on the performance of GRE are

further discussed in Section 5.4 . 

When testing the algorithms, the holdout evaluation is lever-

aged. First, we divide the dataset into multiple equal sized chunks.

Second, a total of 50% of the observations of each chunk are treated

as the training set for training candidate component classifiers and

evaluating weights of past ensemble members, and the remaining

events of each chunk are regarded as testing data. Third, we pe-

riodically apply the current decision models to the testing data of

the most recent block. Once all the instances in a testing chunk are

tested, we computed the selected evaluation metrics over the pe-

riodical holdout sets, i.e., consecutive chunks of testing examples. 

In the comparative experiment, the Friedman test [39] is ap-

plied to make a formal statistical analysis of the tested classifiers

over multiple data sets based on each evaluation metric. Then,

the Wilcoxon signed rank test [39] is used to compare GRE with

other comparative algorithms in a pairwise manner. Through rank-

ing all the results of comparative algorithms, we can derive the

average rank of a tested algorithm in terms of an evaluation mea-

sure across all datasets. Many studies have shown that capturing

the dynamic characteristics of streaming data is more meaning-

ful than obtaining a final result in data stream mining [40] . We

generate graphical plots for each dataset based on all evaluation

metrics. Meanwhile, the average performances of comparative al-

gorithms that cover all the time steps are included in the tables. 

5.4. Study on the components of the GRE algorithm 

In this section, we analyze the effects of different block sizes

and the number of candidate classifiers on the performance of our

proposed algorithm. In general, the performances of chunk-based

ensembles, such as MuSeRA [27] and AWE [17] , rely on the prede-

fined size of data chunks. Using big size blocks is likely to contain

concept drifts within data chunks, thus leading to the poor per-

formances of component classifiers. On the contrary, using small

size chunks may damage the performances of ensemble members

in the stationary condition as the number of training examples of

each component classifier is limited. This situation will become

more serious when the minority examples are underrepresented in

the class-imbalance scenario. In GRE, the ensemble can constantly

amplify the previous training data chunks by updating previous hy-

potheses using examples of the most recent block. Consequently,

the predefined size of data chunks could not have a significant ef-

fect on the predictive ability of GRE. 

Table 3 provides the AUC performances and average ranks of

GRE on all the selected datasets when using d ∈ {50 0, 80 0, 10 0 0,
Please cite this article as: S. Ren et al., The Gradual Resampling Ens

Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.01.063 
250, 20 0 0}. All the results are the averages of 30 independent

uns and the best result is highlighted with bold-face type. Then,

e can observe that differences in each row are small and no

lobal dependency on d can be seen. These observations are fur-

her confirmed by the statistical test. Performing a Friedman test

39] on the calculated deviations for d ∈ {50 0, 80 0, 10 0 0, 1250,

0 0 0}, thus F F d = 0 . 535 can be calculated. If the selected significant

evel is equal to 0.5, then we can conclude that the performance

f GRE is robust against different block sizes. In the comparative

xperiment, the chunk size of GRE is equal to 10 0 0, which is con-

istent with the settings of other chunk ensembles for fair compar-

sons. 

Apart from studying the effect of d , we also analyze the impact

f the number of candidate component classifiers on the predic-

ive performance of the GRE algorithm. The p candidate ensem-

le members are built over the latest training data block. Then, k

nsemble members are preserved in the ensemble group. Using a

arge value of p will remove a large number of previous ensem-

le members. Thus, GRE only have limited information of a data

tream to train an ensemble model. On the contrary, using a small

alue of p can help in preserving enough information of past data

hunks. Therefore, GRE using a small value of p can make full use

f relevant knowledge of a data stream and could have good gen-

ralization performance. 

Table 4 provides the AUC performances and average ranks of

RE using different values of p . Each result is the average of 30

ndependent runs and the best result is highlighted with bold-face

ype. We perform a Friedman test [39] on the calculated devia-

ions for p ∈ {1, 2, 4, 6, 8}. Then, F F p = 38 . 23 is obtained. Thus, we

an conclude that significant differences exist among the AUC per-

ormances of GRE using different settings of p under the significant

evel α = 0 . 5 . Then, we perform the Bonferroni–Dunn post-hoc test

39] to compare GRE in terms of p = 1 with others. The critical

ifference (CD) for α = 0 . 5 is equal to 0.302. Therefore, the AUC

erformance of GRE using p = 1 is significantly better than that

f p = 2 , p = 4 , p = 6 , and p = 8 . In the comparison experiment,

p = 1 is selected as the default value. 
emble for mining imbalanced data streams with concept drift, 
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Table 5 

Performance comparison of different algorithms on all datasets. 

Data sets Methods Accuracy F -measure G -mean Recall AUC 

SEA S AWE 94.97(1) 7.95(7) 16.81(7) 4.57(7) 87.09(1) 

SERA 90.97(4) 27.30(5) 49.54(5) 29.38(6) 70.13(7) 

MuSeRA 93.64(2) 31.76(4) 53.59(4) 31.98(5) 85.37(4) 

SMOTE 90.01(5) 41.37(3) 79.22(3) 69.48(4) 83.96(6) 

UB 16.80(7) 12.30(6) 23.10(6) 97.39(1) 85.21(5) 

OOB 88.62(6) 42.75(2) 80.47(2) 72.52(3) 85.86(3) 

GRE 91.13(3) 46.04(1) 81.72(1) 72.95(2) 86.97(2) 

SEA G AWE 94.96(1) 3.52(7) 8.10(7) 2.01(7) 88.48(3) 

SERA 92.56(3) 26.00(5) 49.66(5) 29.14(6) 71.23(7) 

MuSeRA 92.87(2) 27.50(4) 51.13(4) 29.21(5) 87.15(5) 

SMOTE 87.36(5) 37.46(3) 80.59(3) 75.03(4) 85.64(6) 

UB 27.47(7) 14.00(6) 35.81(6) 96.64(1) 87.44(4) 

OOB 85.23(6) 37.67(2) 82.01(2) 82.38(2) 88.60(2) 

GRE 88.64(4) 41.21(1) 82.75(1) 77.52(3) 89.06(1) 

Hyper AWE 95.56(2) 20.01(7) 31.57(7) 11.99(7) 90.71(4) 

SERA 92.66(4) 33.21(6) 56.61(6) 36.31(6) 72.46(7) 

MuSeRA 93.91(3) 39.53(5) 61.85(5) 41.48(5) 84.34(6) 

SMOTE 90.75(6) 42.61(4) 75.57(4) 63.02(4) 84.57(5) 

UB 87.28(7) 47.45(3) 89.57(3) 92.76(1) 94.26(3) 

OOB 91.64(5) 59.84(2) 89.83(2) 88.18(3) 96.40(2) 

GRE 97.81(1) 87.30(1) 93.45(1) 88.97(2) 99.31(1) 

RanRBF GR AWE 97.03(3) 53.98(4) 59.64(5) 41.98(5) 91.05(3) 

SERA 95.41(4) 38.28(5) 50.70(6) 30.00(6) 70.16(7) 

MuSeRA 92.69(6) 10.26(7) 21.51(7) 8.51(7) 79.23(6) 

SMOTE 92.86(5) 54.05(3) 79.17(4) 67.72(4) 85.99(5) 

UB 70.81(7) 28.43(6) 81.76(3) 92.50(1) 90.69(4) 

OOB 97.49(2) 83.08(2) 90.31(2) 88.31(2) 98.09(2) 

GRE 99.03(1) 90.30(1) 91.86(1) 85.20(3) 98.98(1) 

SEA SR AWE 94.95(1) 9.79(7) 19.42(7) 5.80(7) 87.58(1) 

SERA 92.92(3) 26.68(5) 48.91(5) 28.32(6) 70.10(7) 

MuSeRA 93.72(2) 31.88(4) 53.48(4) 31.54(5) 85.14(5) 

SMOTE 89.95(5) 41.29(3) 78.87(3) 68.87(4) 83.67(6) 

UB 17.90(7) 12.61(6) 23.34(6) 97.22(1) 85.46(4) 

OOB 89.37(6) 44.08(2) 82.65(2) 80.00(2) 86.72(3) 

GRE 91.85(4) 48.26(1) 83.25(1) 75.09(3) 87.17(2) 

Square AWE 95.03(2) 0(7) 0(7) 0(7) 80.95(4) 

SERA 88.73(5) 16.76(5) 37.21(5) 19.81(5) 60.14(6) 

MuSeRA 92.89(3) 1.54(6) 6.25(6) 1.81(6) 51.53(7) 

SMOTE 90.48(4) 31.22(3) 59.53(3) 40.77(4) 76.59(5) 

UB 33.88(7) 18.19(4) 39.28(4) 98.79(1) 88.76(3) 

OOB 82.13(6) 52.98(2) 81.88(2) 85.46(3) 91.45(2) 

GRE 95.37(1) 76.00(1) 94.33(1) 94.49(2) 98.64(1) 

Elec AWE 87.91(3) 26.18(5) 48.74(5) 37.60(5) 68.76(4) 

SERA 81.93(6) 18.12(6) 34.67(6) 36.80(6) 62.57(7) 

MuSeRA 95.00(1) 0(7) 0(7) 0(7) 66.51(5) 

SMOTE 82.72(5) 28.42(2) 62.69(2) 53.07(2) 73.42(3) 

UB 84.99(4) 27.85(3) 53.91(4) 40.80(3) 65.89(6) 

OOB 76.85(7) 27.24(4) 62.87(1) 63.26(1) 74.52(2) 

GRE 89.92(2) 31.78(1) 60.17(3) 40.48(4) 74.87(1) 

The best result for each dataset and criteria is highlighted in bold. 
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Table 6 

Mean ranks of seven comparative methods on all data sets. 

Rank AWE SERA MuSeRA SMOTE UB OOB GRE 

Accuracy 1.86 4.14 2.71 5.00 6.57 5.43 2.29 

F -measure 6.29 5.29 5.29 3.00 4.89 2.29 1.00 

G -mean 6.43 5.57 5.29 3.14 4.57 1.86 1.29 

Recall 6.43 5.71 5.86 3.71 1.29 2.29 2.71 

AUC 2.86 6.86 5.43 5.14 4.14 2.29 1.29 

s  

i  

i  

o  

r  

a  

c  

m  
.5. Comparative with other algorithms 

This section compares GRE with six state-of-the-art methods

n six synthetic datasets and one real-world dataset. We gener-

ted graphical plots for each dataset describing algorithms’s perfor-

ances in terms of accuracy, F -measure, G -mean, recall, and AUC

cross all the time steps. Due to the number of comparisons (seven

lgorithms on five evaluation metrics), we split the results into two

roups. On the one hand, we compare GRE with the chunk-based

nsembles proposed for learning imbalanced data streams (SERA,

B, and MuSeRA). On the other hand, GRE is compared with other

ested algorithms (AWE, SMOTE, and OOB). Due to space limita-

ions, we only provide the performance curves of tested algorithms

n two representative datasets (SEA S and RandRBF GR ). Meanwhile,

ther results are included in Table 5 . 

Before we present the detailed analysis of the experimental

esults, we first provide the major observations from the algo-

ithms’s performances on all data sets. Table 6 provides the a
Please cite this article as: S. Ren et al., The Gradual Resampling Ens

Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.01.063 
ummary of mean ranks of algorithms on all the datasets consider-

ng each evaluation metric. First, AWE obtains the best mean rank

n terms of accuracy attribute to maintaining good performance

n majority data (followed by GRE). However, the boost in accu-

acy for AWE causes a large drop in minority class recall, G -mean,

nd F -measure. This is because AWE lacks a mechanism to ac-

ommodate imbalance data. In particular, AWE misclassifies all the

inority examples as majority examples when the complex data
emble for mining imbalanced data streams with concept drift, 
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distribution are involved on the Square dataset. Second, UB has

the best mean rank for recall, especially on the datasets of big

data sizes (e.g., all synthetic datasets). This is not surprising, be-

cause UB oversamples the current minority set by accumulating

all the preserved minority events of past blocks. The accumulated

minority data may become a majority class when the data size

is large enough. Therefore, the majority class recall is calculated

for UB when the size of minority class surpasses that of major-

ity class. However, the boost in recall for UB comes at the cost

of accuracy, F -measure, G -mean, and AUC. It is should be noted

that GRE applies the post-balance ratio f to proportionally select a

certain number of minority examples in the previous blocks. Thus,

the number of minority samples can never surpass that of majority

samples in the candidate block for GRE. Third, MuSeRA can main-

tain all the knowledge of data streams by preserving all the en-

semble members built over consecutive blocks. However, all the

component classifiers of SERA are trained over the latest chunk.

Thus, MuSeRA outperforms SERA in terms of accuracy (primarily

determined by majority class accuracy). Fourth, SMOTE maintains

a better mean rank than that of AWE in terms of recall by gen-

erating novel minority data. OOB typically provides a good mean

rank for F -measure, AUC, recall, and G -mean by resampling and

time-decayed metrics. However, the boost in performance on mi-

nority events for OOB comes at the cost of accuracy. Finally, we can

observe that GRE ranks the best in terms of F -measure, G -mean,

and AUC. Meanwhile, it maintains the second and the third mean

rank in terms of accuracy and recall, respectively. The selectively

resampling technique in GRE, which simultaneously considers the

data difficulty factors and concept drifts, is applied to improve the

recognition ratio of models on minority examples. Through updat-

ing previous ensemble members using the current observations,

GRE quickly reacts to different kinds of concept drifts and main-

tains good performance on majority examples. Therefore, we can

conclude that GRE can provide good performance on minority ex-

amples, without sacrificing the performance on majority examples.

Figs. 4 and 5 present the results on the SEA S dataset. The aver-

age values of all figures of merit used in the evaluation are in-

cluded in Table 5 . There are several observations we can make

from these results. First, we can observe that most algorithms

experience a performance drop when sudden drifts occur. Sec-

ond, SERA and SMOTE maintain stable levels of the accuracy per-

formances for nearly all time steps. This is because SERA does

not need to use component classifiers built over previous blocks.

Meanwhile, SMOTE builds a single classifier over the latest data

chunk. Thus, there is no prior knowledge of major class in the

training sets of SERA and SMOTE. Third, the accuracy performance

of AWE always maintains a high level compared with other tested

algorithms (closely followed by MuSeRA and GRE), but primarily

due to its performance on the majority class. The boost in accuracy

for AWE comes at the cost of F -measure, G -mean, and recall. This

is because AWE lacks a mechanism for handling imbalanced data.

Meanwhile, MuSeRA does well on accuracy compared with SERA

by maintaining all the component classifiers built over consecu-

tive blocks. Fourth, while UB has the best rank for recall (closely

followed by GRE); it performs rather poorly on other figures of

merit. This is a common trend for UB on all the synthetic datasets.

Finally, GRE is competitive with other algorithms in terms of F -

measure and G -mean. The F -measure and G -mean performances of

GRE can quickly recover from a sudden change and maintain high

levels during the steady state periods. Meanwhile, GRE maintains

the second rank in terms of recall and AUC. 

On the dataset with gradual drifts (SEA G ), we observe several

trends from Table 5 , which appear to be same with those ob-

served on the SEA S dataset. First, AWE has the best accuracy per-

formance, but primarily due to its good predictive ability on ma-

jority class. However, AWE performs rather poorly with the worst
Please cite this article as: S. Ren et al., The Gradual Resampling Ens
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ank in terms of F -measure, G -mean, and recall. Second, UB outper-

orms other algorithms in terms of recall, which comes at the cost

f accuracy, F -measure, and G -mean. Third, GRE has the best rank

or F -measure and G -mean. On the SEA G dataset, we can observe

hat GRE is the top ranking algorithm in terms of the AUC perfor-

ance. Through a resampling technique and time-decayed metrics,

OB provides good performance in terms of F -measure, G -mean,

ecall, and AUC, but performs rather poorly on accuracy. On the

ontrary, GRE can provide a good overall balance in accuracy, F -

easure, G -mean, recall, and AUC. 

For the dataset with an incremental drift (Hyper), GRE performs

onsistently well on all the evaluation metrics. Table 5 provides the

ean values of all figures of merit used in the evaluation on the

yper dataset. On the one hand, GRE ranks the best in terms of

ccuracy, F -measure, G -mean, and AUC. On the other hand, UB is

he top-ranking algorithm in terms of recall, closely followed by

RE. As in the previous experiments, UB ranks the best in terms of

ecall but ranks the lowest in terms of accuracy. Meanwhile, AWE

as the worst rank in terms of F -measure, G -mean, and recall. 

Figs. 6 and 7 present the results on the RanRBF GR dataset. Re-

urring concepts were introduced to validate whether the tested

lgorithms can utilize prior knowledge of data streams to improve

he performance of algorithms at the current time. Several obser-

ations should be noticed from Table 5 . First, SMOTE, UB, and SERA

uild models over the latest chunk, thus cannot reactivate past hy-

otheses. We can observe that the performances of them fail to en-

anced when the environment reoccurs. Second, we observe, again,

he boost in recall for UB comes at the cost of the overall accuracy.

B maintains the best performance in terms of recall, followed

y OOB and GRE. Third, GRE maintains a series of past ensemble

embers to make a decision for each testing event, which obtains

he best rank for accuracy, F -measure, G -mean, and AUC. 

On the dataset with sudden recurrent drifts (SEA SR ), the ordered

equence consists of five concepts, in which the fifth concept is the

ecurrent concept of the first one. There are several observations,

hich are consistent with those observed in the SEA S and SEA G 

xperiments, as shown in Table 5 . First, lacking a mechanism to

ccommodate imbalanced data, AWE has the best accuracy perfor-

ance but ranks the lowest in terms of F -measure, G -mean, and

ecall. Second, UB outperforms other algorithms in terms of recall,

hich causes a large drop in F -measure, G -mean, and accuracy.

hird, GRE provides a significant improvement in F -measure and

 -mean compared to other algorithms. 

Apart from multiple kinds of concept drifts, we also analyze the

ffect of small disjuncts on the performances of tested algorithms.

udden drifts and small disjuncts are involved on the Square

ataset. We do observe from Table 5 that AWE misclassifies all

he minority examples as majority class. Thus, AWE performs

ather poorly on F -measure, recall, and G -mean. As in previous

xperiments, UB’ss strong recall performance comes at the cost of

ccuracy. OOB maintains good performance in terms of F -measure,

 -mean, and AUC. However, it drops to rank 6 for accuracy. It

hould be noted that the goal of learning imbalanced data is

o improve the recognition ratio on minority examples, without

acrificing the performance on majority examples. The F -measure,

 -mean, AUC, and accuracy performances of GRE all rank the best

n the Square dataset. Meanwhile, GRE maintains the second rank

or minority class recall. 

On the Elec dataset, the average values of selected evaluation

etrics for all comparative algorithms are included in Table 5 . We

ave converted it to an imbalanced learning problem. A few ob-

ervations: first, MuSeRA ranks the best in terms of accuracy, fol-

owed by GRE. However, MuSeRA fails to identify any minority

amples, which performs particularly poorly with the worst rank

n terms of F -measure, G -mean, and recall. Second, while OOB out-

erforms other algorithms in terms of minority class recall and
emble for mining imbalanced data streams with concept drift, 
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Fig. 4. The first group algorithms comparison on SEA S . (a) Accuracy, (b) F -measure, (c) G -mean, (d) Recall, and (e) AUC. 

Fig. 5. The second group algorithms comparison on SEA S . (a) Accuracy, (b) F -measure, (c) G -mean, (d) Recall, and (e) AUC. 
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Fig. 6. The first group algorithms comparison on RanRBF GR . (a) Accuracy, (b) F -measure, (c) G -mean, (d) Recall, and (e) AUC. 

Fig. 7. The second group algorithms comparison on RanRBF GR . (a) Accuracy, (b) F -measure, (c) G -mean, (d) Recall, and (e) AUC. 
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Table 7 

Friedman test with the corresponding post-hoc test, Bonferroni–Dunn for seven 

comparative methods on all data sets. 

Friedman AWE SERA MuSeRA SMOTE UB OOB 

F -measure Reject 5.29 4.29 4.29 2.00 3.89 1.29 

G -mean Reject 5.14 4.28 4.00 1.85 3.28 0.57 

AUC Reject 1.57 5.57 4.14 3.85 2.85 1.00 

A value greater than the CD (CD = 3.046) indicates statistically significant differ- 

ences between the methods, which are highlighted in boldface. 
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Table 9 

Runtime of the compared approaches (s). 

AWE SERA MuSeRA SMOTE UB OOB GRE 

SEA S 15.08 9.23 132.00 8.14 277.00 10.58 14.84 

SEA G 13.55 7.31 94.00 6.64 149.00 8.39 10.12 

Hyper 8.92 3.00 24.16 3.34 6.20 7.89 7.08 

RanRBF GR 66.00 25.30 1328.00 22.83 585.00 35.75 39.00 

SEA SR 14.39 9.27 130.00 7.42 292.00 10.11 10.89 

Square 18.59 13.89 244.00 11.03 966.00 15.03 19.53 

Elec 0.52 0.22 0.25 1.00 0.44 1.05 0.80 
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 -mean; it drops to rank 7 for accuracy. Third, the size of minor-

ty class is not easy to exceed that of majority class because the

ata size of the Elec dataset is much smaller than that of other

atasets. Thus, UB performs well in terms of accuracy but obtains

elatively poor recall performance compared with its performances

n other datasets. Finally, GRE has the best performance in terms

f F -measure and AUC. Meanwhile, it provides the second rank for

he accuracy performance. 

.6. Statistical analysis of results 

To extend the analysis provided above, we conduct statistical

ests for validating the effectiveness of GRE in terms of F -measure,

 -mean, as well as AUC. First, when different algorithms provide

arying performances on different data sets, the Friedman test

39] is leveraged to verify whether there is a significant difference

mong the mean ranks of different alternatives. The Friedman test

s a nonparametric statistical method, where the null hypothesis

ssumes no significant differences among the mean ranks of differ-

nt algorithms. Table 6 provides a summary of mean ranks of com-

arative algorithms on all datasets based on each selected figure of

erit. Table 7 presents the results of Friedman tests and post-hoc

ests on F -measure, G -mean, and AUC for comparative algorithms

ver all the datasets. If the significant level is selected as 0.05, then

he null hypotheses in terms of all three metrics can be rejected.

ach value in Table 7 is the difference of the mean ranks between

wo algorithms. To verify whether GRE performs better than other

lgorithms in terms of F -measure, G -mean, and AUC, we compute

he critical difference (CD) chosen by the Bonferroni–Dunn post-

oc test. If the difference between the mean ranks of two algo-

ithms in terms of an evaluation metric is greater or equal to CD,

hen we can state that there is a statistical difference between the

wo algorithms. As CD = 3.046, the F -measure performance of GRE

s significantly better than that of AWE, SERA, MuSeRA, and UB.

he G -mean performance of GRE is significantly better than that

f AWE, SERA , MuSeRA , and UB. Meanwhile, GRE performs signifi-

antly better than SERA, MuSeRA, and SMOTE in terms of AUC. 

In addition, we perform the Wilcoxon singed rank test [39] to

ompare GRE with the remaining algorithms in terms of F -

easure, G -mean, and AUC. Table 8 provides Wilcoxon’s test

esults. First, the p -values derived from this test in terms of

 -measure are: p SMOTE = 0.0 078 and p OOB = 0.0 078. Second, the

 -values resulting from this test in terms of G -mean are:

 SMOTE = 0.0391 and p OOB = 0.0781. Third, we can state that GRE

ignificantly outperforms the remaining algorithms in terms of

he AUC performance ( p AWE = 0 . 0391 , p UB = 0 . 0078 , and p OOB =
 . 0078 ). These results show that GRE significantly outperforms
Table 8 

Wilcoxon’s test results for the comparison of GRE ver

F -measure G -mean 

Methods p -Values Methods 

GRE vs. SMOTE 0.0078 GRE vs. SMOTE 

GRE vs. OOB 0.0078 GRE vs. OOB 
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ther algorithms in terms of F -measure, G -mean, and AUC. Mean-

hile, we do observe from Table 6 that GRE maintains the second

nd the third mean rank for accuracy and recall, respectively. 

In an imbalanced data conditions, we aims to design a classi-

er that has the best balance in accuracy, F -measure, G -mean, re-

all, and AUC. In general, a classifier has difficulty in performing

est on all the evaluation metrics. From the above analysis, we can

tate that GRE obtains a good tradeoff between the majority class

nd minority class performances when tested on data streams with

ultiple kinds of concept drifts. 

.7. Running time efficiency 

In this section, we discuss the running time efficiency of the

omparative algorithms. Table 9 displays the time consumption of

omparative approaches on all the datasets. Each result is the av-

rage of 30 independent runs. The hardware configuration used for

imulation is an Intel Core i7 Processor with 8 GB RAM. 

There are several observations we can make from these results.

irst, SMOTE generally needs relatively small amount of time. This

s because only one classifier is generated to predict labels of test-

ng observations. Second, UB consumes much time than SERA over

ll the datasets. After resampling the current minority set, SERA

nd UB build all the ensemble members over the amplified train-

ng chunk. However, UB selects all previously minority observa-

ions and SERA limits the number of accepted minority observa-

ions proportional to the size of the current majority set. Thus,

B increases the time cost of the algorithm since over-time more

xamples are involved in its training, especially on the datasets

ith large data sizes (e.g., Square and RanRBF GR ). Third, MuSeRA

aintains all the ensemble members trained over consecutive data

hunks without the pruning procedure. Because a large number of

omponent classifiers are involved in the ensemble group, MuSeRA

erforms rather poorly in terms of time consumption. Finally, we

an observe that GRE does not consume too much time compared

ith other tested algorithms. Thus, GRE has a satisfactory time ef-

ciency, which is suitable for mining data streams. 

. Conclusion remarks 

In this paper, we discuss the classification techniques for han-

ling the combined problem of concept drifts and class imbalance.

hile each of these two issues has been well researched, the joint

ssue is still underexplored even though it has received increas-

ng attention. We propose an ensemble-based approach called GRE
sus the remaining methods on all data sets. 

AUC 

p -Values Methods p -Values 

0.0391 GRE vs. AWE 0.0391 

0.0781 GRE vs. UB 0.0078 

GRE vs. OOB 0.0078 

emble for mining imbalanced data streams with concept drift, 
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for learning different kinds of concept drifts from imbalanced data.

Three major contributions have been made. 

First, a selectively resampling mechanism, which simultane-

ously considers concept drifts and data difficulty factors, is ap-

plied to balance the current class distribution by reusing preserved

minority data of past chunks. Compared with existing resampling

techniques proposed for handling imbalanced data streams, GRE

can avoid absorbing drifting data by evaluating the similarity be-

tween each of preserved minority examples and the current mi-

nority set. Meanwhile, DBSCAN is utilized to discover sub-concepts

of the majority set and the minority set, respectively. Thus, the

similarity evaluation of GRE is not affected by outliers and small

disjuncts. Furthermore, the dissimilarities between the preserved

minority examples and the current majority set are considered to

avoid the class overlapping between different classes. 

Second, the ensemble update mechanism can periodically en-

large the minority sets of previous blocks. Through updating pre-

vious ensemble members using the examples in the most recent

chunk, GRE can quickly adapt to new conditions, regardless the

types of concept drifts. Then, a weighted voting of ensemble mem-

bers is used to make predictions. The weights of past hypotheses

are based on the performances on examples in the latest training

data chunk. The candidate classifiers are treated as “perfect” ones

and provided with the highest weight, which is especially effec-

tive for reacting to sudden drifts. Meanwhile, the cross-validation

of candidate classifiers can be avoidable. 

Third, we present a detailed empirical study on both the syn-

thetic and real-world datasets. The effects of predefined chunk

sizes and the number of candidate ensemble members are an-

alyzed. Our proposed algorithm is robust against different pre-

defined chunk sizes by periodically updating previous ensemble

members. GRE using a small value of p can preserve enough

knowledge of data streams to obtain a good generalization perfor-

mance. Then, we compare GRE with other state-of-art methods in

terms of accuracy, F -measure, G -mean, recall, and AUC. The statis-

tical tests suggest that GRE obtains a perfect tradeoff between ma-

jority class and minority class performances. Compared with the

common streaming classifiers that specialize in only one type of

concept drifts, the experimental results show that GRE is able to

accommodate a wide variety of drift scenarios. 

In the future, we would like to extend our work to cope with

the multi-class classification issue. 
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