
Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

Knowledge-Based Systems () –

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Selection-based resampling ensemble algorithm for nonstationary
imbalanced stream data learning
Siqi Ren a,c, Wen Zhu b, Bo Liao a,b,∗, Zeng Li d, Peng Wang a, Keqin Li a,e, Min Chen a,f,
Zejun Li a,f
a College of Information Science and Engineering, Hunan University, Changsha 410082, Hunan, China
b School of Mathematics and Statistics, Hainan Normal University, Haikou, China
c School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou 310016, Zhejiang, China
d School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui, China
e Department of Computer Science, State University of New York, New Paltz, NY 12561, USA
f College of Computer and Information Science, Hunan Institute of Technology, Hengyang 421000, China

h i g h l i g h t s

• A classifier is proposed to handle concept drift and class imbalance.
• The selectively resampling method avoids drifting examples and difficult examples.
• SRE can quickly react to different kinds of concept drift.
• Costly misclassification examples and minority examples are emphasized.
• SRE is robust against chunk size.
• SRE obtains a good overall balance in accuracy, recall, G-mean, F-measure, and AUC.

a r t i c l e i n f o

Article history:
Received 12 May 2018
Received in revised form 9 August 2018
Accepted 20 September 2018
Available online xxxx

Keywords:
Data stream classification
Concept drift
Class imbalance
Ensemble

a b s t r a c t

Although the issues of concept drift and class imbalance have been studied separately, the joint problem is
underexplored even though it has received increasing attention. Concept drift is further complicatedwhen
the dataset is class imbalanced. Meanwhile, most of the existing techniques have ignored the influence
of complex data distribution on learning imbalanced data streams.

To overcome these issues, we propose an ensemble-based model for learning concept drift from
imbalanced data streams with complex data distribution, called selection-based resampling ensemble
(SRE). SRE combines the operators of resampling and periodical update to handle the joint issue. In
the chunk-based framework, a selection-based resampling mechanism, which focuses on drifting and
unsafe examples, is first employed to re-balance the class distribution of the latest block. Then, previous
ensemble members are periodically updated using the latest examples, where update weights are
determined to emphasize costly misclassification examples and minority examples. Meanwhile, SRE
can quickly react to new conditions. Empirical studies demonstrate the effectiveness of SRE in learning
nonstationary imbalanced data streams.

© 2018 Published by Elsevier B.V.

∗ Corresponding author.
E-mail addresses: siqirenzl@163.com (S. Ren), syzhuwen@163.com (W. Zhu),

dragonbw@163.com (B. Liao), lizeng@mail.ustc.edu.cn (Z. Li),
wangpenglw@126.com (P. Wang), lik@newpaltz.edu (K. Li), chenmin@hnit.edu.cn
(M. Chen), lzjfox@163.com (Z. Li).

1. Introduction

1.1. Motivation

In the field of traditional data mining, it is possible to store the
entire data. Meanwhile, models can access each instance multi-
ple times. Consequently, a precision model can be obtained in a
batch manner. However, data items of data streams are provided
sequentially and rapidly over time [1]. Learning classifiers from
data streams has beenwidely used in the area of machine learning,
data mining, and pattern recognition [2]. Only limited knowledge
of data streams can be utilized at each time step and systems

https://doi.org/10.1016/j.knosys.2018.09.032
0950-7051/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.knosys.2018.09.032
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
mailto:siqirenzl@163.com
mailto:syzhuwen@163.com
mailto:dragonbw@163.com
mailto:lizeng@mail.ustc.edu.cn
mailto:wangpenglw@126.com
mailto:lik@newpaltz.edu
mailto:chenmin@hnit.edu.cn
mailto:lzjfox@163.com
https://doi.org/10.1016/j.knosys.2018.09.032

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

2 S. Ren et al. / Knowledge-Based Systems () –

cannot retrieve previous data. Thus, data stream classifiers only
obtain approximate results for testing events. Our main objective
of the study is to learn a classification model from a data stream in
order to make its result approximate that of the batch processing
by making full use of knowledge.

Traditional data mining models aim at extracting knowledge
hidden in a finite dataset whose data distribution is stationary.
However, data streammodels act in dynamic environments, where
data items are collected over time. The target concepts of data
streams change over time, which is called concept drift [3]. Exam-
ples of such applications include credit-card fraud detection and
telecommunications [2]. Data streammodels should be constantly
adjusted or rebuilt to adapt to new conditions. The underlying
changes of data distributions can be categorized as sudden, grad-
ual, incremental, and recurrent drifts. Real-world problems are
generally combinations of different types of drift. However,most of
the existing solutions generally specialize in only one type of drift.
The goal of the study is to design a classification model to handle
different types of concept drift.

In addition to high volumes and concept drift, class imbalance
is a tricky issue in the area of data stream mining. If examples
come from two classes, class imbalance learning refers to unequal
distribution of examples between two classes, where the class
havingmost of the examples is majority class and the other class is
minority class [4,5]. Traditional classifiers tend to be biased toward
majority examples and perform poorly on minority examples [6].
A large number of researches in class imbalance problems have
been done. These techniques can be categorized into three groups:
data level approaches [7,8], algorithm level approaches [9], and
cost-sensitive approaches [10]. In [7], the labels of new data are
determined by computing their distances from the nearest gen-
eralized instance. The selection of the most suitable generalized
exemplars is optimized by evolutionary algorithms. García et al.
analyzed how different resampling techniques affect the learning
procedure [8]. Algorithm level approaches are defined as internal
approaches, since their performance always depends on the prob-
lems and the classifiers [9]. Cost-sensitive approaches handle the
class imbalance issue by assigning higher misclassification costs
to minority samples. BEE-Miner generates neighbor solutions and
evaluates the quality of the solutions [10]. The class imbalance
classification issue occurs in many real-world applications. Based
on the synthetic minority over-sampling technique (SMOTE) and
the bagging ensemble learning algorithmwith differentiated sam-
pling rates (DSR), Sun et al. addressed a decision tree ensemble
model for imbalanced enterprise credit evaluation [11]. Themulti-
class classification models have been used to predict the listing
status of companies [12,13]. In addition to the imbalance ratio
(IR), the degradation of model performance is related to data diffi-
culty factors, including small disjuncts, outliers, and class overlap-
ping [14,15]. However,most researchers have ignored these factors
when learning imbalanced data streams. The minority examples
can be categorized as safe, borderline, outliers, and rare examples.
The last three types of examples are known as unsafe examples.
They are difficult to learn and should be given more focus. The
motivation of this study is to learn imbalanced data streams with
unsafe examples.

1.2. Contribution

Although the two problems, namely learning concept drift and
learning from imbalanced data, have been studied separately, not
much work discusses the issues when both class imbalance and
concept drift exist. Applications in various domains such as climate
monitoring, spam filtering, and anomaly detection are affected
by both class imbalance and concept drift [16]. In this paper,
we propose a novel data stream classifier, called selection-based

resampling ensemble (SRE), whose goal is to learn nonstationary
imbalanced data streams. The main contributions are described as
follows.

1. SRE oversamples the current minority set using past minor-
ity samples. Data difficulty factors and concept drift impose
difficulties on the selection of an appropriate subset of past
minority instances. SRE avoids absorbing drifting data by
measuring the similarity between each of previous minor-
ity examples and the current minority set. Then, selection
weights are assigned to past minority samples according to
data difficulty factors.

2. SRE can address concept drift by dynamically assigning
weights to past ensemble members according to their per-
formance on the latest events. The latest component, which
is also known as the candidate component, is derived from
the most recent data chunk. The candidate component is
treated as the best-performing classifier and should be pro-
vided the highestweight. Thisweighting setting is especially
important for the adaptation of sudden drift. Meanwhile,
cross-validation of the candidate classifier can be avoided
to cater to high-speed data streams.

3. Most of the existing methods specialize in only one type of
concept drift. Through updating previous hypotheses using
latest examples, SRE can handle different types of concept
drift, including sudden, gradual, incremental, and recurrent
concept drifts. The update weights of examples, which de-
scribe the probabilities of being selected to update a specific
past classifier, are evaluated according to classifier outputs
and sample labels. Themisclassification costs denote uneven
identification importance between classes. Costly misclassi-
fied examples andminority examples are emphasized in the
periodical update procedure.

4. SRE, which integrates operators of chunk-based and on-
line ensembles, is a hybrid ensemble [17,18]. On the one
hand, SRE maintains the mechanism of online updating of
ensemble members known from online ensembles, which
improves themodels’ reactions to different kinds of concept
drift. Thus, previous classifiers are periodically updated us-
ing the current knowledge. The performance of SRE is robust
against chunk size. On the other hand, data chunks are
equally divided beforehand. Ensemble members are built
over consecutive data blocks. Then, a weighted result of all
components is used to make decision. Thus, the knowledge
of data streams is made full use of to approximate results of
batch processing.

1.3. Paper organization

The rest of this paper is organized as follows. In Section 2,
we review the related researches to learn concept drift from im-
balanced data. The differences between SRE and other existing
algorithms are provided. Section 3 provides a detailed introduction
of the proposed algorithm. The time complexity of SRE is discussed
in Section 4. Experimental analyses and results are presented in
Section 5. Section 6 concludes the paper and suggests a direction
for the future research.

2. Existing research

Learning from imbalanced data streams is required to resolve
the combined issue of concept drift and class imbalance. The de-
cision boundaries of standard classifiers tend to be biased toward
the majority class, and thus minority events are easy to be mis-
classified. The class imbalance issue has been extensively studied
in stationary scenarios. However, learning evolving concepts from
imbalanced data has been mostly underexplored.

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

S. Ren et al. / Knowledge-Based Systems () – 3

Uncorrelated bagging (UB) [19] is one of the earliest techniques
to learn nonstationary imbalanced data streams. The class distri-
bution of the latest chunk is first re-balanced by all the preserved
minority examples. Then, a component classifier is trained over a
randomly selected majority sample subset and all minority sam-
ples. However, it is assumed thatminority data among consecutive
blocks are stationary. In selectively recursive approach (SERA) [20],
the Mahalanobis distance is used as the similarity measurement
to select past minority samples that are most similar to those in
the candidate block. Thus, SERA avoids propagating drifting data
into the latest chunk. The oversampling mechanism of multiple
selectively recursive approach (MuSeRA) [21] is the same as that of
SERA. In contrast to SERA, MuSeRA maintains all hypotheses built
over consecutive blocks to make predictions. Ditzler and Polikar
proposed two batch-based ensembles called learn++ for concept
drift with smote (Learn++.CDS) [22] and learn++ for nonstationary
imbalanced environments (Learn++.NIE) [22]. They are derived
fromLearn++.NSE [23] to tackle imbalanced data streamswith con-
cept drift. Learn++.CDC integrates the mechanisms of Learn++.NSE
and SMOTE [24], where Learn++.NSE overcomes concept drift
through a dynamic weighting strategy and SMOTE enriches the
feature space of minority data. Learn++.NIE modifies the penalty
constraint to place more importance on misclassified minority in-
stances. Meanwhile, bagging-based subensembles are used to cre-
ate subsetswith relatively balanced class distributionwithout gen-
erating novel data or resampling minority data. The modification
of heuristic updatable weighted random subspaces (HUWRS) [25]
was addressed to handle nonstationary data streamswhich exhibit
class imbalance [26]. In heuristic updatable weighted random
subspaces with instance propagation (HUWRS.IP), an instance
propagation method is used to resample minority examples. The
probabilities of instances to be selected are based on their similar-
ities to the current concept. In dynamic feature group weighting
framework with importance sampling (DFGW-IS) [27], concept
drift can be tackled by weighting each ensemble member based
on discriminative power and stable level. Meanwhile, the train-
ing set of each component classifier is extracted from a specific
feature group. Wang et al. addressed two online ensembles called
oversampling-based online bagging (OOB) and undersampling-
based online bagging (UOB) [28]. UOB and OOB can cope with
imbalanced data streamswhich exhibit changing imbalance status
through resampling and time-decayed metrics. Then, WEOB1 and
WEOB2 [28], whichmaintain both OOB and UOBwith the adaptive
weight adjustment, were proposed to obtain a tradeoff between
predictive accuracy and robustness.

In general, the ensemble-based classifiers to handle the joint
problem of concept drift and class imbalance can be categorized
into two groups: chunk-based ensembles [19–22,26,27] and on-
line ensembles [28]. In the chunk-based framework, data arrive
over time in batches of examples and models process a batch of
examples at each time step. However, online ensembles process
streaming data one by one. Most of the chunk-based ensembles,
such as UB [19], SERA [20], MuSeRA [21], HUWRS.IP [26], and
DFGW-IS [27], resample minority examples from ones in the past
chunks to obtain a relatively balanced candidate block. The main
differences among them are the techniques to extract minority ex-
amples of previous blocks and ideas to build the ensemble model.

UB [19] blindly absorbs all the previous minority examples
to promote class balance, which easily brings drifting data. All
the ensemble members are built over the latest block. SERA [20],
HUWRS.IP [26], and DFGW-IS [27] use similar ideas to UB [19]
of building an ensemble of weighted classifiers. However, they
leverage ‘‘smarter’’ oversampling techniques to avoid absorbing
drifting data into the latest block. MuSeRA [21] uses the similar
strategy to select an appropriate subset of past minority examples.
However, MuSeRA [21] can maintain all the knowledge of data

streamsbypreserving all the ensemblemembers built over consec-
utive blocks. The issue of concept drift can be passively overcome
by continuously adjusting the weights of component classifiers
according to the evolving concepts.

However, all of the above algorithms have ignored the data
difficulty factors on the classification task. On the onehand, SRE can
avoid propagating drifting data into the latest block by evaluating
the similarities between past preserved minority examples and
the current minority class set. On the other hand, the probability
of a past minority example to be selected depends on data dif-
ficulty factors. Thus, SRE can select an appropriate subset from
preserved minority examples. Through absorbing the selected mi-
nority examples into the latest chunk, the amplified block is gen-
erated. Then, the candidate component is built over the amplified
block. Similar to MuSeRA, SRE can leverage past knowledge of data
streams by preserving ensemble members built over past blocks.

The performance of chunk-based ensembles generally relies on
the predefined size of data chunks. On the one hand, chunk size can
determine the number of training data if chunk-based ensembles
build all ensemble members over the latest block. On the other
hand, using fixed-size blocks is easily to make the models catch
in the stability–plasticity dilemma if chunk-based ensembles build
one hypothesis over a data chunk [23]. In SRE, previous ensemble
members are periodically updated using the latest observations,
where the update weights of samples are based on their categories
and classifier outputs over previous components. This way, the
previous chunks are constantly amplified. Thus, the performance
of SRE does not rely on chunk size (discussed in more detail in Sec-
tion 5.4). Most of the existing techniques for handling imbalanced
data streams specialize in only one type of concept drift. SRE can
timely react to multiple kinds of concept drift by the periodical
update mechanism. This is based on the assumption that the latest
instances can well represent the current and near-future concepts.

3. The selection-based resampling ensemble (SRE) algorithm

Motivated by the joint issue of concept drift and class imbal-
ance, we propose a novel streaming classifier called SRE. In this
paper, we focus on the binary classification issue. A set of learning
examples containing pairs {x, y}, where x is a vector of attribute
values and y ∈ {+1,−1} is a class label, arrives continuously in the
form of a data stream. Samples with class label y = −1 are much
more than samples with class label y = +1 [29]. The notations
used in this paper and their descriptions are summarized in Table 1.

Fig. 1 provides the system level framework of the SRE algorithm.
The operators of SRE involve four phases. In the first phase, a
data stream is divided into fixed-size blocks. To limit the memory
usage, SRE only preserves the minority examples in the latest w
blocks. Then, a selectively resampling technique is used to select
an appropriate subset of the past preservedminority samples to re-
balance the current class distribution and a candidate component
classifier is built over the amplified data chunk. ht is the component
classifier built over the tth amplified block. In the secondphase, the
weights of component classifiers are evaluated. In order to limit the
time and memory usage, a performance-based pruning technique
is applied to the ensemble when the ensemble size exceeds a pre-
defined threshold. In the third phase, previous ensemble members
are periodically updated using the latest instances, and thus the
ensemble can react to different kinds of concept drift. The latest
instances are weighted to emphasize costly misclassification ex-
amples andminority examples. In the fourth phase, the predictions
of component classifiers are aggregated using a weighted voting
rule to make decision. ht (x′j) is the predictive label of a testing
instance x′j at timestamp t . The complete method is presented in
Algorithm 1. Lines 1–5 and 6–14 comprise the first and second
phases, respectively. Finally, lines 15–18 and 19–21 complete the
third and fourth phases, respectively. Themain components of SRE
are described in Sections 3.1–3.3.

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

4 S. Ren et al. / Knowledge-Based Systems () –

Fig. 1. The learning flow of the SRE algorithm.

Table 1
Notations.
Notation Description Notation Description

t Current time stamp c Ensemble size
d Chunk size Bt Current data block
St and Tt Current training and testing sets, respectively a and b Numbers of instances in St and Tt , respectively
Pt and Nt Minority and majority sets in St , respectively xj and yj Instance in St and its label
x′j and y′j Instance in Tt and its label ŷ′j Label of x′j predicted by the ensemble
f Post-balance ratio IRt Imbalance ratio of St
ht and whc Candidate classifier and its weight hn and whn nth component classifier and its weight
ε and |ε| Ensemble model and the number of members in ε wt,n(xj) Update weight of xj
wc

t (xj) Cost weight of xj wIR
t,n(xj) Category weight of xj

M and |M| Set containing minority examples of previous w blocks and its
cardinality

k′ Number of examples with different categories among an
instance’s k-nearest neighbors

mi Minority example inM |Pt | and |Nt | Numbers of instances in Pt and Nt , respectively
M0 Noise dataset inM M1 and |M1| Filtered minority set inM and its cardinality
P ′t Minority set in current amplified training block M2 Selected minority set inM for oversampling St
Cli Nearest minority class cluster ofmi Cl′i Nearest majority class cluster ofmi
di Distance of mi from Cli qi Order ofmi according to di
d′i Distance of mi from Cl′i q′i Order of mi according to w(mi)
Bot Borderline sample set mb

i Borderline example nearest to mi
w(mi) Selection weight ofmi Bf (mi) Borderline factor of mi
Df (mi) Disjunct factor ofmi Of (mi) Deviation factor of mi
dist(· , ·) Distance of two data points deni Density of cluster Cli
hn(xj) Label of xj predicted by hn β(j) Cost adjustment function
Cj Misclassification cost of xj P(yj) yj ’s class distribution
IRt,n Imbalance ratio of the union set of training instances of the tth

and nth ensemble members
Zn and Zw Normalization factors of the cost weight and the category weight,

respectively
MSEr Mean square error of a random prediction MSEt Mean square error of ht on examples in St
hn(x′j) and ht (x′j) Labels of x′j predicted by hn and ht , respectively f nyj (xj) Probability of xj being classified as yj by hn

N Number of blocks in a data stream O(·) Computational complexity

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

S. Ren et al. / Knowledge-Based Systems () – 5

Algorithm 1 Selection-based Resampling Ensemble Algorithm
Input: t: Timestamp of the current block; c: Ensemble size; d: chunk size;

Bt : Current data block; St : Current training set containing a instances
(x1, y1), · · · , (xa, ya); Pt : Set of minority samples in the current training block;
Nt : Set of majority samples in the current training block; Tt : Current testing
set containing b instances {x

′

1, x
′

2 · · · , x
′

b}; f : Post-balance ratio specifying the
imbalance ratio after resampling the training block St .

Output: ˆy′j : Predictive label of a testing event x
′

j

1: IRt ←
|Pt |
|Nt |

//IRt : Imbalance ratio specifying the proportion between the
minority samples and majority samples of St

2: if IRt <f then
3: Call the Algorithm 2 and obtain P

′

t
4: end if
5: Build a candidate classifier ht over Nt ∪ P

′

t
6: Compute whc using Eq. (16)
7: for each previous ensemble member hn (n = 1, 2, · · · , t − 1) do
8: Compute whn using Eq. (13)
9: end for
10: if |ε|< c then
11: ε← ε ∪ ht
12: else
13: Substitute the worst-performing classifier in ε with ht
14: end if
15: for all previous classifiers hn ∈ ε (n = 1, 2, · · · , t − 1) do
16: Compute the update weightwt,n(xj) for each sample xj ∈ St according to Eq.

(7)
17: Update hn using the sample xj ∈ St
18: end for
19: for j = 1, 2, · · · , b do
20: Assign ˆy′j using Eq. (17)
21: end for

3.1. Selectively resampling mechanism

In the chunk-based framework, many existing solutions over-
sample the current minority set using the minority instances of
past blocks. The random oversampling method simply duplicates
the original minority data and cannot absorb novel information
into the candidate block. The random undersampling method [30]
re-balances the current class distribution by removing majority
samples; but the important events are easy to be removed. The
synthetic oversampling technique [24] enlarges the minority class
region by strategically placing synthetic examples on the line seg-
ment connecting two minority events. In reality, the past minority
samples are more suitable for adjusting the bias of the candidate
classifier compared to synthetic data generated by synthetic over-
sampling techniques [20].

Algorithm 2 presents the pseudo-code of the selectively re-
sampling procedure. SRE preserves only the minority examples
of previous w blocks in M to limit the memory usage. This is
based on the assumption that the latest examples are the best
representatives of the current and near-further data distributions.
If the number of instances in M cannot re-balance the current
skewed distribution, then all the examples in M are propagated
into the current block (lines 1 and 2 of [Algorithm 2]). Otherwise,
a sample set is selected fromM to resample the latest minority set
Pt . Not all preserved minority examples mi ∈ M can improve the
training procedure of the candidate component classifier because
some of these eventsmay bring concept drift or locate in thewrong
region.

The major contributions of the selectively resampling mech-
anism in SRE are twofold: to avoid drifting data (lines 9–20 of
[Algorithm 2]) and to avoid unsafe data (lines 4–8 and 21–37
of [Algorithm 2]). On the one hand, the similarity between each
of past preserved minority samples and the current minority set
is evaluated. Past preserved minority samples, which are similar
to the current minority set, have the priority to be selected to

Algorithm 2 Selectively Resampling Procedure
Input: t: Timestamp of the current block; Bt : Current block; St and a: Current

training block and the number of instances in St ; IRt : Imbalance ratio specifying
the proportion between the minority samples and majority samples of the
current training block St ; f : Post-balance ratio specifying the imbalance ratio
after resampling the training block St ; f

′

: Imbalance ratio after resampling Pt
by considering concept drift and outliers;M and |M|: Set of samples in previous
w blocks and its cardinality, obviously M = ∅ when t = 1; Pt : Set of minority
samples in St ; Nt : Set of majority samples in St .

Output: P
′

t : Set of minority samples in the current amplified training block
1: if |M|< (f − IRt)× |Nt | then
2: M2 ← M
3: else
4: for each minority examplemi ∈ M do
5: Compute the k-nearest neighbor set ofmi ,
6: Find the minority set M0 from M in which instances have no minority

examples in their neighbors
7: end for
8: M1 ← M −M0
9: if |M1|< (f − IRt)× |Nt | then
10: M2 ← M1
11: else
12: if |M1|< (f

′

− IRt)× |Nt | then
13: M

′

← M1
14: else
15: Cluster Pt into several clusters, which are Cl1 , Cl2 , · · ·
16: Compute the distance di ofmi ∈ M1 from its nearest cluster Cli of Pt
17: Sort di in ascending order and obtain the order qi for mi
18: Select a sample set M

′

, containing the first (f
′

− IRt)× |Nt | observa-
tions, fromM1 according to qi

19: end if
20: end if
21: if |M ′ |< (f − IRt)× |Nt | then
22: M2 ← M

′

23: else
24: Find the borderline sample set Bot from the set M

′

∪ Pt ∪ Nt
25: Obtain the density of each cluster Cli
26: Cluster Nt into several clusters, which are Cl

′

1 , Cl
′

2 , · · ·
27: for each minority examplemi ∈ M

′ do
28: Compute the distance ofmi from its nearest samplemb

i ∈ Bot
29: Compute the borderline factor ofmi according to Eq. (2)
30: Compute the disjunct factor ofmi according Eq. (4)
31: Compute the distance d

′

i of mi from its nearest cluster Cl
′

i of Nt
32: Compute the deviation factor ofmi according to Eq. (5)
33: Obtain the selection weight w(mi) of mi according to Eq. (1)
34: end for
35: Sort w(mi) in descending order and obtain the order q

′

i for mi
36: Select a sample setM2 , containing the first (f − IRt)× |Nt | observations,

fromM
′

according to q
′

i
37: end if
38: end if
39: P

′

t ← Pt ∪M2

enlarge the training set of the candidate classifier. TheMahalanobis
distance [31] has the priority tomeasure such similarity. Compared
to Euclidean distance, Mahalanobis distance takes the correlations
of data into account. In SRE, Mahalanobis distance has the priority
to be used to measure the similarity between two data points.
However, Mahalanobis distance has its limitations and cannot be
computed in some situations. For example, Mahalanobis distance
cannot be used when the dimension of samples is larger than the
number of samples. In these situations, we use Euclidean distance
instead of Mahalanobis distance.

The data difficulty factors, on the other hand, should be con-
sidered to improve the instance selection scheme. The selection
weights of past minority examples, which describe their prob-
abilities of being selected to resample the current minority set
based on the data complexity, should be assigned according to the
following factors (A larger weight implies that the sample has a
higher probability of being selected).

• Noise factor: Noise data are likely to pose difficulties in re-
balancing imbalanced data streams. In SRE, the k-nearest

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

6 S. Ren et al. / Knowledge-Based Systems () –

neighbors framework is used to recognize noisy samples. For
each considered instance, k′ denotes the number of examples
with different categories among its k-nearest neighbors (as-
suming k = 5). A preserved past minority sample is regarded
as noise and should be avoided, if the number of majority
examples among its k-nearest neighbors satisfies k′ = 5 [32].
• Borderline factor: The minority samples, which are close

to the decision boundary, generally contribute more to the
classification task and should be adaptively assigned high
selection weights. If the number of examples with different
categories among an example satisfies k

2 ≤ k′ < k, then
this example is recognized as a borderline sample (assuming
k = 5) [32].
• Disjunct factor: In addition to an unequal number of sam-

ples for different classes, the within-class imbalance issue,
which results from small disjuncts, induces the difficulty in
learning imbalanced data streams. As dense clusters contain
more information than sparse clusters, the resampling task is
especially crucial to sparse clusters ofminority class to reduce
within-class imbalance. Thus, the past minority examples
located near sparse clusters of minority class should have
priority to be selected.
• Deviation factor: The previous minority samples, which er-

roneously fall in the majority class region, degrade themodel
performance. The similarities between pastminority samples
and the current majority set should be calculated. If a pre-
served past minority sample is far away from the current
majority class region, then it has the priority to be selected
to enlarge the current minority set.

The whole process of the selectively resampling mechanism in
SRE can be described as follows. First, the noise dataset M0 should
be recognized and removed from the past preserved minority
set M , thus obtaining the filtered minority set M1 (lines 4–8 of
[Algorithm 2]). Fig. 2 presents the data difficulty factors of the
selectively resampling procedure in SRE. Squares represent the
minority examples in the latest training chunk St ; circles denote
the preserved minority examples in previous w blocks; stars are
majority examples in the latest training block St . Noise data in M
complicate the learning process of streaming classifiers and should
be ignored in the following operation. It can be observed from
Fig. 2(a) that the sample A has no minority events in its k-nearest
neighbors (assuming k = 5). Thus, it is not suitable for re-balancing
the current skewed distribution.

Second, all the samples in M1 are selected to resample Pt if the
number of instances inM1 cannot re-balance the current distribu-
tion (lines 9 and 10 of [Algorithm 2]). f ′ is the imbalance ratio of
the current block after the resampling procedure by considering
concept drift and outliers. If all the instances in M1 cannot obtain
an amplified candidate block with the imbalance ratio f ′, then
all instances in M1 are selected (lines 12 and 13 of [Algorithm
2]). Otherwise, we select the minority set M ′ by measuring the
similarity between each samplemi ∈ M1 and the current minority
set Pt (lines 15–18 of [Algorithm 2]) to make the imbalance ratio of
the current training block equal to f ′. Consequently, the drifting
data in M1 are not absorbed into the current block Bt . Existing
solutions for evaluating the similarities of samples in the field of
imbalanced data stream classification have ignored the influence
arising from disjuncts. To overcome this issue, SRE first discovers
disjuncts of Pt . The density-based spatial clustering of applications
with noise (DBSCAN) [33] is applied to divide samples of Pt into
several clusters, where each cluster is regarded as a disjunct (line
15 of [Algorithm 2]). DBSCAN can discover clusters of arbitrary
shape, which is suitable for streaming data. Then, the similarity
between a past minority example mi ∈ M1 and Pt is evaluated
according to the distances ofmi from clusters of Pt . di, which is the
distance ofmi from its nearest cluster center of the minority set, is

used to judge the rank of mi to be selected to oversample Pt (line
16 of [Algorithm 2]). The orders of di are ranked in an ascending
manner, then qi, which is the order of di, is obtained (line 17 of
[Algorithm 2]). To avoid the drifting data, only first (f ′− IRt)×|Nt |

observations in M1 are propagated into M ′ according to qi (line 18
of [Algorithm 2]). |Nt | is the number of majority instances in St and
IRt = |Pt |/|Nt | is the imbalance ratio specifying the proportion
between the minority samples and majority samples in St , where
|Pt | is the number of minority samples in St .

Third, all the samples inM ′ are propagated into Pt if the number
of instances in M ′ cannot re-balance the current skewed distribu-
tion (lines 21 and 22 of [Algorithm 2]). Otherwise, according to
data difficulty factors, the selection weight of an instancemi ∈ M ′,
denoted as w(mi), is computed as

w(mi) = Bf (mi)× Df (mi)× Of (mi) (1)

where Bf (mi) denotes the borderline factor, Df (mi) is the disjunct
factor, and Of (mi) represents the deviation factor (line 33 of [Al-
gorithm 2]). The selection weights are ranked in a descending
manner, then the order of w(mi), denoted by q′i , is obtained (line
35 of [Algorithm 2]). The selectively resampling mechanism of SRE
selects only first (f − IRt) × |Nt | observations from M ′ according
to q′i to avoid propagating unsafe data into Pt , where f is the post-
balance ratio specifying the imbalance ratio after resampling the
training block St (line 36 of [Algorithm 2]).

A borderline sample set Bot can be recognized from the set
M ′ ∪ Pt ∪ Nt according to [32] (line 24 of [Algorithm 2]). A past
minority objective mi ∈ M ′ located near the decision boundary
or belonging to Bot makes more contributions to the classification
task and should have the priority to be selected to resample the
current minority class set. mb

i ∈ Bot is the borderline instance
nearest to mi. The borderline factor of mi is based on the distance
ofmi frommb

i as

Bf (mi) =

⎧⎪⎨⎪⎩
1∑

mi∈M′, m
b
i ∈Bot

g(dist(mi,mb
i))

, ifmi ∈ Bot

g(dist(mi,mb
i))∑

mi∈M′, m
b
i ∈Bot

g(dist(mi,mb
i))

, otherwise
(2)

The distance of mi from mb
i , denoted by dist(mi,mb

i), is applied to
the function g . We define g as

g(x) = e−x (3)

Thus, g(dist(mi,mb
i)) = e−dist(mi,mb

i) is obtained. The selection
weight of a borderline sample is higher than that of other samples
according to the borderline factor. It can be seen from Fig. 2(b)
that borderline data, including majority and minority samples,
have been marked. Here, the noise sample A has been removed in
Fig. 2(b)–(d). The sample Eb is the nearest borderline objective of E,
and thus the probability of E to be selected based on the borderline
factor relies on the value of dist(E, Eb).

It is assumed that Cli is the nearest minority class cluster of the
sample mi ∈ M ′. The disjunct factor of mi, denoted by Df (mi), can
be calculated as

Df (mi) =

⎧⎪⎨⎪⎩
1∑

i g(di×deni)
, if di = 0

g(di×deni)∑
i g(di×deni)

, otherwise
(4)

where di denotes the distance of mi from the cluster center of Cli
and deni is the density of Cli (line 30 of [Algorithm 2]). A samplemi
located in the cluster center of Cli, that is di = 0, obtains a higher
selection weight based on the disjunct factor than other samples.
The density of a specific cluster can be transformed into the inverse
value of the sum of distance values between any of two data points
in this cluster (line 25 of [Algorithm 2]). As a sparse cluster does

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

S. Ren et al. / Knowledge-Based Systems () – 7

Fig. 2. The data difficulty factors of the selectively resampling procedure in SRE. (a) noise factor, (b) borderline factor, (c) disjunct factor, and (d) deviation factor.

not have enough observations to represent its concept, the within-
class imbalance issue makes it difficult to correctly learn a sparse
cluster. di and deni are applied to g , and thus g(di×deni) = e−di×deni .
To understand the disjunct factor clearly, consider Fig. 2(c) and
assume dist(E, Eb) = dist(E1, Eb). If Eb is the nearest borderline
example of E and E1, then E and E1 have the same probability
to be selected according to the borderline factor. However, the
density of cluster Cl1 is higher than that of cluster Cl2, although
Cl1 and Cl2 contain an equal number of data points. Therefore,
E1 is assigned a higher selection weight than E to overcome the
within-class imbalance and small disjuncts problems (assuming
dist(E, Cl1) = dist(E1, Cl2)).

In addition to the borderline factor and disjunct factor, the de-
viation factor should be considered to refrain the class boundaries
of minority events from spreading further into the majority class
area. Thus, the dissimilarity of a past preserved minority example
mi ∈ M ′ and the current majority set Nt should be evaluated. The
clustering procedure based onDBSCAN [33] is first used to discover
disjuncts of Nt (line 26 of [Algorithm 2]). Then, the dissimilarity is
transformed into the distance from the nearest cluster center of the
current majority set. Of (mi), denoted by the deviation factor ofmi,
can be calculated as

Of (mi) =
g ′(d′i)∑
i g ′(d

′

i)
(5)

where d′i is the distance ofmi from its nearestmajority class cluster
Cl′i (lines 31 and 32 of [Algorithm 2]). d′i is applied to the function
g ′(x). g ′(x) is defined as

g ′(x) = 1− e−x (6)

The deviation factor assigns high weights to the members which
are relatively far away from themajority class region to reduce the
risk of overlapping between different classes. It can be observed
from Fig. 2(d) that E2 and E3 deeply locate in the majority class
region. If E3 and E4 are at the same distance from the decision
boundary, then E4 has a higher probability of being selected than
E3 according to the deviation factor because the data point E3 falls
into the dangerous region (assuming dist(E3, Cl2) = dist(E4, Cl2)).

3.2. Periodical update mechanism

In the chunk-based ensemble framework, most of the existing
techniques to classify imbalanced data streams re-balance the
current class distribution by reusingminority examples in the past
blocks. However, the selected past minority samples of these blind
resamplingmethodsmay be inconsistent with the current concept
or locate in the dangerous region, which absorbs wrong samples
into the candidate block and makes the learning task complicated.

To overcome this issue, the resampling technique in SRE, which
simultaneously considers concept drift and data difficulty factors,
selects past minority examples to broaden the current minority
class region. This way, SRE can improve the performance of the
candidate component classifier. However, the number of minority

samples in the amplified candidate blockmaynotmake the current
class distribution reach a desired level of balancewhendatasets are
strongly imbalanced. To obtain balanced data chunks, resampling
training minority sets of past ensemble members using the latest
training minority events is an effective strategy. The objective of
the periodical update mechanism is threefold: to re-balance the
class distribution of past blocks, to emphasize the costly misclas-
sification instances, and to make the ensemble quickly react to
different types of concept drift.

In SRE, the minority set of the current block is amplified by se-
lectively extracting previous minority samples (lines 1–4 of [Algo-
rithm 1]). Then, a candidate classifier ht is built over the amplified
block (line 5 of [Algorithm1]). To limit the time andmemory usage,
a performance-based pruning technique is applied to the ensemble
ε. If ε contains less than c components, the newly built classifier
ht is added to ε (lines 10 and 11 of [Algorithm 1]). Otherwise, the
worst-performing classifier in ε is replacedwith ht (lines 12 and 13
of [Algorithm 1]). The previous hypotheses should be periodically
updated using data characterized by the current concept (lines 15–
18 of [Algorithm 1]).

The update weight wt,n(xj) (1 ≤ n ≤ t − 1), which describes
the probability of instance xj ∈ St to be selected to update the nth
component classifier in the ensemble, is expressed as

wt,n(xj) = wc
t (xj)× wIR

t,n(xj) (7)

where wc
t (xj) and wIR

t,n(xj) are the cost weight and category weight
of sample xj, respectively (line 16 of [Algorithm 1]). The update
weight of samples xj is the product of sample labels, classifier
outputs over successive previous components, and the imbalance
ratio of the current condition. The computations of wc

t (xj) and
wIR

t,n(xj) are described as follows.
The costweightwc

t (xj) of instance xj is based on itsmisclassifica-
tion cost and classifier outputs over successive previous ensemble
members. SRE emphasizes the costly misclassification instances
when updating previous components. wc

0(xj) = IRt/Z0 denotes
the initialization cost weight of xj if xj is a majority sample, then
wc

0(xj) = 1/Z0 otherwise, in which Z0 is the initial normalization
factor. IRt is the imbalance ratio of the training set of the candidate
component classifier. Then, the cost weight of xj should be updated
by the predictive results of previous components in the ensemble
group. The update rule of the cost weight is

wc
n(xj) =

wc
n−1(xj) exp(−whn × yj × hn(xj)× β(j))

Zn
(8)

where wc
n(xj) and wc

n−1(xj) are cost weights of xj at the nth and
(n − 1)th rounds, respectively. whn , described in Section 3.3, is
the weight of the nth ensemble member, yj is the true label of xj,
hn(xj) is the label of xj predicted by the nth hypothesis, and Zn =∑a

j=1 wc
n−1(xj) exp(−whn × yj × hn(xj)× β(j)) is the normalization

factor at the nth round.β(j) presented in [34] is the cost adjustment
function. It is defined as

β(j) =
{
−0.5Cj + 0.5, sign(yjhn(xj)) = +1
0.5Cj + 0.5, sign(yjhn(xj)) = −1

(9)

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

8 S. Ren et al. / Knowledge-Based Systems () –

where Cj is the misclassification cost of xj and can be calculated as

Cj =

{
IRt , yj = −1
1, yj = +1

(10)

where IRt is the imbalance ratio of St . The misclassification cost of
a majority sample is based on the imbalanced ratio of the latest
training block. Meanwhile, minority samples are assigned high
misclassification costs compared to majority samples. The cost
weight of a sample xj is continuously updated based on its out-
puts of previous component classifiers at successive rounds. For a
sample with a high misclassification cost, its cost weight increases
more when its label is wrongly identified by a component, but
decreases less otherwise. On the contrary, the cost weight of an
instance with a low misclassification cost increases conversely
when it is misclassified, but decreases aggressively otherwise. In
this way, the costly misclassification instances in the latest block
outweigh others in terms of the cost weight.

The selectively resamplingmechanism, where drifting data and
unsafe examples are avoided, may not achieve adequate minority
objectives to re-balance the current class distribution. Therefore,
minority samples in the candidate block generally have relatively
high probabilities to be selected to update the training sets of
previous ensemble members compared with those majority sam-
ples with same cost weights. In addition to the cost weight, the
categories of samples in the latest chunk should be considered
when updating previous hypotheses. The category weight of xj,
denoted by wIR

t,n(xj), can be calculated as

wIR
t,n(xj) =

⎧⎨⎩ IRt,n
Zw

, yj = −1
1
Zw

, yj = +1
(11)

where Zw =
∑a

j=1 wIR
t,n(xj) is the normalization factor. IRt,n, which

is imbalance ratio of the union set of training events of the tth and
nth ensemble members, can be expressed by

IRt,n =
|Pt | + |Pn|
|Nt | + |Nn|

(12)

where |Pn| and |Nn| are the numbers ofminority andmajority sam-
ples in the training set of thenth component classifier, respectively.
Because class distributions of previous training blocks are gener-
ally imbalanced, minority samples are assigned higher category
weights than majority samples. This way, class distributions of
previous training chunks are further re-balanced to improve the
recognition ratio of ensemble members on minority samples.

After assigning an update weight to each instance of the lat-
est chunk, the costly misclassification instances and minority in-
stances are given higher identification importance. Thus, the data
distribution of the latest block is updated. In this paper, we lever-
age very fast decision tree (VFDT) [35] as component classifiers of
SRE. VFDT is an incremental classifier and can be constantly mod-
ified without the need of storing examples. Thus, VFDT can be up-
dated conveniently. After obtaining each incoming data block, pre-
vious components should be updated using the latest observations
with an updated data distribution, i.e., incrementally trained (line
17 of [Algorithm1]). Althoughminority instances are very sparse in
a datasetwith skewed distribution, as the time approaches infinity,
data chunks with relatively balanced class distribution can be
obtained by resampling the current minority set and periodically
updating previous training blocks. It is often assumed that the
candidate block implicitly describes the current and near-future
concepts. Once the class distribution of a past training chunk has
been re-balanced, SRE still performs the periodical update oper-
ation, which makes the ensemble quickly react to different types
of concept drift. Different from all the existing chunk ensembles,
the performance of SRE is robust against chunk size as the training
sets of previous classifiers are constantly enlarged by the latest
objectives.

3.3. Weighting component classifiers in the ensemble group

In the chunk-based ensemble framework, SRE can leverage
past knowledge of data streams in the form of component clas-
sifiers. Therefore, SRE has good generalization ability compared
with single classifiers. However, an ensemble of a large number of
members is likely to accommodate obsolete knowledge. Obsolete
members cannot enhance model performance, but will increase
the memory and time consumption. In SRE, a hypothesis is built
over an amplified block, and c hypotheses are preserved in the
ensemble.

The importance of each past component is based on the model
performance on the events in the latest chunk. As the minority
samples are underrepresented, the previous component classi-
fiers that misclassify minority examples should be penalized more
heavily than those members that wrongly identify the class label
of majority examples. The weight of the nth component classifier
hn, denoted by whn (1≤ n≤ t − 1), is shown in Eqs. (13)-(15)

whn = eMSEr−MSEn (13)

MSEr =
∑
yj

p(yj)(1− p(yj))2 (14)

MSEn =
1
a

∑
(xj,yj)∈St

Cj(1− f nyj (xj))
2. (15)

The weighting mechanism presented in Eq. (13) combines the ele-
ments of classification performance and current class distribution
(lines 7–9 of [Algorithm 1]). MSEn is themean square error of hn on
the examples in St . The weights of previous hypotheses should be
reversely proportional to MSEn. f nyj (xj) is the probability of sample
xj being classified as category yj by hn. The data items of the latest
chunk are divided into two parts, in which a instances are treated
as the training set St for building a candidate hypothesis and the
remaining b instances are used as the testing set Tt for evaluating
model performance. Therefore, theweighting formula presented in
Eq. (13) needs to calculate themean square error of previousmem-
bers on xj ∈ St . Cj presented in Eq. (10) is the misclassification cost
of xj. The weighting mechanism considers misclassification costs
of samples, which is suitable for handling imbalanced datasets.
MSEr presented in Eq. (14) is the mean square error of a randomly
predicting classifier. P(yj) is the yj’s class distribution. A random
prediction does not contain any valuable information and is treated
as a reference point to the current class distribution.

On the contrary, the weight of the candidate classifier ht is di-
rectly assigned the maximum value, regardless of its performance.
This setting is reasonable when assuming the data distribution of
the latest chunk is nearest to the current and near-future concepts.
The weight of ht , denoted by whc , is formulated as

whc = eMSEr (16)

where MSEr is defined in Eq. (14) (line 6 of [Algorithm 1]). The
importance of ht is proportional to the mean square error of a
random prediction. Thus, theweight of the candidate hypothesis is
based on the current class distribution. The candidate component
is treated as the best member, which especially helps in reacting
to sudden changes. Meanwhile, cross-validation of the candidate
member can be avoided to handle high-speed data streams.

After obtaining all the weights of ensemble members, the deci-
sion of a testing instance x′j ∈ Tt can be expressed as

ŷ′j = arg max
y′j∈{+1,−1}

((t−1∑
n=1

whn × y(hn(x′j), y
′

j)
)
+

(
whc × y(ht (x′j), y

′

j)
))
(17)

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

S. Ren et al. / Knowledge-Based Systems () – 9

in which ŷ′j is the label of x′j predicted by the ensemble. hn(x′j) and
ht (x′j) are the labels of x′j predicted by the nth hypothesis and the
candidate hypothesis, respectively. y(hn(x′j), y

′

j) and y(ht (x′j), y
′

j) are
the indicator functions and can be defined as

y(hn(x′j), y
′

j) =
{
1, if hn(x′j) = y′j
0, otherwise

(18)

y(ht (x′j), y
′

j) =
{
1, if ht (x′j) = y′j
0, otherwise

(19)

Therefore, the predictive result of a testing instance is theweighted
voting of all the ensemblemembers (lines 19–21 of [Algorithm 1]).

4. Computational complexity of the proposed method

In the chunk-by-chunk framework, SRE resamples theminority
samples of the latest chunk to improve the predictive ability of the
candidate component on minority events. The selectively resam-
pling procedure, which simultaneously considers data difficulty
factors and concept drift, is used to extract previous minority
samples to enlarge the current minority set. First, noise data are
identified and removed. Second, the similarities between past mi-
nority data and the current minority set are evaluated to remove
drifting data. Third, the selection weight of mi ∈ M ′ is computed.
Thus, the selectively resampling operation requires the complexity
of O(|M| log(|M| + a) + a log a + 3|M|) in a data chunk, where a
is the size of training chunks and |M| is the number of examples
in M . The periodical update operation needs to adjust previous
hypotheses using the instances of the latest training chunk, where
the update weights of events are evaluated. The cost weight pre-
sented in Eq. (8) and the category weight presented in Eq. (11)
consume O(a) and O(1) time, respectively. Thus, the complexity
of the periodical update operation for each past hypothesis is O(a)
every a observations. The weighting settings presented in Eqs. (13)
and (16) consume a constant number of operations. The base clas-
sifier of SRE is VFDT that can learn a decision tree using constant
time per example [36]. Meanwhile, the time consumption of the
testing phase is linearly proportional to the number of testing
examples. Therefore, the selectively resampling operation is the
most time-consuming part of the SRE algorithm. If a data stream
contains N data blocks, then the complexity of this procedure is
O(N|M| log(|M| + a)+ aN log a+ 3|M|N), but this is just an upper
bound.

5. Experimental studies

To observe the properties and performance of SRE, three exper-
iments have been developed:

1. Experiment 1: The goal of this experiment is to prove that
SRE is robust against the predefined chunk size. Thus, an
experimental analysis of SRE with different chunk sizes is
performed in Section 5.4.

2. Experiment 2: The goal of this experiment is to analyze the
effect of different imbalance ratios on SRE performance, as
discussed in Section 5.5.

3. Experiment 3: The goal of this experiment is to prove that
SRE can learn different types of concept drift from imbal-
anceddata streams. In Section 5.6, SRE is comparedwith sev-
eral state-of-the-art methods in a wide spectrum of concept
drift scenarios.

5.1. Experimental setup

The experimental studies are performed in Java using the mas-
sive online analysis (MOA) environment as a test-bed [37]. The
tested algorithms in the comparative experiment are listed as
follows.

1. AWE. Accuracy weighted ensemble (AWE) [38] is treated
as the benchmark algorithm. As a representative of chunk-
based ensembles, AWE is strictly designed for nonstationary
data streams and has no mechanisms to learn imbalanced
data. c = 10 component classifiers are preserved in the
ensemble group.

2. SERA. In SERA [20], we preserve only minority examples in
the previous w = 30 blocks to limit the memory usage.
The similarity between each of preservedminority examples
and the current minority set is evaluated by Mahalanobis
distance. Instead of propagating all the preserved minority
samples into the candidate block, SERA applies f = 0.5
to proportionally select those minority samples with high
similarity to re-balance the current skewed distribution. c =
10 ensemblemembers are built over the amplified candidate
block.

3. MuSeRA. Compared to SERA, MuSeRA [21] preserves all the
hypotheses derived from consecutive blocks, which avoids
forgetting knowledge catastrophically (same as suggested
by the paper’s authors). Only minority examples in pre-
vious w = 30 blocks are conserved. MuSeRA leverages
Mahalanobis distance to measure similarities of preserved
examples and the current minority set. The sample size
parameter, f , is set to 0.5.

4. SMOTE. A data stream is first divided into a series of fixed-
size blocks, then SMOTE [24] is used to adjust the class
distribution of the latest block by generating novel minority
examples. The post-balance ratio, f , is equal to 0.5. A single
classifier based on VFDT is trained over the amplified chunk.

5. UB. UB [19] is one of the earliest algorithms for learning
imbalanced data streamswith evolving concepts.We collect
only minority instances in the previous w = 30 blocks.
All the preserved minority examples are propagated into
the candidate block. Thus, drifting data and complex data
distribution are easy to be absorbed into the training sets of
ensemble members. c = 10 component classifiers are built
over the amplified candidate chunk.

6. OOB. OOB [28] is a totally incremental algorithm since no
previous data need to be stored. It overcomes class imbal-
ance through resampling and time-decayed metrics. The
ensemble size is set to 10 to afford fair comparison. The
time-decayed factor is set to 0.9 (same as suggested by the
paper’s authors).

During the execution of the comparative experiment, the set-
tings of the MOA framework are as follows.

1. The holdout evaluation [39] is treated as the evaluation
technique.

2. The base classifier of all tested algorithms is VFDT [35] to
afford fair comparison between models. The parameters of
VFDT are adopted as default values of the MOA framework.

3. The chunk size d of all chunk-based ensembles, including
AWE, SERA, MuSeRA, and UB, is set to 1000. Meanwhile, the
selected single classifier is periodically rebuilt every 1000
observations.

SRE, which is a hybrid ensemble, builds components over con-
secutive blocks and then periodically updates previous ensemble
members using observations in the latest training block. Thus, the
performance of SRE does not rely on chunk size (discussed in more

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

10 S. Ren et al. / Knowledge-Based Systems () –

detail in Section 5.4). To make comparison fair, d = 1000 is the
predefined chunk size. Theminority examples in the previousw =
30 blocks are preserved inM . A selectively resampling technique is
used to re-balance the class distribution of the candidate block. In
the first phase, a training block with the imbalance ratio f ′ = 0.8
is obtained by the resampling procedure considering the factor
of concept drift. In the second phase, SRE resamples the current
training block to make the post-balance ratio f equal to 0.5 based
on the data difficulty factors. Then, a new component based on
VFDT is built over the amplified training block. SRE maintains c =
10 components in the ensemble to limit the time and memory
usage.

Holdout evaluation can depict the model performance over
time, the testing set (holdout set) is extracted from the latest
chunk. For each chunk, a total of 70% of instances are used to train
a candidate classifier, update previous ensemble members, and
evaluate the weights of previous components. The remaining data
comprise the testing set. Theweight of the candidate classifier does
not consider the model performance, and thus no additional sets
for validation are required.

5.2. Assessment metrics

In this paper,we only dealwith the two-class problems. To eval-
uate the model performance on imbalanced datasets, the number
of true positive (TP), false positive (FP), true negative (TN), and false
negative (FN) samples are counted and the confusion matrix can
be formed. Accuracy is the standard evaluation metric. It describes
the proportion of all correct predictions to the total number of
instances. The accuracy performance is primarily dominated by
the majority class and is not suitable for learning imbalanced
problems.

According to the confusionmatrix, severalmetrics in the field of
class imbalance classification have been derived. They are recallmin,
recallmaj, precision, F-measure, G-mean, and AUC. The first two are
the average recall on the minority class and majority class, respec-
tively. They are denoted by recallmin and recallmaj. Precision is the
proportion ofminority examples that are correctly identified to the
examples classified as minority class by a classifier. It measures
the ability of a classifier to remove majority observations from all
events being misclassified as minority class. F-measure combines
recall and precision for maximizing the model performance on a
single class. β = 1 measures the relative importance of recall
and precision. The learning object of class imbalance learning is to
improve the minority-class recall performance without degrading
the precision performance. G-mean is an overall indicator that
combines a classifier’s performance onminority andmajority class
recalls. A large value of G-mean indicates that a classifier performs
well on samples of both classes. Another popular measure known
as AUC is the area under the Receiver Operating Curve [40]. By
adjusting the decision threshold of classifiers, AUC provides a
single value to evaluate the classification performance. Compared
to above metrics, AUC is robust against the distribution between
different classes. In our experimental setting, accuracy, F-measure,
G-mean, AUC, recallmin, and recallmaj are selected to analyze the
model performance from different aspects.

A data chunk is divided into a training set and a testing set. All
the metrics are calculated on periodical holdout sets, thus creating
performance curves for each tested algorithm. The observations
points are selected within a series of data chunks throughout
the life of data streams to observe the model performance in the
different context. Meanwhile, a single value of eachmetric for each
tested algorithm, which is the average value over the performance
at all time steps, is provided. For each metric, the averages are
ranked from (1) to (7), where (1) is the best and (7) is the worst.
Then, the Friedman test is used to compare algorithms over all
datasets and the Wilcoxon test is used to compare SRE with other
comparative algorithms in a pairwise manner [41].

Table 2
Description of the datasets.
Dataset #Inst #Attrs #Classes Noise IR #Drifts Drift type

SEAS 667k 3 2 10% 2:23 3 Sudden
SEAG 558k 3 2 10% 2:23 9 Gradual
Hyper 543k 50 2 5% 2:23 1 Incremental
RanRBFGR 503k 50 2 0% 2:23 4 Gradual recurrent
SEASR 686k 3 2 10% 2:23 4 Sudden recurrent
Domain1 1M 2 2 0% 2:23 3 Sudden
Domain2 1M 2 2 0% 2:23 3 Sudden
Elec 28k 8 2 – 2:23 – –

5.3. Dataset description

In this section, the details of synthetic and real-world datasets
used in the experiment are provided. To research the ability of the
proposed algorithm to learn concept drift from imbalanced data,
the datasets which exhibit concept drift, class imbalance, and data
difficulty factors are designed. Table 2 presents a brief description
of each dataset.

There is a shortage of suitable and publicly available real-
world benchmark datasets in the field of data stream classification.
Therefore, synthetic datasets are generated in theMOA framework.
Compared to real-world datasets, the details of synthetic datasets
can be obtained in advance. Two families of synthetic datasets
are generated. For one thing, two synthetic two-class problem
domains, which contain small disjuncts, are generated according
to [42]. First, the unit square is divided into C×C squared grids. The
input of each dimension is divided into several equal-size intervals
and contiguous intervals have different labels, but the middle grid
is kept empty. Fig. 3(a) shows the structure of the Domain1 dataset
with C = 3. The complexity level of Domain1 is equal to 3 × 3.
Second, three types of concepts, which are Da, Db, and Dc , are
designed. Concept drifts are introduced by changing the categories
within grids in addition to those within the middle one from Da to
Db. Unlike Da and Db, the sample attributes of Dc are in the interval
[0, 3]. Concept drifts occur each 250,000 observations, and thus 4
concepts and 3 concept changes are on the Domain1 dataset. Third,
we increase the data complexity level to 5 × 5 on the Domain2
dataset. In Fig. 3(b), D′a, D

′

b, and D′c are designed. Concept drifts
occur each 250,000 objects on the Domain2 dataset. The labels of
D′b are reversed compared to the same positions of D′a. Meanwhile,
the sample features inD′c are adjusted to the interval [0, 5]. Finally,
the generation probability of majority samples is 11.5 times that
of minority samples to create two datasets with IR= 2:23 for each
data chunk.

For another, five datasets are generated by data stream gen-
erators available in the MOA framework to analyze a algorithm’s
ability to learn different types of concept drift. The details of them
are presented as follows.

1. SEA. The SEA generator [43] is used to create three datasets,
10% of noise each. It contains three attributes ranging from 0
to 10. Only the first two attributes are relevant and the third
attribute is treated as noise. The class labels are determined
by comparing the sum of two relevant attributes and a pre-
defined threshold. Concept drifts are simulated by adjust-
ing the threshold. First, SEAS contains three sudden drifts.
Second, nine gradual drifts are brought on the SEAG dataset.
Third, SEASR contains four sudden recurrent drifts, where the
fifth concept is the recurrent concept of the first one. Then,
we undersample one of the classes every 1000 instances to
induce class imbalance. The cardinality of minority class is 8
percent of total data.

2. Hyper. The Hyperplane generator [35] is used to create
the Hyper dataset of 543,000 instances described by 50

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

S. Ren et al. / Knowledge-Based Systems () – 11

Fig. 3. Structures of the first family synthetic datasets. (a) Domain1 and (b) Domain2 .

attributes and two classes. The Hyper dataset contains an
incremental drift by changing the decision hyperplane grad-
ually. We then induce class imbalance by undersampling
one of the classes every 1000 instances. The minority class
consists of 8 percent of the total data size.

3. RanRBF. The radial basis function (RBF) generator creates
several drifting centroids, each defined by a class label,
weight, position, and standard deviation.We use this gener-
ator to create the RanRBFGR dataset containing four gradual
recurrent drifts. RanRBFGR consists of 503,000 instances
described by 50 attributes and two classes. One of the classes
is undersampled to create an imbalance ratio of 2 : 23 every
1000 observations.

In addition to synthetic datasets, we analyze the model perfor-
mance in the real-life scenario. The Electricity Market data (Elec),
which is collected from the electricity market in New SouthWales,
Australian, contains the changes of electricity price according to
time and demand [44]. Since the original dataset does not contain
class imbalance, the examples which represent the rising prices
are randomly undersampled and treated as the minority samples.
Elec contains 28,000 observations and the minority samples are 8
percent of the total data size.

5.4. Experiment 1: study of the impact of chunk size

The goal of this experiment is to validate the robustness of
SRE to chunk size d. In SRE, the frequency of updating previous
ensemblemembers can be controlled by the predefined chunk size.
Once a new block arrives, previous hypotheses are updated using
instances in this block to make the ensemble quickly adapt to con-
cept drift. The performance of chunk-based ensembles generally
relies on chunk size. Chunk ensembles can be divided into two
groups. The first group methods, such as UB [19] and SERA [20],
build all ensemble members over the current block. Thus, the
chunk size directly determines the number of training instances.
The second group methods, such as AWE [38] and MuSeRA [21],
build a component classifier over each block and then all classifiers
are combined to form an ensemble. Using small-size chunks will
result in insufficient training data for component classifiers, which
degrades the model performance under stationary conditions. On
the contrary, concept drifts are easy to be involved in a big-size
block.

SRE is treated as a hybrid ensemble [17]. A candidate hypoth-
esis is first built over the latest block, then the latest instances
are weighted and used to update previous hypotheses. Thus, SRE
constantly enlarges the past training chunks. The predefined chunk
size cannot have a significant effect on SRE performance. Table 3

summarizes the AUC performances (means and standard devia-
tions) and average ranks of SRE with different chunk sizes on all
datasets, averaged over 50 runs. The chunk size is varied from
400 to 2000 and the best result is highlighted with bold-face type.
Following the suggestion in [45], we apply the Friedman test to
compare the different settings over multiple datasets. The null-
hypothesis for this test is that there are no significant differences
among different variants of SRE. Then, FF = −0.936 is calculated.
If the significant level is 0.05, then the null-hypothesis is accepted.
This indicates that differences are not significant and no post-
hoc analyses are required. Therefore, we can conclude that the
proposed algorithm is robust against chunk size. d = 1000 is
selected as the default value in the comparative experiment.

5.5. Experiment 2: study of the impact of imbalance ratio

The goal of this experiment is to analyze the impact of different
imbalance ratios on the performance of the proposed algorithm.
The imbalance ratio of data, which is the ratio between the number
of minority and majority examples, can directly affect the per-
formance of models. A smaller imbalance ratio means a smaller
probability to obtain the minority examples, and thus the classi-
fication task becomes much harder. In this experiment, we modify
the imbalance ratios of datasets presented in Table 2. We consider
five imbalance levels, e.g., 3:47, 7:93, 2:23, 9:91, and 1:9 for each
dataset. Thus, the cardinalities of minority class are 6%, 7%, 8%, 9%,
and 10% of total data, respectively.

Table 4 shows the AUC performances (means and standard
deviations) and average ranks of SRE on datasets with different
imbalance ratios. Each value is the average of 50 runs and the best
result is highlighted with bold-face type. We also give a statistical
analysis of how the AUC performance of SRE is affected by the
imbalance ratio of datasets through factorial ANOVA [45]. Then,
p = 0.000 and η2

= 0.99 are obtained. If the significant level is
0.05, then we can conclude that the factor of imbalance ratio has
a significant effect on the AUC performance of SRE. This is because
the classification task becomes much harder when the percentage
of minority examples decreases. The post-balance ratio f remains
fixed, and thus more minority examples need to be selected from
the past preserved minority data for resampling the training set of
the candidate classifier if the imbalance ratio of datasets is small. As
the resamplingmechanism is constantly applied to the consecutive
blocks, the training sets of component classifiers become similar.
Thus, the diversity of ensemble members is reduced, which de-
grades the classification performance of SRE.

5.6. Experiment 3: comparative experiment

In this section, we compare SRE with six state-of-the-art meth-
ods on accuracy, F-measure, G-mean, recallmin, AUC, and recallmaj.

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

12 S. Ren et al. / Knowledge-Based Systems () –

Table 3
AUC performance of SRE with different chunk sizes d on all datasets (mean± standard variance(rank)).

d = 400 d = 800 d = 1000 d = 1200 d = 1600 d = 2000

SEAS 87.59± 0.11(6) 87.76± 0.00(2) 87.73± 0.10(3) 87.70± 0.00(4) 87.77± 0.00(1) 87.70± 0.00(4)
SEAG 89.28± 0.11(1) 89.22± 0.10(5) 89.28± 0.00(1) 88.25± 0.11(3) 89.21± 0.00(6) 89.23± 0.00(4)
Hyper 81.58± 0.11(3) 81.31± 0.12(6) 81.78± 0.11(2) 81.82± 0.10(1) 81.49± 0.10(5) 81.56± 0.11(4)
RanRBFGR 99.80± 0.00(5) 99.80± 0.00(5) 99.83± 0.00(3) 99.81± 0.00(4) 99.85± 0.00(2) 99.86± 0.00(1)
SEASR 87.46± 0.11(5) 87.55± 0.00(2) 87.51± 0.10(3) 87.58± 0.11(1) 87.51± 0.10(3) 87.45± 0.11(6)
Domain1 99.71± 0.00(3) 99.70± 0.00(4) 99.75± 0.00(1) 99.64± 0.00(5) 99.61± 0.00(6) 99.72± 0.00(2)
Domain2 98.57± 0.00(4) 98.65± 0.00(1) 98.63± 0.00(3) 98.48± 0.00(6) 98.53± 0.00(5) 98.65± 0.00(1)
Elec 88.25± 0.77(1) 85.95± 0.55(2) 85.73± 0.78(3) 85.24± 0.88(4) 84.50± 0.82(5) 83.64± 0.50(6)
Average rank 3.500 3.375 2.375 3.500 4.125 3.500

The best result is in boldface.

Table 4
Effect of different imbalance ratios on the AUC performance of SRE (mean± standard variance(rank)).

IR=3:47 IR=7:93 IR=2:23 IR=9:91 IR=1:9

SEAS 87.60± 0.11(5) 87.67± 0.10(4) 87.73± 0.10(2) 87.75± 0.00(1) 87.73± 0.00(2)
SEAG 88.95± 0.10(5) 89.27± 0.10(4) 89.28± 0.00(3) 89.40± 0.00(2) 89.43± 0.10(1)
Hyper 81.70± 0.13(5) 81.77± 0.13(4) 81.78± 0.11(3) 81.86± 0.10(2) 81.98± 0.11(1)
RanRBFGR 99.82± 0.00(5) 99.84± 0.00(3) 99.83± 0.00(4) 99.85± 0.00(2) 99.86± 0.00(1)
SEASR 87.46± 0.11(5) 87.51± 0.10(3) 87.51± 0.10(3) 87.70± 0.11(1) 87.68± 0.10(2)
Domain1 99.74± 0.00(4) 99.74± 0.00(4) 99.75± 0.00(2) 99.75± 0.00(2) 99.79± 0.00(1)
Domain2 98.29± 0.00(5) 98.32± 0.00(4) 98.63± 0.00(3) 98.86± 0.00(2) 98.89± 0.00(1)
Elec 83.36± 0.77(5) 83.54± 0.75(4) 85.73± 0.78(3) 85.87± 0.88(2) 87.17± 0.82(1)
Average rank 4.875 3.750 2.875 1.750 1.250

The best result is in boldface.

5.6.1. Experimental results
Table 5 provides the average performances (means± standard

variances) and ranks of algorithms on all datasets, averaged over
50 runs. Meanwhile, the performance curves of algorithms are
visualized in Figs. 4–6. For the space consideration,we only present
the graphical plots of tested algorithms on the SEAS , RanRBFGR, and
Domain1 datasets. Meanwhile, the graphical plots of comparative
algorithms on other datasets are presented in the supplementary
material.

Fig. 4 shows the results on the SEAS datasets. There are sev-
eral observations we can make from these results. First, sudden
changes incur drops inmost of themetrics of nearly all algorithms.
SERA and SMOTE maintain constant accuracies for nearly all time
stamps. This is because SMOTE leverages only the latest examples
to build a classifier and SERA does not retain any prior knowl-
edge about the majority class. Second, we observe that while OOB
maintains the best rank for accuracy (closely followed by SRE), it
drops to rank 5 for minority class recall. AWE has good accuracy,
recallmaj, and AUC performances but ranks the lowest in terms of
F-measure, G-mean, and recallmin because it lacks a mechanism to
handle imbalanced datasets. Third, UB seems to be themost robust
in terms of minority class recall, with SMOTE and SRE catching up
in the latter part of the simulation. However, the boost in recallmin
for UB comes at the cost of accuracy and recallmaj. This is a common
trend for UB on nearly all datasets tested as well. Finally, SMOTE
effectively improves themodel performance onminority examples
by generating novelminority examples. Thus, SMOTE obtains good
recallmin and G-mean performances. However, it performs poorly
on accuracy, F-measure, recallmaj, and AUC. It is should be noted
that our goal is to improve theminority class performancewithout
significantly sacrificing themajority class performance. SREhas the
best rank for F-measure and G-mean. Meanwhile, it does well on
accuracy, recallmin, recallmaj, and AUC.

On the datasetwith gradual drifts (SEAG), we do observe several
trends which seem to be same as those observed on the SEAS
dataset. First, SRE outranks other algorithms in terms of F-measure
and G-mean. Second, UB is the best-performing algorithm in terms
of recallmin (followed by SRE),which causes a large drop in recallmaj,
accuracy, and F-measure. This is because UB propagates all the
preserved minority examples into the training sets of component
classifiers. Finally, SMOTE’s good showing on recallmin and G-mean

comes at the cost of very poor recallmaj, accuracy, and AUC. A
few additional observations: First, AWE has the best classifica-
tion accuracy and recallmaj performances, but primarily due to
its performance on majority examples. However, AWE ranks the
lowest in terms of F-measure, G-mean, and recallmin because it
has no mechanisms to handle imbalanced datasets. Second, the
accuracy performance of MuSeRA is better than that of SERA. This
is because MuSeRA preserves all the component classifiers built
over consecutive blocks. However, SERA leverages only the latest
examples to train all the components. Thus, MuSeRA can make
full use of relevant knowledge of data streams compared with
SERA. Third, while OOB has good accuracy and AUC performances,
it performs poorly on recallmin and G-mean. Finally, SRE is highly
competitive with other algorithms in terms of AUC.

On the dataset with an incremental drift (Hyper), SRE performs
consistently well in terms of F-measure, G-mean, and AUC. UB
provides the best minority class recall (closely followed by SRE)
but drops to rank 7, 7, and 5 for accuracy, recallmaj, and F-measure,
respectively. While OOB is the best-performing algorithm in terms
of accuracy and recallmaj, it has the lowest rank for F-measure, G-
mean, and recallmin. Meanwhile, lacking a mechanism to accom-
modate imbalanced datasets, AWE has good accuracy, AUC, and
recallmaj performances but performs rather poorly on other figures
of merit.

Fig. 5 shows the results on the RanRBFGR dataset. Recurrent con-
cept drift is brought to validate whether the tested algorithms can
use old information stored in the ensemble to improve the model
performance. Several observations should be noticed. First, OOB
performs particularly well on the RanRBFGR dataset. It maintains
rank 2 for accuracy, F-measure, G-mean, recallmin, and AUC. Mean-
while, it has the best rank for recallmaj. Second, the resampling
mechanism based on Mahalanobis distance fails to improve the
model performance on minority examples in SERA and MuSeRA.
With regard to recallmin, SERA obtains rank 5 and MuSeRA ranks
the lowest. Finally, SRE maintains a series of ensemble members,
which can reactive past classifiers corresponding to the recurrent
concepts. Then, it obtains the best rank for accuracy, F-measure,
G-mean, recallmin, and AUC. Meanwhile, SRE maintains the second
rank for recallmaj. Thus, SRE provides a good balance in accuracy,
F-measure, G-mean, recallmin, AUC, and recallmaj.

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

S. Ren et al. / Knowledge-Based Systems () – 13

Table 5
Performance comparison of different algorithms on all datasets (mean± standard variance(rank)).
Datasets Methods Accuracy F-measure G-mean Recallmin AUC Recallmaj

SEAS

AWE 92.26± 0.00(3) 22.72± 0.50(7) 36.96± 0.42(7) 14.55± 0.40(7) 87.89± 0.12(1) 98.99± 0.01(1)
SERA 89.92± 0.72(5) 53.61± 0.88(3) 79.88± 0.35(3) 70.16± 0.46(4) 84.69± 0.11(4) 92.05± 0.72(5)
MuSeRA 91.61± 0.18(4) 50.16± 0.96(4) 70.19± 1.08(5) 56.65± 0.95(6) 81.72± 0.53(6) 93.65± 0.20(4)
SMOTE 83.87± 0.59(6) 44.42± 0.64(5) 80.03± 0.19(2) 76.29± 0.68(2) 72.99± 0.43(7) 84.40± 0.60(6)
UB 44.83± 0.69(7) 23.36± 0.29(6) 58.07± 0.58(6) 93.03± 0.17(1) 84.61± 0.16(5) 42.90± 0.65(7)
OOB 93.05± 0.00(1) 58.81± 0.59(2) 76.98± 0.56(4) 62.68± 0.89(5) 87.71± 0.12(3) 93.68± 0.04(3)
SRE 92.52± 0.12(2) 62.22± 0.37(1) 84.35± 0.52(1) 76.13± 1.04(3) 87.73± 0.10(2) 94.04± 0.10(2)

SEAG

AWE 91.82± 0.00(1) 19.28± 0.58(7) 33.94± 0.47(7) 12.60± 0.49(7) 89.18± 0.00(3) 98.76± 0.02(1)
SERA 87.97± 0.22(5) 50.38± 0.43(2) 81.32± 0.44(3) 74.75± 0.55(4) 86.20± 0.14(5) 89.55± 0.22(5)
MuSeRA 90.21± 0.00(3) 45.14± 2.30(4) 67.85± 3.30(5) 56.97± 2.90(5) 83.42± 0.43(6) 90.20± 0.02(4)
SMOTE 84.20± 0.25(6) 45.37± 0.30(3) 81.52± 0.39(2) 79.05± 0.87(3) 71.26± 0.50(7) 84.05± 0.22(6)
UB 66.84± 0.91(7) 32.40± 0.45(6) 76.40± 0.60(4) 91.63± 0.27(1) 87.57± 0.14(4) 65.58± 0.82(7)
OOB 91.36± 0.00(2) 43.29± 0.71(5) 62.76± 1.09(6) 42.43± 1.60(6) 89.24± 0.11(2) 90.59± 0.05(3)
SRE 90.01± 0.13(4) 56.53± 0.34(1) 85.14± 0.33(1) 80.22± 0.60(2) 89.28± 0.00(1) 90.81± 0.02(2)

Hyper

AWE 91.63± 0.10(2) 7.49± 1.52(6) 17.23± 2.79(6) 4.52± 0.96(6) 80.80± 0.11(2) 99.20± 0.12(2)
SERA 83.85± 0.33(6) 35.82± 0.29(2) 69.13± 0.46(2) 56.40± 0.85(3) 77.43± 0.23(4) 86.24± 0.30(6)
MuSeRA 87.42± 0.13(3) 29.35± 0.42(3) 54.07± 0.46(4) 33.92± 0.82(4) 66.14± 0.24(6) 92.07± 0.15(4)
SMOTE 87.20± 0.38(4) 25.22± 0.52(4) 49.33± 0.52(5) 28.52± 1.12(5) 62.11± 0.90(7) 92.31± 0.32(3)
UB 38.65± 1.79(7) 18.30± 0.46(5) 54.63± 1.32(3) 91.04± 0.53(1) 78.05± 0.22(3) 34.44± 1.80(7)
OOB 91.99± 0.00(1) 0.28± 0.75(7) 0.80± 1.86(7) 0.15± 0.45(7) 73.83± 0.18(5) 99.98± 0.01(1)
SRE 84.69± 0.18(5) 39.81± 0.25(1) 73.51± 0.31(1) 63.65± 0.72(2) 81.78± 0.11(1) 86.52± 0.12(5)

RanRBFGR

AWE 97.06± 0.10(3) 77.86± 1.31(3) 82.37± 1.18(4) 69.37± 1.64(4) 98.33± 0.25(3) 99.47± 0.13(3)
SERA 95.98± 0.20(5) 70.36± 0.75(4) 79.30± 0.50(5) 66.13± 0.82(5) 86.17± 0.20(6) 98.35± 0.22(4)
MuSeRA 93.95± 0.12(6) 60.46± 0.75(6) 73.56± 1.11(7) 58.80± 1.44(7) 87.61± 0.23(5) 96.90± 0.12(6)
SMOTE 93.19± 0.39(7) 62.45± 0.79(5) 78.30± 0.25(6) 65.92± 0.20(6) 80.25± 0.25(7) 95.52± 0.32(7)
UB 96.96± 0.10(4) 59.60± 0.33(7) 94.21± 0.15(3) 93.42± 0.30(3) 95.03± 0.25(4) 97.00± 0.22(5)
OOB 99.67± 0.00(2) 97.68± 0.53(2) 97.92± 0.13(2) 96.28± 0.71(2) 99.41± 0.01(2) 99.97± 0.00(1)
SRE 99.76± 0.00(1) 98.39± 0.33(1) 98.72± 0.16(1) 97.74± 0.59(1) 99.83± 0.00(1) 99.94± 0.01(2)

SEASR

AWE 92.33± 0.00(3) 24.90± 1.07(6) 39.19± 1.06(7) 16.28± 0.93(7) 87.61± 0.00(1) 98.95± 0.03(1)
SERA 90.41± 0.23(5) 54.24± 0.41(3) 79.76± 0.56(3) 69.41± 1.12(4) 84.57± 0.16(4) 92.44± 0.22(5)
MuSeRA 91.83± 0.10(4) 50.71± 1.03(4) 70.01± 1.22(5) 56.42± 1.29(6) 81.63± 0.36(6) 95.25± 0.20(4)
SMOTE 83.74± 0.36(6) 44.06± 0.34(5) 79.90± 0.26(2) 76.18± 0.62(2) 72.38± 0.31(7) 84.72± 0.36(6)
UB 40.19± 1.39(7) 21.20± 0.32(7) 55.59± 1.34(6) 93.10± 0.49(1) 84.20± 0.18(5) 35.80± 1.35(7)
OOB 93.35± 0.00(1) 60.65± 0.80(2) 78.38± 0.97(4) 64.72± 1.56(5) 87.48± 0.12(3) 95.83± 0.02(3)
SRE 92.86± 0.10(2) 63.04± 0.38(1) 84.29± 0.19(1) 75.63± 0.37(3) 87.51± 0.10(2) 95.93± 0.12(2)

Domain1

AWE 92.00± 0.00(4) 0.00± 0.00(7) 0.00± 0.00(7) 0.00± 0.00(7) 81.25± 0.79(4) 100.00± 0.00(1)
SERA 92.12± 0.24(5) 37.10± 0.59(4) 54.44± 0.65(5) 33.71± 0.54(5) 75.56± 0.23(6) 96.56± 0.22(5)
MuSeRA 92.06± 0.00(3) 12.36± 0.43(6) 21.07± 0.40(6) 7.80± 0.28(6) 77.10± 0.11(5) 99.39± 0.02(3)
SMOTE 74.04± 0.28(7) 28.36± 0.00(5) 68.00± 0.17(4) 62.42± 0.40(4) 50.33± 0.12(7) 75.16± 0.25(7)
UB 81.45± 0.54(6) 54.01± 0.92(3) 86.96± 0.35(3) 99.16± 0.11(1) 95.40± 0.17(3) 80.66± 0.55(6)
OOB 98.38± 0.33(2) 91.62± 1.66(2) 94.32± 1.13(2) 91.14± 1.70(3) 98.12± 0.32(2) 98.95± 0.12(4)
SRE 99.63± 0.00(1) 98.06± 0.29(1) 99.03± 0.00(1) 98.55± 0.16(2) 99.75± 0.00(1) 99.66± 0.02(2)

Domain2

AWE 92.00± 0.00(3) 0.00± 0.00(7) 0.00± 0.00(7) 0.00± 0.00(7) 55.52± 0.13(4) 100.00± 0.00(1)
SERA 88.32± 0.26(5) 11.23± 0.60(5) 26.65± 1.05(5) 10.35± 0.63(5) 53.95± 0.18(7) 95.78± 0.20(5)
MuSeRA 91.52± 0.00(4) 2.46± 0.21(6) 6.08± 0.50(6) 1.76± 0.12(6) 54.24± 0.14(5) 99.28± 0.02(3)
SMOTE 60.79± 0.24(6) 14.07± 0.11(4) 47.10± 0.41(4) 42.29± 0.72(4) 53.99± 0.00(6) 62.48± 0.25(6)
UB 36.65± 1.01(7) 20.39± 0.29(3) 52.81± 1.10(3) 98.19± 0.00(1) 76.62± 0.25(3) 31.87± 1.42(7)
OOB 95.63± 0.31(2) 76.96± 1.75(2) 79.20± 1.52(2) 68.52± 2.16(3) 92.09± 0.41(2) 98.12± 0.32(4)
SRE 98.84± 0.00(1) 94.16± 0.16(1) 96.00± 0.23(1) 93.49± 0.38(2) 98.63± 0.00(1) 99.32± 0.02(2)

Elec

AWE 90.76± 1.30(5) 43.78± 3.12(3) 62.67± 3.44(4) 44.39± 3.66(4) 83.22± 1.41(3) 96.16± 1.23(4)
SERA 93.03± 1.08(3) 42.71± 3.29(4) 55.04± 6.05(5) 35.45± 4.33(5) 72.63± 2.10(5) 99.07± 0.12(1)
MuSeRA 89.71± 0.35(6) 25.63± 4.42(7) 32.16± 6.10(7) 25.10± 3.18(7) 62.80± 3.84(7) 95.10± 0.32(6)
SMOTE 83.17± 2.22(7) 40.76± 0.96(5) 73.41± 0.82(1) 65.30± 3.06(1) 71.44± 2.05(6) 86.19± 2.20(7)
UB 92.18± 1.94(4) 46.07± 7.72(2) 68.85± 4.60(3) 51.32± 4.80(3) 81.97± 1.45(4) 95.96± 1.92(5)
OOB 93.50± 0.17(2) 40.67± 2.40(6) 52.44± 2.65(6) 30.82± 2.18(6) 84.53± 1.55(2) 99.04± 0.15(2)
SRE 93.90± 0.73(1) 46.77± 1.81(1) 70.33± 3.23(2) 53.53± 5.30(2) 85.73± 0.78(1) 96.78± 0.42(3)

The best result for each dataset and criteria is highlighted in bold.

For the dataset with sudden recurrent drifts (SEASR), the fifth
concept is the recurrent concept of the first one. We first observe
that SRE outranks other algorithms in terms of F-measure and
G-mean. Meanwhile, it maintains rank 2 for accuracy, AUC, and
recallmaj. Second, UB outperforms all other algorithms in terms
of minority class recall (followed by SMOTE and SRE) because
it blindly absorbs all the preserved minority examples into the
training sets of component classifiers. However, UB has the worst
rank for accuracy, F-measure, and recallmaj. Thus, UB’s strong per-
formance on minority examples comes at the cost of very poor
performance on majority examples. Third, OOB is the top ranking
algorithm in terms of accuracy (followed by SRE), but primarily

due to its performance on majority examples. However, OOB ex-
periences a large drop in rank when using recallmin for evaluation.
Fourth, AWE is the best-performing algorithm in terms of AUC
and recallmaj (followed by SRE) but has very poor performance in
terms of F-measure, G-mean, and recallmin. Finally, we observe,
again, that SMOTE has good recallmin and G-mean performances
but performs poorly on accuracy, AUC, and recallmaj.

On the Domain1 and Domain2 datasets, we analyze algorithms’
ability to handle thewithin-class imbalanceproblem. Suddendrifts
and small disjuncts are involved on these two synthetic datasets.
Table 5 summarizes the results of all comparative algorithms on
Domain1 and Domain2. Fig. 6 presents the results on the Domain1
dataset. Most of the algorithms experience major drops in every

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

14 S. Ren et al. / Knowledge-Based Systems () –

Fig. 4. Classification performance on SEAS . (a) Accuracy, (b) F-measure, (c) G-mean, (d) Recallmin , (e) AUC, and (f) Recallmaj .

Fig. 5. Classification performance on RanRBFGR . (a) Accuracy, (b) F-measure, (c) G-mean, (d) Recallmin , (e) AUC, and (f) Recallmaj .

measure around time steps 250000, 500000, and 750000, which
precisely correspond to the positions of concept drift. We can
observe that SRE maintains good speedy recovery from sudden
drifts and a high level of performance during the stationary pe-
riods. On Domain1, we first observe that AWE misclassifies all
minority examples as majority class. Thus, AWE drops to rank 7
for F-measure, G-mean, and recallmin. Second, UB’s strong recallmin

has deteriorated the classification accuracy and recallmaj. Third,
we do observe that OOB can well adapt to the complex data dis-
tribution. Through the oversampling technique and time-decayed
metrics, OOB performs consistently well across all figures of merit.
Followed by SRE, OOB obtains rank 2 for accuracy, F-measure,
G-mean, and AUC. Finally, SRE is highly competitive with other
algorithms on the Domain1 dataset. This is because the resampling

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

S. Ren et al. / Knowledge-Based Systems () – 15

Fig. 6. Classification performance on Domain1 . (a) Accuracy, (b) F-measure, (c) G-mean, (d) Recallmin , (e) AUC, and (f) Recallmaj .

mechanism of SRE takes concept drift and data difficulty factors
into account. SRE is the winner of accuracy, F-measure, G-mean,
and AUC. Meanwhile, it maintains rank 2 for recallmin and recallmaj.
On the Domain2 dataset, the complexity level increases from 3× 3
to 5× 5.Wedo observe that almost all algorithms exhibit degraded
performance inmost of themetrics. As in the Domain1 dataset, SRE
outperforms all other algorithms in terms of accuracy, F-measure,
G-mean, and AUC (followed by OOB). UB has the best recallmin
(followed by SRE), but ranks the lowest in terms of classification
accuracy and recallmaj. AWE fails to classify anyminority examples
and performs particularly poorly with the worst rank in terms of
F-measure, G-mean, and recallmin.

On the Elec dataset, the average values of all evaluation met-
rics and ranks of algorithms are shown in Table 5. A few obser-
vations on this dataset: First, SMOTE has the best G-mean and
recallmin performances by generating novel minority examples to
re-balance the current class distribution, followed by SRE. How-
ever, SMOTE performs poorly on other figures of merit used in
the evaluation. Second, UB has good accuracy but performs poorly
in terms of recallmin compared with its performance on nearly
all other datasets. This is mainly because the data size of Elec is
much smaller than that of other datasets. Thus, the size ofminority
examples is not easy to exceed that of the current majority set
after the oversampling procedure. Finally, SRE has the best rank
for accuracy, F-measure, and AUC. Followed by SMOTE, SRE obtains
rank 2 for G-mean and recallmin. Meanwhile, SRE maintains rank 3
for recallmaj. Thus, SRE improves the minority class performance
without significantly deteriorating the majority class performance
on the Elec dataset.

5.6.2. Summary of comparative results
The algorithms’ ranks in terms of each metric on each dataset

are provided in Table 5. Then, these ranks are averaged to compute
the mean ranks of comparative algorithms on all datasets consid-
ering each evaluation metric, as shown in Table 6. Smaller value
indicates a higher rank of performance. In addition to the detailed
analyses of models described in Section 5.6.1, we summarize key
observations that are consistent across a wide range of datasets:

Table 6
Mean ranking results of comparative methods over all datasets.
Rank AWE SERA MuSeRA SMOTE UB OOB SRE

Accuracy 3.000 4.875 4.125 6.125 6.125 1.625 2.125
F-measure 5.750 3.375 5.000 4.500 4.875 3.500 1.000
G-mean 6.125 3.875 5.625 3.250 3.875 4.125 1.125
Recallmin 6.125 4.375 5.875 2.375 1.500 4.625 2.125
AUC 2.625 5.125 5.750 6.750 3.875 2.625 1.250
Recallmaj 1.750 4.500 4.250 6.000 6.375 2.625 2.500

• SRE maintains the best mean rank in terms of F-measure,
G-mean, and AUC on all datasets. We do observe that SRE
achieves the highest F-measure on all datasets. Meanwhile,
SRE outperforms other algorithms in terms of G-mean and
AUC in nearly all cases. With regard to accuracy, recallmin,
and recallmaj, SRE obtains the second mean rank. Thus, SRE
improves the minority class performance without the cost
of severely damaging the majority class performance.
• UB shows the best mean rank for recallmin (followed by

SRE), but that comes at the cost of accuracy and recallmaj.
Meanwhile, UB is a poor-performing classifier in terms of
F-measure and AUC. This is because UB blindly propagates
all the preserved minority samples into the training sets of
new classifiers.
• AWE has good performance on majority samples. Thus, it

obtains good mean rank in terms of accuracy and recallmaj,
but shows poor F-measure, G-mean, and recallmin perfor-
mances. This is because AWE is a traditional classifier and
lacks a mechanism to adapt to class-imbalance conditions.
• MuSeRA and SERA adopt a similarity measure to select pre-

vious minority examples that are similar to those in the
latest block. Compared to SERA, MuSeRA maintains all the
knowledge of data streams by preserving ensemble mem-
bers built over consecutive blocks. Thus, MuSeRA generally
outperforms SERA on accuracy.
• Compared to traditional classifiers, SMOTE improves the

minority class performance by generating novel minority

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

16 S. Ren et al. / Knowledge-Based Systems () –

Table 7
Friedman test with the corresponding post-hoc test, Bonferroni–Dunn for compar-
ative methods on all datasets.

Friedman AWE SERA MuSeRA SMOTE UB OOB

F-measure Reject 4.750 2.375 4.000 3.500 3.875 2.500
G-mean Reject 5.000 2.750 4.500 2.125 2.750 3.000
AUC Reject 1.375 3.875 4.500 5.500 2.625 1.375

A value greater than the CD (CD = 2.849) indicates statistically significant differ-
ences between the methods, which are highlighted in boldface.

events. Thus, SMOTE obtains good recallmin and G-mean
performances but performs poorly on accuracy, AUC, and
recallmaj. While OOBmaintains the best mean rank for accu-
racy (followed by SRE), it performs poorly on recallmin and
G-mean.

5.6.3. Statistical analysis of comparative results
In this section, we formally validate the effectiveness of SRE

in terms of F-measure, G-mean, and AUC. The main goal of the
statistical analysis is to check the following hypotheses:
• H1: There are no significant differences among F-measure

performances of comparative algorithms.
• H2: There are no significant differences among G-mean per-

formances of comparative algorithms.
• H3: There are no significant differences among AUC perfor-

mances of comparative algorithms.
The Friedman test [41], which is themost suitable tool to detect

differences among the ranks of comparative algorithms across
multiple datasets, is used to validate H1, H2, and H3. Based on
Tables 6, 7 shows the results of Friedman tests and the post-hoc
analyses on F-measure, G-mean, and AUC. If the significant level is
0.05, then H1, H2, and H3 are rejected. Thus, significant differences
exist in the F-measure, G-mean, and AUC performances of tested
algorithms. Then, the Bonferroni–Dunn post-hoc test [41] is used
to compare SRE with other algorithms. The critical difference (CD)
for α = 0.05 is 2.849. Table 7 presents the differences between the
mean ranks of two algorithms using SRE as the control algorithm.
If the difference between the mean ranks of two comparative
methods is greater than CD, the difference between these two
algorithms is statistically significant. These significant differences
are highlighted in boldface in the post-hoc table. In addition, the
Wilcoxon signed-rank test [46] is further applied to compare SRE
with the remaining algorithms in a pairwisemanner. Table 8 shows
the results of theWilcoxon test in terms of F-measure, G-mean, and
AUC using SRE as the controlmethod. First, the p-values in terms of
F-measure are: pSERA = 0.0039 and pOOB = 0.0039. Second, with
regard to the G-mean performance, the p-values for SERA, SMOTE,
and UB are pSERA = 0.0039, pSMOTE = 0.0078, and pUB = 0.0039.
Third, SRE statistically outperforms the remaining algorithms in
terms of AUC (pAWE = 0.0313, pUB = 0.0039, and pOOB = 0.0039).

Generally speaking, the F-measure, G-mean, and AUC perfor-
mances of SRE are significantly better than those of other com-
parative algorithms. Meanwhile, SRE maintains good accuracy,
recallmin, and recallmaj performances on all datasets. While no al-
gorithms can outperform others on all figures of merit, SRE obtains
a good overall balance in accuracy, recallmin, recallmaj, G-mean, F-
measure, and AUC in a wide spectrum of concept drift scenarios.
The boost in the minority class performance for SRE does not
significantly deteriorate the majority class performance.

5.6.4. Running time efficiency
In this section, we analyze the running time efficiency of the

tested algorithms. The hardware configuration used for simulation
is an Intel Core i7 Processor with 8 GB RAM. Table 9 records the
running time of comparative methods on all the datasets. Each
result is the average of 50 independent runs.

Table 8
Wilcoxon’s test results for the comparison of SRE versus the remaining methods on
all datasets.
F-measure G-mean AUC

Methods P-values Methods P-values Methods P-values

SRE vs. SERA 0.0039 SRE vs. SERA 0.0039 SRE vs. AWE 0.0313
SRE vs. OOB 0.0039 SRE vs. SMOTE 0.0078 SRE vs. UB 0.0039

SRE vs. UB 0.0039 SRE vs. OOB 0.0039

Table 9
Runtime of the comparative algorithms (s)

AWE SERA MuSeRA SMOTE UB OOB SRE

SEAS 15.28 35.70 66.67 2.67 13.06 38.25 39.82
SEAG 11.98 26.21 49.85 2.11 11.16 25.24 27.44
Hyper 128.94 806.80 990.71 17.71 150.59 153.75 900.08
RanRBFGR 137.76 737.67 1072.41 14.92 113.88 136.78 400.65
SEASR 15.53 37.14 75.80 2.82 14.54 38.63 40.26
Domain1 17.80 43.01 115.87 3.49 15.06 30.12 33.34
Domain2 16.52 43.68 113.31 3.08 16.95 32.57 38.03
Elec 0.91 1.83 1.87 0.89 0.59 1.64 1.71

From the results presented in Table 9, we can draw the follow-
ing conclusions. First, SMOTE periodically builds only one classi-
fier to predict the labels of testing data. Thus, SMOTE generally
consumes relatively small amount of time compared to ensemble-
based models. Second, MuSeRA is the most time-consuming al-
gorithm on all the datasets tested. To preserve all knowledge of
data streams, MuSeRA does not leverage the ensemble pruning
mechanism to remove obsolete classifiers. Thus, MuSeRA main-
tains all the component classifiers built over consecutive blocks,
which would cost a considerable amount of time. Third, UB and
SERA adopt the same strategy of building ensemble members. All
the component classifiers ofUB and SERAare trained over the latest
chunk. Meanwhile, UB and SERA preserve the minority examples
in the latest w blocks to afford fair comparison. However, SERA
generally requires longer time than UB. This is because SERA needs
to evaluate the similarity between each of the past preserved
minority examples and the current minority set. Finally, the selec-
tively resampling mechanism of SRE used to re-balance the candi-
date block considers both concept drift and data difficulty factors.
Thus, the time consumption of SRE is generally higher than that
of most of the comparative algorithms. We can observe that SRE
does not consume too much time compared with the remaining
algorithms on most of the datasets. However, the running time of
SRE, SERA, and MuSeRA on the RanRBFGR and Hyper datasets is
much longer than that of other approaches. This is mainly because
the dimensions of these two datasets are relatively high and the
resampling procedure of SRE, SERA, and MuSeRA needs a lot of
distance calculations. Thus, we can conclude that SRE has a sat-
isfactory time efficiency on low-dimensional datasets. Meanwhile,
SRE typically provides a much better-balanced performance than
other tested algorithms.

6. Conclusions

In this paper, we present a novel streaming classifier to learn
concept drift from imbalanced data. The existing techniques to
handle nonstationary imbalanced data streams have been
reviewed. The main deficiencies of them mainly reflect in two
aspects. On the one hand, they are generally designed to specialize
in only one type of concept drift. SRE can quickly react to different
kinds of concept drift by periodically updating previous ensem-
ble members using the latest instances. The update weights are
assigned to emphasize costly misclassification examples and mi-
nority examples in the training procedure of previous component
classifiers. On the other hand, most of the existing methods have

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

S. Ren et al. / Knowledge-Based Systems () – 17

ignored the effect of complex data distribution on the classification
task. The selection-based resampling procedure of SRE, which
simultaneously considers concept drift and data difficulty factors,
is used to extract past minority examples for re-balancing the
current class distribution. The similarities between the preserved
minority examples and the current minority set are first evaluated
to avoid propagating drifting data into the training set of the can-
didate classifier. Then, selection weights of past minority objects
are appropriately determined by borderline factor, disjunct factor,
and deviation factor. The previous minority samples with high
selection weights have the priority to be reused for resampling the
current minority set.

SRE maintains a fixed-size ensemble framework to limit the
time and memory usage. The final decision of a testing event is a
weighted voting of ensemble members. The weights of past com-
ponents are based on their performance. However, the candidate
classifier is treated as the best-performing member and assigned
the highest weight. This way, SRE quickly adapts to sudden drift
and the cross-validation of the candidate classifier is avoided.

To validate the effectiveness of SRE, we compare it with 6
state-of-the-art data stream algorithms on accuracy, F-measure,
G-mean, recallmin, recallmaj, and AUC performances. Two fami-
lies of synthetic datasets, which contain different levels of data
complexity and various types of concept drift, are designed. The
obtained results show that SRE effectively improves the minority
class performance without significantly deteriorating the majority
class performance. The effects of chunk size and imbalance ratio
on the performance of SRE are also discussed in the experimental
studies.

Three issues of the SRE algorithm are left to be resolved in the
future. First, we would like to extend our work to the multi-class
cases. Second, the similarity evaluation among samples is trans-
formed into the distance computation. Therefore, SRE can only
handle datasets with continuous attributes. We plan to extend SRE
to datasetswith nominal attributes. Third, the time consumption of
SRE on high-dimensional datasets is high because the resampling
procedure needs a large number of distance calculations. In fact,
these distance computations are independent and can be done
in parallel. In the future, we plan to improve the time efficiency
of SRE on high-dimensional datasets by executing the resampling
procedure in parallel.

Acknowledgments

This study is supported by the National Natural Science Foun-
dation of China (Grant Number: 61863010, 61873076, 61370171,
61572178, 61672214, 61672223 and 61772192).

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.knosys.2018.09.032.

References

[1] J. Gama, Knowledge Discovery from Data Streams, CRC Press, 2010.
[2] I. Žliobaitė, M. Pechenizkiy, J. Gama, An overview of concept drift applications,

in: Big Data Analysis: New Algorithms for a New Society, Springer, 2016, pp.
91–114.

[3] J. Sun, H. Fujita, P. Chen, H. Li, Dynamic financial distress prediction with
concept drift based on time weighting combined with adaboost support
vector machine ensemble, Knowl.-Based Syst. 120 (2017) 4–14.

[4] H. He, Y. Ma, Imbalanced Learning: Foundations, Algorithms, and Applica-
tions, John Wiley & Sons, 2013.

[5] T. Zhu, Y. Lin, Y. Liu, Syntheticminority oversampling technique formulticlass
imbalance problems, Pattern Recognit. 72 (2017) 327–340.

[6] B. Krawczyk, L.L. Minku, J. Gama, J. Stefanowski, M. Woźniak, Ensemble
learning for data stream analysis: a survey, Inf. Fusion 37 (2017) 132–156.

[7] S. Garcı, I. Triguero, C.J. Carmona, F. Herrera, et al., Evolutionary-based selec-
tion of generalized instances for imbalanced classification, Knowl.-Based Syst.
25 (1) (2012) 3–12.

[8] V. García, J.S. Sánchez, R.A. Mollineda, On the effectiveness of preprocessing
methods when dealing with different levels of class imbalance, Knowl.-Based
Syst. 25 (1) (2012) 13–21.

[9] S. Maldonado, J. López, Imbalanced data classification using second-order
cone programming support vector machines, Pattern Recognit. 47 (5) (2014)
2070–2079.

[10] P. Tapkan, L. Özbakır, S. Kulluk, A. Baykasoğlu, A cost-sensitive classification
algorithm: Bee-miner, Knowl.-Based Syst. 95 (2016) 99–113.

[11] J. Sun, J. Lang, H. Fujita, H. Li, Imbalanced enterprise credit evaluation with
dte-sbd: Decision tree ensemble based on smote and bagging with differen-
tiated sampling rates, Inform. Sci. 425 (2018) 76–91.

[12] L. Zhou, K.P. Tam, H. Fujita, Predicting the listing status of Chinese listed
companies with multi-class classification models, Inform. Sci. 328 (2016)
222–236.

[13] L. Zhou, Q. Wang, H. Fujita, One versus one multi-class classification fusion
using optimizing decision directed acyclic graph for predicting listing status
of companies, Inf. Fusion 36 (2017) 80–89.

[14] J. Stefanowski, Dealing with data difficulty factors while learning from im-
balanced data, in: Challenges in Computational Statistics and Data Mining,
Springer, 2016, pp. 333–363.

[15] J.A. Sáez, B. Krawczyk, M. Woźniak, Analyzing the oversampling of different
classes and types of examples in multi-class imbalanced datasets, Pattern
Recognit. 57 (2016) 164–178.

[16] S. Wang, L.L. Minku, X. Yao, Online class imbalance learning and its applica-
tions in fault detection, Int. J. Comput. Intell. Appl. 12 (04) (2013) 1340001.

[17] S. Ren, B. Liao, W. Zhu, K. Li, Knowledge-maximized ensemble algorithm for
different types of concept drift, Inform. Sci. 430–431 (2018) 261–281.

[18] D. Brzezinski, J. Stefanowski, Reacting to different types of concept drift: The
accuracy updated ensemble algorithm, IEEE Trans. Neural Netw. Learn. Syst.
25 (1) (2014) 81–94.

[19] J. Gao, W. Fan, J. Han, S.Y. Philip, A general framework for mining concept-
drifting data streams with skewed distributions., in: SDM, SIAM, 2007, pp.
3–14.

[20] S. Chen, H. He, Sera: selectively recursive approach towards nonstationary
imbalanced stream data mining, in: 2009 International Joint Conference on
Neural Networks, pp. 522–529.

[21] S. Chen, H. He, K. Li, S. Desai, Musera: multiple selectively recursive approach
towards imbalanced stream data mining, in: The 2010 International Joint
Conference on Neural Networks (IJCNN), IEEE, 2010, pp. 1–8.

[22] G. Ditzler, R. Polikar, Incremental learning of concept drift from streaming
imbalanced data, IEEE Trans. Knowl. Data Eng. 25 (10) (2013) 2283–2301.

[23] R. Elwell, R. Polikar, Incremental learning of concept drift in nonstationary
environments, IEEE Trans. Neural Netw. 22 (10) (2011) 1517–1531.

[24] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic
minority over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321–357.

[25] T.R. Hoens, N.V. Chawla, R. Polikar, Heuristic updatable weighted random
subspaces for non-stationary environments, in: Data Mining (ICDM), 2011
IEEE 11th International Conference on, IEEE, 2011, pp. 241–250.

[26] T.R. Hoens, N.V. Chawla, Learning in non-stationary environments with class
imbalance, in: Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM, 2012, pp. 168–176.

[27] K. Wu, A. Edwards, W. Fan, J. Gao, K. Zhang, Classifying imbalanced data
streams via dynamic feature group weighting with importance sampling, in:
SDM, SIAM, 2014, pp. 722–730.

[28] S. Wang, L.L. Minku, X. Yao, Resampling-based ensemble methods for online
class imbalance learning, IEEE Trans. Knowl. Data Eng. 27 (5) (2015) 1356–
1368.

[29] Z. Sun, Q. Song, X. Zhu, H. Sun, B. Xu, Y. Zhou, A novel ensemble method for
classifying imbalanced data, Pattern Recognit. 48 (5) (2015) 1623–1637.

[30] M. Tahir, J. Kittler, K. Mikolajczyk, F. Yan, A multiple expert approach to
the class imbalance problem using inverse random under sampling, Multiple
Classifier Syst. (2009) 82–91.

[31] P.C. Mahalanobis, On the generalized distance in statistics, Proc. Nat. Inst. Sci.
(Calcutta) 2 (1936) 49–55.

[32] H. Han, W.Y. Wang, B.H. Mao, Borderline-smote: A new over-sampling
method in imbalanced data sets learning, in: International Conference on
Intelligent Computing, 2005, pp. 878–887.

[33] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based algorithm for
discovering clusters in large spatial databases with noise, in: Kdd, Vol. 96,
1996, pp. 226–231.

[34] W. Fan, S.J. Stolfo, J. Zhang, P.K. Chan, Adacost:misclassification cost-sensitive
boosting, in: Icml, Vol. 99, 1999, pp. 97–105.

[35] P. Domingos, G. Hulten, Mining high-speed data streams, in: Proceedings of
the Sixth ACMSIGKDD International Conference onKnowledgeDiscovery and
Data Mining, ACM, 2000, pp. 71–80.

[36] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams,
in: Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM, 2001, pp. 97–106.

https://doi.org/10.1016/j.knosys.2018.09.032
http://refhub.elsevier.com/S0950-7051(18)30483-0/b1
http://refhub.elsevier.com/S0950-7051(18)30483-0/b2
http://refhub.elsevier.com/S0950-7051(18)30483-0/b2
http://refhub.elsevier.com/S0950-7051(18)30483-0/b2
http://refhub.elsevier.com/S0950-7051(18)30483-0/b2
http://refhub.elsevier.com/S0950-7051(18)30483-0/b2
http://refhub.elsevier.com/S0950-7051(18)30483-0/b3
http://refhub.elsevier.com/S0950-7051(18)30483-0/b3
http://refhub.elsevier.com/S0950-7051(18)30483-0/b3
http://refhub.elsevier.com/S0950-7051(18)30483-0/b3
http://refhub.elsevier.com/S0950-7051(18)30483-0/b3
http://refhub.elsevier.com/S0950-7051(18)30483-0/b4
http://refhub.elsevier.com/S0950-7051(18)30483-0/b4
http://refhub.elsevier.com/S0950-7051(18)30483-0/b4
http://refhub.elsevier.com/S0950-7051(18)30483-0/b5
http://refhub.elsevier.com/S0950-7051(18)30483-0/b5
http://refhub.elsevier.com/S0950-7051(18)30483-0/b5
http://refhub.elsevier.com/S0950-7051(18)30483-0/b6
http://refhub.elsevier.com/S0950-7051(18)30483-0/b6
http://refhub.elsevier.com/S0950-7051(18)30483-0/b6
http://refhub.elsevier.com/S0950-7051(18)30483-0/b7
http://refhub.elsevier.com/S0950-7051(18)30483-0/b7
http://refhub.elsevier.com/S0950-7051(18)30483-0/b7
http://refhub.elsevier.com/S0950-7051(18)30483-0/b7
http://refhub.elsevier.com/S0950-7051(18)30483-0/b7
http://refhub.elsevier.com/S0950-7051(18)30483-0/b8
http://refhub.elsevier.com/S0950-7051(18)30483-0/b8
http://refhub.elsevier.com/S0950-7051(18)30483-0/b8
http://refhub.elsevier.com/S0950-7051(18)30483-0/b8
http://refhub.elsevier.com/S0950-7051(18)30483-0/b8
http://refhub.elsevier.com/S0950-7051(18)30483-0/b9
http://refhub.elsevier.com/S0950-7051(18)30483-0/b9
http://refhub.elsevier.com/S0950-7051(18)30483-0/b9
http://refhub.elsevier.com/S0950-7051(18)30483-0/b9
http://refhub.elsevier.com/S0950-7051(18)30483-0/b9
http://refhub.elsevier.com/S0950-7051(18)30483-0/b10
http://refhub.elsevier.com/S0950-7051(18)30483-0/b10
http://refhub.elsevier.com/S0950-7051(18)30483-0/b10
http://refhub.elsevier.com/S0950-7051(18)30483-0/b11
http://refhub.elsevier.com/S0950-7051(18)30483-0/b11
http://refhub.elsevier.com/S0950-7051(18)30483-0/b11
http://refhub.elsevier.com/S0950-7051(18)30483-0/b11
http://refhub.elsevier.com/S0950-7051(18)30483-0/b11
http://refhub.elsevier.com/S0950-7051(18)30483-0/b12
http://refhub.elsevier.com/S0950-7051(18)30483-0/b12
http://refhub.elsevier.com/S0950-7051(18)30483-0/b12
http://refhub.elsevier.com/S0950-7051(18)30483-0/b12
http://refhub.elsevier.com/S0950-7051(18)30483-0/b12
http://refhub.elsevier.com/S0950-7051(18)30483-0/b13
http://refhub.elsevier.com/S0950-7051(18)30483-0/b13
http://refhub.elsevier.com/S0950-7051(18)30483-0/b13
http://refhub.elsevier.com/S0950-7051(18)30483-0/b13
http://refhub.elsevier.com/S0950-7051(18)30483-0/b13
http://refhub.elsevier.com/S0950-7051(18)30483-0/b14
http://refhub.elsevier.com/S0950-7051(18)30483-0/b14
http://refhub.elsevier.com/S0950-7051(18)30483-0/b14
http://refhub.elsevier.com/S0950-7051(18)30483-0/b14
http://refhub.elsevier.com/S0950-7051(18)30483-0/b14
http://refhub.elsevier.com/S0950-7051(18)30483-0/b15
http://refhub.elsevier.com/S0950-7051(18)30483-0/b15
http://refhub.elsevier.com/S0950-7051(18)30483-0/b15
http://refhub.elsevier.com/S0950-7051(18)30483-0/b15
http://refhub.elsevier.com/S0950-7051(18)30483-0/b15
http://refhub.elsevier.com/S0950-7051(18)30483-0/b16
http://refhub.elsevier.com/S0950-7051(18)30483-0/b16
http://refhub.elsevier.com/S0950-7051(18)30483-0/b16
http://refhub.elsevier.com/S0950-7051(18)30483-0/b17
http://refhub.elsevier.com/S0950-7051(18)30483-0/b17
http://refhub.elsevier.com/S0950-7051(18)30483-0/b17
http://refhub.elsevier.com/S0950-7051(18)30483-0/b18
http://refhub.elsevier.com/S0950-7051(18)30483-0/b18
http://refhub.elsevier.com/S0950-7051(18)30483-0/b18
http://refhub.elsevier.com/S0950-7051(18)30483-0/b18
http://refhub.elsevier.com/S0950-7051(18)30483-0/b18
http://refhub.elsevier.com/S0950-7051(18)30483-0/b19
http://refhub.elsevier.com/S0950-7051(18)30483-0/b19
http://refhub.elsevier.com/S0950-7051(18)30483-0/b19
http://refhub.elsevier.com/S0950-7051(18)30483-0/b19
http://refhub.elsevier.com/S0950-7051(18)30483-0/b19
http://refhub.elsevier.com/S0950-7051(18)30483-0/b21
http://refhub.elsevier.com/S0950-7051(18)30483-0/b21
http://refhub.elsevier.com/S0950-7051(18)30483-0/b21
http://refhub.elsevier.com/S0950-7051(18)30483-0/b21
http://refhub.elsevier.com/S0950-7051(18)30483-0/b21
http://refhub.elsevier.com/S0950-7051(18)30483-0/b22
http://refhub.elsevier.com/S0950-7051(18)30483-0/b22
http://refhub.elsevier.com/S0950-7051(18)30483-0/b22
http://refhub.elsevier.com/S0950-7051(18)30483-0/b23
http://refhub.elsevier.com/S0950-7051(18)30483-0/b23
http://refhub.elsevier.com/S0950-7051(18)30483-0/b23
http://refhub.elsevier.com/S0950-7051(18)30483-0/b24
http://refhub.elsevier.com/S0950-7051(18)30483-0/b24
http://refhub.elsevier.com/S0950-7051(18)30483-0/b24
http://refhub.elsevier.com/S0950-7051(18)30483-0/b25
http://refhub.elsevier.com/S0950-7051(18)30483-0/b25
http://refhub.elsevier.com/S0950-7051(18)30483-0/b25
http://refhub.elsevier.com/S0950-7051(18)30483-0/b25
http://refhub.elsevier.com/S0950-7051(18)30483-0/b25
http://refhub.elsevier.com/S0950-7051(18)30483-0/b26
http://refhub.elsevier.com/S0950-7051(18)30483-0/b26
http://refhub.elsevier.com/S0950-7051(18)30483-0/b26
http://refhub.elsevier.com/S0950-7051(18)30483-0/b26
http://refhub.elsevier.com/S0950-7051(18)30483-0/b26
http://refhub.elsevier.com/S0950-7051(18)30483-0/b27
http://refhub.elsevier.com/S0950-7051(18)30483-0/b27
http://refhub.elsevier.com/S0950-7051(18)30483-0/b27
http://refhub.elsevier.com/S0950-7051(18)30483-0/b27
http://refhub.elsevier.com/S0950-7051(18)30483-0/b27
http://refhub.elsevier.com/S0950-7051(18)30483-0/b28
http://refhub.elsevier.com/S0950-7051(18)30483-0/b28
http://refhub.elsevier.com/S0950-7051(18)30483-0/b28
http://refhub.elsevier.com/S0950-7051(18)30483-0/b28
http://refhub.elsevier.com/S0950-7051(18)30483-0/b28
http://refhub.elsevier.com/S0950-7051(18)30483-0/b29
http://refhub.elsevier.com/S0950-7051(18)30483-0/b29
http://refhub.elsevier.com/S0950-7051(18)30483-0/b29
http://refhub.elsevier.com/S0950-7051(18)30483-0/b30
http://refhub.elsevier.com/S0950-7051(18)30483-0/b30
http://refhub.elsevier.com/S0950-7051(18)30483-0/b30
http://refhub.elsevier.com/S0950-7051(18)30483-0/b30
http://refhub.elsevier.com/S0950-7051(18)30483-0/b30
http://refhub.elsevier.com/S0950-7051(18)30483-0/b31
http://refhub.elsevier.com/S0950-7051(18)30483-0/b31
http://refhub.elsevier.com/S0950-7051(18)30483-0/b31
http://refhub.elsevier.com/S0950-7051(18)30483-0/b35
http://refhub.elsevier.com/S0950-7051(18)30483-0/b35
http://refhub.elsevier.com/S0950-7051(18)30483-0/b35
http://refhub.elsevier.com/S0950-7051(18)30483-0/b35
http://refhub.elsevier.com/S0950-7051(18)30483-0/b35
http://refhub.elsevier.com/S0950-7051(18)30483-0/b36
http://refhub.elsevier.com/S0950-7051(18)30483-0/b36
http://refhub.elsevier.com/S0950-7051(18)30483-0/b36
http://refhub.elsevier.com/S0950-7051(18)30483-0/b36
http://refhub.elsevier.com/S0950-7051(18)30483-0/b36

Please cite this article in press as: S. Ren, et al., Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning, Knowledge-Based
Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.032.

18 S. Ren et al. / Knowledge-Based Systems () –

[37] A. Bifet, R. Kirkby, Massive online analysis, 2010, pp. 1601–1604.
[38] H. Wang, W. Fan, P.S. Yu, J. Han, Mining concept-drifting data streams using

ensemble classifiers, in: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, 2003, pp. 226–
235.

[39] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, Moa: Massive online analysis, J.
Mach. Learn. Res. 11 (2010) 1601–1604.

[40] T. Fawcett, Roc graphs: Notes and practical considerations for data mining
researchers, Mach. Learn. 31 (2003) 1–38.

[41] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J.
Mach. Learn. Res. 7 (2006) 1–30.

[42] N. Japkowicz, S. Stephen, The Class Imbalance Problem: A Systematic Study,
IOS Press, 2002, pp. 429–449.

[43] W.N. Street, Y. Kim, A streaming ensemble algorithm (SEA) for large-scale
classification, in: Proceedings of the Seventh ACM SIGKDD Iternational Con-
ference on Knowledge Discovery and Data Mining, ACM, 2001, pp. 377–382.

[44] J. Gama, P. Medas, G. Castillo, P. Rodrigues, Learning with drift detection, in:
Brazilian Symposium on Artificial Intelligence, Springer, 2004, pp. 286–295.

[45] J. Ar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (1) (2006) 1–30.

[46] G.W. Corder, D.I. Foreman, Nonparametric Statistics for Non-Statisticians: A
Step-by-Step Approach, 2009.

http://refhub.elsevier.com/S0950-7051(18)30483-0/b38
http://refhub.elsevier.com/S0950-7051(18)30483-0/b38
http://refhub.elsevier.com/S0950-7051(18)30483-0/b38
http://refhub.elsevier.com/S0950-7051(18)30483-0/b38
http://refhub.elsevier.com/S0950-7051(18)30483-0/b38
http://refhub.elsevier.com/S0950-7051(18)30483-0/b38
http://refhub.elsevier.com/S0950-7051(18)30483-0/b38
http://refhub.elsevier.com/S0950-7051(18)30483-0/b39
http://refhub.elsevier.com/S0950-7051(18)30483-0/b39
http://refhub.elsevier.com/S0950-7051(18)30483-0/b39
http://refhub.elsevier.com/S0950-7051(18)30483-0/b40
http://refhub.elsevier.com/S0950-7051(18)30483-0/b40
http://refhub.elsevier.com/S0950-7051(18)30483-0/b40
http://refhub.elsevier.com/S0950-7051(18)30483-0/b41
http://refhub.elsevier.com/S0950-7051(18)30483-0/b41
http://refhub.elsevier.com/S0950-7051(18)30483-0/b41
http://refhub.elsevier.com/S0950-7051(18)30483-0/b42
http://refhub.elsevier.com/S0950-7051(18)30483-0/b42
http://refhub.elsevier.com/S0950-7051(18)30483-0/b42
http://refhub.elsevier.com/S0950-7051(18)30483-0/b43
http://refhub.elsevier.com/S0950-7051(18)30483-0/b43
http://refhub.elsevier.com/S0950-7051(18)30483-0/b43
http://refhub.elsevier.com/S0950-7051(18)30483-0/b43
http://refhub.elsevier.com/S0950-7051(18)30483-0/b43
http://refhub.elsevier.com/S0950-7051(18)30483-0/b44
http://refhub.elsevier.com/S0950-7051(18)30483-0/b44
http://refhub.elsevier.com/S0950-7051(18)30483-0/b44
http://refhub.elsevier.com/S0950-7051(18)30483-0/b45
http://refhub.elsevier.com/S0950-7051(18)30483-0/b45
http://refhub.elsevier.com/S0950-7051(18)30483-0/b45

	Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning
	Introduction
	Motivation
	Contribution
	Paper organization

	Existing research
	The selection-based resampling ensemble (SRE) algorithm
	Selectively resampling mechanism
	Periodical update mechanism
	Weighting component classifiers in the ensemble group

	Computational complexity of the proposed method
	Experimental studies
	Experimental setup
	Assessment metrics
	Dataset description
	Experiment 1: study of the impact of chunk size
	Experiment 2: study of the impact of imbalance ratio
	Experiment 3: comparative experiment
	Experimental results
	Summary of comparative results
	Statistical analysis of comparative results
	Running time efficiency

	Conclusions
	Acknowledgments
	Appendix A Supplementary data
	References

