
Information Sciences 430–431 (2018) 261–281

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Knowle dge-maximize d ensemble algorithm for different types

of concept drift

Siqi Ren

a , Bo Liao

a , ∗, Wen Zhu

a , Keqin Li a , b

a College of Information Science and Engineering, Hunan University, Changsha 410082, Hunan, China
b Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o

Article history:

Received 25 June 2016

Revised 19 November 2017

Accepted 22 November 2017

Available online 22 November 2017

Keywords:

Concept drift

Data stream mining

Ensemble classifier

Unlabelled data

a b s t r a c t

Knowledge extraction from data streams has attracted attention in recent years due to its

wide range of applications, including sensor networks, web clickstreams, and user interest

analysis. Concept drift is one of the most important research topics in data stream mining.

Many algorithms that can adapt to concept drift have been proposed. However, most of

them specialize in only one type of concept drift and can rarely be used in the environ-

ments with a large number of unavailable sample labels. In this study, we propose a new

data stream classifier called knowledge-maximized ensemble (KME). First, supervised and

unsupervised knowledge are leveraged to detect concept drift, recognize recurrent con-

cepts, and evaluate the weights of ensemble members. Second, the preserved labelled in-

stances in past blocks can be reused to enhance the recognition ability of the candidate

member. The final decision for an incoming observation is derived from all the prediction

results of the component classifiers. Accordingly, the maximum utilization of the relevant

information in a data stream can be achieved, which is critical to models with limited

training data. Third, KME can react to multiple types of concept drift by combining the

mechanisms of online and chunk-based ensembles. Finally, we compare KME with eight

state-of-the-art classifiers on several synthetic and real-world datasets. The comparison

demonstrates the effectiveness of KME in various types of concept drift scenarios.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

In today’s information society, traditional data mining algorithms need to learn from a huge amount of data by means of

restricted memory. These algorithms normally require multiple scans of training data, which is unsuitable for mining high-

speed data streams [13] . The widespread dissemination of streaming data in many critical real-time tasks has led to a wide

range of attention focused on streaming models. Due to the generation speed and the size of data items, it is impossible

for streaming models to store the entire observations. Only limited knowledge can be used at each time step, which leads

to approximate results. The motivation of this study is to make the results of incremental learning and bath processes as

similar as possible by maximizing the usage of relevant knowledge in data streams.
∗ Corresponding author.

E-mail addresses: siqirenzl@163.com (S. Ren), dragonbw@163.com (B. Liao), syzhuwen@163.com (W. Zhu), lik@newpaltz.edu (K. Li).

https://doi.org/10.1016/j.ins.2017.11.046

0020-0255/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2017.11.046
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2017.11.046&domain=pdf
mailto:siqirenzl@163.com
mailto:dragonbw@163.com
mailto:syzhuwen@163.com
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.ins.2017.11.046

262 S. Ren et al. / Information Sciences 430–431 (2018) 261–281

In addition to the overwhelming volumes and high speed, concept drift is an evident characteristic of streaming data.

In many real-world applications, the assumption of a fixed data distribution is not truly maintained, thus making most tra-

ditional algorithms infeasible. Past observations may become irrelevant or even harmful for the current concept. Therefore,

refining or even rebuilding of models is required to remove the obsolete knowledge. Moreover, if the old data are helpful

for the current model in the future, then their necessary information should be stored and reused. In this way, models can

capture time-evolving trends in the streaming environment and make critical predictions. The changes in the underlying

distribution can be abrupt, gradual, incremental, cyclical, or other. Sudden changes in the data distribution are instanta-

neous and irreversible. These changes can directly deteriorate the model performance and are therefore easily discovered by

detection methods. However, gradual and incremental drifts are much more challenging to discover than abrupt drifts be-

cause of their small change rates and overlapping data distributions. If the changes are periodic, then previous concepts can

reappear after a period of time. We can utilize the information of recurrent concepts to improve the model performance.

This type of change is known as recurrent concept drift.

In reality, datasets are generally complex combinations of many types of concept drift. However, most of the existing

streaming classifiers specialize in only one type of change. The goal of this study is to build a streaming classifier that can

handle multiple types of concept drift. Data-streaming classifiers are generally categorized into single classifiers and ensem-

bles. In the stationary environment, single classifiers continuously improve their generalization capability over time. How-

ever, in the dynamic context, single classifiers must adjust themselves using the received data and cannot leverage relevant

past knowledge. Concept-drift detectors, which are treated as forgetting mechanisms, are often equipped with streaming

classifiers to discover concept changes. However, most of the drift detectors focus on monitoring the stationarity of su-

pervised information, such as model performance, which results in long detection delays under streaming conditions with

few labelled observations. In addition to supervised information, the drift-detection system of the knowledge-maximized

ensemble (KME) algorithm exploits the stationarity of feature spaces to discover concept drift in an evolving environment

with limited supervised labels in a timely manner. Ensembles are popular methods in the stationary context because of

their good generalization capability. Unlike single models, ensembles can leverage relevant information of past ensemble

members in dynamic conditions. Therefore, ensembles achieve good accuracies compared with single models because of

knowledge transfer. Many approaches have proposed adjustment mechanisms of ensembles, such as modification of the

ensemble structures and updating of the aggregation style, to react to new conditions [15,37] . Chunk-based ensembles are

designed to deal with gradual drifts by weighting the importance of the component classifiers in the final voting. The tun-

ing of chunk sizes, which involves a stability-plasticity balance problem, is a trivial task [14] . By contrast, online ensembles

can rapidly react to sudden drifts by processing data one by one. However, online ensembles are characterized by frequent

model updates, thereby incurring high computational cost.

Following these critical motivations, KME combines the mechanisms of chunk-based ensembles and online ensembles

to handle different types of concept drift. KME can be regarded as a hybrid ensemble model. Sudden drifts are easily dis-

covered by the drift detection system, and KME is also suitable for incremental, gradual, and recurrent drifts based on the

component evaluation and weighting mechanisms. In a streaming environment, change detection and the recognition of

recurrent concepts tend to be seriously affected when a limited number of labelled events are available. In KME, the unsu-

pervised knowledge of labelled and unlabelled observations is used to detect changes and to evaluate the equivalence level

between two concepts. The utilization of the preserved labelled events of the recurrent concepts can effectively enhance

the predictive power of the latest hypothesis. Meanwhile, a weighted result derived from all the component classifiers in

the ensemble group is leveraged in the final decision. Accordingly, KME can make full use of relevant information in a data

stream.

1.2. Our contributions

In this study, we address the approach to handling multiple types of concept drift and the maximum use of knowledge

under conditions where few supervised labels can be acquired. The main contributions of our work can be summarized as

follows:

1. Our main contribution is the introduction of a hybrid ensemble that leverages the operators of online ensembles and

chunk-based ensembles. Every component classifier is first built over a data chunk. A weighted combination of ensemble

members is then applied to address gradual, incremental, and recurrent drifts. By making full use of relevant information

in a data stream, KME can produce a model with good generalization ability in conditions with limited training examples.

Meanwhile, a drift-detector system, which can discover sudden drifts in a timely manner, is equipped with the ensemble

framework. Accordingly, KME can handle different types of concept drift.

2. The proposed weight setting is a piecewise exponential function. On the one hand, KME treats the candidate classifier

as the best member, disregarding its performance, which is particularly suitable for sudden drifts. Consequently, cross-

validation is not required, which is suitable for coping with high-speed data streams. On the other hand, the weights

of past hypotheses are evaluated according to their performance on the labelled data in the most recent chunk and the

stationarity of feature spaces. Compared with existing weighting methods, the importance evaluation of members in KME

can comprehensively describe the corresponding concepts.

S. Ren et al. / Information Sciences 430–431 (2018) 261–281 263

3. We propose a concept-drift-detection system that monitors the stationarity of feature spaces and the prediction power

of the classifier. The supervised knowledge reflects the capability of a component classifier to react to the conditional

change, whereas the unsupervised knowledge describes the stationarity of the feature distribution. If supervised exam-

ples are insufficient, then a detector based on supervised knowledge may have a long time delay. Therefore, we need

to monitor the stationarity of feature spaces. However, a detector based on unsupervised knowledge cannot address

changes that do not affect the input data distribution, even if the changes substantially deteriorate the performance of

the classifier. Therefore, in KME, two detectors asynchronously operate on subsequences of data.

4. We present a recurrent concept recognition method that considers supervised and unsupervised knowledge in the pair-

wise comparisons of concepts. The preserved labelled instances in the recurrent concepts can be reused to enhance the

predictive accuracy of the candidate component classifier, which is critical to scenarios with few supervised observations.

5. Through the Massive Online Analysis (MOA) framework [5] , we conduct experiments to analyse the influence of the

parameters in KME. The statistical results show that the performance of KME is robust against chunk size. A larger

value of the decay factor in the weighting function can significantly improve the predictive accuracy. Furthermore, a

comparative experiment is conducted to evaluate the performance of the proposed algorithm. Through the statistical

analysis, we conclude that KME can react to different types of concept drift in an environment with a limited number of

supervised labels.

The data in many tasks are high dimensional, and the cost of obtaining labels is high, which makes learning tasks com-

plicated [43] . In KME, labelled data are always unavailable. Our goal is to make the best of the beneficial knowledge in the

source domain to improve the generalization ability in the target domain by reusing the information of previous hypotheses

and the labelled data of recurrent concepts. Therefore, the expansion of supervised information is derived from the knowl-

edge of the past chunks, which is different from the semi-supervised strategy based on a labelling process. We do not need

to label any category of unlabelled data, which can avoid the labelling cost. Moreover, unsupervised knowledge is utilized

to weight components, recognize recurrent concepts, and detect changes. Accordingly, the maximum utilization of relevant

information is achieved in KME. Very fast decision tree (VFDT) [21] , which is usually leveraged to learn a decision tree from

a time-varying and high-speed data stream, can be regarded as the base classifier of the proposed algorithm.

1.3. Paper organization

The rest of this paper is organized as follows. Section 2 briefly reviews related work about concept drift, the handling

mechanisms of concept drift, and the recognition of recurrent concepts. Section 3 provides an outline of KME and analyses

the inherent mechanisms. The algorithm is then analysed and evaluated on real and synthetic datasets in Section 4 . Finally,

Section 5 presents conclusions and proposals for future work.

2. Related work

2.1. Concept drift

In the field of data stream classification, it is usually unrealistic to obtain complete examples to train a classifier in

advance: examples continuously arrive in the form of a stream. Meanwhile, the changes observed in the underlying data

distribution are called concept drift [3] . In reality, changes in target concepts are often caused by changes in the hidden

context. Examples of real-life concept drift include junk mail recognition, monitoring systems, network intrusion detection,

and automatic control systems [2,25] .

Based on Bayes’ theorem, P (y | x) = P (x | y) × P (y) /P (x) , real concept drift involves a change in the probabilistic value

P (y | x). First, P (x) describes the input data distribution, and changes in the feature space can be monitored based on P (x).

Although this type of change may lead to a shift of the true decision boundaries, identification of the changes affecting P (x)

is insufficient. A change in P (x) is called virtual concept drift [3] . Second, P (x | y) is the class-conditional probability, which

describes the likelihood of observing a data point within a specific class. Additionally, P (y) is the prior probability, which

can be used to measure the state of a class distribution. Finally, the dynamic nature of P (y | x) is called real drift. This type of

change directly affects the performance of classifiers, resulting in poor predictive ability. Regardless of the type of concept

drift, models need to be adjusted to adapt to new conditions over time.

In addition to classifying concept drift as real or virtual, concept drift is often classified in terms of speed and cyclical na-

ture. First, sudden drift, which is also called abrupt drift, occurs when a new concept suddenly replaces the old one. Second,

incremental and gradual drifts refer to slow changes in the data-generating process. These two types of drift are difficult to

monitor because a period of uncertainty exists between two adjacent concepts. Finally, recurrent drift refers to a temporary

change in the target concept. When a concept reappears, reusing previous knowledge can enhance the learning process of

the streaming classifier. Moreover, noise should not be regarded as concept drift because it represents insignificant and ran-

dom fluctuation. Real-world datasets are often complex combinations of different types of drift. Therefore, adaptability with

regard to multiple types of concept drift is crucial in streaming models.

264 S. Ren et al. / Information Sciences 430–431 (2018) 261–281

2.2. Handling mechanisms for data streams with concept drift

Many mechanisms, which can be classified as single classifiers, ensemble classifiers, active classifiers, and passive clas-

sifiers, have been proposed to address concept drift in data-streaming classification [18,29] . We describe several effective

methods for reacting to concept drift in data-generating processes.

For single classifiers, adaptive mechanisms, such as windowing techniques and drift detectors, are applied to adjust the

current model. In the category of active classifiers [1,19,31] , models based on trigger mechanisms are generally used to han-

dle concept drift. In [1,19] , a concept change is identified if the error rate exceeds a fixed threshold. Gama et al. [19] pro-

posed the drift detection method (DDM), which is suitable for abrupt drifts. Baena-Garca et al. [1] proposed the early drift

detection method (EDDM) based on DDM, which depends on the distances of the error rates rather than classification error.

EDDM performs well on gradual drifts but is sensitive to noise.

Another adaptive mechanism is the windowing technique, which implements a simple forgetting strategy by removing

obsolete data in the window. The sliding window, which considers the most recent examples as training data, is the most

widely used windowing mechanism. However, the size of the sliding windows is often difficult to determine. If the window

is too large, then the model is likely to contain changes in the window, especially for abrupt drifts. If the window is too

small, then the model may lack training data, especially in a stationary period. Several adaptive sliding windows, such as

weighted window [11] , adaptive sliding windowing algorithm (ADWIN) [4] , and unified instance selection algorithm (FISH)

[44] , have been proposed.

Single classifiers must constantly revise themselves to adapt to the new environment. By contrast, by manipulating the

component weights or modifying ensemble structure, ensembles can capture dynamic concepts without rebuilding them-

selves. Compared with single classifiers, ensembles require substantial time and memory consumption, but the accuracy

improvement they achieve is usually marginal because of knowledge transfer. Two general types of ensembles are available

under nonstationary conditions. Chunk-based ensembles, whose blocks are divided in advance, are not pure online mod-

els and are usually unable to quickly react to sudden changes because obsolete knowledge exists in the past component

classifiers. Additionally, the determination of the block sizes is a tradeoff between accurate predictions and rapid reaction

to changes. Online ensembles process a data stream in an instance-by-instance manner and can be considered to be pure

online models. However, batch-based ensembles are readjusted according to a large amount of data each time. Therefore,

online ensembles tend to consume substantial amounts of time compared with chunk-based ensembles.

The accuracy weighted ensemble (AWE) [37] is a famous chunk-based ensemble that trains component classifiers on

consecutive data chunks and leverages the latest chunk to evaluate all the existing components. Several best members are

selected in the final voting. In addition, the weight of each component is based on the mean square error (MSE) based on

the observations in the most recent chunk. Street and Kim [36] presented a similar model called the streaming ensemble

algorithm (SEA), which leverages a different pruning strategy from that of AWE. SEA replaces the weakest member with the

new component. Learn++.NSE [14] learns from consecutive batches of data without making any assumptions on the nature of

the drift. The performance of block-based ensembles largely relies on the size of the data chunks. The complexity of online

ensembles is always much higher than that of block-based ensembles. Online bagging and online boosting [33] are derived

from their batch versions [8,17] and incrementally provide each instance for a component k times, where k is defined by the

Poisson distribution. The weighted majority algorithm (WMA) [28] leverages the weighted voting of the results derived from

a pool of prediction algorithms. Dynamic weighted majority (DWM) [24] is another typical ensemble that complies with a

pure learning rule. A set of incremental classifiers is weighted based on predictive ability after each incoming example.

Whenever a component makes a mistake, its weight is decreased by a user-defined factor. When necessary, a new ensemble

member is added to the ensemble. Anticipative and dynamic adaptation to concept change (ADACC) [22] is also regarded as

an online ensemble that uses a new second-order learning mechanism to react to the dynamic environment.

Adaptive classifier ensemble (ACE) [32] and accuracy updated ensemble (AUE) [10] , which are hybrid ensembles, were

proposed based on the characteristics of the two types of ensembles. Hybrid systems, which provide a unified framework to

describe both the continuous and discrete dynamic processes by means of two distinct types of systems, have been proposed

in control sciences [16,41] . Hybrid ensembles integrate two systems to handle a combination issue. By assimilating the

weighting mechanisms and the evaluation of component classifiers into online ensembles, KME can address multiple types

of drift. ACE reacts to abrupt drifts by monitoring the error rate of a single classifier and then updates the model using a

fixed-size data block. AUE incrementally updates each past ensemble member with observations in the most recent block.

The online accuracy updated ensemble (OAUE) [9] is an incremental algorithm derived from AUE, which trains and weights

every component classifier after every observation.

We present a knowledge-maximized hybrid ensemble that includes a concept-drift-detection system, a novel weighting

technique, and an automatic chunk-separation method. First, the drift-detection system monitors the variations in the fea-

ture space and classification performance. That is, KME utilizes both supervised and unsupervised knowledge to achieve

a detection system with a short time delay. Therefore, KME is highly sensitive to sudden changes. Second, KME implicitly

adapts to slow changes through an ensemble of experts, which can achieve knowledge transfer between consecutive chunks.

The weighting method of the proposed algorithm is a piecewise mechanism. The piecewise function has been applied to the

automatic control system, which is called piecewise affine (PWA) system [16] . It consists of some subsystems covering the

global model with high complexity. In KME, the weighted result of several component classifiers is used to predict the labels

of incoming data. For past classifiers, weights are based on the predictive capability and input data distribution. The weight

S. Ren et al. / Information Sciences 430–431 (2018) 261–281 265

of the current component is given by the supreme value without considering its performance. In this way, we reduce the

computational cost, and the current member can have substantial voting power. Similar to chunk-based ensembles, data

chunks need to be divided beforehand if the current training data are sufficient. Ensemble pruning can also be considered

to remove obsolete members and make the ensemble adapt to the near-future concept in time.

2.3. Recognition of recurrent concepts

Many streaming classifiers that can handle recurrent concepts have been proposed. These classifiers usually store valu-

able information of recurrent concepts and reuse the information in the target domain as necessary. Widmer and Kubat

considered a series of floating rough approximation (FLORA) algorithms, in which only FLORA3 [40] could handle recur-

rent concepts. FLORA3 stores every concept description and reuses them if previous contexts reappear. The recognizing and

treating recurrent (RTRC) system [38] is an ensemble model that maintains a group of concepts derived from data chunks.

In [23] , concept vectors are extracted from every data chunk; then, a clustering algorithm is applied to the concept vectors,

whose similarity is measured by the Euclidean distance. The best member selected from the pool of components is consid-

ered to be the decision model. In [34] , the final components are selected according to their performances evaluated on the

observations in the most recent block. Yang et al. [42] proposed a proactive method to discover recurrent concepts from the

history of concepts. This method considers historic concepts as a Markov chain and then selects the best classifier based

on a given transition matrix. A nonparametric multivariate statistical test is employed to compare two concepts in recurring

concept drifts (RCD) [20] . The contextual information can be applied to recognize recurrent concepts. The contextual infor-

mation within a data chunk without any drift is often assumed to be stationary. The notions of primary, contextual, and

context-sensitive attributes were proposed in [39] .

The use of recurrent concepts is beneficial to maximize the use of pertinent knowledge, especially when the condition

lacks supervised observations. However, the preceding solutions do not address the issue of recurrent-drift identification

under conditions with rare labelled observations. KME measures the equivalence levels of two concepts based on both su-

pervised and unsupervised knowledge. On the one hand, KME evaluates the accuracy of every past classifier on the labelled

observations in the most recent data chunk. On the other hand, KME compares the feature spaces between every past chunk

and the current chunk. The similarity of the feature distribution between two concepts is based on unsupervised knowledge.

In this way, KME effectively alleviates the situation of rare labels in recognizing recurrent concepts.

3. The knowledge-maximized ensemble (KME) approach

We propose a hybrid ensemble classifier that can address multiple types of concept drift in conditions with few labels by

maximizing the use of the relevant knowledge in a data stream. This technique, called KME, includes an operator to detect

changes, an operator to recognize recurrent concepts, an operator to evaluate the weights of ensemble members, and an

ensemble update mechanism. First, sample statistics are derived from observations in the sliding windows of consecutive

blocks. The description of each statistic is provided in Section 3.1 . Second, the concept-drift-detection system monitors the

stationarity of the statistics to recognize concept drift. The procedure of drift detection is described in Section 3.2 . Third,

after a change is discovered or sufficient training observations are obtained, a new block is produced. Then, the recurrent

concepts are recognized, as illustrated in Section 3.3 . The labelled samples of the recurrent concepts are reused to train

the candidate component classifier. Section 3.4 describes the ensemble update procedure in KME. Fourth, a weighted voting

of every ensemble member is used to predict the label of a testing instance. The weights of the candidate hypothesis and

previous component classifiers are evaluated in Section 3.5 . Finally, the pseudocode of the KME algorithm is presented in

Algorithm 3.5 , and details of the procedure are provided in Section 3.6 .

The notations used in this paper and their descriptions are summarized in Table 1 .

3.1. Concept description

The KME algorithm consists of a series of concepts derived from consecutive data chunks. All the data chunks in a data

stream can be represented as C = { C 1 , . . . , C N } . Each data chunk is composed of four critical members that describe the

characteristics of the corresponding concept. The first member of the i th data chunk is the supervised sample set Z i . The

drift-detection mechanism handles the upcoming instances at the window level. In fact, the detection of concept changes

based on an independent example is inappropriate, especially in noisy conditions. The neighbouring windows containing

a certain number of observations in a data chunk are nonoverlapping. The detection mechanism of KME treats the obser-

vations in each sliding window as primitives, thereby effectively avoiding the influence of noisy data. With the aid of a

series of small sliding windows, the drift-detection system can gradually approach a possible change. Accordingly, KME can

identify concept drift with a short time delay.

The sample mean and sample variance, which are, respectively, regarded as the second and third members of concepts,

can be utilized to evaluate the stationarity of the feature space. The unsupervised statistics are extracted from the nonover-

lapping sliding windows of a data chunk to approximate the input data distribution P (x). First, we present the definitions of

the unsupervised statistics for concept-drift detection.

266 S. Ren et al. / Information Sciences 430–431 (2018) 261–281

Algorithm 1 Knowledge Maximized Ensemble(KME).

Input: S: data stream of examples, m : ensemble size, d max : predefined chunk size

Output: B (x t) : Prediction label of the unlabelled instance x t
1: B ← ∅ , t ← 1 , i ← 1 , m 1 ← 0 , m 2 ← 0 ;

2: while x t is provided do

3: m 1 ← m 1 + 1 ;

4: if y t is available then

5: Z i ← Z i ∪ { (x t , y t) };
6: m 2 ← m 2 + 1 ;

7: update K i using (x t , y t) ;

8: if m 2 = m l then

9: obtain ˆ e based on Eq. (7) and add it to E i,s ;

10: r 2 ← TEST l (E i,s) ;
11: m 2 ← 0 ;
12: end if

13: end if

14: if m 1 = m u then

15: update M i,s and V i,s using x t ;

16: r 1 ← TEST u (M i,s , V i,s) ;
17: m 1 ← 0 ;
18: end if

19: if r 1 = 1 or r 2 = 1 or | t − T i, 1 | = d max then

20: T i,end ← t

21: provide C i with observations within the interval [T i, 1 , T i,end] ;

22: configure K i based on Z i ;

23: i ← i + 1 ;
24: reconfigure ← 1;

25: end if

26: if reconfigure=1 and | M i,s | ≥ M u and | V i,s | ≥ M u and | E i,s | ≥ M l then

27: reconfigure TEST u based on M i,s and V i,s ;

28: reconfigure B ′ with Z T
i

;

29: reconfigure TEST l based on the classification error of B ′ ;
30: for j = 1 ; j < i ; j + + do

31: compare C i and C j using Eqs. (11) and (12) ;

32: if dist M,V
i, j

≤ γ and p j > τ then

33: Z i ← Z i ∪ Z j ;

34: end if

35: end for

36: update K i using Z i ;

37: compute weight w i of K i based on Eq. (17) ;

38: reconfigure ← 0;

39: end if

40: for all classifiers K j ∈ B do

41: compute weight w i, j of K j based on Eq. (16) ;

42: end for

43: if | B | < m then

44: B ← B ∪ { K i } ;
45: else

46: substitute the ensemble member of the minimum weight in B using K i ;

47: end if

48: if y t is not available then

49: assign label B (x t) using Eq. (18) ;

50: end if

51: end while

S. Ren et al. / Information Sciences 430–431 (2018) 261–281 267

Table 1

Notations.

Notation Description Notation Description

S Data stream of examples i Index of data chunks

P (x) Feature probability P (y) and P (y t) Prior probability and y t ’s class distributions

P (x | y) Class-conditional probability P (y | x) Posterior probability

x t and y t Data point at timestamp t and its label T i, j and T i, end Timestamps of the j th and the last instances of C i ,

respectively

C Set of data chunks in a data stream C i i th chunk in a data stream

N Number of data chunks t Current timestamp

m u and m l Numbers of observations and labelled instances in

each sliding window, respectively

E i,s and | E i,s | Average classification error of B
′

on labelled data of

the s th sliding window of C i and its cardinality

M i,s and | M i,s | Mean of samples in the s th sliding window of C i
and its cardinality

V
′

i,s
Variance of samples in the s th sliding window of C i

V i,s and | V i,s | Power-law transformation of V
′

i,s
and its cardinality Z i and | Z i | Labelled sample set of C i and its cardinality

h 0 Exponent of the power-law transformation k i i th cumulation of the distribution of the sample

variance

μ and σ 2 Mean and variance of the normal distribution,

respectively

K i (x t) and K
′
i
(x t) Prediction labels of x t using K i and K

′
i
, respectively

X Set of n i.i.d. random variables X i Random variable

n Number of random variables K i i th member of the ensemble

x̄ Average of n i.i.d. random variables B
′

Classifier used to detect drift

Q Sequence of m l labelled samples in Z i to evaluate

the classification error of B
′

e and ˆ e Expected value of the classification error of B
′

on

each labelled instance and its evaluated value

εt Classification error of B
′

on each labelled instance

in Z i

B (x t) and B
′
(x t) Prediction labels of x t using B and B

′
, respectively

B (n, p) and p Bernoulli distribution and the probability of

success for each trial
l
M
i,s , l

V
i,s and l

E
i,s Confidence intervals of M i,s , V i,s and E i,s ,

respectively

l
M
i and l

V
i Confidence intervals of the sample mean and the

power-law transformation of the sample variance

in the i th chunk, respectively

S M i, j and S V i, j Equivalence levels of the sample mean and and

power-law transformation of the sample variance

between C i and C j , respectively

TEST u Concept-drift detector to inspect changes in P (x) TEST l Concept-drift detector to inspect changes in P (y | x)

S M,V
i, j Equivalence level of the unsupervised knowledge

between C i and C j

dist M,V
i, j

Deviation level of the unsupervised knowledge

between C i and C j
K

′
i

Classifier trained on Z T
i

to recognize recurrent

concepts

Z T
i

and Z V
i

Training set and validation set in the i th chunk,

respectively

Z V and | Z V | Common validation set and its cardinality p j Equivalence level of the supervised knowledge

between C i and C j
γ and τ Thresholds of Eqs. (11) and (12) , respectively f j y t (x t) Probability that x t is classified as y t by K j
MSE i, j Mean square error of K j on labelled instances of C i MSE r Mean square error of a randomly predicting

classifier

f (., .) Indicator function u Decay factor of weights

w i, j Weight of K j to predict instances in the i th chunk w i Weight of the candidate classifier

m Predefined ensemble size d max Predefined chunk size

m 1 and m 2 Counts of observations and labelled samples in the

current sliding window, respectively

B and | B | Ensemble model and number of ensemble

members in the current ensemble

reconfigure Logical variable indicates whether to reconfigure

the drift detectors or not

r 1 and r 2 Logical variables indicate whether a concept drift

exists based on TEST u and TEST l , respectively

M u and M l Numbers of M i,s and E i,s to reconfigure TEST u and

TEST l , respectively

N l and N u Numbers of sliding windows containing labelled

and unlabelled instances, respectively

O (.) Computational complexity of the algorithm b Number of preserved windows in the current data

chunk

d Number of attributes in a dataset v Maximum number of values per attribute

l Number of leaves in the tree c Number of classes

s l Number of labelled data in a data chunk k Parameter of the Poisson distribution

β Multiplicative factor of WMA a and b Sigmoid slope and sigmoid crossing point of

Learn + +.NSE

W Window size in the Prequential test F F Statistic of the Friedman test

α Significant level CD Critical diffidence

h Frequency that labelled instances are provided p . p -values of algorithms in the Wilcoxon signed rank

test

Definition 1 (Sample mean) . Let m u be the number of observations in each sliding window. The sample mean evaluated on

instances in the s th sliding window of the i th data chunk, denoted by M i,s , is defined as

M i,s =

1

m u

T i,m u s ∑

t= T i, (s −1) m u +1

x t , (1)

where x t is the data item at timestamp t , T i, (s −1) m u +1 is the start timestamp of the s th sliding window of the i th data chunk,

and T i,m s is the timestamp of the (m u s)th instance of the i th data chunk.

u

268 S. Ren et al. / Information Sciences 430–431 (2018) 261–281

Definition 2 (Sample variance) . Given m u and M i,s , the sample variance of observations in the s th sliding window of the i th

data chunk, denoted by V
′
i,s

, is formulated as

V

′
i,s =

∑ T i,m u s
t= T i, (s −1) m u +1

(x t − M i,s)
2

m u − 1

. (2)

Definition 3 (Power-law transformation of the sample variance) . Given V
′
i,s

, the power-law transformation of the sample

variance V
′
i,s

, denoted by V i,s , is defined as

V i,s = (V

′
i,s)

h 0 , (3)

where h 0 is the exponent. h 0 dominates the transformation and should be calculated as

h 0 = 1 − k 1 k 3

3 k 2
2

, (4)

where k i is the i th cumulation of the distribution associated with the sample variance [30] .

Second, we introduce the estimation of the members M i,s and V i,s to monitor the stationarity of feature distribution P (x).

Theorem 1 [35] . Let X = { X 1 , . . . , X n } be a set of n independent and identically distributed (i.i.d.) random variables. Individual X i

is drawn from the distribution with mean μ and variance σ 2 . By the law of large numbers, the sample average x̄ =

∑ n
i =1 X i
n should

approach a normal distribution with expected value μ and variance σ 2 / n.

Theorem 1 formally states the central limit theorem (CLT), and its proof is available in [35] . In probability theory, the CLT

states that the sum of a large number of i.i.d. random variables tends to a normal distribution, even if the original variables

are not normally distributed.

Corollary 1. If m u is sufficiently large, then we can detect the stationarity of the feature distribution P (x) by assessing variations

in the sample mean M i,s .

Proof. M i,s is the sample mean evaluated over observations in the s th sliding window of the i th data chunk. In terms

of Theorem 1 , M i,s should approximately follow a stable normal distribution with a constant expected value in stationary

conditions if the number of observations in each sliding window is sufficient. Accordingly, the drift detector identifies a

change in P (x) as soon as the value of M i,s shows variation. �

Corollary 2. If m u is sufficiently large, then the stationarity of V i,s can be leveraged to detect concept drift affecting the feature

distribution P (x) .

Proof. V
′
i,s

, which is the sample variance evaluated over observations in the s th sliding window of the i th data chunk, is not

Gaussian distributed. We obtain a new feature V i,s by applying the power-law transformation [30] . In the stationary period,

V i,s is approximately Gaussian distributed when a large number of labelled samples are provided in each sliding window.

According to Theorem 1 , the expected value of V i,s should be a constant; thus, the stationarity of V i,s can be used to detect

changes in P (x). �
Third, we define the fourth member E i,s of the i th concept. E i,s can be used as the supervised statistic to evaluate the

stationarity of the posterior probability P (y | x).

Definition 4 (Classification error) . Let m l be the number of labelled examples in each sliding window. The classification

error E i,s is the performance of classifier B
′

on supervised instances in the s th sliding window of the i th data chunk. E i,s is

defined as

E i,s =

{

1

m l

∑

t∈ Q
ε t , Q ⊂ Z i

}

, (5)

where Q is the sequence of m l labelled instances in Z i for estimating the classification error of B ′ . εt is the classification

error of B ′ , which is computed from each supervised instance in Z i

ε t =

{
0 , if y t = B

′ (x t)
1 , otherwise,

(6)

where B ′ is a specific model trained to detect concept changes and B ′ (x t) is its prediction label of x t . B ′ is different from

the ensemble model of KME. It is an additional classifier used to calculate the average classification error on the supervised

data of sliding windows. B ′ is never updated until a concept change is discovered, even though new data are being received,

to ensure that its classification error in stationary conditions is constant.

Finally, we show how to estimate the classification error E i,s to detect the concept drift affecting the posterior probability

P (y | x).

S. Ren et al. / Information Sciences 430–431 (2018) 261–281 269

V

Theorem 2 [7] . Let X = { X 1 , . . . , X n } be a set of n i.i.d. random variables. Individual X i is drawn from a Bernoulli distribution B (n,

p) . The parameters p and n are the probability of success for each trial and the number of trails. For sufficiently large n, the sum

of n random variables can be approximated with a Gaussian distribution with expected value np and variance np(1 − p) .

Theorem 2 is the normal approximation of B (n, p). The approximation is improved when n is large and p is far from the

extremes of zero and one. The proof of Theorem 2 is available in [7] .

Corollary 3. If m l is sufficiently large, then the stationarity of the average classification error E i,s can be leveraged to detect

changes in the posterior distribution P (y | x) .

Proof. The classification errors of B
′

on each labelled instance of the sliding windows can be treated as i.i.d. realizations of a

Bernoulli random variable with expected value e . Under stationary conditions, e should be a constant because the classifier

B
′

is never updated. If m l is sufficiently large, then the Bernoulli distribution can be approximated as a Gaussian distribution

with expected value m l e and variance m l e (1 − e) according to Theorem 2 . Therefore, we can assess the stationarity of E i,s to

identify changes in P (y | x).

The average classification error ˆ e can be evaluated on the labelled examples in the sliding window as

ˆ e =

1

m l

∑

t∈ Q
ε t . � (7)

3.2. Concept-drift detection

Since the causes of concept drift are rather complex, general detection strategies make use of the consequences of con-

cept drift to identify changes in data streams. A series of indicators, such as the classification performance, the input data

distribution, and the relevance of features in the datasets, can be used to detect concept changes in the data-generating pro-

cess. If these indicators experience a substantial change, then concept drift may be detected. In general, supervised labels

are insufficient or cannot be provided under real-world circumstances. Detection mechanisms based on supervised knowl-

edge may suffer a long delay because limited supervised information is provided. By contrast, change detectors based on

the stationarity of the feature distribution P (x) cannot discover a concept drift that leaves the feature distribution unaltered,

although these changes significantly degrade the performance of classifiers (e.g., the swap of class labels). Therefore, the

sample mean, the power-law transformation of the sample variance, and the classification error are regarded as the three

features in the proposed concept-drift-detection system. KME can simultaneously monitor the feature distribution P (x) and

the posterior probability P (y | x) based on the stationarity of each feature.

On the one hand, the confidence intervals of three features need to be evaluated. The statistics M i,s and V i,s should fol-

low stable normal distributions if the value of m u is sufficiently large in the stationary environment. Then, the confidence

intervals of M i,s and V i,s , which are, respectively, denoted by l
M

i,s
and l

V
i,s

, are computed on observations provided within

[T i, 1 , T i,m u s] . Similarly, the average classification error of B
′

on the labelled examples of each sliding window can be approx-

imated using a Gaussian distribution when a sufficient number of supervised events are available in each sliding window.

Consequently, the confidence interval of E i,s , denoted by l
E
i,s

, can be calculated according to the classification error of B
′

on

supervised observations acquired in the interval [T i, 1 , T i,m l s
] .

On the other hand, three features are evaluated on events of the (s + 1) th sliding window in the i th chunk. M i,s +1 and

 i,s +1 , which, respectively, represent the sample mean and the power-law transformation of the sample variance, are derived

from observations of the (s + 1) th sliding window in the i th block. Meanwhile, E i,s +1 is the classification error of B
′

on

labelled events of the (s + 1) th sliding window in the i th block. Two concept-drift detectors, denoted by TEST u and TEST l ,

are designed in the concept-drift-detection system. TEST u is used to verify the stationarity of the input data distribution to

identify virtual concept drift. It manipulates the upcoming sequence in a series of nonoverlapping windows of size m u . If

M i,s +1 / ∈ l
M

i,s
or V i,s +1 / ∈ l

V
i,s

, then TEST u reveals a change in the feature distribution P (x). Similarly, TEST l checks the stationarity

of the classification error of an additional classifier B
′

on the labelled events in the sliding windows. A concept change in

P (y | x) is detected if E i,s +1 / ∈ l
E
i,s

.

In KME, TEST u and TEST l can asynchronously access variants of each feature. A concept change can be detected in the

data stream as soon as any feature shows variation. In the chunk-by-chunk framework, most chunk-based ensembles tend to

slowly react to sudden changes because the obsolete classifiers remain valid in the final decision. KME can rapidly respond

to a sudden change by equipping a change detection mechanism with the chunk-based framework.

3.3. Recurrent concepts identification

Most of the existing algorithms do not address the problem of recurrent concept drift when a limited number of su-

pervised samples are provided. The labelled instances of recurrent concepts are critical to enhance the model performance

in the target domain. Similar to the concept-drift detection mechanism, KME identifies recurrent concepts based on an

exhaustive pairwise comparison in terms of the supervised and unsupervised knowledge. The comparison of C i and C j
(j = 1 , 2 , . . . , i − 1) determines whether C j is a recurrent concept of C i in ensemble B . In general, the identification of re-

current concepts in the existing algorithms exploits only supervised knowledge, such as the model performance on the

270 S. Ren et al. / Information Sciences 430–431 (2018) 261–281

labelled instances in the most recent data block. Unfortunately, a large number of supervised observations are not always

available in a real-world environment. Accordingly, the unsupervised and supervised knowledge are considered simultane-

ously to analyse the equivalence level of two concepts.

We use the sample mean, the power-law transformation of the sample variance, and the classification error of a past

ensemble member on instances of the latest chunk as three features to recognize recurrent concepts. Thus, the equivalence

levels of two concepts based on the supervised and unsupervised statistics are computed. First, we define the equivalence

levels of the sample mean and the power-law transformation of the sample variance of two concepts.

Definition 5 (Equivalence level of the sample mean) . Given C i and C j , the equivalence level of the sample mean between C i

and C j , denoted by S M

i, j , is defined as

S M

i, j =

l
M

i ∩ l
M

j

l
M

i ∪ l
M

j

, (8)

where l
M

i
and l

M

j
are the confidence intervals of the observation means in the i th and j th data chunks, respectively.

Definition 6 (Equivalence level of the power-law transformation of the sample variance) . Given C i and C j , the equivalence level

of the power-law transformation of the sample variance between C i and C j , denoted by S V i, j , is defined as

S V i, j =

l
V
i ∩ l

V
j

l
V
i ∪ l

V
j

, (9)

where l
V
i

and l
V
j

denote the confidence intervals of the power-law transformation of the variance of observations in the

latest and the j th data blocks, respectively.

Second, we define the equivalence level of the unsupervised knowledge between C i and C j based on S M

i, j and S V i, j .

Definition 7 (Equivalence level of the unsupervised knowledge) . Given S M

i, j , and S V i, j , the equivalence level of the unsupervised

knowledge between C i and C j , denoted by S M,V
i, j

, is computed as

S M,V
i, j =

S M

i, j + S V i, j

2

, (10)

where S M,V
i, j

is normalized to the interval [0, 1].

Consequently, the deviation level between the i th and j th concepts, with regard to the unsupervised knowledge, becomes

dist M,V
i, j

= 1 − S M,V
i, j . (11)

If dist M,V
i, j

exceeds a predefined threshold γ , then C j is not equivalent to C i in terms of unsupervised knowledge. However,

the aforementioned process is more likely to consider concepts with the same feature values but different categories as

recurrent concepts because the sample labels are ignored. Therefore, the supervised knowledge should also be used to

evaluate recurrent concepts. Finally, we define the equivalence level of the supervised knowledge between C i and C j .

Definition 8 (Equivalence level of the supervised knowledge) . First, two classifiers K

′
i

and K

′
j
(j = 1 , 2 , . . . , i − 1) are trained

over two sets Z T
i

⊂ Z i and Z T
j

⊂ Z j , respectively. The number of instances in Z T
i

is equal to that in Z T
j
. Second, the equivalence

level between Z i and Z j is estimated by comparing the classification error of K

′
i

and K

′
j

on a common validation set Z V =
Z V

i
∪ Z V

j
, where Z V

i
⊂ Z i , Z

V
i

∩ Z T
i

= ∅ , Z V
j

⊂ Z j , and Z V
j

∩ Z T
j

= ∅ . Based on the couples in the validation set Z V , the equivalence

level of the supervised knowledge between C i and C j , denoted by p j , is calculated as

p j =

∑

Z V
f (K

′
i
(x t) , K

′
j
(x t))

| Z V | , (12)

where | Z V | is the number of examples in the validating set Z V . K

′
i
(x t) and K

′
j
(x t) , respectively, denote the prediction labels

of x t using K

′
i

and K

′
j
. f (K

′
i
(x t) , K

′
j
(x t)) is an indicator function and can be formulated as

f (K

′
i (x t) , K

′
j (x t)) =

{
1 , if K i

′
(x t) = K j

′
(x t)

0 , otherwise.
(13)

Finally, Z i and Z j are equivalent if p j exceeds a predefined threshold τ .

The final identification of recurrent concepts is obtained by considering the supervised and unsupervised knowledge. C j

can be considered to be the recurrent concept of C i when dist M,V
i, j

≤ γ and p j > τ . Then, Z j can be obtained and used as the

S. Ren et al. / Information Sciences 430–431 (2018) 261–281 271

training set of the latest component. In contrast to semi-supervised learning, KME does not need to tune any of the labels

for the unlabelled observations in the current data chunk. However, additional supervised observations, which can enhance

the predictive ability of the candidate classifier, are extracted from previous chunks in a data stream.

3.4. Concept division and ensemble update

In KME, a new data chunk is obtained when a concept change is identified or when the number of labelled observations

in the current block reaches a certain level. Therefore, the KME algorithm is a hybrid model that combines the important

operators of online ensembles and block-based ensembles. In the stationary period, KME works in a chunk-by-chunk man-

ner; however, the concept-drift-detection system operates on a sequence of data at the window level. The chunk size cannot

be determined in advance and must be adjusted based on the nonstationary environment. As a hybrid ensemble, KME can

react to sudden and slow drifts.

First, the concept-drift-detection system monitors the stationarity of the feature space and the classification performance

at a small window level, thus gradually approaching the timestamps of concept changes. A new data block is used to train

the candidate classifier after detecting a change in the data distribution. Abrupt drifts are easy to detect through an active

strategy. However, the drift-detection system usually performs poorly on slow changes because a small variation does not

exceed the predefined threshold of the drift detector.

Second, similar to chunk-based ensembles, a new block is obtained as soon as the number of labelled events in the

current block is sufficient to train a perfect hypothesis. Consequently, all the ensemble members are preserved, and the

useful knowledge about previous data chunks can be reused in the final decision. KME also ensures sufficient reaction to

slow drifts through periodic evaluation and weighting mechanisms. However, the weights of obsolete hypotheses cannot

immediately decrease to zero; therefore, chunk-based ensembles react slowly to sudden drifts as the obsolete members

remain valid in the final decision. The tuning of chunk sizes is difficult. Large chunks are suitable for stationary data streams,

but they may contain changes within a block and increase the computational complexity. Small chunks can make the model

react quickly to sudden changes, but they lead to poor performance in the presence of slow gradual drifts and periods of

stability.

Finally, recurrent concepts can be recognized by evaluating the equivalence level between two chunks. Then, component

classifiers derived from labelled events in the recurrent concepts are used to predict the labels of testing events. Further-

more, the preserved labelled instances are extracted to supplement the training set of the candidate component. Therefore,

the performance of the ensemble can be improved over time because of the increasing number of labelled examples.

The KME algorithm is an adaptive ensemble based on VFDT [21] , which is convenient for preserving and modifying the

knowledge of the new concept. In principle, we can use any online learning algorithm as the base classifier of the ensemble.

3.5. Weighting mechanism and final hypothesis

In dynamic environments, a data stream is often generated from mixed concept types and could be considered to be a

weighted combination of data distributions characterizing the target concept. KME can achieve knowledge transfer among

consecutive data chunks by keeping old experts in the ensemble group, which could improve the ensemble’s reactions to

slow and recurrent concept drifts.

The weighting mechanism in KME is a piecewise exponential function. To derive the weights of the ensemble members,

we begin by defining the mean square error of each past component classifier K j ∈ B (j = 1 , 2 , . . . , i − 1) and a randomly

predicting classifier.

Definition 9 (Mean square error of K j) . Given Z i , the mean square error of K j on instances in Z i , denoted by MSE i, j , is the

predicted squared error of the j th component on supervised data of the new concept C i . MSE i, j can be calculated as

MSE i, j =

1

| Z i |
∑

(x t ,y t) ∈ Z i
(1 − f j y t (x t))

2 , (14)

where f
j

y t
(x t) is the probability that instance x t is classified as class y t by component classifier K j . | Z i | is the number of

supervised instances in the i th data block.

Definition 10 (Mean square error of a randomly predicting classifier) . A random model dose not contain useful information

for predicting a testing observation. The mean square error of a randomly predicting classifier, denoted by MSE r , depends

on the current class distribution and can be formulated as

MSE r =

∑

y t

P (y t)(1 − P (y t))
2 , (15)

where P (y t) is the y t ’s class distribution.

We next formulate the weights of K j and the candidate classifier based on Definitions 9 and 10, receptively.

272 S. Ren et al. / Information Sciences 430–431 (2018) 261–281

Definition 11 (Weight of K j) . Given MSE r , MSE i, j , and dist M,V
i, j

, the weight of a past component classifier K j in the ensemble

group, denoted by w i, j , is expressed by

w i, j = e −u ×
(
MSE r + MSE i, j + dist M,V

i, j

)
, (16)

where u ∈ [0, 1] is the fading factor of the weight. MSE r is regarded as a reference to the current class distribution because

a random prediction cannot contribute to the final decision of the ensemble. dist M,V
i, j

, MSE i, j , and MSE r are, respectively,

derived from Eqs. (11) , (14) , and (15) .

Definition 12 (Weight of the candidate classifier) . Given u and MSE r , candidate classifier K i is treated as the best-performing

member in the ensemble group. The weight of the candidate classifier, denoted by w i , is given as

w i = e −u ×MSE r . (17)

The utilization of the piecewise function in the weight setting depends on the assumption that the best representative

of the current and near-future data distributions is generally the candidate component K i trained on the observations in

the most recent data block C i . The piecewise function is conducive to coping with a sudden change when only the most

recent data chunk represents the concept of the testing data. However, the transition period between two concepts makes

knowledge transfer between consecutive chunks important when the change rate is slow. Moreover, the combined result of

all the experts in the ensemble is robust against noise compared to that of a new expert.

In general, a classifier that is trained on a dataset with a stable feature space is more likely to behave consistently than a

classifier built on a dataset with an unstable feature space. Therefore, in addition to the performances of the members, the

similarity of the unsupervised knowledge should be considered in the weighting function. Eq. (16) shows that the weight

of K j consists of the prediction accuracy, the current class distribution, and the deviation level between C i and C j in terms

of the unsupervised knowledge. Fading factor u controls the discriminative power in the final decision. Compared to past

components, the weight of the candidate classifier K i described in Eq. (17) disregards the performance and the feature

distribution similarity. Accordingly, the weighting process in KME, which does not require cross-validation, is suitable for

coping with a high-speed data stream. Moreover, the piecewise setting ensures that the latest component has substantial

voting power.

The system achieves the final decision by a weighted vote of every ensemble member as

B (x t) = arg max
y t ∈ Y

((i −1 ∑

j=1

w i, j × f (K j (x t) , y t)
)

+

(
w i × f (K i (x t) , y t)

))
, (18)

where B (x t) is the label of x t predicted using ensemble B. f (K j (x t), y t) and f (K i (x t), y t) are indicator functions defined as

f (K j (x t) , y t) =

{
1 , if K j (x t) = y t
0 , otherwise

(19)

f (K i (x t) , y t) =

{
1 , if K i (x t) = y t
0 , otherwise .

(20)

The final result for an incoming observation is based on all the component classifiers through the component evaluation

and weighting mechanisms. Consequently, the generalization ability of KME benefits from the knowledge associated with

past members and the candidate component classifier.

3.6. Algorithm detail

In our implementation, the base classifier of B is VFDT. VFDT is an incremental classifier for high-speed and potentially

infinite data streams. Meanwhile, B ′ is a VFDT-based single classifier for detecting concept changes. The complete procedure

of the KME algorithm is presented in Algorithm 1 . Line 1 is used to initialize the parameters, and lines 2–51 describe the

operational phase of the KME algorithm.

First, the candidate ensemble member K i and the statistics derived from the latest data chunk are constantly adjusted

with the new data x t of data stream S . If the arrival instance is a labelled observation, then the current classifier K i is

retrained (line 7). Sequence E i,s , described in Section 3.1 , is updated (line 9); then, TEST l is executed to detect the concept

changes affecting P (y | x) when m l supervised instances have been acquired (line 10). B ′ is an additional classifier that is not

updated with the arrival data unless a concept drift occurs. When a sequence of m u observations (disregarding their labels)

has been obtained, the unsupervised statistics M i,s and V i,s , described in Section 3.1 , are computed (lines 14 and 15), and

TEST u is performed to monitor the stationarity of the feature space (line 16). Therefore, the concept-drift-detection system

described in Section 3.2 is applied to recognize concept drift based on the stationarity of the supervised and unsupervised

statistics described in Section 3.1 .

Second, the concept-isolation procedure described in Section 3.4 is implemented when the concept-drift detection mech-

anism discovers a concept change or when a sufficient number of supervised instances are obtained in the current block

S. Ren et al. / Information Sciences 430–431 (2018) 261–281 273

(line 19). A new data chunk is produced, and the timestamp of the last observation in the current block is denoted by

T i, end (line 20). The observations of the new concept are acquired in the interval [T i , 1 , T i, end] (line 21). Then, the candidate

hypothesis is built over the labelled sample set Z i in the new chunk (line 22).

Third, the reconfiguration of drift detectors and the recognition of recurrent concepts are performed after producing a

new data chunk (lines 26–39). In general, the reconfiguration phase may lack instances associated with the new concept.

Consequently, the procedures are likely to be postponed until sufficient examples are available for the configuration. In

particular, TEST l is likely to experience a long time delay compared with TEST u because limited supervised data are provided.

The concept-drift-detection system can be reconfigured when sufficient unsupervised and supervised statistics are available

(i.e., | M i,s | ≥ M u , | V i,s | ≥ M u , and | E i,s | ≥ M l) (line 26). TEST u is reconfigured based on M i,s and V i,s (line 27). Z T
i
, described in

Section 3.3 , is used to train an additional classifier B ′ (line 28). TEST l is reconfigured on the classification error of B ′ (line 29).

Then, the new concept C i is compared with all previous concepts C j (j = 1 , 2 , . . . , i − 1) based on the equivalence levels of

the unsupervised and supervised knowledge (lines 30–35). The recognition of recurrent concepts is described in Section 3.3 .

The labelled examples of the recurrent concepts are used to update the training set of the candidate hypothesis K i (lines 33

and 36).

Finally, a performance-based pruning technique is applied to B when the ensemble size reaches m (line 46). Then, a

weighted result based on all the members in the ensemble group, which is described in Section 3.5 , is used to predict the

label of an unlabelled observation in the data-generating process (lines 48–50). The weights of the candidate hypothesis and

past hypotheses are calculated according to Eqs. (17) and (16) , respectively (lines 37 and 41).

Let us now analyse the computational complexity of the KME algorithm. A data stream can be divided into N data

chunks, N l sliding windows containing supervised observations, and N u sliding windows containing observations. The base

classifier of KME is VFDT, which builds a decision tree with a constant time per example [21] . Therefore, the training of

ensemble members has complexity O (N l m l), where m l is the number of labelled observations in a sliding window. The

drift-detection system consists of two drift detectors. TEST u calculates the unsupervised statistics for every m u observations;

thus, O (2 N u m u) time is needed to estimate the expected values of the sample mean and variance. The interval estimation of

the sample mean and variance consumes O (4 N u b) time, where b is the number of preserved windows in the current data

chunk. Similarly, TEST l requires complexity O (N l m l + 2 N l b) . The recognition of recurrent concepts manipulates a series of

data chunks and requires O (Nm | Z V |) time, where m is the ensemble size and | Z V | is the number of labelled instances in the

validation set used to evaluate the equivalence level between two concepts based on supervised information. Moreover, the

weight settings defined in Eqs. (16) and (17) require a constant number of operations and O (Nm) time. Consequently, the

time complexity of KME in the training phase is O (2 N l m l + 2 N u m u + 2 N l b + 4 N u b + Nm | Z V | + Nm) . In the testing stage, the

time consumption is dominated by the number of test instances. Thus, the prediction procedure of the KME algorithm is

linearly proportional to the number of labelled instances in a dataset when using prequential evaluation [5] . The memory

consumption of an ensemble of m VFDT is O (mdvlc), where d is the number of attributes, v is the maximum number of

values per attribute, l is the number of leaves in the tree, and c is the number of classes [21] . The labelled data in the

most recent data chunk are conserved to evaluate the importances of previous components and to recognize the recurrent

concepts. Consequently, O (s l d) memory is required, where s l is the number of labelled data in a data chunk. The labelled

instances in past concepts are preserved to improve the generalization ability of the ensemble, thus consuming O ((m −
1) s l d) memory. The memory usage of the latest sliding window in a data stream is O (m u d). Meanwhile, the drift-detection

system requires O (4 b) memory. The weights of past components are based on stationarity levels and predictive power,

whereas the weight of the candidate classifier is dominated by the number of classes c . Thus, the weighting mechanism of

KME has space complexity O (m + c) . Consequently, the memory usage of KME is O (mdv lc + ms l d + m u d + 4 b + m + c) . In the

testing phase, the testing data are evaluated in an instance-by-instance manner. Thus, the space complexity of the testing

procedure is O (1).

4. Experimental evaluation

4.1. Experimental setup

The analysis of the KME algorithm and the comparative experiment are implemented in Java programming language by

extending the MOA software [5] . The following algorithms are tested.

1) The naive Bayes algorithm (NB) [26] is continuously updated by each supervised example. NB is excellent in stationary

scenarios and is considered to be a reference for using an algorithm without any drift reaction mechanisms.

2) VFDT [21] is a single classifier that can incrementally learn streaming data by building decision trees. The Hoeffding

bound is used to ensure that the result in an online manner is asymptotically identical to that of a conventional decision

tree.

3) Learn++.NSE (NSE) [14] determines voting weights based on the changing accuracy of each member in current and past

environments. NSE can learn the evolving concepts, regardless of the types of concept drift.

4) AWE [37] is a representative chunk-based ensemble, where the chunk size is fixed. The final prediction for an incoming

observation is derived from the weighted result of members in the classifier pool.

274 S. Ren et al. / Information Sciences 430–431 (2018) 261–281

Table 2

Dataset description.

Dataset #Inst #Attrs #Classes Noise #Drifts Drift type

SEA G 1M 3 2 10% 9 Gradual

RanRBF B 1M 20 4 0% 2 Blips

SEA S 1M 3 2 10% 3 Sudden

Hyper 1M 10 2 5% 1 Incremental

SEA SR 1M 3 2 10% 4 Sudden recurrent

RanRBF GR 1M 20 4 0% 4 Gradual recurrent

RanTree SRF 100k 10 6 0% 15 Sudden recurrent

Covertype 581k 54 7 – – –

Poker 829k 10 10 – – –

Usenet 1.5k 99 2 – – –

5) Online bagging (OBag) [33] is the online version of bagging. In contrast to bagging, OBag does not obtain all the data be-

fore the training procedure [8] . Online sampling is applied to the bath model by presenting each instance to a component

k times, where k is defined by the Poisson distribution.

6) Online boosting (OBoost) [33] , which is usually applied to a large volume of streaming data, is the online version of the

popular boosting algorithm [17] .

7) WMA [28] is a representative online ensemble. When a component commits a mistake, its weight is multiplied by the

predefined value β .

8) ADACC [22] takes advantage of changes in the environment to anticipate future characteristics and can be applied to deal

with multiple types of concept drift.

KME is not compared with semi-supervised algorithms because of their continuous enhancement of training procedures

through labelling a large number of unsupervised examples [27] . However, KME still considers all the unlabelled observa-

tions as unsupervised knowledge. New supervised information in the candidate block is obtained from the labelled obser-

vations in previous data blocks. In addition to NSE and WMA, the number of components in the ensembles is set to m = 10

to ensure the fairness of the comparative experiment. NSE does not remove any members from the ensemble group, and it

contains the sigmoid slope a = 0 . 5 and the sigmoid crossing point b = 10 . These settings are the same as suggested by the

paper’s authors. Similarly, the ensemble size of WMA is variable, and the default parameter settings of the MOA framework

are adopted [5] . The block size of AWE is 10 0 0. In KME, after the number of observations reaches d max = 10 0 0 , a new data

chunk is produced. The influence of the chunk size on KME is analysed in Section 4.3 . VFDT is selected as the base classifier

for all ensemble models to ensure meaningful comparisons.

m u , m l M u , and M l are the parameters used to reconfigure the detection system. Under stationary conditions, the statistics

M i,s , V i,s and E i,s approximate Gaussian distributions when a sufficient number of events are acquired in the sliding window.

A minimum of m u = 50 observations are required to evaluate the sample mean and variance. Then, TEST u is reconfigured

by M u = 4 unsupervised statistics (corresponding to 200 examples). Additionally, m l = 50 labelled observations in each slid-

ing window are used to evaluate the classification performance. Therefore, M l = 4 features (corresponding to 200 labelled

examples) are applied to configure TEST l . The threshold γ is set to 0.05, and τ is set to 0.8 in the recurrent concept recog-

nition process. The parameters γ and τ are discretely set to avoid reusing the labelled data of different concepts. u is the

fading factor in the weighting mechanism, which is analysed in Section 4.3 . Through statistical analysis, u = 1 . 0 is found to

be significantly better than other settings; therefore, u = 1 . 0 is the default value of KME.

The evaluation measure is periodically calculated using the prequential method with a window of W = 10 0 0 examples

and fading factor of 0.01 in the MOA framework [5] . For every tested classifier, a labelled instance is first used to test

the existing model; then the classifier is updated. Thus, the prequential accuracies are incrementally updated. Through this

method, the data in a dataset are sequentially processed, and learning curves can be provided to capture the evolution of

the classifier performance throughout the life of the data stream. All the labelled data items are used to test and train the

models. Therefore, the training set and testing set are identical in each trial, and the prequential classification accuracies of

all the algorithms should be constant over multiple runs.

4.2. Dataset description

Suitable and publicly available real-world benchmark datasets for evaluating data stream classifiers are insufficient be-

cause they do not contain any type of concept drift. Several synthetic datasets have been generated in the MOA framework

to analyse the performance of the proposed algorithm. Moreover, the real datasets are publicly available. These synthetic

datasets include various types of drifts, different change rates, and various noise levels. However, the details of the real

datasets cannot be obtained in advance. Table 2 presents a brief description of each dataset. 1
1 Scripts available at: https://github.com/siqirenzl/KME .

https://github.com/siqirenzl/KME

S. Ren et al. / Information Sciences 430–431 (2018) 261–281 275

4.2.1. Synthetic datasets

We utilize the data-streaming generators available in the MOA framework to construct seven synthetic datasets, including

sudden, gradual, incremental, and recurrent concept drifts with different change rates. A supervised label is provided out of

h = 5 observations. The details of the synthetic datasets are presented as follows.

1) Hyper: The hyperplane generator was used as a testbed to compare CVFDT and VFDT [21] . The orientation and position

of the hyperplane can be smoothly changed by modifying the weights. Thus, datasets with incremental concept drifts

can be simulated. The Hyper dataset, which is generated by the Hyperplane generator, contains 1, 0 0 0, 0 0 0 instances

described by 10 attributes. An incremental drift can be simulated by changing the weight by 0.1 with every example,

and adding 5% noise to the data.

2) RanRBF: The random Radial Basis Function (RBF) generator can produce a random radial basis function stream. A fixed

number of random centroids are generated, and each centre has a random position, standard deviation, class label, and

weight. This generator is used to create two datasets of 1, 0 0 0, 0 0 0 observations described by 20 attributes. The RanRBF GR

dataset contains four gradual recurrent drifts. The RanRBF B dataset is composed of two blips, which should be ignored

by the models because the changes are random. The RanRBF B can measure the robustness of classifiers, and each concept

in the datasets produced by this generator is characterized by four classes.

3) SEA: The SEA generator was first described in [36] . It is used to simulate concept drift by changing the threshold. Datasets

are generated by three attributes, of which only the first two attributes are relevant. The SEA generator is used to produce

three datasets of 1, 0 0 0, 0 0 0 instances with 10% noise. SEA S produces four concepts by creating a sudden drift every 250,

0 0 0 observations. The SEA SR dataset contains four sudden drifts. Five concepts are included in the SEA SR dataset, of which

the first concept is a recurrent concept of the fifth concept. Therefore, we can analyse the ability of the algorithms to

handle sudden recurrent drifts on SEA SR . The SEA G dataset contains nine gradual drifts.

4) RanTree: The Random Tree generator, which was proposed in [13] , generates a data stream based on a randomly gener-

ated tree. This generator is leveraged to create the RanTree SRF dataset, which consists of 10 0, 0 0 0 observations described

by 10 attributes and 6 classes. RanTree SRF contains 15 sudden drifts that occur every 2790 observations. Recurrent con-

cepts are also considered. Compared with SEA SR , the frequency of changes on the RanTree SRF dataset is large.

4.2.2. Real datasets

Forest Covertype (Covertype), which is obtained from US Forest Service Region 2 Resource Information data, is one of

the most widely used dataset in the streaming context [6] . Covertype contains 581, 012 instances with 54 attributes used to

describe one of seven possible forest cover types. Poker-lsn (Poker) [6] is the normalized version of the Poker-Hand dataset,

which consists of 829, 201 observations that describe the ranks and suits of a hand of five playing cards. Poker contains 10

predictive attributes and 10 classes. Each instance is represented by five playing cards drawn from a standard deck of 52.

Finally, Usenet is a real-world dataset that simulates an email stream derived from various topics. Usenet has been applied

to the domains of medicine, baseball, and space. A total of 1500 instances and 99 attributes are included in the Usenet

dataset to predict whether a given email is junk or interesting.

We provide a supervised instance out of h = 5 observations for all the real datasets. In contrast to the synthetic datasets,

we do not know when the concept drifts occur, the types of changes or even whether any drift occurs.

4.3. Analysis of the components of the proposed algorithm

The piecewise exponential function is used to evaluate the importance of members in the ensemble group. The weight

of a previous component classifier is determined by its predictive power and stationarity level. The candidate component

is treated as the best-performing member, regardless of its performance. Therefore, cross-validation can be avoided to cope

with high-speed data streams. The supervised and unsupervised knowledge are considered in the weighting function, and

u ∈ [0, 1] denotes the fading factor. A larger u can enhance the importance of excellent components and reduce the impor-

tance of poorly performing components in the final decision.

Table 3 shows the classification accuracies for different values of u . Through the Friedman test [12] on u ∈ {0.2, 0.4, 0.6,

0.8, 1.0}, F F = 27 . 51 is obtained. Table 4 shows the average ranks of KME using different values of u . If the selected significant

level is 0.05, then the null hypothesis is rejected. Hence, significant differences exist among the predictive accuracies of KME

for different settings of u . Then, the Bonferroni–Dunn post hoc test [12] is performed to compare KME with u = 1 . 0 with

others. The critical difference (CD) for α = 0 . 05 is equal to 1.77. Therefore, the classification accuracy of KME with u = 1 . 0

is significantly better than that with u = 0 . 2 and u = 0 . 4 . The Wilcoxon signed rank test [12] is applied to further assess

the differences between u = 1 . 0 and the remaining settings. The p -values resulting from this test are p u =0 . 6 = 0 . 002 and

p u =0 . 8 = 0 . 02 . Therefore, the average accuracy of KME with u = 1 . 0 is significantly better than that with other settings of u .

In addition to studying u , we assess the influence of different chunk sizes on the predictive accuracy of KME. Generally,

the performance of chunk-based ensembles strongly depends on the chunk size. Using big size chunks is likely to contain

sudden changes in the training set of a component classifier, whereas using small size chunks may degrade the performance

of the ensemble under stationary conditions. In this study, different d max values are used to analyse the influence of chunk

size on KME performance. Table 5 shows the average accuracies of KME in terms of the aforementioned datasets based on

d max ∈ {500, 750, 1000, 1250, 1500}. The average ranks of KME using different chunk sizes are listed in Table 6 . The Friedman

276 S. Ren et al. / Information Sciences 430–431 (2018) 261–281

Table 3

Average classification accuracies of KME using different values of u

(%).

u = 0 . 2 u = 0 . 4 u = 0 . 6 u = 0 . 8 u = 1 . 0

SEA G 87.14 87. 15 87.15 87.16 87.17

RanRBF B 94.19 94.21 94.23 94.25 94.27

SEA S 87.45 87.48 87.49 87.50 87.51

Hyper 81.50 81.51 81.51 81.52 81.53

SEA SR 87.51 87.53 87.55 87.56 87.56

RanRBF GR 93.24 93.27 93.30 93.34 93.37

RanTree SRF 35.41 35.40 35.42 35.45 35.44

Covertype 80.75 80.76 80.78 80.80 80.82

Poker 72.08 72.16 72.26 72.35 72.45

Usenet 66.84 66.84 66.84 66.84 66.84

Table 4

Average algorithm ranks of KME using different values of u

in the Friedman test.

u = 0 . 2 u = 0 . 4 u = 0 . 6 u = 0 . 8 u = 1 . 0

4.70 3.90 3.10 1.95 1.35

Table 5

Average classification accuracies of KME using different values of d max (%).

d max = 500 d max = 750 d max = 10 0 0 d max = 1250 d max = 1500

SEA G 87.24 87.10 87.17 87.15 87.12

RanRBF B 94.31 94.16 94.27 94.08 94.11

SEA S 87.45 87.34 87.51 87.48 87.43

Hyper 81.49 81.51 81.53 81.54 81.55

SEA SR 87.59 87.47 87.56 87.59 87.51

RanRBF GR 93.40 93.08 93.37 93.46 93.54

RanTree SRF 36.33 35.52 35.44 35.40 35.79

Covertype 80.74 80.85 80.82 80.83 80.80

Poker 70.53 72.37 72.45 72.31 73.91

Usenet 66.84 66.84 66.84 66.84 66.84

Table 6

Average algorithm ranks of KME using different values of d max in the Fried-

man test.

d max = 500 d max = 750 d max = 10 0 0 d max = 1250 d max = 1500

2.85 3.70 2.70 2.95 2.80

test is leveraged for d max ∈ {500, 750, 1000, 1250, 1500}, and F F = 0 . 62 is obtained. Therefore, no significant differences in

the prequential accuracies of KME are observed when using different chunk sizes at significant level α = 0 . 05 . KME is a hy-

brid ensemble that combines the elements of chunk-based ensembles and online ensembles. Consequently, the performance

of KME is robust against chunk size, and d max = 10 0 0 is selected as the default value in the comparative experiment.

4.4. Comparative study of classifiers

Several experiments are performed to compare the proposed algorithm with other algorithms, including NB, VFDT, NSE,

AWE, ADACC, OBag, OBoost, and WMA. NB and VFDT are representative single models. NB is a simple classifier without any

forgetting mechanisms, which is appropriate for handling stationary data streams. VFDT is a famous decision tree model that

specializes in high-speed data streams. Additionally, we propose VFDT as the base classifier for all the tested ensembles.

NSE, AWE, ADACC, OBag, OBoost, and WMA are all ensemble models. OBag and OBoost are strong representatives of on-

line ensembles that are derived from traditional bagging and boosting algorithms, respectively. NSE can accommodate a wide

variety of drifting environments based on its time-adjusted member weights. AWE combines multiple classifiers weighted

by their expected prediction accuracies on the observations in the most recent block, which is generally appropriate for data

streams with slow drifts. WMA maintains a pool of hypotheses, and the final prediction relies on the weighted average of

the results derived from the members. The weight of each member is dynamically updated based on its corresponding per-

formance. ADACC stores a series of snapshots to handle recurrent concepts. ADACC adapts to the dynamic concepts through

the frequent removal and addition of ensemble members, regardless of the type of concept drift.

S. Ren et al. / Information Sciences 430–431 (2018) 261–281 277

Table 7

Average prequential classification accuracies (%).

KME ADACC NB VFDT AWE OBag WMA NSE OBoost

SEA G 87.17 85.05 84.66 85.49 83.07 85.64 85.55 85.83 86.04

RanRBF B 94.27 76.96 60.69 86.17 81.52 91.79 86.49 81.85 95.57

SEA S 87.51 85.64 83.88 84.63 82.40 85.13 85.09 87.25 86.42

Hyper 81.53 79.71 72.31 78.58 80.56 79.53 78.63 80.06 81.13

SEA SR 87.56 86.08 86.52 86.74 84.44 87.18 87.40 87.32 87.46

RanRBF GR 93.37 71.37 59.29 85.87 76.45 92.02 85.93 76.46 95.05

RanTree SRF 35.44 36.70 34.04 34.31 25.92 35.37 34.43 26.40 12.90

Covertype 80.82 77.05 60.29 71.46 72.46 74.18 72.48 75.26 76.71

Poker 72.45 71.15 59.46 68.21 51.50 70.80 69.18 53.97 69.29

Usenet 66.84 64.00 64.25 65.91 66.84 66.66 63.50 66.84 59.59

Table 8

Average algorithm ranks in the Friedman test.

KME ADACC NB VFDT AWE OBag WMA NSE OBoost

1.4 5.2 7.8 6.1 7.0 4.1 5.2 4.6 3.6

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y(
%

)

KME
OBoost
ADACC
WMA
OBag

(a)

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

65

70

75

80

85

90

95

100

A
cc

ur
ac

y(
%

)

KME
AWE
NSE

(b)

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y(
%

)

KME
NB
VFDT

(c)

Fig. 1. Classification accuracies on the RanRBF B dataset. (a) KME and online ensembles, (b) KME and chunk-based ensembles, (c) KME and single classifiers.

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

76

78

80

82

84

86

88

90

A
cc

ur
ac

y(
%

)

KME
OBoost
ADACC
WMA
OBag

(a)

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

70

72

74

76

78

80

82

84

86

88

90

A
cc

ur
ac

y(
%

)

KME
AWE
NSE

(b)

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

76

78

80

82

84

86

88

90

A
cc

ur
ac

y(
%

)

KME
NB
VFDT

(c)

Fig. 2. Classification accuracies on the SEA S dataset. (a) KME and online ensembles, (b) KME and chunk-based ensembles, (c) KME and single classifiers.

Tables 7 and 8 show the prequential accuracies based on all the datasets and the average ranks of the comparative

algorithms, respectively. In addition, a graphical plot is generated for each dataset to describe the performance curves of all

the tested algorithms at each time step. The x -axis denotes the number of processed observations, and the average accuracy

is presented on the y -axis. In this way, the adaptation situations of all the comparative algorithms under different streaming

conditions can be analysed. Figs. 1 –5 show the prequential accuracies of the tested algorithms on datasets with different

types of concept drift, including gradual, incremental, sudden, and recurrent drifts. We split the result of a dataset into three

sets to analyse the performance curves of single classifiers, chunk-based ensembles, and online ensembles.

Fig. 1 shows the average accuracies of the algorithms on the RanRBF B dataset, which contains two blips. Blips are very

short, sudden drifts that should be considered to be outliers. Fig. 1 shows that blips do not have a lasting effect on the

classification accuracies of the classifiers. The decrease in performance associated with an excellent model should only last

278 S. Ren et al. / Information Sciences 430–431 (2018) 261–281

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

66

68

70

72

74

76

78

80

82

84

86

A
cc

ur
ac

y(
%

)

KME
OBoost
ADACC
WMA
OBag

(a)

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

55

60

65

70

75

80

85

A
cc

ur
ac

y(
%

)

KME
AWE
NSE

(b)

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

50

55

60

65

70

75

80

85

A
cc

ur
ac

y(
%

)

KME
NB
VFDT

(c)

Fig. 3. Classification accuracies on the Hyper dataset. (a) KME and online ensembles, (b) KME and chunk-based ensembles, (c) KME and single classifiers.

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

78

80

82

84

86

88

90

92

A
cc

ur
ac

y(
%

)

KME
OBoost
ADACC
WMA
OBag

(a)

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

70

72

74

76

78

80

82

84

86

88

90

A
cc

ur
ac

y(
%

)

KME
AWE
NSE

(b)

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

78

80

82

84

86

88

90

92

A
cc

ur
ac

y(
%

)

KME
NB
VFDT

(c)

Fig. 4. Classification accuracies on the SEA SR dataset. (a) KME and online ensembles, (b) KME and chunk-based ensembles, (c) KME and single classifiers.

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y(
%

)

KME
OBoost
ADACC
WMA
OBag

(a)

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

65

70

75

80

85

90

95

100

A
cc

ur
ac

y(
%

)

KME
AWE
NSE

(b)

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

Processed instances

30

40

50

60

70

80

90

100

A
cc

ur
ac

y(
%

)

KME
NB
VFDT

(c)

Fig. 5. Classification accuracies on the RandRBF GR dataset. (a) KME and online ensembles, (b) KME and chunk-based ensembles, (c) KME and single classi-

fiers.

for a short time. KME and OBoost show relatively stable levels of prequential accuracies during all the time steps. The

utilization of the drift-detection system enables KME to rapidly identify short sudden changes. The performance degradation

of KME is not obvious because of the rapid removal of obsolete knowledge and addition of a new block. As an online

ensemble, OBoost processes only one observation at a time and emphasizes the misclassification instances. Therefore, OBoost

is robust against blips. AWE, ADACC, and NB perform the worst. AWE maintains a pool of classifiers derived from fixed-size

data chunks and cannot timely remove obsolete ensemble members when a short sudden change occurs. The prequential

accuracy of ADACC fails to quickly recover from changes, thus causing poor performance on the RanRBF B dataset. The worst-

performing algorithm is NB, which tends to be more sensitive to blips as it has no mechanisms for reacting to changes.

Fig. 2 shows the performances of the algorithms on the SEA S dataset. For data streams with sudden drifts, the best-

performing algorithm is KME, followed by NSE and OBoost. Owing to the drift-detection strategy, KME can quickly produce

a new chunk to represent the new concept. When evaluating the importance of ensemble members, the candidate compo-

nent that describes the new concept is provided the highest weight value. We observe that the decreases in the accuracies

S. Ren et al. / Information Sciences 430–431 (2018) 261–281 279

of KME and NSE are not significant. Moreover, OBoost provides a fast recovery rate to sudden changes by emphasizing

the misclassification samples at each time step. The worst-performing algorithm is AWE. As a block-based ensemble, AWE

processes a data stream in a chunk-by-chunk manner and builds a component for each data chunk. Sudden changes are

instantaneous and require a model to quickly remove obsolete knowledge. Therefore, AWE has poor performance because of

the existence of obsolete members in the ensemble group. NB and VFDT continuously update models with the new labelled

observations. Due to the lack of the timely removal of obsolete data and the leveraging of useful past knowledge, substantial

old data and limited new data exist in single models when a sudden change occurs.

Fig. 3 presents the prequential accuracies of the analysed algorithms on the Hyper dataset, which includes an incre-

mental concept drift. KME, OBoost, and AWE are the best-performing algorithms. Compared to the results on datasets with

relatively drastic changes, the prequential accuracies of all the algorithms show relatively mild drops. AWE performs partic-

ularly well on the Hyper dataset, but it has poor reactions to sudden changes. The chunk-based ensembles seem to obtain

and maintain good performances in slow drifting conditions. KME is a hybrid ensemble that integrates the predictive re-

sults of the ensemble members. The transition phase between adjacent concepts is a mixed data distribution in the dataset

with incremental concept drifts. The knowledge transfer obtained by periodic weighting mechanisms can improve the per-

formance of KME in the transition period. The NB and VFDT classifiers have no drift reaction mechanisms, resulting in the

poorest performances on Hyper.

Fig. 4 shows the classification accuracies of the tested algorithms on the SEA SR dataset, which contains sudden recurrent

drifts. The accuracy decreases around observations numbers 100, 750, 201, 500, 302, 250, and 403, 000. The ordered se-

quence consists of five concepts, in which the fifth concept is a recurrent concept of the first concept. The best algorithm in

the presence of sudden recurrent drifts is KME, followed by OBoost. KME can quickly discover and anticipate sudden drifts

by monitoring the stationarity of the feature spaces and the performance of B
′
. The labelled events of recurrent concepts

can be reused to enhance the predictive ability of the candidate component classifier after evaluating the equivalence level

between two concepts. The prequential accuracy of OBoost quickly recovers from abrupt drifts, which is also observed on

the SEA S dataset. NSE can successfully handle sudden changes, thus obtaining good performance on the SEA S dataset. Ad-

ditionally, we can observe that NSE effectively employs the prior knowledge of recurrent concepts by reactivating previous

hypotheses. However, NSE has poor convergence in long-term stationary conditions compared with that of KME. WMA does

not remove any ensemble members, and the use of recurrent concepts can benefit from sufficient enough members in the

final voting. The NB and VFDT classifiers have no drift reaction mechanisms. They both aim to remove all the old data, and

thus they have no opportunity to reuse the observations of recurrent concepts. AWE, which uses batch learners derived from

fixed-size chunks, cannot immediately react to sudden changes and performs the worst.

Fig. 5 shows the results of the tested algorithms on the RanRBF GR dataset. The best-performing algorithms are OBoost and

KME. OBoost maintains a stable accuracy level due to its online nature. KME provides quick recovery from gradual drifts and

ranks second. Generally, AWE is excellent in reacting to concept drift with a relatively long transition period. Consequently,

AWE performs well on the Hyper dataset. However, because it does not explicitly handle recurrent concepts, AWE fails to

react to gradual recurrent drifts. ADACC, AWE, and NSE show poor accuracies in the presence of stationary periods, which

is also observed on the SEA SR dataset. For a data stream with gradual drifts, such as SEA G , KME outperforms the other

algorithms. When the environment changes slowly, all the classifiers maintain relatively stable levels of performance.

In addition to the performance under sudden drift conditions, the effectiveness of the tested algorithms to handle

RanTree SRF , in which the change frequency is large, is analysed. Sudden changes and several recurrent concepts occur in each

small time interval of the RanTree SRF dataset. All the algorithms have poor performances on the RanTree SRF dataset because

the models cannot keep pace with the rapidly changing environment. In the presence of continuous changes, KME provides

good recovery ability from rapid changes. ADACC performs particularly well on the RanTree SRF dataset. In contrast to those of

other ensemble models, the base learners of ADACC are evaluated every few time steps. Thus, ADACC can quickly capture the

evolution of data streams via the frequent removal of obsolete ensemble members. NSE, AWE, and OBoost are the worst-

performing classifiers. NSE has no pruning techniques, which results in excessive outdated data being maintained in the

scenario of vigorous changes. Compared with the performance on the SEA S dataset, the predictive accuracy of OBoost fails

to increase with incoming data. A large number of sudden changes result in a large number of misclassification instances in

OBoost. AWE provides poor reactions to sudden changes, which can also be observed on the SEA S and SEA SR datasets. For

single classifiers, VFDT and NB cannot obtain recurrent concepts and relevant knowledge in the past, so they perform poorly

on datasets with sudden recurrent drifts. On the real datasets, i.e., Covertype, Poker, and Usenet, KME achieves excellent

performance. Moreover, on the Covertype and Poker datasets, KME is the most accurate classifier, followed by ADACC. On

the Usenet dataset, the performances of KME, NSE, and AWE are same and all of them rank in the first place.

It should be noted that the drift-detection system in KME cannot handle sudden drifts occurring in datasets with nom-

inal attributes. Therefore, TEST u inspects only the stationarity of the numerical attributes and ignores the changes in the

nominal attributes on the RanTree SRF dataset. First, KME reacts in a timely manner to sudden changes according to the

aforementioned analysis. Therefore, KME achieves the best performance on the SEA S and SEA SR datasets. Meanwhile, KME

provides the second best performance on the RanTree SRF dataset. Second, the preserved labelled examples of recurrent con-

cepts effectively enhance the predictive power of the candidate component classifier in KME. Therefore, the performance

of KME on the RanTree SRF , RanRBF GR , and SEA SR datasets is excellent. Finally, the evaluation and weighting mechanisms of

components ensure that KME maintains good prediction ability on datasets with incremental and gradual drifts, such as

Hyper, SEA G , and RanRBF GR . KME provides the best or second best prequential accuracy on all the datasets, regardless of the

280 S. Ren et al. / Information Sciences 430–431 (2018) 261–281

type of drift. Therefore, the prequential accuracy of KME achieves a perfect tradeoff between different types of concept drift

by combining the elements of online and chunk-based ensembles.

4.5. Statistical analysis of the results

To conclude the experimental results, the nonparametric Friedman test [12] is applied to compare the algorithms

over multiple datasets. The null hypothesis assumes that the performances of all the tested algorithms are the same.

Table 8 shows the average ranks of the algorithms. F F = 8 . 43 is obtained from the Friedman test. If the significant level

is set to 0.05, then the null hypothesis is rejected. Therefore, significant differences exist in the predictive accuracies of the

tested algorithms.

The Bonferroni–Dunn post hoc test [12] is conducted to determine whether the performance of KME is statistically better

than that of the other algorithms. The critical difference for α = 0 . 05 is 3.34. Therefore, KME performs significantly better

than ADACC, NB, VFDT, WMA, and AWE. However, the significant differences of prequential accuracies between KME and

the remaining classifiers cannot be achieved. We additionally use the Wilcoxon signed rank test [12] to compare KME and

the remaining algorithms. The p -values for OBag, NSE, and OBoost are p OBag = 0 . 001 , p NSE = 0 . 002 , and p OBoost = 0 . 053 ,

respectively. These results show that KME is more accurate than all the compared algorithms.

5. Conclusion

A hybrid ensemble classifier called KME, which combines the elements of online and chunk-based ensembles, is pro-

posed to address a wide variety of drift scenarios with limited labelled observations. The management of recurrent con-

cepts, the weighted result of all the components, and the use of unsupervised information can result in the maximum use

of relevant knowledge in data streams. The additional supervised information of the current block comes from the labelled

events in previous chunks rather than from a labelling process. Therefore, the labelling cost of semi-supervised methods can

be avoided, and the supervised information can be supplemented in a timely manner in KME. The processing mechanism

for abrupt drifts provides the highest weight for the most recent component classifier and attains a novel drift detection-

system based on supervised and unsupervised knowledge. Moreover, the component evaluation and weighting mechanisms

proposed for chunk-based ensembles make KME robust against random blips compared with a single classifier. Knowledge

transfer can be achieved by reusing labelled instances in the recurrent concepts and integrating the prediction results of

ensemble members. Consequently, KME can effectively handle gradual and incremental drifts. In conclusion, KME can ac-

commodate a wide variety of drift scenarios. However, most of the existing streaming algorithms specialize in only one type

of concept drift.

As a hybrid ensemble, KME is less dependent on chunk size. The proposed algorithm is optimized by the performance-

based pruning technique, which enables the algorithm to immediately adapt to the new environment. In addition to the in-

formation derived from labelled observations, unsupervised knowledge is exploited to improve the effectiveness of the drift

detection and recurrent-concept recognition. The weighting mechanism simultaneously considers the unsupervised knowl-

edge. An experimental analysis comparing KME with eight classifiers, including single classifiers, chunk-based ensembles,

and online ensembles, was conducted to verify the effectiveness of KME. The statistical tests suggest that the proposed

algorithm achieves high classification accuracies under various streaming conditions.

In the future, we plan to extend our algorithm to datasets with nominal attributes and to investigate ways to improve

the ensemble diversity with unlabelled observations.

Acknowledgements

This work is supported by the Program for New Century Excellent Talents in University (Grant NCET-10-0365), National

Nature Science Foundation of China (Grant 60973082, 11171369, 61202462, 61272395, 61370171, 61300128, 61572178) , the

National Nature Science Foundation of Hunan province (Grant 12JJ2041, 13JJ3091), and the Planned Science and Technology

Project of Hunan Province (Grant 2012FJ2012). The corresponding author of this paper is Bo Liao (dragonbw@163.com).

References

[1] M. Baena-Garcıa , J. del Campo-Ávila , R. Fidalgo , A. Bifet , R. Gavalda , R. Morales-Bueno , Early drift detection method, in: Proceedings of the Fourth
International Workshop on Knowledge Discovery from Data Streams, 6, 2006, pp. 77–86 .

[2] A. Bemporad , M. Morari , Verification of hybrid systems via mathematical programming, in: Proceedings of the International Workshop on Hybrid
Systems: Computation and Control, Springer, 1999, pp. 31–45 .

[3] A. Bifet , G. de Francisci Morales , J. Read , G. Holmes , B. Pfahringer , Efficient online evaluation of big data stream classifiers, in: Proceedings of the
Twenty-first ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2015, pp. 59–68 .

[4] A. Bifet , R. Gavalda , Learning from time-changing data with adaptive windowing, in: Proceedings of the 2007 SIAM International Conference on Data

Mining, SIAM, 2007, pp. 4 43–4 48 .
[5] A. Bifet , G. Holmes , R. Kirkby , B. Pfahringer , Moa: massive online analysis, J. Mach. Learn. Res. 11 (2010) 1601–1604 .

[6] A. Bifet , G. Holmes , B. Pfahringer , R. Kirkby , R. Gavaldà, New ensemble methods for evolving data streams, in: Proceedings of the Fifteenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2009, pp. 139–148 .

[7] G.E. Box , W.G. Hunter , J.S. Hunter , Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, 1, JSTOR, 1978 .
[8] L. Breiman , Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140 .

https://doi.org/10.13039/501100004602
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0001
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0002
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0002
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0002
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0003
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0003
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0003
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0003
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0003
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0003
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0004
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0004
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0004
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0005
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0005
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0005
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0005
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0005
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0006
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0006
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0006
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0006
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0006
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0006
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0007
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0007
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0007
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0007
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0008
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0008

S. Ren et al. / Information Sciences 430–431 (2018) 261–281 281

[9] D. Brzezinski , J. Stefanowski , Combining block-based and online methods in learning ensembles from concept drifting data streams, Inf. Sci. (NY) 265
(2014) 50–67 .

[10] D. Brzezinski , J. Stefanowski , Reacting to different types of concept drift: the accuracy updated ensemble algorithm, IEEE Trans. Neural Netw. Learn.
Syst. 25 (1) (2014) 81–94 .

[11] E. Cohen , M. Strauss , Maintaining time-decaying stream aggregates, in: Proceedings of the Twenty-second ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, ACM, 2003, pp. 223–233 .

[12] J. Demšar , Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1–30 .

[13] P. Domingos , G. Hulten , Mining high-speed data streams, in: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, 20 0 0, pp. 71–80 .

[14] R. Elwell , R. Polikar , Incremental learning of concept drift in nonstationary environments, IEEE Trans. Neural Netw. 22 (10) (2011) 1517–1531 .
[15] A. Fern , R. Givan , Online ensemble learning: an empirical study, Mach. Learn. 53 (1) (2003) 71–109 .

[16] G. Ferrari-Trecate , M. Muselli , D. Liberati , M. Morari , A clustering technique for the identification of piecewise affine systems, Automatica 39 (2) (2003)
205–217 .

[17] Y. Freund , R.E. Schapire , A desicion-theoretic generalization of on-line learning and an application to boosting, in: Proceedings of the European Con-
ference on Computational Learning Theory, Springer, 1995, pp. 23–37 .

[18] J. Gama , Knowledge Discovery from Data Streams, CRC Press, 2010 .

[19] J. Gama , P. Medas , G. Castillo , P. Rodrigues , Learning with Drift Detection, in: Proceedings of the Advances in Artificial Intelligence–SBIA 2004, Springer,
2004, pp. 286–295 .

[20] P.M. Gonçalves Jr. , R.S.M. De Barros , Rcd: a recurring concept drift framework, Pattern Recognit. Lett. 34 (9) (2013) 1018–1025 .
[21] G. Hulten , L. Spencer , P. Domingos , Mining time-changing data streams, in: Proceedings of the Seventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, 2001, pp. 97–106 .
[22] G. Jaber , A. Cornuéjols , P. Tarroux , A new on-line learning method for coping with recurring concepts: the ADACC system, in: Neural Information

Processing, Springer, 2013, pp. 595–604 .

[23] I. Katakis , G. Tsoumakas , I. Vlahavas , Tracking recurring contexts using ensemble classifiers: an application to email filtering, Knowl. Inf. Syst. 22 (3)
(2010) 371–391 .

[24] J.Z. Kolter , M.A. Maloof , Dynamic weighted majority: a new ensemble method for tracking concept drift, in: Proceedings of the Third IEEE International
Conference on Data Mining, 2003. ICDM 2003, IEEE, 2003, pp. 123–130 .

[25] G. Labinaz , M.M. Bayoumi , K. Rudie , A survey of modeling and control of hybrid systems, Ann. Rev. Control 21 (1997) 79–92 .
[26] P. Langley , W. Iba , K. Thompson , et al. , An analysis of Bayesian classifiers, in: Proceedings of the Association for the Advancement of Artificial Intelli-

gence (AAAI), 90, 1992, pp. 223–228 .

[27] C. Liang , Y. Zhang , P. Shi , Z. Hu , Learning very fast decision tree from uncertain data streams with positive and unlabeled samples, Inf. Sci. (Ny) 213
(2012) 50–67 .

[28] N. Littlestone , M.K. Warmuth , The weighted majority algorithm, Inf. Comput. 108 (2) (1994) 212–261 .
[29] L.L. Minku , X. Yao , Ddd: a new ensemble approach for dealing with concept drift, IEEE Trans. Knowl. Data Eng. 24 (4) (2012) 619–633 .

[30] G.S. Mudholkar , M.C. Trivedi , A gaussian approximation to the distribution of the sample variance for nonnormal populations, J. Am. Stat. Assoc. 76
(374) (1981) 479–485 .

[31] K. Nishida , K. Yamauchi , Detecting concept drift using statistical testing, in: Discovery Science, Springer, 2007, pp. 264–269 .

[32] K. Nishida , K. Yamauchi , T. Omori , Ace: adaptive classifiers-ensemble system for concept-drifting environments, in: Multiple Classifier Systems,
Springer, 2005, pp. 176–185 .

[33] N.C. Oza , S. Russell , Experimental comparisons of online and batch versions of bagging and boosting, in: Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM, 2001, pp. 359–364 .

[34] S. Ramamurthy , R. Bhatnagar , Tracking recurrent concept drift in streaming data using ensemble classifiers, in: Proceedings of the Sixth International
Conference on Machine Learning and Applications, 2007. ICMLA 2007., IEEE, 2007, pp. 404–409 .

[35] C. Stein , et al. , A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, in: Proceedings of the

Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Probability Theory, The Regents of the University of California, 1972,
pp. 583–602 .

[36] W.N. Street , Y. Kim , A streaming ensemble algorithm (sea) for large-scale classification, in: Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, 2001, pp. 377–382 .

[37] H. Wang , W. Fan , P.S. Yu , J. Han , Mining concept-drifting data streams using ensemble classifiers, in: Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, ACM, 2003, pp. 226–235 .

[38] Y. Wang , Z. Li , Y. Zhang , L. Zhang , Y. Jiang , Improving the performance of data stream classifiers by mining recurring contexts, in: Advanced Data

Mining and Applications, Springer, 2006, pp. 1094–1106 .
[39] G. Widmer , Tracking context changes through meta-learning, Mach. Learn. 27 (3) (1997) 259–286 .

[40] G. Widmer , M. Kubat , Learning in the presence of concept drift and hidden contexts, Mach. Learn. 23 (1) (1996) 69–101 .
[41] H. Witsenhausen , A class of hybrid-state continuous-time dynamic systems, IEEE Trans. Autom. Control 11 (2) (1966) 161–167 .

[42] Y. Yang , X. Wu , X. Zhu , Mining in anticipation for concept change: proactive-reactive prediction in data streams, Data Min. Knowl. Discov. 13 (3) (2006)
261–289 .

[43] M.-L. Zhang , Z.-H. Zhou , Exploiting unlabeled data to enhance ensemble diversity, Data Min. Knowl. Discov. 26 (1) (2013) 98–129 .
[44] I. Žliobait ̇e , Combining time and space similarity for small size learning under concept drift, in: Foundations of Intelligent Systems, Springer, 2009,

pp. 412–421 .

http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0009
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0009
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0009
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0010
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0010
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0010
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0011
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0011
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0011
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0012
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0012
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0013
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0013
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0013
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0014
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0014
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0014
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0015
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0015
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0015
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0016
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0016
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0016
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0016
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0016
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0017
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0017
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0017
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0018
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0018
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0019
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0019
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0019
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0019
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0019
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0020
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0020
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0020
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0021
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0021
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0021
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0021
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0022
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0022
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0022
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0022
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0023
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0023
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0023
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0023
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0024
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0024
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0024
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0025
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0025
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0025
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0025
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0026
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0026
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0026
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0026
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0026
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0027
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0028
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0028
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0028
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0029
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0029
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0029
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0030
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0030
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0030
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0031
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0031
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0031
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0032
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0032
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0032
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0032
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0033
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0033
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0033
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0034
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0034
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0034
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0035
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0035
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0035
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0036
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0036
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0036
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0037
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0037
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0037
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0037
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0037
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0038
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0038
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0038
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0038
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0038
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0038
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0039
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0039
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0040
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0040
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0040
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0041
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0041
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0042
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0042
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0042
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0042
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0043
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0043
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0043
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0044
http://refhub.elsevier.com/S0020-0255(17)31108-8/sbref0044

	Knowledge-maximized ensemble algorithm for different types of concept drift
	1 Introduction
	1.1 Motivation
	1.2 Our contributions
	1.3 Paper organization

	2 Related work
	2.1 Concept drift
	2.2 Handling mechanisms for data streams with concept drift
	2.3 Recognition of recurrent concepts

	3 The knowledge-maximized ensemble (KME) approach
	3.1 Concept description
	3.2 Concept-drift detection
	3.3 Recurrent concepts identification
	3.4 Concept division and ensemble update
	3.5 Weighting mechanism and final hypothesis
	3.6 Algorithm detail

	4 Experimental evaluation
	4.1 Experimental setup
	4.2 Dataset description
	4.2.1 Synthetic datasets
	4.2.2 Real datasets

	4.3 Analysis of the components of the proposed algorithm
	4.4 Comparative study of classifiers
	4.5 Statistical analysis of the results

	5 Conclusion
	 Acknowledgements
	 References

