World Scientific

Journal of Circuits, Systems, and Computers \\’
www.worldscientific.com

Vol. 32, No. 6 (2023) 2350105 (26 pages)
© World Scientific Publishing Company
DOI: 10.1142/50218126623501050

Application of Uncertain Programming in Hardware/
Software Partitioning: Model and Algorithm*

Si Chen™*T, Lida Huang™!, Guoqi Xie"#**, Renfa Lit"'" and
Kegqin Li%##

fCollege of Computer Science and Electronic Engineering,
Hunan University, Changsha,
Hunan 410082, P. R. China

YCenter for Convergence of Automobile and Cyberspace,
Research Institute of Hunan University in Chongging,
Chongqing 401120, P. R. China

§Department of Computer Science,
State University of New York, New Paltz,
New York 12561, USA
ehensi_2018@hnu. edu.cn

Inid_jt@hnu. edu.cn

**rggman@hnu.edu.cn

lirenfa@hnu. edu.cn
Hik@newpaltz.edu

Received 16 June 2022
Accepted 22 September 2022
Published 9 November 2022

Hardware/software partitioning is a typical multi-stage decision optimization problem; most
existing hardware/software partitioning methods ignore a fact that real-life decisions are usually
made in an uncertain state. We should model the hardware/software partitioning problem in
uncertain environments and deal with uncertainty. The state-of-the-art work proposed an
uncertainty conversion method for hardware/software partitioning, but this method does not
include the equivalent deterministic model and is not suitable for dealing with different types of
uncertainties. In order to cope with different situations with various uncertainties, we should
apply uncertain programming to build a model in uncertain environments and give different
equivalent deterministic models to convert different uncertainties theoretically. In this paper,
we present the process of applying uncertain programming to solve the hardware/software
partitioning problem, including the model and algorithm. We convert the uncertain program-
ming model into its equivalent deterministic models, including the expected value model and the
chance-constrained programming model; we give details for the conversion methods of these two
models. We present the custom genetic algorithm to solve the converted model, by incorpo-
rating a greedy idea in two steps of the genetic algorithm. Experimental results show that the
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custom genetic algorithm can find a high-quality approximate solution while running much
faster for large input scales, compared with the exact algorithm.

Keywords: Uncertain programming; hardware/software partitioning; the custom genetic algorithm.

1. Introduction
1.1. Background and motivation

Hardware/software partitioning is a typical multi-stage decision optimization
problem in embedded system design, where hardware and software are used for
realizing different functional modules to achieve the optimal objective, under the
condition of satisfying system performance constraints. There has been a lot of re-
search on hardware/software partitioning, and various models and algorithms have
been proposed, including exact algorithms'® and heuristic algorithms.”'? However,
most existing hardware/software partitioning methods ignore a fact that is also
ignored by most optimization problems, that is, real-life decisions are usually made in
an uncertain state.

Typically, when conducting hardware/software partitioning, we always assume
that the system’s relevant parameters are determinate values and pre-estimate these
parameter values based on experience; uncertainty is introduced by this way because
these pre-estimations are not completely accurate. We should model the hardware/
software partitioning problem in uncertain environments and deal with uncertainty.

In order to model the optimization problems in uncertain environments, Liu
provides uncertain programming theory,'® which means the optimization theory in
generally uncertain environments. Uncertain programming gives the concept of
equivalent deterministic model to deal with uncertainty, and it has been applied to
4 assignment'® and shortest path.'® Al-

though some works have considered the uncertainty of the hardware/software par-
17-20

many problems, such as transportation,
titioning problem, none of them have given the equivalent deterministic model,
for converting the uncertainty theoretically.

The state-of-the-art work®® proposed an uncertainty conversion method for
hardware/software partitioning, but this method does not include the equivalent
deterministic model and is not suitable for dealing with different types of uncer-
tainties. In order to cope with different situations with various uncertainties, we
should apply uncertain programming to build a model in uncertain environments
and give different equivalent deterministic models to convert different uncertainties
theoretically.

1.2. Contributions

In this paper, we present the process of applying uncertain programming to solve
the hardware/software partitioning problem, including the model and algorithm.
We pay attention to the theoretical approach, rather than the system design.
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Fig. 1. The detailed process of applying uncertain programming,.

The detailed process has been displayed in Fig. 1. Specifically, we express the
hardware/software problem as an optimization problem and solve it, including that:
(1) we employ uncertain variables to represent system parameters that need to be
pre-estimated, formulating the uncertain programming model; (2) we convert the
uncertain programming model into the equivalent deterministic model, because
the deterministic model can be solved mathematically; and (3) we adopt efficient
algorithms to solve the model. Our main contributions are described below.

(i) We convert the uncertain programming model into its equivalent deterministic
models, including the expected value model and the chance-constrained pro-
gramming model. We give details for the conversion methods of these two
models, including the objective conversion and the constraint conversion, and we
finally present a unified form of the converted model.

(ii) We present the custom genetic algorithm to solve the converted model, by in-
corporating a greedy idea in two steps of the genetic algorithm. Experimental
results show that the custom genetic algorithm can find a high-quality ap-
proximate solution while running much faster for large input scales, compared
with the exact algorithm.

The rest of this paper is structured as follows. Section 2 shows related work.
Section 3 presents the uncertain programming model. Section 4 proposes the custom
genetic algorithm. Section 5 gives experimental results and Sec. 6 concludes the paper.

2. Related Work

Embedded system design is very complex, and many works have investigated it.2'2°
We conduct research on the hardware/software partitioning in design. The hardware/
software partitioning problem aims at conducting a reasonable partitioning for
hardware implementation and software implementation of system modules, for
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meeting system design requirements, which is an NP-hard optimization problem.
Some methods have done many efforts to solve the hardware/software partitioning
problem. Exact algorithms (such as integer linear programming,’” dynamic pro-
gramming®' and branch-and-bound®") are used for the hardware/software parti-
tioning problem with small inputs, while heuristic algorithms (such as genetic
algorithm,”® greedy algorithm®!’ and tabu search!'!''?) are implemented to settle
large-scale problems, for the reason that exact algorithms run slowly for large inputs.

All these existing methods run in deterministic environments, in which perfor-
mance parameters of the system components are determinate, but these performance
parameters cannot be accurately determined in fact. That is, the above existing
methods do not consider making real-life decisions in an uncertain state. The
hardware/software partitioning problem should be modeled in uncertain environ-
ments, and the uncertainty should be dealt with.

As a theory of modeling optimization problems in uncertain environments, un-
certain programming presents the equivalent deterministic model to deal with un-
certainty, and it has been applied to many problems.'* ' For the hardware/software
partitioning problem, some works have considered its uncertainty. In 2012, Jiang
et al.'” for the first time proposed an uncertain model for hardware/software par-
titioning; the uncertain model was then expanded to the cyber-physical system in
2019.'® In that work, the authors elaborate on the case where system parameters are
linear uncertain variables. Wang et al.'’ paid attention to the case where system para-

12 presented an un-

meters are normal uncertain variables in 2016. In 2021, Chen et a
certainty conversion method that can be applied to various forms of uncertain variables.

The above works have conducted a preliminary exploration of dealing with un-
certainty, but none of them have given the equivalent deterministic model, for
converting the uncertainty theoretically. In order to cope with different situations
with various uncertainties, we should apply uncertain programming to build a model
in uncertain environments and give different equivalent deterministic models to
convert different uncertainties theoretically. In this paper, we present the process of
applying uncertain programming to solve the hardware/software partitioning
problem, including the model and algorithm.

3. Uncertain Programming Model

In this section, we elaborate on the modeling process of the uncertain programming
model. First, we briefly introduce some basic definitions of uncertain programming
theory. Second, we present the definition and formulation of the hardware/software
partitioning problem. Third, we propose the equivalent deterministic models of the
uncertain programming model, including the expected value model and the chance-
constrained programming model. Fourth, we try to explain the relationship between
the deterministic model and the uncertain programming model. At last, we instan-
tiate the uncertain programming model through an example.
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3.1. Basic definitions

For ease of understanding, in this subsection, we introduce some basic definitions
that will be used later. These definitions come from uncertainty theory,?® which was
founded by Liu in 2007, and are applied in uncertain programming.

Following notions are utilized in definitions: (1) I" represents a nonempty set; (2) a
collection £ of I'’s subsets is called a o-algebra; (3) each element A in the o-algebra £
is called an event and (4) a number M{A} is assigned to each event A, which
indicates the belief degree (i.e., probability) that the event A will occur.

Definition 1.!%2% The uncertain measure is a function that maps the collection £ to
the range [0, 1]. If the set function M with events A can satisfy the following four
axioms, it is called an uncertain measure.

o M{T'} =1 for the universal set I' (normality).
o M{A} < M{A,} whenever A; C A, (monotonicity).
o M{A} + M{A¢} =1 for any event A (self-duality).

o M{UZ A} <52 M{A;} for every countable sequence of events {A;} (countable
subadditivity).

Definition 2.'%26 If the set function M is an uncertain measure, the triplet (I', £, M)
is called an uncertainty space. An uncertain variable is a measurable function -y that
maps the uncertainty space (I, £, M) to the set of real numbers.

Definition 3.'%20 The uncertainty distribution ® is a description to an uncertain
variable . For any real number z, ®: R — [0, 1] is defined by ®(z) = M{y < z}.

Definition 4.""° For an uncertain variable v, y4,,(8) = sup{g|M{y > ¢} > 3} is
called the B-optimistic value to -y, where 3 € (0, 1].

3.2. Problem definition and formulation

Considering that what we focus on is the modeling method of the uncertain pro-
gramming for hardware/software partitioning problem, not the model itself, we use
the simple series system model similar to Ref. 27. Suppose that the system is com-
posed of a series of n basic scheduling modules, denoted as M = {M;, M,, ..., M,},
where M, follows M; for ¢ =1,2,...,n — 1. These modules can be functions or
procedures, where the communication time between each other is not included in our
model for simplicity. Each module M; can be implemented in hardware or software
while associating with hardware area a;, execution time ¢; and power consumption p;.
Figure 2 shows an example with n = 6.

We employ uncertain variables to represent system parameters, formulating
the uncertain programming model of the hardware/software partitioning problem.
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Fig. 2. An example system model with 6 modules.

Table 1. Notations and definitions.

Notation Definition

a; Hardware area of implementing M; in hardware

D, Uncertainty distribution of a;

i Inverse uncertainty distribution of a;

t5 Execution time of implementing M in software

D Uncertainty distribution of ¢}

o5 Inverse uncertainty distribution of ¢§

th Execution time of implementing M; in hardware
ol Uncertainty distribution of ¢}

b’ Inverse uncertainty distribution of ¢

D Power consumption of implementing M; in software
@5, Uncertainty distribution of p§

@;;1 Inverse uncertainty distribution of p§

ph Power consumption of implementing M; in hardware
i 21- Uncertainty distribution of p*

<I>B[] Inverse uncertainty distribution of p¥

T, Total execution time limitation

P, Total power consumption limitation

The notations illustrated in Table 1 are defined on M, and we will briefly explain
what they mean.

If the module M; is implemented in hardware, it will occupy the hardware area.
Uncertain variable a; is used to denote the hardware area of M;, and ®,; is the
uncertainty distribution of a;.

The execution of each module M; takes time. If M; is implemented in software,
uncertain variable ¢§ is used to denote its execution time; if M; is implemented in
hardware, uncertain variable t! is used to denote its execution time. ®5; and ® %
are uncertainty distributions of ¢$ and !, respectively.

Each module M; consumes power when running. If M, is implemented in software,
uncertain variable p$ is used to denote its power consumption; if M; is imple-
mented in hardware, uncertain variable p! is used to denote its power consump-

tion. @3, and @ 21 are uncertainty distributions of p$ and p, respectively.

The hardware/software partitioning problem we define here is to make a decision

that which modules should be implemented in software and which in hardware,
where each module can only be implemented in one way. That is, the problem is to
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find a bipartition B of M: B = (M, M), where My U My, = M and M, N M, = (.
We describe our modeling method in detail, by taking the example of minimizing the
hardware area while satisfying the time and power consumption constraints. That is,
our objective is to get the minimal total hardware area, while the total execution
time does not exceed T, and the total power consumption does not exceed P,. By the
way, our method is a general method and also works when the objective is to opti-
mize time or power consumption.

Let x = (zq, x9, . .., x,) which represents the implementation way of n modules be
a feasible solution to this partitioning problem, in which z; is chosen from {0,1}. If
xz; = 0, it means that the module M; will be implemented in hardware, otherwise in
software. Thus, the total hardware area is > ;- a;(1 — z;), and the corresponding
total execution time is 7 [tSz; + (1 — z;)], and the corresponding total power
consumption is S [pSx; + pl(1 — x;)].

Based on the above definitions, we model the hardware/software partitioning
problem B as an optimization problem and express it as follows:

a; (1 —x;),

n
minimize

i=1
n

subject to Z [t5a; + 01— ;)] < T, )
=1

n

i=1
xiE{O,l}, i:l,?,...,n.

3.3. Equivalent deterministic models

In this model, a;, t3, t?, p; and p? are uncertain variables, so it is hard to solve the
model directly. We should convert the model into the equivalent deterministic model
to solve. Uncertain programming was founded by Liu'® in 2009 as a type of math-
ematical programming involving uncertain variables, and it gives four ranking cri-
teria for uncertain variables to establish a mathematical model, including expected
value criterion, optimistic value criterion, pessimistic value criterion and chance
criterion. In this paper, based on uncertain programming'® and uncertainty theory,”°
we, respectively, take the expected value criterion and the optimistic value criterion
as examples to describe the model conversion process in detail.

3.3.1. Expected value model

According to the expected value criterion,'® for two uncertain variables v and p,
~v > pif and only if E(v) > E(p). In this case, we can get the following template for
converting the model with uncertain variables.
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minimize  y(x,7),

subject to ¢;(x,v) <0, j=1,2,...,p.

4
minimize  Efy(x, )],
subject to  Elc;(x,7)] <0, j=1,2,...,p.

In order to complete the model conversion, we need to calculate the expected
values of the objective and constraint equations, respectively. For ease of under-
standing, we list a theorem used in calculations; we omit the proof of this theorem to
save space, and the detailed proof can be found in Refs. 13 and 26.

Theorem 1. Assume that v1,7s,...,7, are independent uncertain variables, and
f[i(x), fo(x), ..., [n(x), fo(x) are real-valued functions, then the expected value

Ely(x,4)] of the function y(x,v) = f1(x)v1 + - + [,(X)7n + fo(X) can be calculated
as follows:

E[y(X7 7)} = fl(x)Eh/l] +eee fn(X)E[’yn] + fO(X) :

(1) For the objective equation Y i-; a;(1 — z;), note that each (1 — x;) is a real-
valued function for ¢ = 1,2,...,n. According to Theorem 1, its expected value
can be computed as E[> it a;(1 — z;)] = Y it Ela;](1 — z).

(2) For the constraint equation S_1[tiz; +t}(1 — z;)] < T., we need to calculate
the expected value of Y7 [t%z; +t2(1 — x;)] — T,. Note that each z; and each
(1 — ;) are real-valued functions for ¢ =1,2,...,n, and (—T,) is also a real-
valued function, so its expected value can be calculated as follows:

n

Z[t?% +ti(l—z)] =T,

i=1

n

= [Bltie: + B - @)] - T..

E

Similarly, for the constraint equation S_1 [pSz; + pP(1 — x;)] < P., we have

n

> Ipiz; +pi(1—x)] - P.
i=1

n

= Z[E[P:]% + Elpi](1—=)] - P..
=1

E

Uncertainty theory gives the expected values of different types of uncertain
variables, and we can directly use these results in calculations. For example, for
linear uncertain variable v ~ L(c¢,d), E[y] = (¢ + d)/2, where ¢ and d are real
numbers with ¢ < d.

3.3.2. Chance-constrained programming model

In practice, the expected value model is not suitable for all situations; when the
stability of the uncertain variable is poor, the expected value cannot reflect the
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characteristics of the variable. Furthermore, we are not always concerned about
maximizing or minimizing the expected value, but consider the belief degree of the
events’ occurrence. Sometimes, we may allow the decision to be made without sat-
isfying the constraints, but the decision’s measure of satisfying the constraints
cannot be less than a certain confidence level. In this case, the chance-constrained
programming model is a good choice.

According to the optimistic value criterion,'® for two uncertain variables v and
p, v>p if and only if 74,(8) > psp(B) for some predetermined confidence
level 3 € (0,1], where 74,,(3) and pg,,(3) are the B-optimistic values of v and p,
respectively. For the uncertain constraints c;(x,7) <0, the establishment of the
uncertain constraints is related to a confidence level a: M{c;(x,7v) < 0} > «, where
M{cj(x,v) < 0} is the belief degree that event c;(x,v) < 0 occurs. In this case, we
can get the following template for converting the model with uncertain variables.

minimize  y(x,7),

subject to ¢;(x,7) <0, j=1,2,...,p.
3

minimize max y,
subject to M{y(x,7) = 7} > 8,
M{C](X77)SO}ZQJ7 j:1525"'ap7
where max y means the S-optimistic value to the objective function y(x,~).
In order to complete the model conversion, we list three theorems used in the

conversion; we omit the proofs of these three theorems to save space, and detailed
proofs can be found in Refs. 13 and 26.

Theorem 2. Assume that v1,7s,---,%, ore independent uncertain variables with
uncertainty distributions. If f is a strictly increasing function, theny = f(v1,7v2,-- -,
Vo) s an uncertain variable, and

P)/sup(ﬂ) = f(’)/lsup(ﬁ)v 725\1}3 (5)7 s 7’Vnsup(ﬂ)) .

Theorem 3. Assume that 7y is an uncertain variable with uncertainty distribution ®.
Then its B-optimistic value is

’Ysup(ﬁ) = (1)71(1 - 6) .

Theorem 4. Assume that 1,7, ---,7, are independent uncertain variables, ®q,
Dy, ..., D, are their uncertainty distributions and f(X), fo(x),..., fn(x), fo(x) are
all nonnegative real-valued functions, then

M{zn:fi(m)% < fo(:c)} > a
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holds if and only if

where « is a confidence level.

(1) For the objective, we need to compute the S-optimistic value to > it; a;(1 — ;).
We notice that > i a;(1 — z;) is an increasing function to a,, as, . .., a,, and we
denote Y it a;(1 — x;) as a. According to Theorem 2, a is an uncertain variable
and ag,, (8) = Y721 Gisup(B)(1 — ;). Based on Theorem 3, the 3-optimistic value
to Sy a;(1—a;)is o0y @11 — B)(1 — 2;), where @ ! is the inverse uncer-
tainty distribution of a,.

(2) For the constraint, we give a lemma that will be used in the conversion based on
the model characteristics and make a simple proof.

Lemma 1. Assume that vi,%a,--.y%Yn, P1s P2, -+ Pn are independent uncertain
variables with uncertainty distributions ®], ®,,..., &), &), &4, ... ®f, respectively,
x; takes value from {0,1} fori=1,2,...,n, and fy(x) is a nonnegative real-valued

function, then the inequation

M{ <ixz’72 + i(l - xz)pz) < fo(“’)} >«

holds if and only if

n

Z 2] () + D (1 —2,)®! (o) < fol).

i=1

Proof. Note that each z; and each (1 — z;) are nonnegative real-valued functions,
for i =1,2,...,n; that is, these 2n terms are all nonnegative real-valued functions.
According to Theorem 4, we consider the case of 2n independent uncertain variables.
Considering that v, 7s,...,7s, are independent, we denote v, 1,Vni2,---,Yon a5
P15 P25 - - - Pn- Lemma 1 is then proven. O

Based on the above description, the two uncertain constraints hold with confi-
dence levels as follows:

n n
IPILEED SIERICE A EPY @)
=1 =1
M{me? P31t < Pc} >, ®)
=1 =1

where o, and «, are the confidence levels of the time constraint and the power
consumption constraint, respectively. It means that the belief degree of the time
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constraint occurrence cannot be less than a; and the belief degree of the power
consumption constraint occurrence cannot be less than c,,. According to the defi-

nitions in Sec. 3.2, t5,t5,...,t5, t4, 5, ... t2 are independent of each other. Based
on Lemma 1, the uncertain time constraint (i.e., Eq. (2)) is converted into

n

Z[(I)tz +Z(I) l_x)]STca (4)

i=1

where q),sf and @} are inverse uncertainty distributions of t¢ and t1, respectively.
Similarly, the uncertain power consumption constraint (i.e., Eq. (3)) is converted
into

n

Z[ Z(I)hl lix)]SPca (5)

i=1

where ©7; " and @2{1 are inverse uncertainty distributions of p} and pl, respectively.

Note that confidence levels 3, o, and o, are independent and can be different
values. These confidence levels generally depend on expert experience and are
problem dependent, which need to be analyzed for specific problems.

Uncertainty theory gives the inverse uncertainty distributions of different types of
uncertain variables, and we can directly use these results in conversion. For example,
the inverse uncertainty distribution of linear uncertain variable L(c,d) is
da)=(1-a)c+ad.

3.3.3. Converted model

Finally, we use some notations to simplify the converted object and constraints, and
we present a unified form of the converted model.

e For the expected value model, we make the following denotations:

¢ai = E[ai]a
¢ti = E[t;]fE[t?]v ¢pz: [ ] E[ z]v

TI =T, -3 B, Pl=P - EpY.
=1 i=1

o For the chance-constrained programming model, we make the following denotations:

¢ai = q)gzl(]- _5)7
Gy = O35 (o) — F (o), Gpi = q)sjl( )_(I)h'il(o‘p)7

T =T, — Z@ (), P.=P, — Z@h
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There is no doubt that 7', > 0 and P, > 0, otherwise the constraints are unrea-
sonable and the problem does not hold.?” Then, the final equivalent deterministic
model of problem B is as follows:

n

minimize Z bai(1 — ;) ,
i—1
n

subject to Z dpw; < T,
i=1

n
Zgbpimi ch/a

i=1

z;€{0,1}, i=1,2,....n.

We notice that minimizing the value of > i ¢,;(1 — ;) is equal to maximizing the
value of Y L, ¢y x;, so B can be formulated as the following Bj:

n
maximize Z Dui Ti
i—1
n
subject to Z dpx; <T0,
i1

Z¢pzngpé7
=1
z; €{0,1}, i=1,2,...,n.

3.4. Relationship between the deterministic model and the uncertain
programming model

In this subsection, we transform our partitioning uncertain programming model into
the deterministic model by specifically setting the parameters of the uncertain pro-
gramming model. In this way, we try to explain the relationship between the de-
terministic model and the uncertain programming model.

For the model of problem B in Sec. 3.2 (i.e., Eq. (1)), we consider two scenarios:

(i) If all parameters a;, t5, t*, p$ and p! are all known certain variables, Eq. (1) is a
deterministic model that can be solved directly. Most of the current models are
in this form, and we call it the original deterministic model here.

(ii) If all parameters a;, t£, t%, p$ and p! are all unknown uncertain variables, Eq. (1)
is an uncertain programming model that should be converted into its equivalent
deterministic model (i.e., Eq. (8)).

In the second scenario, for the equivalent deterministic model, we take the
expected value model as an example and consider the linear case where the uncertain
variable presents linear uncertainty distribution. Then, all parameters are linear
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uncertain variables, denoted by L(cu,dy;), £(c5;,d5:), L(ck, db), L(cy;,d};) and

E(cgi,dgi), respectively, where c,;, dy;, ¢, d;, ¢, dB, Cpi> i cgi, dﬁi are all non-
negative real numbers. According to uncertainty theory,?® for linear uncertain
variable v ~ L(c, d), its expected value is E[y] = (¢ +d)/2.

L(c,d) means that any value in the range (c,d) has the same probability to
become the value of the current uncertain variable. In particular, we let all ¢ = d,

then the uncertain variable’s value becomes a certain value. In this way, we have

_ _ S _ S __ 738 h_ h _ ;h S __ 8 __ 3s
a; =Cq =dg;, ti=cy=dy, t;=cy=dy, pi=cy=d

h_ b gh
pis  Pi = Cpi = Qyp; -

Based on the above settings and calculation formulas, the objective of Eq. (8) is
calculated as follows:

n C. _"_ d . n
minimize L:Zl [<2> (1- xz)] = ;ai(l —x;),
and the constraints of Eq. (8) are calculated as

[ (cii +dis cly +di; N h
Z KT>$Z + <T (I—mz)| = Z[tﬂfz +t/(1—a)] < T,

i=1 i=1

s s h h n
cpz' + dpi cpi + dpi _ S h
(T it |\ T (1—a) —Z[pi$i+pi(1—93i>] <P.

i=1

n

)

i=1

In this way, we complete the conversion from the uncertain programming model’s
equivalent deterministic model to the original deterministic model. That is to say,
the uncertain programming model is the same as the original deterministic model
after making the specific conversion, which indicates that the original deterministic
model is a special case of the uncertain programming model.

3.5. Problem example

In this subsection, we take Fig. 2 as an example and give specific values to each
module’s parameters to instantiate the model. We take the expected value model (i.e.,
Eq. (6)) as an example to give the specific calculation process. We assume that (1) the
hardware area of each module is a normal uncertain variable, denoted as N (u, 0);
(2) the execution time of each module is a linear uncertain variable, denoted as £(c, d)
and (3) the power consumption of each module is a zigzag uncertain variable, denoted
as Z(c,d, e). According to uncertainty theory,? the expected values of N (u, o), L(c, d)
and Z(c,d,e) are u, (c+d)/2 and (¢ + 2d + €)/4, respectively.
We make the hardware area of each module meet the following assumptions:

a; = N(5,02), Qo = N(G,OS), as = N(?,Ol),
a, = N(Q,Ol), as = N(S, 02)7 ag = ./\/(10,01) .
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We make the software execution time and hardware execution time of each module
meet the following assumptions:

t5 = £(20,28), t5=L(30,36), t5=L(50,52), t§=L(40,45),
ti = £(50,53), t§=L(35,38), th=L(12,18), th=L(8,12),
th = £(12,15), th=,£(10,20), t¥=L(5,8), th=L(78).

We make the software power consumption and hardware power consumption of each
module meet the following assumptions:

p} = 2Z(12,15,18), p3 = 2(15,19,20), p5 = 2(14,18,20), pj = 2(16,22,15),
pi = £(20,28,30), pi= Z(18,20,21), p}f = Z(4,7,8), pg = Z(5,8,10),
py = Z(5,7,10), p}=2(6,10,12), pp=Z2(8,12,15), pg= Z(7,10,15).

We suppose that the total execution time limitation 7, is 120 and the total power
consumption limitation P, is 80. After that, the objective of the model is as follows:

maximize 5x; + 65 + T3 + 924 + 85 + 10x4,
and the constraints of the model are as follows:

(24 — 15)z, + (33 — 10)ay + (51 — 13.5)z5 + (42.5 — 15)2, + (51.5 — 6.5)x;
+ (36.5 — 7.5)z6 + (15 4 10 4+ 13.5 4 15 + 6.5 + 7.5) < 120,

(15 — 6.5); + (18.25 — 7.75)xy 4 (17.5 — 7.25)x5 4 (18.75 — 9.5)x,
+ (26.5 — 11.75)x5 + (19.75 — 10.5)26 + (6.5 + 7.75 + 7.25
+ 9.5+ 11.75 4 10.5) < 80.

Next, we can adopt efficient algorithms to solve the model. We use Algorithm 2
described in Sec. 4 to solve the model and get the solution: x = {0, 1,0, 0,0, 1}, which
means that modules M,, Mg are implemented in software and modules M;, M;, M,,
M5 are implemented in hardware.

4. Algorithm

In this section, we propose the algorithm based on the characteristics of our model.
Through the conversion in Sec. 3.3.3, the hardware/software partitioning problem has
been transformed into a two-dimensional 0-1 knapsack problem, which has one more
constraint than the traditional 0-1 knapsack. We come up with the custom genetic
algorithm to settle this problem, by incorporating a greedy idea in the genetic algorithm.

4.1. Greedy idea

The greedy idea always makes the current best choice when solving problems.?® For
the traditional 0-1 knapsack problem, each item’s profit-to-weight ratio is used as the
basis for the greedy algorithm to fill the knapsack. In each iteration, the item with
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the largest profit-to-weight ratio is filled into the knapsack until the knapsack is full
or there is no item that is suitable for the knapsack’s remaining capacity. Considering
that our hardware/software partitioning problem is an extension of the traditional
0-1 knapsack problem, the greedy idea for the 0-1 knapsack problem can be extended
to solve it.%”

In order to simplify the constraints’ number and normalize the constraints,
the vector representation method is used, which defines ¥ = (1,1) and 52 =
(b1i/Te, bpi/ Pr) fori = 1,2,...,n. This method can be used for multiple constraints,
not just two. Then, the final equivalent deterministic model B; (i.e., Eq. (9)) can be
reformulated as follows:

n
maximize Z DuiTi
i—1
n_oo_,
subject to Zgbixi <4,
i—1
z; €{0,1}, i=1,2,...,n.

The profit-to-weight ratio of each item ¢ here can be defined as ¢,;/ \(EZ |, where \(EZ| is

denoted as follows:
bii ) ° bpi\ 2
\/(T_t (7))

Then, based on the greedy idea, the item with the largest ¢;/ |$2| can be packed into

the knapsack one by one if constraint Z;L:lcé:wi < 7 is satisfied.

4.2. The custom genetic algorithm

We use the genetic algorithm to solve the model for getting the approximate solu-
tion. In the process of implementing the genetic algorithm, we add the above greedy
idea in two steps to optimize it.

(i) We use the greedy idea to generate an initial solution and add this solution to
the initial population of the genetic algorithm to speed up the convergence of the
genetic algorithm.

(ii) For the individual who does not meet the constraints (i.e., invalid solution) in
the population of each generation, we use the greedy idea to modify it. There are
many strategies when combining the genetic algorithm with the greedy idea.
Reference 29 has studied different strategies in detail, and we choose the best
strategy it proposes. Specifically, for this kind of individual, we take out the
items that have been packed into the knapsack in ascending order of the profit-
to-weight ratio, until the constraints are met, as shown in Algorithm 1.
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Algorithm 1. The Solution Modification Algorithm
Input: time limitation 7., power consumption limitation P/, all relevant parame-

ters of each module, original solution x(z1, Z2,...,2Zy)
Output: modified solution Xy, (z1, z2, ..., Zy)
1: Xy ¢ Xo;
2: QuerpackedFlag < 0;
3: Calculate Time and Power of xy;
4: if (Time>T! or Power>P!) then
5: OverpackedFlag < 1;
6: end if
7. while (OverpackedFlag) do
8: Remove the item ¢ with the smallest ﬁ;‘“' from the knapsack;
9: Ty < 0; Z
10: Calculate Time and Power of Xy;
11: if (Time < T! and Power < P!) then
12: OverpackedFlag < 0;
13: end if
14: end while
15: return x,,

More details about the custom genetic algorithm are presented in Algorithm 2.
Lines 1—2 initialize the parameters of the hardware/software partitioning prob-
lem and set the used time Time and used power Power of the greedy idea to 0.

Line 3 sorts each item i in descending order of the profit-to-weight ratio ¢;/|¢;|
for satisfying the greedy strategy.

Lines 4—13 generate the greedy solution x’ according to the greedy idea described
above.

Line 14 mixes the greedy solution individual x’ and random 0-1 sequences indi-
viduals to generate the first population P,. Then, the genetic algorithm is applied to
generate the approximate optimal solution x.

Lines 15—16 generate an initial solution to the problem.

Line 17 determines whether the termination conditions of the propagation are
met, such as generation numbers and convergence.

Lines 18—24 generate a new population P, through selection, crossover and
mutation operations on the original population P,, where the strategies for selection,
crossover and mutation are roulette wheel selection, two-points crossover and one-
point mutation, respectively.

Lines 25—31 update the current solution and ensure that the current optimal
solution exists in the next population. In the end, the algorithm will return an
approximate optimal solution x.
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Algorithm 2. The Custom Genetic Algorithm
Input: time limitation 7)., power consumption limitation P., all relevant parame-

ters of each module
Output: solution x(x1,z2,...,%,)
1: Encode the hardware/software partitioning problem’s parameters;
2: Initialize Time and Power as 0;

3. Sort all items to make 22t > ¢’32‘

g > ban .
[61] = |82

- — 3

V

n

4: for (i + 1;i < n;i++) do

5 if (Time+ %’f} < 1 and Power + d;f,‘ < 1) then
6 z; 1 ‘ ‘

7: Time < Time + ¢th,i;

8 Power <+ Power + d;é“f ;

9 else ‘

10: z; < 0;

11: end if

12: end for

13: Generate the greedy solution x’;

14: Generate the first population P, with the greedy solution individual and random
0-1 sequences individuals;

15: Compute the fitness of each individual in P,, where every individual has been
modified by Algorithm 1;

16: Record the individual with the highest fitness as the solution x of the problem;

17: while (termination conditions) do

18: Clear new population P;;

19: while (size of P, < size of P,) do

20: Perform selection in P, to generate two parents p; and po;

21: Perform crossover on p; and ps by probability crossover_rate to generate
two offsprings o; and os;

22: Perform mutation on 07 and o2 by probability mutation_rate to generate
individuals o] and ob;

23: Put individuals o} and of into new population P,;

24: end while

25: Find the individual 0} with the highest fitness in P/, where every individual
has been modified by Algorithm 1;
26: if (fitness(o;) > fitness(x)) then

27: X o’f;
28: else

29: o’f — X;
30: end if

31: P, + Pl;

32: end while
33: return x
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5. Experimental Results

Considering that we have given a detailed example of the expected value model in
Sec. 3.5, in this section, we take the chance-constrained programming model (i.e.,
Eq. (7)) as an example to conduct experiments. First, considering that we propose
the custom genetic algorithm in Sec. 4, to verify the performance of this algorithm,
we compare it with the exact algorithm. Second, considering that the chance-
constrained programming model contains a lot of parameters, we study the influence
of model parameters on the partitioning results. All codes of the experiments are
written in Python and run on an Intel i5 computer of 2.9 GHz.

5.1. Module parameter settings

Without loss of generality, we use randomly generated instances in our experiments.
We give the settings of each module’s relevant parameters and system performance
limitations in this subsection. In order to present different types of uncertainty
distributions, we make different performances of each module follow different un-
certainty distributions. Similar to Sec. 3.5, we assume that the hardware area, exe-
cution time and power consumption of each module are normal uncertain variable,
linear uncertain variable and zigzag uncertain variable, respectively, denoted as
N (p,0), L(e,d) and Z(c,d, e), respectively. According to uncertainty theory,?® the
inverse uncertainty distribution of normal uncertain variable N (i, o) is

ov3 o

1 (a)=p+ Y21
(@) = p+ —Ino—

and the inverse uncertainty distribution of linear uncertain variable £(c, d) is
7' (a) = (1 -a)c+ab,

and the inverse uncertainty distribution of zigzag uncertain variable Z(c, d, e) is

&(a) = (1 -2a)c+2ad if  <0.5,
L (2-2a)d+ (2a —1)e if a>0.5.

For each module, the parameters need to meet the real situation; that is, the
execution time and power consumption of hardware implementation are less than
that of software implementation for the same module. We use the following rules to
generate each module’s parameters; these rules are consistent with Ref. 27 and refer
to the corresponding settings in Refs. 18, 20, while meeting that T, > 0 and P. > 0.

o [i, is randomly generated from [0, 100] and o,; is randomly generated from [0, 5].
o c¢}; is randomly generated from [0, 30] and dj; is randomly generated from [c};, 30];
¢l is randomly generated from [0, \ - ¢5;] and dJ; is randomly generated from [c2,

A - dj;], where 0 < A < 1 (taking 0.5 in the experiment).
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S
pi
is randomly generated from [d;, 20]; ck

pir pi
d;i is randomly generated from [c;}i, A-dy;] and egi is randomly generated from

[dh;, X~ e5;], where 0 < A < 1 (taking 0.5 in the experiment).
o T, is generated from [S7; @} ' (ay), Y20 @5, (oy)] and P, is generated from
Do @2{1(04[,), r @ZZI ()], which can guarantee that T, > 0 and P, > 0.

e cj; is randomly generated from [0, 20], d}; is randomly generated from [c};, 20], e},

is randomly generated from [0, A - c};],

S
pry

5.2. Algorithm comparison

In this subsection, we investigate the performance of the custom genetic algorithm,
by comparing the results of our approximate algorithm with the exact algorithm.
The exact algorithm we use is dynamic programming, which is a classical algorithm
for finding the exact solution to the 0-1 knapsack problem and can be extended to
solve the two-dimensional 0-1 knapsack problem.

Considering that our model introduces confidence level to both the objective and
the constraints, the parameters of the model are not integers. For ease of calculation,
we round down all parameters of Eq. (9) in this experiment. Then, we solve the
model by using the custom genetic algorithm and dynamic programming, respec-
tively. For the dynamic programming, we define A(k, ¢;, ¢,) as the maximum value

of Z?:l ¢4 x; when only using the first k items, while satisfying that Ele oy, <T)
and 32K, ¢piz; < P.. Then, we have the following recursive relation for A(k, ¢y, ¢,):
if (btk > Tc or ¢pk > Pc7

A(kv ¢t7 ¢p) = A(k - 1; ¢’t, ¢p) )

else,

A(k_17¢t7¢p>7 }

Ak ) =
( ,¢t7 ¢P) e { A(k - 17 ¢t - ¢tk> ¢p - d)pk) + ¢ak

First, we verify the quality of the approximate solution obtained by our algorithm
by comparing it with the dynamic programming solution on small inputs. We have
conducted experiments on cases where the number of modules is 25, 50, 100, 150 and
200, respectively. For each case, we generate 50 instances. For each instance, we
randomly generate relevant parameters of each module and the performance lim-
itations of the system according to the rules described in Sec. 5.1. In this experiment,
we set 3=0.8, o, = 0.9 and o, = 0.9. Then, we, respectively, use dynamic pro-
gramming (DP) and the custom genetic algorithm (CGA) to solve the model, and we
record their results. For each instance, we denote A; as the hardware area corre-
sponding to the case that all modules are implemented in hardware, and denote A,
as the hardware area corresponding to the solution obtained by the algorithm.

ﬁ;‘ results of the two algorithms in Table 2, where ¢ is the solution error

We record
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Table 2. 2—,‘ results and solution errors §.

n DP (%)  CGA (%) & (%)
25 47.59 48.01 0.42
50 46.46 46.98 0.52
100 46.33 46.84 0.51
150 44.26 44.80 0.54
200 40.91 41.43 0.52

3.0

- N N
3] o n
L L L

solution errors (%)

Iy
o
L

0.5

0.01

0 10 20 30 40 50
instance

Fig. 3. Solution errors corresponding to different numbers of modules.

between the approximate solution and the exact solution. The values in Table 2 are
the average results of 50 instances.

It can be seen from the table that for different module numbers, the errors be-
tween our algorithm and dynamic programming are very small, indicating that our
algorithm can obtain a high-quality approximate solution. In addition, in order to
further observe the quality of the approximate solution, we, respectively, show the
solution errors of 50 instances corresponding to different numbers of modules. For
easy observation, we sort the results and display them in Fig. 3.

It can be seen from Fig. 3 that the solution error of each instance is very small.
When the number of modules is 25, 50, 100, 150 and 200, the corresponding maxi-
mum solution errors are 2.89%, 2.62%, 2.31%, 3.27% and 1.94%, respectively.
Meanwhile, we can see that the custom genetic algorithm has the ability to obtain
the optimal solution (i.e., the solution error is 0). For example, when the number of
modules is 25, the algorithm obtains the optimal solution in more than half of the
instances.

Second, we compare the running time of the two algorithms on different input
scales. We use the above parameter settings to conduct experiments on cases where
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Table 3. The average running
time on different input scales.

n DP (s) CGA (s)
50 6.64 60.79
100 59.28 62.50
200 618.09 66.46
500 5822.68 80.22
1000 — 103.67
2000 — 194.93
5000 — 533.68

the number of modules is 50, 100, 200, 500, 1000, 2000 and 5000, respectively. We
record the running time of the two algorithms, and the values in Table 3 are the
average results of 50 instances. As the input scale increases, the running time of
dynamic programming increases extremely, while the running time of our algorithm
grows slowly. For large input scales (in this experiment it refers to the input scale
exceeding 1000), dynamic programming cannot solve the problem due to lack of
memory, denoted as “—” in the table, while our algorithm can solve the problem in
500s.

As mentioned above, we compare our algorithm with the exact algorithm
dynamic programming in terms of solution error and running time. We can see that
(1) our approximate solution has little error from the exact solution; (2) with the
increase of the input scale, the running time of the dynamic programming method
increases dramatically, while our algorithm can solve the problem in a relatively
short time.

5.3. Influence of parameters

In this subsection, we study the influence of model parameters on the partitioning
results. It can be seen from the model (i.e., Eq. (7)) in Sec. 3.3 that for a given system,
under the condition that each module is determined (i.e., all modules’ relevant
parameters are known) and the system performance limitations are determined (i.e.,
T, and P, are known), the partitioning result is affected by confidence levels 3, «;
and a,.

We consider a system with 30 modules, and we randomly generate all modules’
relevant parameters according to the rules described in Sec. 5.1. In this case, system’s
each module is determined. We study: (1) the influence of the objective’s confidence
level B on the partitioning result; (2) the influence of the constraints’ confidence
levels o, and «, on the partitioning result. For the system performance limitations 7,
and P., we randomly generate them according to the characteristics of each problem,
which ensures that T, > 0 and P. > 0 can be satisfied in all conditions.

First, we study the impact of objective’s confidence level 5 on the partitioning
results. We let a; and oy, both be 0.9, and we take 8 as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

2350105-21



S. Chen et al.

700 m

600

500 A
I
[0}
5 —A— T=401, Pc=299
© 4001 T =401, P=453
§ —O0— Tc=658, Pc=299
k<) L _
£ 300 —— T=658, Pc=453
<

200 A

100

0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9
confidence level B

Fig. 4. Results for different (3, corresponding to different 7, and P.,.

0.8 and 0.9, respectively, to calculate the hardware area. In this problem, T, is
generated from [S27; ®%(0.9), S, ®5,7(0.9)] and P, is generated from [S11,
@2{1 (0.9),> @;;1 (0.9)]. For each case, we use Algorithm 2 to solve the model and
get the results; we select four sets of representative data and show them in Fig. 4. For
different system limitations 7, and P.,, it can be seen that under the same constraints,
the hardware area gradually decreases as (3 increases (i.e., we get more optimized
results). There has a theorem in uncertain programming,'” that is, for an uncertain
variable 7, its S-optimistic value is a decreasing and left-continuous function of 3.
Therefore, Y, (3) (i-e., @5 (1 — B)) is a decreasing function of 3, which is consistent
with our experimental results. At the same time, we find that (1) for the same T, the
hardware area decreases as P, increases; (2) for the same P,, the hardware area
decreases as T, increases. This is reasonable, because increasing the system perfor-
mance limitations can give more space for minimization, so we can get more opti-
mized results. For the red line in Fig. 4, it can be seen that its corresponding 7, and
P. are both the largest, which gives enough space for optimization, so it gets the best
results compared to other three lines.

Secondly, we study the impact of constraints’ confidence levels o, and «, on the
partitioning results. For o, and «,, we make the following settings, respectively.

o a;: Welet 3 be 0.8, let o, be 0.9 and take o, as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
and 0.9, respectively, to calculate the hardware area.

o a,: Welet 3be 0.8, let o be 0.9 and take «, as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
and 0.9, respectively, to calculate the hardware area.
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Fig. 5. Results for oy, corresponding to different 7, and P,.

In this problem, T, is generated from [ 7, ®% (0.9), .1, ®5,'(0.1)] and P, is
generated from [ i @;‘[1 (0.9), > i, q);;l (0.1)]. For each case, Algorithm 2 is used
to solve the model and get the results; for oy and o, we select four sets of repre-
sentative data, respectively, and present them in Figs. 5 and 6.

From Fig. 5, we can see that under the same constraints, the hardware area
gradually increases as «; increases. This is reasonable because a higher confidence
level o, means that the time constraint should be satisfied to a greater extent; that is,

1600 1" o 7,434, Pc=185
T =434, P=277
—O— Tc=506, P=185
1400 A -t
—%— T=506, Pc=277
1200
[+
[
—
< 1000 1
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:
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
confidence level ap

Fig. 6. Results for ,, corresponding to different 7, and P..
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the time constraint is stricter, which gives less space for minimization. In the same
way, the hardware area decreases with the increases of T, and P,. We find that the
blue line and the orange line overlap when o is 0.7, 0.8 and 0.9, indicating that P, is
already large enough in this case; at this time, it is the value of 7T, that affects the
result, and increasing the value of P, will not change the result. We also find that the
result corresponding to the green line remains the same when «; goes from 0.1 to 0.6.
Because T, and P, are large enough at this time, providing enough space for opti-
mization, the stricter constraints brought by increasing a; will not affect the current
optimal solution. From Fig. 6, we can observe similar results with Fig. 5: (1) under

the same constraints, the hardware area gradually increases as «, increases; (2) the

P
hardware area decreases with the increase of T, and P, and (3) the blue line and the
green line overlap when «, is larger than 0.4, which indicates that T, is already large

enough in this case.

6. Conclusion

In this paper, we present the process of applying uncertain programming to solve the
hardware/software partitioning problem, including the model and algorithm. We
elaborate on the detailed process, including that: (1) employing uncertain variables
to represent parameters; (2) converting the uncertain programming model into the
equivalent deterministic model and (3) solving the model. Our conversion methods
cover different forms of uncertain variables (such as linear, zigzag and normal) and
equivalent deterministic models (such as the expected value model and the chance-
constrained programming model). Our custom genetic algorithm can find a high-
quality approximate solution while running much faster for large input scales,
compared with the exact algorithm. Our partitioning results become better as the
objective confidence level increases and become worse as the constraint confidence
level increases.
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