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Reasonable partitioning is a critical issue for cyber-physical system (CPS) design. Traditional CPS parti-
tioning methods run in a determined context and depend on the parameter pre-estimations, but they ignore
the uncertainty of parameters and hardly consider reliability. The state-of-the-art work proposed an uncer-
tainty theory based CPS partitioning method, which includes parameter uncertainty and reliability analysis,
but it only considers linear uncertainty distributions for variables and ignores the uncertainty of reliability.
In this paper, we propose an uncertainty theory based CPS partitioning method with uncertain reliability
analysis. We convert the uncertain objective and constraint into determined forms; such conversion methods
can be applied to all forms of uncertain variables, not just for linear. By applying uncertain reliability analysis
in the uncertainty model, we for the first time include the uncertainty of reliability into the CPS partitioning,
where the reliability enhancement algorithm is proposed. We study the performance of the reliability ob-
tained through uncertain reliability analysis, and experimental results show that the system reliability with
uncertainty does not change significantly with the growth of task module numbers.
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1 INTRODUCTION

1.1 Background

CPSs have two core technical elements (software and hardware) and are applied to our daily life,
such as Smart Home and Intelligent Transport Systems; these systems are becoming increasingly
complicated with the development of Industry 4.0 [14]. Co-design of hardware and software is cru-
cial for many fields [9, 24, 29] as well as for CPS. In general, hardware spends more resources than
software, but runs faster. It is a critical issue to reasonably use software modules and hardware
modules (i.e., reasonable partitioning) to meet the specific CPS design requirement. The CPS parti-
tioning problem is a key step in hardware software co-design, where critical tasks are implemented
in hardware while non-critical tasks are implemented in software; various CPS partitioning meth-
ods have proposed many algorithms (exact algorithms [17, 20, 27], heuristic algorithms [7, 8, 10],
etc.), and have made good tradeoffs among many performance metrics (time [30], power [19], cost
[28], etc.).

Traditional CPS partitioning methods run in a determined context, where the parameters that
affect performances are deterministic; these methods depend on the parameter pre-estimations
at design time. However, these estimations cannot be completely accurate during the design
stage; that is, parameters are uncertain. Unfortunately, traditional CPS partitioning methods ig-
nore the uncertainty of parameters, resulting in the partitioning result not actually meeting the
specific design requirement. Furthermore, reliability is a very important performance metric for
safety-critical cyber-physical systems, but traditional CPS partitioning methods hardly consider
reliability.

1.2 Motivation

In order to solve the uncertainty in CPS partitioning, uncertainty theory is introduced [12, 13, 26].
Uncertainty theory is a branch of mathematics for modeling uncertainty of imprecise quantities
[16], which is a common phenomenon in reality. In cyber-physical system design, these parameters
which cannot be accurately pre-estimated are regarded as imprecise quantities.

The state-of-the-art work [12] proposed an uncertainty theory based CPS partitioning
method, which includes parameter uncertainty and reliability analysis, but it has the following
insufficiencies.

(1) The method considers linear uncertainty distributions for variables; the method of solving
uncertainty described by the model is applicable to linear uncertain variables. However, other
uncertain variables, such as linear, normal, zigzag, and lognormal, are needed by CPS to depict
different situations, and it is not enough to elaborate on the linear case.

(2) The method considers the uncertainty of time and cost via uncertainty theory, while ignoring
the uncertainty of reliability. However, reliability is uncertain and its uncertainty needs to be
dealt with.

1.3 Contributions

To solve the above insufficiencies, we propose an uncertainty theory based CPS partitioning
method with uncertain reliability analysis [4]. We use uncertain variables to formulate cost, time,
and reliability; we convert them to the forms of uncertainty distributions that are certain. Our
main contributions are described below.

(1) We convert the uncertain objective and constraint into determined forms; such conversion
methods can be applied to various forms of uncertain variables, not just for linear. Furthermore,
the methods can be generalized to other combinatorial optimization problems with uncertainty.
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(2) By applying uncertain reliability analysis in the uncertainty model, we for the first time include
the uncertainty of reliability into the CPS partitioning, where the reliability enhancement al-
gorithm based on the custom genetic algorithm is proposed, aiming at enhancing the system
reliability while satisfying time and cost constraints.

(3) We study the performance of the reliability obtained through uncertain reliability analysis,
which includes the uncertainty of reliability and is different from the reliability studied in
other literature. Experimental results show that the system reliability with uncertainty does
not change significantly with the growth of task module numbers.

The rest of this paper is structured as follows. Section 2 shows related work. Section 3 briefly
introduces theoretical foundations for this paper, including uncertainty theory and uncertain re-
liability analysis. Section 4 presents our uncertainty model. Section 5 gives experimental results,
and Section 6 concludes the paper.

2 RELATED WORK

CPSs depend on the integration of physical and embedded systems with communication and IT
systems [22]; these systems are closely related to numerous domains such as Smart Cities [23] and
Internet of Things [5]. Many pieces of research have paid attention to the performances of CPS.
Jiang et al. [11] bridged the model-driven development and verification to improve the depend-
ability of CPS. Song et al. [21] focused on the security and privacy of CPS and discussed security
and privacy in many application scenarios. Rashid et al.[18] looked to the survivability of CPS
and introduced a method to determine the survivability of the simulation models at run time. In
this paper, we are mainly concerned with the uncertainty of CPS. CPSs have two core technical
elements: hardware and software; co-design of hardware and software is crucial for CPS. The CPS
partitioning problem aims at conducting a reasonable partitioning for hardware implementation
and software implementation of CPS, which is a key step in CPS co-design as well as a typical
problem involving uncertainty.

It has been known for a long time that the CPS partitioning problem is NP-hard [3]; traditional
CPS partitioning methods have made many efforts to solve it. Ouyang et al. [17] proposed an
integer linear programming based optimal method to solve the CPS partitioning problem for small
inputs. Shi et al.[20] presented a dynamic programming algorithm to solve the multiple-choice
CPS partitioning of the tree-shaped task graph, aiming at obtaining the exact solutions for small
scale instances. Wu et al.[27] put forward a hybrid branch-and-bound approach to enhance the
problem-solving capacity of the CPS partitioning problem. These exact algorithms work well with
small inputs but tend to be slow for large systems. To be more efficient, heuristics algorithms, such
as genetic algorithm [8], greedy algorithm [7], and tabu search [10], are widely used.

All these traditional methods above do not consider the uncertainty of parameters, but there
exists uncertainty when performing partitioning tasks. Albuquerque et al.[1] considered uncer-
tainty in system-level partitioning, but they focus not on the uncertainty of system parameters,
but rather on the implementation uncertainty of a developer. Wang et al.[26] paid attention to
the uncertainty of system parameters and proposed an uncertain CPS partitioning method. How-
ever, they only consider the uncertainty of some performance metrics, such as the time, cost, and
resources of the system, while not concerning the reliability performance that is particularly sig-
nificant in a safety-critical system [25].

In 2019, Jiang et al.[12] for the first time introduced reliability in the uncertain CPS partitioning
method. In that work, the system reliability is computed under the condition that each module’s
reliability is deterministic. That is, it only considers the uncertainty of time and cost but ignores
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the uncertainty of reliability. In our work, we try to consider reliability in an uncertain way, by
applying uncertain reliability analysis in the CPS partitioning uncertainty model.

3 THEORETICAL FOUNDATIONS

Considering that we deal with uncertainty based on uncertainty theory and uncertain reliability
analysis, this section presents some basic definitions of uncertainty theory and briefly introduces
uncertain reliability analysis.

3.1 Uncertainty Theory

Uncertainty theory was founded by Liu in 2007, which is motivated to model imprecise quantities
that behave neither like randomness nor like fuzziness [16]. There are three fundamental concepts
in uncertainty theory [16]. The first one is the uncertain measure which is used to measure the
belief degree of an uncertain event. The second one is the uncertain variable which is used to rep-
resent imprecise quantities. The third one is the uncertainty distribution which is used to describe
uncertain variables in an incomplete but easy-to-use way. Following notions are used when defin-
ing the above three concepts: let Γ be a nonempty set; a collection L of subsets of Γ is called a
σ -algebra; each element Λ in the σ -algebra L is called an event; each event Λ is assigned with a
numberM{Λ} which indicates the belief degree that the event Λ will occur.

Definition 1 (Uncertain measure [16]). Uncertain measure is a function from L to [0,1]. The set
functionM is called an uncertain measure if it satisfies normality, monotonicity, self-duality, and
countable subadditivity axioms.

• M{Λ} = 1 for the universal set Γ (normality)
• M {Λ1} ≤ M {Λ2} whenever Λ1 ⊂ Λ2 (monotonicity)
• M{Λ} +M {Λc } = 1 for any event Λ (self-duality)
• M{∪∞i=1Λi } ≤

∑∞
i=1M {Λi } for every countable sequence of events {Λi } (countable

subadditivity)

Definition 2 (Uncertain variable [16]). If M is an uncertain measure, the triplet (Γ,L,M) is
called an uncertainty space. An uncertain variable is a measurable function ξ from an uncertainty
space (Γ,L,M) to the set of real numbers.

Definition 3 (Uncertainty distribution [16]). The uncertainty distribution Φ : R → [0, 1] of an
uncertain variable ξ is defined by Φ(x ) =M{ξ ≤ x } for any real number x .

3.2 Uncertain Reliability Analysis

Uncertain reliability analysis was proposed by Liu in 2010 as a tool to deal with system reliability
via uncertainty theory [16]; it is a way to model the system reliability considering the uncertain
factors of the system. According to uncertainty theory, uncertain reliability analysis and uncertain
risk analysis have the same root in mathematics, and they are distinguished only for the conve-
nience of application, so reliability has similar properties with risk.

“Risk” has different definitions in literature, and the risk is defined as the “accidental loss” plus
“uncertain measure of such loss” in uncertainty theory [16]. A system usually contains uncertain
factors, such as lifetime, cost, and resource. The risk index is defined as the uncertain measure that
some specified loss occurs, and the loss is problem-dependent [4]. Similarly, the reliability index
is defined as the uncertain measure that some system is working.

Definition 4 (Reliability index [16]). Assume that a system contains uncertain variables
ξ1, ξ2, . . . , ξn , and there is a function R such that the system is working if and only if
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Fig. 1. An example task graph with 7 nodes.

R (ξ1, ξ2, . . . , ξn ) ≥ 0. Then the reliability index is

Reliability =M {
R (ξ1, ξ2, . . . , ξn ) ≥ 0

}
.

4 UNCERTAINTY MODEL

In this section, we elaborate on the uncertainty model of the CPS partitioning problem. Firstly, we
give the definition of the problem. Secondly, we formulate the problem to establish the uncertainty
model. Thirdly, we convert the uncertainty model to a determined one. Fourthly, we propose the
reliability enhancement algorithm based on the custom genetic algorithm to solve the model. At
last, we present an example of applying the uncertainty model and the algorithm.

4.1 Problem Definition

A commonly used model called task graph [15] is utilized to describe the system, as illustrated in
Figure 1. The model is a directed acyclic graph where nodes represent tasks and directed edges
represent dependence and communication relationships among these tasks [6]. We denote the
task graph as G = {N ,E}, where N = {n1,n2, . . . ,ni } is the set of nodes (i.e., the set of tasks) and
E = {e1,2, e2,3, . . . , ei, j } is the set of directed edges where each edge represents priority and data
dependency between two tasks. We will introduce some notations defined on G in Table 1 and
briefly explain what they mean.

When a task node is implemented in hardware, it is associated with a hardware implementation
cost. Independent uncertain variables ch

i is used to denote the hardware cost of node ni . Φh
ci is

uncertainty distribution of ch
i .

Software implementation of node ni is associated with a software cost which is usually the
running time of the node. Uncertain variable ts

i is used to denote the running time of node ni in
software implementation, and uncertain variable th

i is used to denote the running time of node ni

in hardware implementation. Φs
t i and Φh

ti are uncertainty distributions of ts
i and th

i , respectively.
If two communicating nodes ni and nj are implemented in different contexts, the communication
time between them is considered, and ci, j is used to denote it.

According to the description in Section 3.2, a system can contain various uncertain factors;
in this paper, we regard the lifetime as the uncertain factor of the system to perform uncertain
reliability analysis. Uncertain variable lsi is used to denote the lifetime of node ni in software
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Table 1. Notations and Definitions

Notation Definition
ch

i Hardware cost of implementing ni in hardware
Φh

ci Uncertainty distribution of ch
i

ts
i Running time of implementing ni in software

Φs
t i Uncertainty distribution of ts

i

th
i Running time of implementing ni in hardware

Φh
ti Uncertainty distribution of th

i

ci, j Communication time between ni and nj

lsi Lifetime of ni in software implementation
Φs

l i
Uncertainty distribution of lsi

lhi Lifetime of ni in hardware implementation
Φh

li
Uncertainty distribution of lhi

implementation, and uncertain variable lhi is used to denote the lifetime of node ni in hardware
implementation. Φs

l i
and Φh

li
are uncertainty distributions of lsi and lhi , respectively.

The CPS partitioning problem defined here is to find a bipartition P of N : P = (Nh ,Ns ), where
Nh ∪Ns = N and Nh ∩Ns = ∅. An auxiliary decision vector x (x1,x2, . . . ,xn ) which represents the
implementation way ofn task nodes is used to formalize the problem. When the value of xi is equal
to 0, the task node ni will be implemented in hardware, otherwise in software. Then, the objective
of the problem is to find the optimal solution of the auxiliary decision vector. The solution needs
to be found in some conditions: hardware cost, total time, and system reliability are subject to
certain capacity limits CL , TL , and RL , respectively. Combining with the demonstration in [2], the
goal becomes finding a CPS bipartition P , satisfyingT (x) ≤ TL , R (x) ≥ RL , andC (x) is the minimal
hardware cost.

4.2 Problem Formulation

This subsection formulates hardware cost, total time, and system reliability using uncertain vari-
ables, and finally models the partitioning problem.

4.2.1 Hardware Cost. The total cost consists of hardware cost and software cost, which repre-
sents resource consumption in hardware and software implementation of each task node. When
a task node is implemented in software, it is associated with a software cost, which is usually the
running time. Otherwise, it is associated with a hardware cost, which is the resource consumption
cost. For the system, the total hardware cost can be calculated as the sum of hardware cost of
each node implemented in hardware, because the additive calculation rule for resource consump-
tion cost is reasonable in most cases of computation model. Finally, hardware cost C (x) can be
formalized as follows:

C (x) =
n∑

i=1

[
ch

i (1 − xi )
]
.

4.2.2 Total Time. Here we consider the worst-case scenario where there is no overlap in the
running time of each node. Then the total time is the sum of the running time of each node and
the communication time among nodes. If two nodes ni and nj are implemented in different ways,
the communication time between them is considered. Otherwise, the communication time is 0.
Finally, total running time Trun (x), total communication time Tcom (x) and total time T (x) can be
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Fig. 2. System reliability calculation diagram with treating the system described by the task graph as a series

system.

formalized as follows:

Trun (x) =
n∑

i=1

[
th
i (1 − xi ) + ts

i xi

]
,

Tcom (x) =
n−1∑
i=1

n∑
j=i+1

ci, j

[(
xi − x j

)2
]
,

T (x) =
n∑

i=1

[
th
i (1 − xi ) + ts

i xi

]
+

n−1∑
i=1

n∑
j=i+1

ci, j

[(
xi − x j

)2
]
.

4.2.3 System Reliability. We deal with the system reliability via uncertainty theory; that is, we
use uncertain reliability analysis mentioned in Section 3.2 to formulate the system reliability. The
system reliability here is defined as the uncertain measure that the system is working in consid-
eration of uncertain factors. We treat the system as a series system and take the lifetime of each
task node as the current uncertain factor to compute the system reliability. According to uncer-
tainty theory [16] and uncertain reliability analysis [4], for a series system in which there are n
elements whose lifetimes are independent uncertain variables l1, l2, . . . , ln with uncertain distri-
butions Φl1,Φl2, . . . ,Φln respectively, the lifetime of the system is an uncertain variable l with
uncertainty distribution Ψl (x ) = Φl1 (x ) ∨ Φl2 (x ) ∨ · · · ∨ Φln (x ). If we hope the system is working
until time T , then the reliability index is

Reliability =M{l ≥ T } = 1 − Φl1 (T ) ∨ Φl2 (T ) ∨ · · · ∨ Φln (T ),

where ∨ is maximum operator, and Φl i (T ) is uncertainty distribution of the lifetime of node ni at
time T .

If ni is implemented in hardware (i.e., xi = 0), Φl i (T ) is equal to Φh
li

(T ), else it is equal to Φs
l i

(T ).
Then, system reliability R (x) is represented as follows:

R (x) = 1 −
[
Φh

l1 (T ) (1 − x1) + Φs
l1 (T )x1

]
∨ · · · ∨

[
Φh

ln (T ) (1 − xn ) + Φs
ln (T )xn

]
.

For simplicity, we denote the result of the second term as max
1≤i≤n{[Φh

li
(T ) (1−xi )+Φs

l i
(T )xi ]}, which

represents the maximum of [Φh
li

(T ) (1−xi )+Φs
l i

(T )xi ] for i = 1, 2, . . . ,n. Let us take the task graph
in Figure 1 as an example to illustrate the reliability of this system. For the implementation way
of 7 task nodes in this graph, we assume that task nodes n1, n3, n5 are implemented in hardware
(i.e., xi is equal to 0) and task nodes n2, n4, n6, n7 are implemented in software (i.e., xi is equal to 1).
According to the above description, the system described by the task graph is treated as a series
system when calculating the system reliability, as shown in Figure 2. The different colors of the
task nodes represent different implementations, where purple represents hardware implementa-
tion and orange represents software implementation. Then, the system reliability is 1−max{Φh

l1 (T ),

Φs
l2 (T ),Φh

l3 (T ),Φs
l4 (T ),Φh

l5 (T ),Φs
l6 (T ),Φs

l7 (T )}.
Finally, system reliability R (x) can be formulated as follows:

R (x) = 1 − max
1≤i≤n

{[
Φh

li (T ) (1 − xi ) + Φs
l i (T )xi

]}
. (1)
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4.2.4 Partitioning Problem. Based on the definition in Section 4.1, the partitioning problem P
is modeled as follows:

minimize C (x),
subject to T (x) ≤ TL,

R (x) ≥ RL,
x ∈ {0, 1}n ,

where C (x), T (x), and R (x) follow the above formulations, TL and RL are capacity limits of total
time and system reliability, respectively.

4.3 Problem Conversion

Considering that ch
i , th

i , ts
i , etc. are all unknown uncertain variables that may get various values

depending on the context difference of systems, it is difficult to directly solve the uncertainty model.
Uncertainty distribution is used to describe uncertain variables, and it is sufficient to know the
uncertainty distribution rather than the uncertain variable itself in many cases. As many uncertain
variables own known uncertainty distributions, it is feasible to transform the uncertainty model
into a determined one to simplify the problem, by converting uncertain variables to the forms of
uncertainty distributions. This subsection presents the conversion process.

Firstly, we introduce some important theorems that will be used in the conversion.

Theorem 1. For a given set of decision variables x, assume that there is a function f (x, ξ ) =
h1 (x)ξ1+h2 (x)ξ2+· · ·+hn (x)ξn+h0 (x), whereh1 (x),h2 (x), . . . ,hn (x),h0 (x) are real-valued functions,

ξ1, ξ2, . . . , ξn are independent uncertain variables. Then we have

E[f (x, ξ )] = h1 (x)E [ξ1] + h2 (x)E [ξ2] + · · · + hn (x)E [ξn] + h0 (x).

Proof. According to uncertainty theory [16], the linearity of expected value operator has been
proven. That is, for independent uncertain variables ξ and η, E

[
aξ + bη

]
= aE [ξ ]+bE

[
η
]

for any
real numbers a and b. Theorem 1 follows from it immediately. �

Theorem 2. Assume that ξ1, ξ2, . . . , ξn ,η1,η2, . . . ,ηn are independent uncertain variables with

uncertainty distributions Φ
ξ
1 ,Φ

ξ
2 , . . . ,Φ

ξ
n ,Φ

η
n+1,Φ

η
n+2, . . . ,Φ

η
2n andh1 (x),h2 (x), . . . ,h2n (x),h0 (x) are

all nonnegative real-valued functions. Then the inequation

M
⎧⎪⎨⎪⎩
( n∑

i=1

hi (x )ξi +

2n∑
i=n+1

hi (x )ηi

)
≤ h0 (x )

⎫⎪⎬⎪⎭ ≥ α

holds if and only if
n∑

i=1

hi (x )Φ
ξ −1

i (α ) +
2n∑

i=n+1

hi (x )Φ
η−1

i (α ) ≤ h0 (x ).

Proof. It has been proven in uncertainty theory [16] that if ξ1, ξ2, . . . , ξn are independent un-
certain variables with uncertainty distributions Φ1,Φ2, . . . ,Φn and h1 (x),h2 (x), . . . ,hn (x),h0 (x)
are all nonnegative real-valued functions, then the inequation

M
⎧⎪⎨⎪⎩

n∑
i=1

hi (x )ξi ≤ h0 (x )
⎫⎪⎬⎪⎭ ≥ α

holds if and only if
n∑

i=1

hi (x )Φ−1
i (α ) ≤ h0 (x ).

Let n be 2m. Considering that all uncertain variables ξ1, ξ2, . . . , ξ2m are independent, we denote
ξm+1, ξm+2, . . . , ξ2m as η1,η2, . . . ,ηm . Theorem 2 is then proven.
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Secondly, we convert the uncertain objective and uncertain constraint to deterministic formal-
izations. �

Objective conversion-According to uncertainty theory [16], uncertain variable ξ > η if and
only if E (ξ ) > E (η), so the objective is converted to minimize its expected value. Similarly, for a
maximized case, the objective is converted to maximize its expected value. Using Theorem 1, we
formulate the expected value of C (x) as follows:

E[C (x)] =
n∑

i=1

[
E
[
ch

i

]
(1 − xi )

]
.

Finally, the uncertain cost objective function of problem P is converted to

minimize
n∑

i=1

⎡⎢⎢⎢⎢⎣
(∫ 1

0
Φh−1

ci (α )dα

)
(1 − xi )

⎤⎥⎥⎥⎥⎦ ,
where Φh−1

ci (α ) is the inverse uncertainty distribution of ch
i .

Constraint conversion-According to uncertain theory, considering that the uncertain con-
straints дj (x, ξ ) ≤ 0 do not define a deterministic feasible set, it is naturally desired that the
uncertain constraints hold with a confidence level α :

M{дj (x , ξ ) ≤ 0} ≥ α .

Based on the basic definitions of uncertainty theory in Section 3.1,M{дj (x , ξ ) ≤ 0} represents the
belief degree that the event дj (x , ξ ) ≤ 0 will occur. Therefore, this constraint means that the belief
degree of дj (x , ξ ) ≤ 0 is not less than α . The value of α represents the strictness of the converted
constaint. The higher the confidence level α is, the stricter the converted constraint is, which gives
us less space for optimization. Then, the uncertain time constraint holds with a confidence level
as follows:

M
⎧⎪⎪⎨⎪⎪⎩

n∑
i=1

(1 − xi )th
i +

n∑
i=1

xit
s
i ≤ TL −

n−1∑
i=1

n∑
j=i+1

ci j

[(
xi − x j

)2
]⎫⎪⎪⎬⎪⎪⎭ ≥ α .

Finally, using Theorem 2, the uncertain time constraint of problem P is converted to

n∑
i=1

[
Φs−1

t i (α ) − Φh−1

t i (α )
]
xi +

n∑
i=1

Φh−1

t i (α ) ≤ TL −
n−1∑
i=1

n∑
j=i+1

ci, j

[(
xi − x j

)2
]
, (2)

where Φh−1

t i (α ) is the inverse uncertainty distribution of th
i , Φs−1

t i (α ) is the inverse uncertainty dis-
tribution of ts

i .
Considering that the reliability constraint has been in the form of uncertainty distribution, there

is no need to convert it.
Thirdly as well as ultimately, the converted version of problem P is as follows:

minimize
∑n

i=1

[∫ 1

0
Φh−1

ci (α )dα
]

(1 − xi ) ,

subject to
∑n

i=1

[
Φs−1

t i (α ) − Φh−1

t i (α )
]
xi +

∑n−1
i=1

∑n
j=i+1 ci, j [(xi − x j )

2] ≤ TL −
∑n

i=1 Φh−1

t i (α ),

1 − max
1≤i≤n

{[
Φh

li
(T ) (1 − xi ) + Φs

l i
(T )xi

]}
≥ RL,

x ∈ {0, 1}n .
For safety-critical systems that care about the reliability, the objective can be set as maximizing

the system reliability with uncertain cost and time constraints. In this case, the hardware cost acts
as the constraint rather than the objective, and it needs to follow the rules of constraint conversion.
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Using the constraint conversion method described above, the uncertain cost constraint of problem
P is converted to

n∑
i=1

[
Φh−1

ci (α )
]

(1 − xi ) ≤ CL, (3)

and then we get the converted version of problem P as follows:

maximize 1 − max
1≤i≤n

{[
Φh

li
(T ) (1 − xi ) + Φs

l i
(T )xi

]}
,

subject to
∑n

i=1

[
Φs−1

t i (α ) − Φh−1

t i (α )
]
xi +

∑n−1
i=1

∑n
j=i+1 ci, j [(xi − x j )

2] ≤ TL −
∑n

i=1 Φh−1

t i (α ),∑n
i=1

[
Φh−1

ci (α )
]

(1 − xi ) ≤ CL,

x ∈ {0, 1}n .
(4)

4.4 Problem Solution

In this paper, we focus on the model that maximizes the system reliability (i.e. (4)). This model aims
to maximize reliability (i.e. (1)) while meeting the cost and time constraints, and finally an auxiliary
decision vector x(x1,x2, . . . ,xn ) which represents the hardware and software implementation way
of each node ni will be obtained. We propose the reliability enhancement algorithm based on the
custom genetic algorithm according to the characteristics of the model. The algorithm consists of
two main steps.

(1) Obtain an initial solution with the maximum system reliability.
(2) Modify the initial solution under the condition of meeting total time and hardware cost con-

straints to get the final solution.

Firstly, we find an initial solution. By observing the objective of the model, we find that the goal
of the final solution is to minimize the maximum value of the set {[Φh

li
(T ) (1 − xi ) + Φs

l i
(T )xi ]}

for i = 1, 2, . . . ,n. As described in Section 4.2, for each xi , Φl i (T ) is either Φs
l i

(T ) or Φh
li

(T ). That

is, for each element in the set, its value is Φh
li

(T ) when xi is equal to 0, and Φs
l i

(T ) when xi is
equal to 1. Therefore, if each xi in the auxiliary decision vector x(x1,x2, . . . ,xn ) can make its
corresponding Φl i (T ) take the smaller one of Φh

li
(T ) and Φs

l i
(T ), it can be sure that the maximum

value of the set calculated by x is the smallest. Meanwhile, there is no need to determine the value
of each xi in x(x1,x2, . . . ,xn ) and we can get the smallest value. We make each xi be determined
in descending order of the value of its corresponding Φl i (T ). If the Φl i (T ) value of the currently
determined xi (i.e., the smaller one of Φh

li
(T ) and Φs

l i
(T )) is the largest among rest all Φl i (T ) (for

the determined xi , it is the smaller one of corresponding Φh
li

(T ) and Φs
l i

(T ); for the undetermined

xi , it is corresponding Φh
li

(T ) and Φs
l i

(T )), the remaining undetermined xi can be arbitrarily set to
obtain an initial solution. In this way, only several xi in the initial solution x(x1,x2, . . . ,xn ) are
determined, and the current maximum value of the set is still the smallest.

Secondly, we modify the initial solution. According to the determined xi in the initial solution
x, we calculate corresponding hardware cost and time, and judge whether any of them exceeds its
capacity limit (CL or TL), and finally modify the initial solution. Because the original objective of
maximizing system reliability has been achieved in the first step, the remaining problem can be
converted according to the actual problem. For example, for hard real-time applications, it can be
converted to minimize hardware cost under the time constraint; for cost-constrained applications,
it can be converted to minimize time under the hardware cost constraint. Many algorithms can be
used for the remaining problem and we choose to use the genetic algorithm. Details of the method
are shown in Algorithm 1, and we explain the algorithm by combining it with an example.
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ALGORITHM 1: The Reliability Enhancement Algorithm

Input: belief degree α , time limit TL , cost limit CL , working time T , task nodes number n, task
graph G (including all relevant parameters)

Output: solution x(x1,x2, . . . ,xn )
1: Compute all values of Φh

li
(T ) and Φs

l i
(T ) respectively for i = 1, 2, . . . ,n, and put them together

into Max;
2: Initialize an empty list MaxIndex = [ ];
3: Initialize a random solution X = (x1,x2, . . . ,xn )
4: for (i ← 1; i ≤ n; i++) do

5: max← the maximum value of Max

6: k ← the subscript of xk corresponding to max ;
7: if (k � MaxIndex) then

8: Assign 0 or 1 to xk according to max;
9: Put k in MaxIndex;

10: Update Max with removing max;
11: else

12: break;
13: end if

14: end for

15: Compute CurrentCost for (x j , j ∈ MaxIndex) according to Inequation (3);
16: Compute CurrentTime for (x j , j ∈ MaxIndex) according to Inequation (2);
17: while (CurrentCost > CL or CurrentTime > TL) do

18: Remove the last element of MaxIndex;
19: m ← the last element of MaxIndex;
20: Update xm with fliping its value;
21: Compute CurrentCost for (x j , j ∈ MaxIndex) according to Inequation (3);
22: Compute CurrentTime for (x j , j ∈ MaxIndex) according to Inequation (2);
23: end while

24: Record (x j , j ∈ MaxIndex) to the solution X
′
;

25: CN ← CL − CurrentCost;
26: TN ← TL − CurrentTime;
27: Apply the custom genetic algorithm to (x j , j � MaxIndex) for getting the solution X

′′
;

28: Combine X
′

and X
′′

to generate the solution x;
29: Compute Cost for (xi ∈ x) according to Inequation (3);
30: Compute Time for (xi ∈ x) according to Inequation (2);
31: while (Cost > CL or Time > TL) do

32: Repeat the steps on lines 18−22 to modify the initial solution again;
33: Repeat the steps on lines 24−30 to get the new solution;
34: end while

35: return x;

Lines 1−3 finish the initialization process. A random solution X is initialized to record the de-
termined xi (i.e., the assigned xi ). An empty list MaxIndex is initialized to record the subscript of
the determined xi . All Φh

li
(T ) and Φs

l i
(T ) for i = 1, 2, . . . ,n are computed and put into Max.

Lines 4−14 obtain the initial solution with the maximum system reliability. Line 5 finds the
maximum value of Max. Suppose that Φs

l4 (T ) is the current maximum. Line 6 finds the subscript of
x4 (i.e., k = 4). Lines 8−10 perform corresponding operations according to the subscript k obtained
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in line 6. x4 is assigned value 0 to make sure that Φs
l4 (T ) will not be taken (i.e., let Φl4 (T ) be Φh

l4 (T )

for the reason that Φh
l4 (T ) is smaller than Φs

l4 (T )). Then the subscript 4 is recorded in MaxIndex,
and Φs

l4 (T ) is removed from Max. Above steps are repeated until the current subscript k has been
recorded in MaxIndex. The initial solution X is obtained in this way, in which only the xi whose
subscript has been in MaxIndex is determined.

Lines 15−24 preliminarily modify the initial solution. Lines 15−16 compute corresponding to-
tal time CurrentTime and hardware cost CurrentCost of the determined xi (i.e., the subscript of
xi is in MaxIndex). If any of them exceeds its capacity limit (CL or TL), a series of operations are
performed on the initial solution to avoid it. The last element of MaxIndex which represents the
last determined xi is removed to reduce the number of the determined xi . Because as the num-
ber of the determined xi decreases, both CL and TL decrease. Lines 19−20 flip the value of xm

corresponding to the last element m in the current MaxIndex to ensure that the optimal solution
that meets constraints can be obtained. Then, CurrentTime and CurrentCost are recomputed. Above
steps are repeated until both CurrentTime and CurrentCost do not exceed their capacity limits. Line
24 records all the determined xi in X

′
.

Lines 25−26 use original limits CL and TL to subtract hardware cost and total time calculated
from the determined xi respectively, thereby becoming new limitsCN andTN which are then used
to solve the undetermined xi (i.e., the unassigned xi ).

Lines 27−28 further modify the current solution with the objective of minimizing hardware cost.
The custom genetic algorithm illustrated in Algorithm 2 is applied to find the approximate optimal
solution for the rest xi , where strategies of fitness function, selection, crossover, and mutation are
chosen from [2]. Then, the final solution x is obtained.

Lines 29−35 make sure that the optimal solution obtained this way meets the constraints of cost
and time.

ALGORITHM 2: The Custom Genetic Algorithm

1: Initialize the first population P ;
2: Compute the fitness of each individual in P ;
3: Record the individual with the lowest fitness to the solution X

′′
;

4: while (termination conditions) do

5: Clear new population P
′
;

6: while (size of P
′ ≤ size of P ) do

7: Perform selection in P to generate two parents p1 and p2;
8: Perform crossover on p1 and p2 to generate two offsprings o1 and o2;
9: Perform mutation on o1 and o2 to generate two individuals o

′
1 and o

′
2;

10: Put individuals o
′
1 and o

′
2 into new population P

′
;

11: end while

12: Find the individual o
′

f
with the lowest fitness in P

′
;

13: if (fitness(o
′

f
) ≤ fitness(X

′′
)) then

14: X
′′ ← o

′

f
;

15: end if

16: P ← P
′
;

17: end while

18: return X
′′
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4.5 Problem Example

In this subsection, we apply the uncertainty model described in Section 4.3 (i.e. (4)) and the reli-
ability enhancement algorithm described in Section 4.4 to the task graph of Figure 1. We assume
that each parameter of each node is a normal uncertain variable, denoted byN (μ,σ ). The normal
uncertain variable’s definition comes from uncertainty theory and is completely different from the
normal variable we are familiar with, and the same is true for the normal uncertainty distribution.
According to uncertainty theory [16], the uncertainty distribution of normal uncertain variable
N (μ,σ ) is

Φ(x ) = ��1 + exp

(
π (μ − x )
√

3σ

) ��
−1

,

and the inverse uncertainty distribution of normal uncertain variable N (μ,σ ) is

Φ−1 (α ) = μ +
σ
√

3

π
ln

α

1 − α .

We make the hardware cost of each node meet the following assumptions: ch
1 = N (5, 1),

ch
2 = N (2, 0.5), ch

3 = N (10, 3), ch
4 = N (8, 2), ch

5 = N (5, 1), ch
6 = N (7, 2), ch

7 = N (8, 3). We make
the software running time and hardware running time of each node meet the following assump-
tions: th

1 = N (2, 0.1), th
2 = N (5, 0.1), th

3 = N (4, 0.1), th
4 = N (6, 0.1), th

5 = N (8, 0.1), th
6 = N (3, 0.1),

th
7 = N (1, 0.1), ts

1 = N (20, 0.2), ts
2 = N (50, 0.2), ts

3 = N (30, 0.2), ts
4 = N (50, 0.2), ts

5 = N (20, 0.2),
ts
6 = N (30, 0.2), ts

7 = N (20, 0.2). We make the communication time between every two nodes meet
the following assumptions: c1,2 = c1,3 = c1,7 = c2,4 = c3,5 = c4,6 = c5,6 = 20. We make the software
lifetime and hardware lifetime of each node meet the following assumptions: lh1 = N (132, 10),
lh2 = N (140, 10), lh3 = N (143, 10), lh4 = N (155, 10), lh5 = N (150, 10), lh6 = N (142, 10), lh7 =
N (125, 10), ls1 = N (156, 12), ls2 = N (135, 12), ls3 = N (152, 12), ls4 = N (140, 12), ls5 = N (128, 12),
ls6 = N (146, 12), ls7 = N (154, 12).

Suppose that we want the system to work until time 145, the total time not to exceed 200, and the
hardware cost not to exceed 30. If we hope that the uncertain constraints hold with the confidence
level α = 0.9, the objective becomes:

maximize 1 −max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0.9136 (1 − x1) + 0.1594x1] ,
[0.7124 (1 − x2) + 0.8193x2] ,
[0.5897 (1 − x3) + 0.2577x3] ,
[0.1402 (1 − x4) + 0.6804x4] ,
[0.2876 (1 − x5) + 0.9289x5] ,
[0.6328 (1 − x6) + 0.4623x6] ,
[0.9741 (1 − x7) + 0.2042x7]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

and the constraints become:

(20.24 − 2.12)x1 + (50.24 − 5.12)x2 + (30.24 − 4.12)x3 + (50.24 − 6.12)x4+

(20.24 − 8.12)x5 + (30.24 − 3.12)x6 + (20.24 − 1.12)x7 + 20[(x1 − x2)]2+

20[(x1 − x3)]2 + 20[(x1 − x7)]2 + 20[(x2 − x4)]2 + 20[(x3 − x5)]2 + 20[(x4 − x6)]2+

20[(x5 − x6)]2 + 2.12 + 5.12 + 4.12 + 6.12 + + 8.12 + 3.12 + 1.12 ≤ 200,

6.21(1 − x1) + 2.61(1 − x2) + 13.63(1 − x3) + 10.42(1 − x4)+

6.21(1 − x5) + 9.42(1 − x6) + 11.63(1 − x7) ≤ 30.
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Using the reliability enhancement algorithm, we get the following results about
x (x1,x2,x3,x4,x5, x6,x7): x = {1, 0, 1, 0, 0, 0, 1}. That is, task nodes n1, n3, n7 are implemented in
software, and task nodes n2, n4, n5, n6 are implemented in hardware.

5 EXPERIMENTAL RESULTS

In this paper, we are concerned about the uncertainty in CPS partitioning, especially the uncer-
tainty of reliability, so the paper mainly contains two tasks: (1) describing the conversion method
that can be applied to various forms of uncertain variables to deal with uncertainty; (2) applying
uncertain reliability analysis to the CPS partitioning problem to consider the uncertainty of relia-
bility. Considering that we have described the conversion method in detail and given an example
in Section 4, we focus on reliability in the experiment. Because our system reliability is obtained
through uncertain reliability analysis, which includes the uncertainty of reliability and is different
from the reliability studied in other literature, we mainly study the performance of our system
reliability in this section, not the performance of the model or algorithm itself. Firstly, because
our system reliability is determined by multiple parameters, we study the influence of these pa-
rameters on it. Secondly, because the reliability studied in other literature is greatly affected by
the number of task nodes, we study the relationship between the number of task nodes and our
system reliability. Thirdly, because our system reliability is obtained by applying uncertain relia-
bility analysis to the CPS partitioning problem, we study the influence of our system reliability on
partitioning.

5.1 Reliability Parameter Test

In this subsection, we investigate the influence of different parameters on system reliability. This
research is based on the reliability (i.e., (1)) formulated in Section 4.2, which is defined based on its
expected working timeT and is determined by Φh

li
(T ) and Φs

l i
(T ) (i.e., uncertainty distributions of

lhi and lsi ). lhi and lsi can be set as different types of uncertain variables, such as linear, normal, zigzag,
and lognormal. We set lifetimes lsi , lhi of node ni as normal uncertain variables and denote them as
N (μs

l i
,σ s

l i
), N (μh

li
,σh

li
) , respectively. According to the formula for the uncertainty distribution of

the normal uncertainty variable N (μ,σ ) given in Section 4.5, μ, σ , and T are the parameters that
affect the system reliability.

For a task node ni implemented in a specific way (software or hardware), its lifetime is an uncer-
tain variable with a known uncertainty distribution (i.e., μi and σi are determinate), so the value of
Φi (T ) is mainly determined byT , as is the system reliability. That is, both μ and σ are determinate,
and only T is variable, so we study the impact of T on the system reliability under the condition
of μ,σ being determinate.

We take the number of task nodes as 30. Parameters μs
l i

, μh
li

are generated as uniform random

numbers in [2500, 2600], andσ s
l i

,σh
li

are generated as uniform random numbers in [100, 200], which
imitates the parameter generation method in [12]. We set the value of T according to the values
of μ and σ ; T is set to 2300, 2500, a random number generated from [2500, 2600], 2600, and 2800,
respectively. We randomly generate 50 solutions to calculate their system reliability corresponding
to different T and show them in Figure 3.

It can be seen that the system reliability decreases as T increases. Because as the working time
of the system increases, the risk of the system increases, and the reliability decreases accordingly.
Meanwhile, we can see that (1) when the value of T is a random number generated from [2500,
2600], the system reliability varies greatly each time because it changes with the change of T , as
shown by the yellow line in Figure 3; (2) when the value ofT is a constant such as 2300, 2500, 2600,
and 2800, the system reliability is relatively stable because T is fixed.
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Fig. 3. System reliability corresponding to different T .

Table 2. System Reliability Corresponding to the Different Number of

Task Nodes and Different T

n T = 2300 2500 random [2500, 2600] 2600 2800
10 0.89717 0.52915 0.24534 0.23433 0.01445
20 0.89114 0.51640 0.31316 0.20231 0.00914
30 0.88379 0.50940 0.22693 0.19185 0.00852
40 0.87873 0.50624 0.29380 0.18620 0.00802
50 0.87891 0.50621 0.21514 0.17504 0.00765

It can be noted that the system reliability is slightly greater than 0.5 when T is 2500. This is
because μs

l i
and μh

li
are randomly generated from [2500, 2600]. The closer T is to μi , the closer

each Φi (T ) is to 0.5, so the closer the system reliability is to 0.5. Obviously, the system reliability
is greater than 0.5 when T is less than 2500.

5.2 Reliability Relationship Test

The reliability in other literature is generally calculated as the product of different task nodes’
reliability; as the number of task nodes increases, the reliability decreases sharply even if the reli-
ability of each task node is very high [12, 25]. Considering that our system reliability is obtained
through uncertain reliability analysis, it is different from the reliability studied in other literature,
and we want to know whether the number of task nodes affects our reliability. In this subsection,
we investigate the relationship between the number of task nodes and system reliability.

We mainly focus on the influence ofn on reliability. The experimental result in Section 5.1 shows
that the parameterT affects the reliability, so we change the value ofn whileT is fixed, and perform
experiments on several sets of different T values. Parameters μs

l i
, μh

li
, and T follow the settings in

Section 5.1. We randomly generate a set of solutions for the cases, where the number of task nodes
is 10, 20, 30, 40, and 50, respectively, to calculate their system reliability corresponding to different
T . We test each instance 50 times and calculate the average values. The result is listed in Table 2.

Values in the table correspond to the system reliability with differentT values when the number
of task nodes is 10, 20, 30, 40, and 50, respectively. It can be observed from columns 2, 3, 5, and
6 that under the condition that T has been determinate, the system reliability does not change
significantly with the growth of task node numbers, which shows that the number of task nodes
hardly affects the reliability obtained through uncertain reliability analysis.

WhenT takes an uncertain random value within a certain range, the system reliability fluctuates
as the number of task nodes changes, which can be seen from the 4th column. This is because the
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Table 3. Partitioning Results with Considering Reliability or Not

Number Limits With reliability concern Without reliability concern Improvement %
of nodes TL CL Time Cost Reliability Time Cost Reliability Time Cost Reliability

6
250 160 190 121 0.9632 202 56 0.9364 –6.3 53.7 2.8
320 150 245 107 0.9420 279 33 0.9304 –13.9 69.2 1.2
185 269 159 230 0.9198 142 190 0.9033 10.7 17.4 1.8

7
271 398 205 315 0.9583 267 47.6 0.9196 –30.2 84.9 4.0
274 261 167 171 0.9682 201 29 0.8761 –20.4 83.0 9.5
357 234 308 139 0.9377 340 74 0.9085 –10.4 46.8 3.1

11
549 378 488 109 0.9100 525 80 0.9054 –7.6 26.6 0.5
452 570 372 160 0.9486 440 39 0.9296 –18.3 75.6 2.0
558 318 369 298 0.9234 531 23 0.8662 –43.9 92.3 6.2

14
505 367 474 127 0.9196 497 12 0.9012 –4.9 90.6 2.0
1174 1056 981 221 0.9139 1164 54 0.8896 –18.7 75.6 2.7
441 657 361 495 0.8889 427 286 0.8694 –18.3 42.2 2.2

22
965 860 898 386 0.8933 925 244 0.8691 –3.0 36.8 2.7
542 979 532 735 0.9036 509 660 0.8867 4.3 10.2 1.9
985 800 843 207 0.9121 973 56 0.8969 –15.4 72.9 1.7

25
951 862 882 336 0.8929 938 261 0.8775 –6.3 22.3 1.7
989 1297 900 518 0.9214 986 243 0.8652 –9.6 53.1 6.1
1454 1027 1395 208 0.9063 1438 36 0.8811 –3.1 82.7 2.8

58
2458 1862 2367 592 0.8938 2457 407 0.8752 –3.8 31.3 2.1
3062 2980 2900 449 0.9036 3060 210 0.8649 –5.5 53.2 4.3
1497 2892 1298 2052 0.9190 1488 1256 0.8855 –14.6 38.8 3.6

system reliability is related to theT value which is taken randomly, and always follows the law of
decreasing with the growth of T .

5.3 Reliability Contrast Test

For the purpose of investigating the influence of the system reliability on partitioning, and com-
paring with prior works, we make a series of settings for the maximizing system reliability model
to achieve parameters similar to those in [12].

Cost ch
i and time ts

i , th
i are set as linear uncertain variables, denoted by L (ah

ci ,b
h
ci ), L (as

t i ,b
s
t i ),

and L (ah
ti ,b

h
ti ) respectively, where ah

ci , b
h
ci , a

s
t i , b

s
t i , a

h
ti , and bh

ti are nonnegative real numbers. The
inverse uncertainty distribution of linear uncertain variable L (a,b) is

Φ−1 (α ) = (1 − α )a + αb .

Here α is equal to 1. ah
ci , b

h
ci , a

s
t i , b

s
t i , a

h
ti , and bh

ti are generated in the same way as described in
[12]. ah

ci is randomly generated from [0, 100], and bh
ci is set as ah

ci + β
h
ci , where βh

ci is a nonnegative
constant. ah

ti is randomly generated from [0, 10], and bh
ti is set as ah

ti + βh
ti , where βh

ti is a non-
negative constant. as

t i is randomly generated from [bh
ti , 100] and bs

t i is set as as
t i + βs

t i , where βs
t i

is a nonnegative constant. ci, j is generated from [0, 1
5 ·max (bs

t i )]. TL is generated from [
∑n

i=1 a
h
ti ,∑n

i=1 b
s
t i ]. CL is generated from [

∑n
i=1 a

h
ci ,

∑n
i=1 b

h
ci ].

We set parameters about the system reliability based on the experimental results in
Section 5.1. μs

l i
, μh

li
are generated from [2500, 2600], and σ s

l i
, σh

li
are generated from [100, 200],

and T is set to 2300. Considering that we focus on the uncertainty, we cannot determine all the
parameters to do experiments like [12], and we can only imitate its experimental method. We ran-
domly generate 7 directed acyclic task graphs with different numbers of nodes, and the number
of nodes is the same as in [12]. For each task graph, we first use Algorithm 2 to find the mini-
mum hardware cost without reliability concern. Then, we use Algorithm 1 to the task graph to
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Table 4. Comparison Results with Ref. [12]

Number of nodes
Ref. [12] Our method

Reliability Average Reliability Average

6
0.8250

0.8139
0.9632

0.94170.8000 0.9420
0.8166 0.9198

7
0.7525

0.7474
0.9583

0.95470.7448 0.9682
0.7449 0.9377

11
0.4704

0.4671
0.9100

0.92730.4655 0.9486
0.4655 0.9234

14
0.3916

0.3890
0.9196

0.90750.3837 0.9139
0.3916 0.8889

22
0.1441

0.1326
0.8933

0.90300.1309 0.9036
0.1228 0.9121

25
0.1325

0.1284
0.8929

0.90690.1271 0.9214
0.1257 0.9063

58
0.0061

0.0062
0.8938

0.90550.0064 0.9036
0.0062 0.9190

enhance system reliability. For each task graph, we separately record the results of three sets of
random data, including the time, cost, and reliability calculated using the two algorithms, as listed
in Table 3.

Considering that all the parameters that affect the results are randomly generated, there may be
a situation where the upper limit and the obtained result have a large difference. It can be seen from
Table 3 that compared with Algorithm 2 that does not consider reliability, the results obtained by
Algorithm 1 have improved reliability, but the reliability improvement rate is not high. On the one
hand, from the reliability values listed in Table 3, it can be seen that the system reliability obtained
is relatively high even if the partitioning is performed using Algorithm 2, so the optimization space
is small, resulting in a low reliability improvement rate when using Algorithm 1. On the other hand,
although the reliability improvement rate is not high, the reliability is indeed improved when using
Algorithm 1, which shows that Algorithm 1 can enhance the reliability. As can be seen from the
data in the last vertical group in Table 3, this improvement comes at the expense of increasing the
cost, within the allowable time limit. Similarly, we can also make this improvement at the expense
of increasing the time, within the allowable cost limit. Therefore, if we need higher reliability and
do not have stricter requirements on time or cost, Algorithm 1 can spend time or cost overhead to
pursue reliability enhancement while meeting the time and cost constraints.

Furthermore, we compare our reliability with the reliability of Ref. [12]. Due to our different
calculation methods and parameter requirements, we only compare the two in terms of change
trend and the order of magnitude, as shown in Table 4. It can be seen that the reliability of [12]
decreases sharply with the growth in the number of nodes, while our reliability has not changed
significantly. By observing the reliability corresponding to different numbers of nodes, we can see
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that our reliability is much greater than the reliability of [12] in the order of magnitude when
there are more nodes. For example, when the number of task nodes is 58, the reliability of [12] has
dropped to less than 0.01, while our reliability still remains above 0.1.

6 CONCLUSION

In this paper, we propose an uncertainty theory based CPS partitioning method with uncertain
reliability analysis. We use uncertain variables to formulate cost, time, and reliability for establish-
ing our uncertainty model; this is the first work to include the uncertainty of reliability into the
CPS partitioning. Our conversion method can be applied to various forms of uncertain variables.
Our reliability enhancement algorithm can enhance the system reliability while satisfying time
and cost constraints. Our system reliability obtained through uncertain reliability analysis does
not change significantly with the growth of task module numbers.
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