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Abstract Over the past several years, a heteroge-
neous computing (HC) system has become more com-
petitive as a commercial computing platform than
a homogeneous system. With the growing scale of
HC systems, network failures become inevitable. To
achieve high performance, communication reliability
should be considered while designing reliability-aware
task scheduling algorithms. In this paper, we propose
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a new algorithm called RMSR (Replication-based
scheduling for Maximizing System Reliability), which
incorporates task communication into system reli-
ability. To maximize communication reliability, an
improved algorithm which searches all optimal reli-
ability communication paths for current tasks is pro-
posed. During the task replication phase, the task
reliability threshold is determined by users and each
task has dynamic replicas. Our comparative studies
for both randomly generated graphs and application
graphs of real-world problems show that our RMSR
algorithm outperforms existing scheduling algorithms
in terms of system reliability. For randomly generated
graphs, several factors affecting the performance are
analyzed in the paper. For an application graph of a
real-world problem with a fixed DAG, the system reli-
ability of the RMSR algorithm is at most influenced
by one factor.
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1 Introduction

In the past decade, more and more attention has
been focused on the problem of scheduling appli-
cations on heterogeneous computing (HC) systems.
For high performance computing and information pro-
cessing, HC systems have become a popular and
powerful commercial platform over the past several
years. With the growing scale of HC systems, machine
and network failures become inevitable. Ensuring
high reliability of HC systems becomes an important
issue.

The directed acyclic graph (DAG) is a tradi-
tional representation of a parallel application. In
a DAG, nodes represent application tasks and the
directed edges represent inter-task dependencies, such
as precedence constraints. Task scheduling is to assign
tasks of an application to processors, so that prece-
dence requirements are satisfied and the minimum
makespan can be achieved [15, 21]. However, it is
in general NP-hard [17, 33]. Therefore, heuristics can
be used to acquire sub-optimal schedules. The gen-
eral task scheduling algorithms can be classified into
several categories, such as list scheduling algorithms,
cluster algorithms, duplication-based algorithms, and
so on.

List scheduling is a very popular method [22]. The
basic process of list scheduling is to compute priorities
for the tasks of a DAG and rank all the tasks in non-
increasing order of priorities. Recently, a few variants
of the list scheduling algorithm have been proposed
to deal with HC systems, such as predict earlist finish
time (PEFT) algorithm [1], dynamic-level schedul-
ing (DLS) algorithm [24], mapping heuristic (MH)
[10], levelized-min time (LMT) algorithm [13], and
heterogeneous earliest-finish-time (HEFT) algorithm
[3, 16, 31]. The HEFT algorithm significantly out-
performs the DLS, MH, and LMT algorithms in
terms of average schedule length ratio, speedup, etc.
[16, 31].

Unfortunately, these algorithms do not consider the
probability of failure of the machines and relevant
network resources. Furthermore, most of these algo-
rithms are based on a very simple system model,

which does not accurately reflect real parallel sys-
tems. The main assumptions are summarized by the
following three points:

– A dedicated subsystem for inter-processor com-
munication.

– A fully connected communication network.
– A network that never fails during communication.

However, in a real world, the failure of processors
and networks is inevitable. If failure occurs, it may
result in restarting of an application, thereby increas-
ing the execution time of the application. In order to
solve this problem, some scheduling algorithms take
reliability into account. Dogan and Özgüner proposed
three reliability cost functions that were incorporated
into making dynamic level (DL) and presented a
reliability dynamic level scheduling RDLS algorithm
[7, 8], which minimizes not only the execution time
but also the probability of failure of an application.
Kartik et al. [14] proposed an algorithm that can max-
imize the system reliability using the idea of branch
and bound. Zhao et al. [38] proposed an algorithm
in order to maximize the overall reliability under
given time and energy constraints. Dongarra et al. [9]
designed two algorithms that optimize both makespan
and reliability.

In this paper, our main objective is to propose
a replication-based algorithm which maximizes the
system reliability while considering the communica-
tion between tasks. By comparing with the RASD
algorithm [26], our algorithm can achieve higher sys-
tem reliability. It is because our replication method
guarantees the reliability of each task to be higher than the
task reliability threshold γ which is determined by users.

The main contributions of this paper are summa-
rized as follows.

– We propose a replication-based scheduling algo-
rithm which aims at maximizing system relia-
bility. The number of replicas of each task is
computed by comparing to task reliability thresh-
old. Moreover, it considers the communication
between two precedence constrained tasks in a
heterogeneous distributed system.

– An improved algorithm which searches all opti-
mal reliability communication paths for the cur-
rent tasks is proposed for enhancing the commu-
nication reliability.

– Experiments are conducted to verify that the proposed
algorithm can achieve high system reliability.
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The remainder of this paper is organized as follows.
In Section 2, we review related work. In Section 3,
we describe related models and definitions, where an
example is also given to illustrate our algorithm. In
Section 4, we generically analyze the reliability of
a communication system and propose an improved
algorithm to enhance the communication reliability. In
Section 5, we give a detailed description of the RMSR
algorithm. The experimental results are presented in
Section 6, together with the analysis of these experi-
ments. Section 7 concludes the work of our paper and
provides an overview of future research.

2 Related Work

More and more people are paying attention to the
improvement of reliability. A reliable scheduling
scheme can greatly improve a efficiency of the sched-
ule [20]. As a result, reliability analysis based schedul-
ing algorithms have been addressed by many works
[28, 32, 34]. In [28], Tang et al. designed a hierar-
chical reliability-driven scheduling architecture that
includes both a local scheduler which aims to effec-
tively measure task reliability of an application in a
grid virtual node and a global scheduler in which they
proposed a hierarchical reliability-driven scheduling
algorithm based on quantitative evaluation. In [32],
Tosun presented an integer linear programming (ILP)
based framework that maps a given task set onto a
heterogeneous multiprocessor system-on-Chip (HMP-
SoC) architecture. They employed task duplication to
maximize the reliability. One task only has at most one
duplicate. In [34], Wang et al. proposed a lookahead
genetic algorithm (LAGA) which utilizes the reputa-
tion to optimize both the makespan and the reliability
of a workflow application.

Redundancy is a popular technique to improve reli-
ability of distributed systems [4, 11, 12, 30, 36]. There
are two kinds of redundancy, i.e., software redundancy
[4, 30] and hardware redundancy [11, 12]. Hardware
redundancy is an expensive approach. Furthermore,
the hardware configuration is confirmed. Hence, we
prefer to achieve high reliability through replication.
For resource replication, there are two main schemes
described as follows.

– Active replication scheme: Several processors are
scheduled simultaneously and tasks will succeed
if at least one processor does not encounter a

failure [2, 39, 40]. In [2], Benoit et al. pre-
sented the FTSA algorithm which uses ε +1
replicas for each task to guarantee the system
reliability. This will lead to large resource redun-
dancy which has an adverse impact for the sys-
tem performance. In [40], Zhao et al. designed
the MaxRe algorithm in which tasks have differ-
ent numbers of replicas. However the computing
system model of MaxRe algorithm is fully con-
nected which is different from our’s. Hence, we
do not compare our algorithm with MaxRe in
the experiment section. In [39], Zhao et al. pro-
posed the deadline, reliability, resources-aware
(DRR) scheduling algorithm to use the minimum
resources.

– Primary/backup scheme: When a primary proces-
sor encounters a failure, a task will be rescheduled
on a backup processor [27, 29, 37, 41]. In [41],
Zheng et al. identified two cases that may hap-
pen when scheduling dependent tasks with the
primary-backup approach, independent tasks and
dependent tasks, respectively. In [37], Zhang et al.
addressed the problem of building a reliable and
highly-available grid service by replicating the
service on two or more hosts using the primary-
buckup approach. In [29], Tao et al. proposed a
Markov chain based grid node availability pre-
diction model which can efficiently predict grid
nodes availability in the future without adding sig-
nificant overhead. In [27], Tang et al. built an
application reliability analysis model based on
Weibull distribution, which can dynamically mea-
sure the reliability of task executing on heteroge-
neous cluster with arbitrary network architectures.
Furthermore, to improve system reliability, they
duplicates task as if task hazard rate is more
than threshold θ . The method we use to improve
system reliability is setting a task reliability
threshold γ .

However, some of these algorithms do not consider
communication between tasks as well as failure of
the links in a network. In other words, most of these
algorithms are based on a very simple system model
described in Section 1.

In [7, 8, 14, 38] mentioned in Section 1, and
[9], these algorithms consider both makespan and
system reliability based on a realistic model. In
[9], Dongarra et al. provided an optimal scheduling
algorithm for independent unitary tasks where the
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objective is to maximize the reliability subject to
makespan minimization. They are able to let the
user choose a trade-off between reliability maximiza-
tion and makespan minimization. In [26], Tang et
al. designed a reliability-driven scheduling algorithm
(RASD) which could effectively measure system reli-
ability. Even though the RASD algorithm considers
both reliability and makespan, the improvement of
system reliability that RASD generates is not that
much. Obviously, the reliability achieved by these
research is limited. The reason is analyzed as follows.
We all know that there is inverse relationship between
reducing schedule length and improving the system
reliability of an application. Even though the algo-
rithms mentioned above consider both schedule length
and reliability, the improvement of system reliability
is limited. In other words, the system reliability still

cannot achieve a high value especially in a failure-
prone system. It is quite possible that a large and long-
running application may experience a failure during
the whole execution time. Therefore, the application
restarts. As a result, the actual execution time of the
application is increased.

3 Models, Notations, and Definitions

In this section, we introduce two models which are
tightly connected to task scheduling. One is an appli-
cation model which is represented as a DAG graph,
and the other is a computing system model which
is represented as a topology graph. For the reader’s
convenience, we summarize the notations and their
definitions used in this paper in Table 1.

Table 1 Notations and
Definitions Notations Definitons

T A set of weighted tasks
P A set of heterogeneous processors
E A set of weighted and directed edges representing communications among

tasks in T

γ Task reliability threshold
λi,j The failure rate of processor pj when executing task ti

λli,j The failure rate of link li,j from processor pi to pj

si,j The computation capacity of processor pj when executing task ti

fi,j The frequency of processor pj when executing task ti

w(ti ) The computation cost of task ti

ei,j The communication edge between tasks ti and tj in E

ci,j The communication cost between tasks ti and tj

succ(ti ) A set of tasks which are direct successors of task ti

pred(ti ) A set of tasks which are direct predecessors of task ti

proc(ti ) A set of processors executing task ti

drt (ti , pj ) The data ready time of task ti when it is executed on processor pj

est (ti , pj ) The earliest start time of task ti on processor pj

et (ti , pj ) The execution time of task ti when it is executed to processor pj

et (ti ) The average computation time of task ti

eft(ti , pj ) The earliest finish time of task ti on processor pj

pr(ti , pj ) The present reliability of task ti which is executed on processor pj

fr(ti ) The final reliability of task ti after replication
lest(ei,j , pk, pn, li ) The earliest start time of link li for edge ei,j transferred from pk to pn

left(ei,j , pk, pn, li ) The earliest finish time of link li for edge ei,j transferred from pk to pn

r(ti , pj ) The reliability of processor pj during the execution of task ti without
considering the predecessors of ti

r(ei,j , pk, pn, li ) The reliability of link li for ei,j from pk to pn

cet (ei,j , pk, pn) The execution time of communication edge ei,j transferred from pk to pn

r(ei,j , pk, pn) The reliability of ei,j when the data is transferred from pk to pn
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3.1 Application Model

A parallel application is usually represented by a
directed acyclic graph (DAG) Gt = 〈T , E, w, c〉,
where T , E, w, and c are the set of m task nodes,
the set of communication edges, the set of compu-
tation costs associated with the task nodes, and the
set of communication costs associated with the edges,
respectively. The weight w(ti) is the computation cost
of task ti . In this model, the execution time of task
ti when it is executed on processor pj is represented
by et (ti , pj ). It can be calculated by the following
equation:

et (ti , pj ) = w(ti)

fi,j

, (1)

where fi,j denotes the frequency of processor pj

when executing task ti according to the voltage and
frequency scaling technique [38]. A speed si,j denotes
the computation capacity (the amount of computation
that can be performed in a unit of time) of processor
pj when executing task ti . The relationship between
them follows the following equation:

si,j ∝ fi,j . (2)

The average computation time et (ti) of task ti can
be given by the following equation,

et (ti) = 1

n

n∑

j=1

et (ti , pj ), (3)

where n is the number of heterogeneous processors in
an HC system.

In this model, pred(ti) denotes the set {tx ∈ T :
ex,i ∈ E} of all the direct predecessors of task ti . Sim-
ilarly, succ(ti) denotes the set {tx ∈ T : ei,x ∈ E} of
all the direct successors of task ti . If a task t satisfies
the equation pred(t) = ∅, then it is called a source
task. If a task t satisfies the equation succ(t) = ∅,
then it is called a sink task. In this paper, we allow that
there are more than one source task or more than one
sink task in a DAG.

The following terms describe a schedule S of a
DAG Gt = 〈T , E, w, c〉 on an HC system. The ear-
liest start time of task ti executed on processor pj is
denoted by est (ti , pj ). Similarly, the earliest finish
time of task ti executed on processor pj is denoted by
eft(ti , pj ) = est (ti , pj ) + et (ti , pj ). The set proc(t)

denotes the set of all processors to which task t is assigned.

The edge ei,j represents the precedence constraint
between tasks ti and tj . In other words, task tj can
start the execution only after all the replicas of ti
are finished. Let ci,j be the communication cost
associated with edge ei,j . The execution of task com-
putations on a processor is sequential. Meanwhile,
a computation cannot be divided into several parts.
Hence, when scheduling starts, these edges must sat-
isfy the following conditions.

Condition 1 (Precedence Constraint) Let S be a
schedule for task graph Gt = 〈T , E, w, c〉 on a hetero-
geneous computing system P . For ti , tj ∈ T , ei,j ∈ E,
px, py ∈ P :

est (tj , py) ≥ max
px∈proc(ti )

{eft(ti , px)}, (4)

that is, py cannot start until all replicas of px are
completed.

Condition 2 (Exclusive Processor Allocation) Let S

be a schedule for task graph Gt = 〈T , E, w, c〉 on a
heterogeneous computing system P . For any two tasks
ti and tj ∈ T , a processor q ∈ P :

q ∈ proc(ti) ∩ proc(tj ) =⇒ eft(ti , q)

< est (tj , q) or eft(tj , q) < est (ti , q), (5)

that is, the execution of ti and tj cannot overlap.
The earliest start time of task ti on processor pj

is influenced by two parameters, i.e., data ready time
(drt) and the earliest idle time block on processor
pj . The data ready time is computed by the following
equation:

drt (ti , pj ) = max
tk∈pred(ti )

{
max

pm∈proc(tk)
{eft(tk, pm)

+ cet (ek,i , pm, pj )}
}

, (6)

where cet (ek,i , pm, pj ) represents the execution time
of edge ek,i transferred from processor pm to pj .

Condition 3 (Drt Constraint) Let S be a schedule
for task graph Gt = 〈T , E, w, c〉 on a heterogeneous
computing system P . For ti ∈ T and pj ∈ P :

est (ti , pj ) = max{drt (ti , pj ), idle(pj )}, (7)

where idle(pj ) is the earliest idle time block on pro-
cessor pj .
Figure 1 gives a DAG example which consists of 10
tasks and 13 edges. Communication costs are marked
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Fig. 1 A DAG example with 10 tasks and 13 edges

in the middle of the edges. Table 2 gives the execution
times of the 10 tasks on all the 5 processors.

3.2 Computing System Model

The computing system model used in this paper is
heterogeneous. It is modeled as an undirected and par-
tially connected graph Gp = 〈P,L, F 〉, where P

denotes the finite set of n heterogeneous processors,
L denotes the finite set of undirected communication
links, and F denotes the processor frequencies given
as a two-dimensional matrix. Let pj denote the j th
processor in set P . And li,j represents the communi-
cation link between processors pi to pj . According to
the former description, we clearly know that li,j and
lj,i represent the same link. A simple path L between
two processors ps and pd is defined to be a set of

resources in which a resource does not appear more
than once. That resource set includes both the source
and destination machines as well. This is the definition
of the topology which is employed in [8, 26, 38]. Note
that this model of the network assumes no Ethernet
type of network connections among the processors,
which is the only limitation of the model. The speed
s(li,j ) assigned to a link li,j represents its communi-
cation capacity (the amount of data that can be trans-
mitted on the link in a unit time). We further assume
that there is no contention in the communication links.
The communication between two tasks executed on
the same processor is zero. Figure 2 shows an example
of a heterogeneous computing system connected with
an arbitrary network.

Traditionally, the failure of a processor and a net-
work is assumed to follow a Poisson distribution with
a constant failure rate. According to the existing lit-
erature [14, 25, 42], we assume that the faults that
occur during the execution of different tasks are inde-
pendent. λi,j denotes the failure rate of processor pj

when executing task ti . It is tightly connected to the
current processor frequency [38]. Therefore, the fail-
ure rate of processor pj when its frequency is fi,j can
be computed by the follow equation [38]:

λi,j = λ(fi,j ) = λi · g(fi,j ) = λi · 10
d(fmaxi

−fi,j )

fmaxi
−fmini , (8)

where λi means the average failure rate of task ti when
the frequency is equal to fmaxi

. The exponent d > 0 is
a constant indicating the sensitivity of failure rates to
voltage and frequency scaling. fmini

denotes the min-
imum frequency of task ti . Similarly, fmaxi

denotes
the maximum frequency of task ti . In this paper, we
assume that fmaxi

is normalized as 1.0. This failure

Table 2 Execution Time
Matrix Task node p0 p1 p2 p3 p4 Rank(ti ) Seq

t0 5 5 4 6 10 41.0889 1

t1 7 6 9 7 6 24.0000 5

t2 9 6 4 4 9 33.3111 3

t3 4 7 9 5 9 34.1556 2

t4 9 7 8 7 6 7.4000 9

t5 5 6 6 10 7 25.5778 4

t6 9 9 7 5 7 22.9111 6

t7 8 4 8 7 4 15.2222 7

t8 6 8 4 6 4 14.1778 8

t9 8 8 6 5 7 6.8000 10
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Fig. 2 A heterogeneous computing system with arbitrary net-
works graph

rate model is consistent with the model presented in
[38]. The range of frequency in [38] is from 0.4 to 1.0,
which means that the maximum frequency is equal
to one. The failure rate of communication link li,j is
denoted as λ(li,j ), which is not related to frequency.

It should be noted that simulating the failure of a
resource by a Poisson process may not always accord
with the actual failure dynamics of the resource. How-
ever, it has been illustrated by [18] that such an
assumption is still useful. For mathematical tractabil-
ity, failures of resources are assumed to be statistically
independent. In addition, once a resource has failed,
it is assumed that it remains in the failed state for
the rest of the application execution. Note that these
assumptions on failures are widely used to deal with
the reliability of HC systems [14, 19, 23].

4 The Analysis of Reliability

For a task tj ∈ T executed to a processor pd to
run successfully in a heterogeneous computing sys-
tem, the processor pd must be operational during the
period of task execution and its coming data must be

transferred successfully. Assume that task ti , which is
the immediate predecessor of task tj , is executed to
processor ps . Hence, there exists an operating path
from processor ps to pd . For current task tj , its imme-
diate predecessors are more than one, and each of
them has some replicas. Hence, searching optimal
reliability communication paths for current task is
effective for acquiring maximum communication reli-
ability. In this section, we first discuss task reliability
and give some useful formulas. Then, we propose an
improved algorithm for searching optimal reliability
communication paths.

The reliability of a processor p in time interval t

is exp(−λt), where λ is the failure rate of processor
p. According to this formula, the reliability r(ti , pj )

of processor pj during the execution of task ti , which
does not consider precedence constraints, is computed
by:

r(ti , pj ) = exp(−λi,j · et (ti , pj )). (9)

This formula does not consider the precedence
between tasks. In other words, we only consider task
ti independently In our reliability model, the failure of
the network is assumed to follow a Poisson distribu-
tion and each link is associated with two parameters.
One is λ(li,j ) which is the failure rate of link li,j . The
other is s(li,j ) which is the speed of link li,j .

For the task tj assigned to pd and its immediate pre-
decessor task ti assigned to ps , let < l1, l2, ..., lk > be
the path from ps to pd with k links in an HC system.
Task ti may have more than one replica. Therefore,
the communication edge ei,j may be transferred more
than one time. The earliest start time of link lu (u =
1, 2, ..., k) for edge ei,j from ps to pd is denoted as
lest (ei,j , ps, pd, lu). Similarly, the earliest finish time
of link lu for edge ei,j from ps to pd is denoted as
left(ei,j , ps, pd, lu). The execution time of link lu is
denoted as let (ei,j , ps, pd, lu). These three definitions
can be described as follows:

⎧
⎨

⎩

lest (ei,j , ps, pd, lu) = eft(ti , ps),

left(ei,j , ps, pd, lu) = lest (ei,j , ps, pd, lu) + ci,j /s(lu),

let (ei,j , ps, pd, lu) = left(ei,j , ps, pd, lu) − lest (ei,j , ps, pd, lu).

(10)

Furthermore, we can compute the reliability of
communication edge ei,j on link lu using the follow-
ing equation:

r(ei,j , ps, pd, lu) = exp(−λ(lu) · let (ei,j , ps, pd, lu)). (11)

Since the failure of network links are statistically
independent. From the above equation, the reliability
communication edge ei,j can be computed by:

r(ei,j , ps, pd) =
k∏

u=1

r(ei,j , ps, pd, lu). (12)
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Communication contention is not considered in this
paper. So the execution time of communication edge
ei,j is computed as follows:

cet (ei,j , ps, pd) =
k∑

u=1

let (ei,j , ps, pd, lu). (13)

It is easy to obtain the earliest start and finish times of
ei,j according to the above argument:
{

cest (ei,j , ps, pd) = lest (ei,j , ps, pd, l1),

ceft(ei,j , ps, pd) = left(ei,j , ps, pd, lk).
(14)

According to the analysis given above, we can
define the present reliability of task t when it is
executed to processor p.

Definition 1 Let pr(tj , pz) denote the task present
reliability. In other words, it is the probability that no
failure occurs on processor pz from the beginning of
the schedule to the end of task tj ’s execution on pz. It
is influenced by the present reliability of its immediate
predecessor tasks and the communication reliability.
This value can be acquired by:

pr(tk, pj ) =
∏

ti∈pred(tk)

⎛

⎝1 −
∏

pn∈proc(ti )

(1 − pr(ti , pn) · r(ei,j , pn, pj ))

⎞

⎠ · r(tk, pj ). (15)

There are differences between pr(tj , pz) and
r(tj , pz). The time span of pr(tj , pz) ranges from the
beginning of a schedule to the end of the execution
of task tj . Hence, it is crucial to consider the reliabil-
ity generated from the predecessors of tj . However,
the time span of r(tk, pj ) ranges from the beginning
of the execution of task tj on processor pz to the end
of that. As a result, it only considers task tj without
considering its predecessors.

In order to maximize task present reliabil-
ity, we propose an improved algorithm called
OPMR(tk, pj , E, P, pr) which enhances the com-
munication reliability for task tk . OPMR selects the
maximum reliability paths from processor pj to all
the processors on which the immediate predecessors
of task tk are executed. The pseudo code of OPMR
is shown in Algorithm 1. Firstly, a vector r[z] which
stores the maximum communication reliability value
from processor pj to all the other processors is set-
tled and initialized (lines 1–5). Secondly, we use a
structure to save all the optimal reliable paths from a
processor to another (line 6). For any path, the proces-
sors are saved orderly. Thirdly, we repeatedly select
the processor pu in set P −S which has the maximum
communication reliability value until the set P − S is
empty. Then, we recompute the communication relia-
bility value of all links transferred to pj through pu.
If the new value is larger than the former value, then
we replace it (lines 7–21). Lastly, the present reliabil-
ity of task tk on processor pj can be computed (lines
22–23).

The network failure rates are given in Table 3,
which is based on the topology in Fig. 2. Assuming
that task t0 is scheduled on processor p0 and task t2 is
scheduled on processor p1. According to Fig. 2, there
are three available communication path between pro-
cessor p0 and p1. The optimal reliable communication
path found by the OPMR algorithm is l0,3 and l1,3.

5 The Proposed Algorithm

This section proposes a new algorithm named RMSR
(Replication-based scheduling for Maximizing Sys-
tem Reliability) in HC systems. This algorithm con-
sists of two phases. One is the listing phase, which
is similar to the HEFT algorithm [31]. The other is
the task replication and assignment phase, which max-
imizes the system reliability. RMSR is an improved
algorithm for the existing reliability-aware algorithms.
We will describe it in two steps in the following
subsections. The pseudo code of RMSR is shown in
Algorithm 2.

5.1 Task Prioritizing Phase

In our RMSR algorithm, tasks are ranked by their
priorities which are based on bottom-level. It is calcu-
lated recursively by

rank(ti) = et (ti) + max
tj ∈succ(ti )

(ci,j + rank(tj )), (16)
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Algorithm 1 OPMR(tk, pj , E, P, pr)

Input: Task tk when it is executed on processor pj ,
the set of communication edges E, the set of pro-
cessors P , the present reliability value pr of all tk’s
predecessors.

Output: The present reliability of task tk when it is
executed on pj .

1. for each task ti ∈ pred(tk) do
2. Put all the processors in set proc(ti) into set T ,

and put pj into set S;
3. Set a vector r[z] which represents the max com-

munication reliability value form pz to pj , pz ∈
P ;

4. Initialize all processors in set P ;
5. Compute vector r[z] by

r[z] =
⎧
⎨

⎩

r(ei,j , pz, pj , l1) using Eq. (11) if pj connects pz;
1 if pj = pz;
0 otherwise;

6. Set a two-dimensional matrix structure path[j ]
[z] to save optimal reliable path from pz to pj ;

7. while T 
= ∅ do
8. Select a processor pu which has the max r[z] in

set P − S and put it into set S;
9. for all processor pz in set P − S do

10. Compute the reliability rl of link transferred
from pz to pj through pu using Eq. (12);

11. if rl > r[z] do
12. r[z]=rl;
13. Put processor pu in path[j ][z];
14. end if
15. end for
16. if pu ∈ T then
17. Remove pu from T ;
18. end if
19. end while
20. r(ei,j , pz, pj ) = r[z];
21. end for
22. Compute pr(tk, pj ) according to Eq. (15);
23. return pr(tk, pj ).

where et (ti) is the average computation time of task
ti and ci,j is the average communication cost of edge
ei,j over all paths between any two processors. The
rank is computed recursively by traversing the task
upward, starting from the exit task. For each exit task
texit , the rank value is computed by:

rank(texit ) = et (texit ). (17)

Algorithm 2 The RMSR Algorithm

Input: A DAG graph Gt = 〈T , E, w, c〉, task reliabil-
ity threshold γ , a processor topology graph Gp =
〈P,L, F 〉.

Output: A task schedule S of Gt on Gp.

1. for all task ti in Gt do
2. for all processor pj in Gp do
3. Calculate et (ti , pj ) using Eq. (1);
4. Compute r(ti , pj ) using Eq. (9);
5. end for
6. end for
7. Compute the rank for each task using Eq. (16);
8. Sort all the task in non-increasing order accord-

ing to rank, then put them in queue NT in
order;

9. while NT 
= ∅ do
10. Select the first task tk in NT ;
11. for all processor pj do
12. Compute pr(tk, pj ) using Algorithm 1;
13. end for
14. Sort all the processor pj in decreasing order

according to pr(tk, pj ), then put them in queue
NPk in order;

15. Select the first processor pn on NPk ., and
assume its pr value is prmax ;

16. if prmax > γ then
17. proc(tk) = pn;
18. else
19. Compute the number βnum(tk) of replicas that

task tk needs and determine the set proc(tk) of
processors on which the replicas execute using
Algorithm 3;

20. end if
21. for all processor pj ∈ proc(tk) do
22. Calculate est (tk, pj ) using Eq. (7);
23. Schedule tk on pj ;
24. end for
25. end while
26. return S.

In Algorithm 2, this phase is shown in lines 1–
8. Firstly, two parameters et (ti , pj ) and r(ti , pj ) are
computed in lines 1–6. Secondly, we compute the rank
for each task recursively (line 7). Lastly, all the tasks
are sorted in non-increasingorder according to their
ranks, and consequently a task schedule list which sat-
isfies inter-task precedence is generated (line 8). For
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Table 3 Network Failure
Rate Link l0,3 l0,4 l1,3 l1,4 l2,3 l2,4

Failure rate 0.0010 0.0020 0.0004 0.0005 0.0012 0.0015

example, considering the application DAG in Fig. 1
and the heterogeneous computing system in Fig. 2, the
rank values which are computed by (16) and the task
sequence are listed in Table 2.

5.2 Task Replication and Assignment Phase

In this phase, the replication number of task ti is
determined and tasks are allocated to the suitable pro-
cessors. A few terms related to reliability are defined
for reader’s convenience. The definitions are given
below.

Definition 2 The task reliability threshold is denotes
as γ . It is the lower bound of task reliability.

Definition 3 The task final reliability fr(ti) is the reli-
ability of task ti after replication. After tasks are allo-
cated to some suitable processors, it can be computed
by the following equation:

fr(ti) = 1 −
∏

pj ∈proc(ti )

(1 − pr(ti , pj )). (18)

Definition 4 The system reliability R is the product
of the final reliability of all the sink tasks, which can
be calculated by using the following equation:

R =
∏

succ(ti )=∅
fr(ti). (19)

The main process of this phase is shown in lines
9–26 of Algorithm 2. According to the task sequence
generated in Section 5.1, for the current task tk , we
compute pr(tk, pj ) for each processor pj using Algo-
rithm 1 (lines 10–13). Then we sort all the processors
in non-increasing order according to the pr values and
put this order in the queue NPk . It is obvious to know
that the first processor in NPk has the largest pr value.
We denote that processor as pn and the corresponding
pr value as prmax (lines 14–15). To guarantee that the
final reliability of task tk is greater than the task relia-
bility threshold γ , we compare prmax to γ . If prmax is
higher than γ , the replication of task tk is not needed.

As a result, βnum(tk) is equal to one and consequently
we choose processor pn for task tk to be allocated.
But if prmax is lower than γ , the replication of task
ti is needed. We use Algorithm 3 to compute βnum(tk)
and generate proc(tk) at the same time (lines 16–20).
As a result, the replication number of each task is
dynamic. After the replication process is completed,
we assign task tk to all the processors in proc(tk)

(lines 21–24).
In Algorithm 3, we dynamically compute the repli-

cation number of task tk according to its present
reliability (pr) and task reliability threshold γ . Firstly,
the first two processors in NPk are selected and the
computation of fr(tk) is executing as an initial value
(lines 1–5). Secondly, we repeatedly select the next
processor in NPk , recompute fr(tk) with (18) until
fr(tk) is larger than γ (lines 6–11). Lastly, the repli-
cation number of task tk is saved in βnum(tk) (lines
12–13).

Algorithm 3 Repnum(tk, pr, NPk, γ, n)

Input: A given task reliability threshold γ , the task
ti which needs to compute its replicas, all the relia-
bility values of ti on P , a sorted processor set NPk

according to pr , the processor number n.
Output: The number of replicas for tasks tk –

βnum(tk).

1. num=1;
2. Select the first two processors in NPk – NP 0

k

and NP 1
k ;

3. r = 1−(1−pr(tk, NP 0
k ))×(1−pr(tk, NP 1

k ));
4. p = 1 − r;
5. proc(tk) = NP 0

k ;
6. while 1 − p < γ and num < n do
7. Put NP num

k into proc(tk);
8. num++;
9. r = pr(tk, NP num

k );
10. p = p × (1 − r);
11. end while
12. βnum(tk) = num;
13. return βnum(tk) and proc(tk).
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5.3 Time Complexity of RMSR

The time complexity of the RMSR algorithm is
expressed in terms of the number of nodes |T |, the
number of processors |P |, and the maximum degree of
each task dmax

in . The time complexity of RMSR is ana-
lyzed in two steps. Firstly, we analyze the complexity
of two subalgorithms, i.e., the OPMR and Repnum
algorithms. Then, we describe the process of analyz-
ing the complexity of RMSR according to the values
acquired from the first step.

In the OPMR algorithm (Algorithm 1), all prede-
cessors of each task are considered, resulting in time
O(dmax

in ). For each predecessor of any task, the fol-
lowing process is repeated. Initializing all the proces-
sor and searching optimal reliable paths can be done
in time O(|P |) and O(|P |2). As a result, the overall
complexity of OPMR is O(dmax

in |P |2). In the Rep-
num algorithm (Algorithm 3), the replication number
of task tk is computed and denoted as βnum(tk), which
is lower than |P |. The overall complexity of Repnum
is O(βnum(tk)).

In each round of the RMSR algorithm (Algo-
rithm 2), calculating execution time and reliability
of each task on all processors can be done in time
O(|T ||P |). Computing the rank value and sorting the
tasks can be done in time O(|T | log2 |T |). Task repli-
cation and assignment phase can be done in time
O(|T ||P |3dmax

in ). Hence, the complexity of RMSR is
O(|T | log2 |T | + |T ||P |3dmax

in ).

6 Experimental Results and Analysis

In this section, we compare the performance of the
proposed RMSR algorithm with that of the existing
scheduling algorithms in heterogeneous computing
system: the RASD [26] and the HEFT [31] algorithms.
For RMSR, we list two cases when the task reliability
thresholds γ is equal to 0.995 and 0.99, respectively.
For convenience of description, we mark task reliabil-
ity threshold value behind RMSR in the bracket. To
make effective comparison, we consider two sets of
graphs as the workload for testing the algorithms, i.e.,
randomly generated application graphs and graphs
that represent some of the real-world numerical
problems. The two real-world parallel applications
used for our experiments are the Gaussian elimina-
tion algorithm [6, 16, 31, 35] and the fast Fourier

transformation algorithm [5, 31]. System reliability is
our comparison metric to test the performance of these
algorithms.

To test the performance of these algorithms, we
have built an extensive simulation environment of
HDC systems with 32 processors whose computation
capacities vary from Pentium II to Pentium IV. In
order to make the three algorithms comparable, we
modified the computing system model of HEFT prop-
erly according to our models presented in Section 3.

6.1 Randomly Generated Applications

Generation of Random Application Graphs In our
study, we first considered randomly generated appli-
cation graphs. A random graph generator was imple-
mented to generate weighted application DAGs with
various characteristics that depend on several input
parameters [8, 16, 26, 31]. It requires the following
input parameters to build weighted DAGs.

– Number of DAG nodes m.
– Parallelism parameter α. We assume that the

height of a DAG h is randomly generated from
a uniform distribution with a mean value equal

to
√

m
α

. (The height is equal to the smallest inte-
gral value not less than the real value generated
randomly). The width for each level is randomly
selected form a uniform distribution with a mean
equal to α

√
m.

– Out degree of a node, out degree.
– Communication to computation time ratio CCR.

It is the ratio of the average communication cost to
the average computation cost. A DAG can be con-
sidered as a computation-insensitive application if
its CCR value is very low.

– The average computation cost of each task wi .
It is selected randomly from a uniform distribu-
tion with range [0, 2wDAG], where wDAG is the
average computation cost of the given graph. The
value of wDAG does not affect the performance
results of the scheduling algorithms.

– The frequency f ranges from 0.4 to 1.

In our simulation experiments, DAGs are generated
based on the combination of parameters introduced
above. The number of tasks in a DAG ranges from 40
to 200. To determine the size of a generated DAG, the
height of this DAG is computed by parallelism param-
eter α (0.5, 1.0, 2.0) firstly, then the width of each level
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is determined. To obtain the desired CCR for a DAG,
the average computation cost wDAG is randomly from
a uniform distribution. The communication costs are
also taken from a uniform distribution with a mean
which equals to the product of wDAG and CCR (0.1,
0.5, 1.0, 5.0, 10.0). 900 random graphs are generated
for each set of above parameters in order to avoid scat-
tering effects. The experimental results are the average
of the data obtained for these DAGs.

Random Applications Performance Analysis The sys-
tem reliability of three algorithms is compared with
respect to graph characteristics. The overall experi-
mental results are presented in Fig. 3, which gives an
intuitive presentation in two aspects. Firstly, compared
to RASD and HEFT, our RMSR algorithm achieves
noticeable improvement on system reliability. Sec-
ondly, with the increasing of task reliability threshold
γ , the system reliability in our algorithm increases
correspondingly.

The first set of experiments compare system relia-
bility with respect to the number of tasks (see Fig. 3a).
The performance of our RMSR algorithm outperforms
both RASD and HEFT algorithms, especially when
the number of tasks is large. According to Fig. 3a, the
system reliability of RMSR(99.5 %) is greater than
RASD and HEFT by (7.53 %, 10.08 %), (9.54 %,
12.04 %), (11.24 %, 14.05 %), (12.59 %, 15.53 %),
and (16.03 %, 19.15 %), for the number of tasks of
40, 80, 120, 160, and 200, respectively. It shows that
the system reliability decreases with the increasing
number of tasks. The reason is described as follows.
When the task number increases, the number of sink
tasks is increasing correspondingly. According to the
calculation formula for system reliability in (19), the
more sink tasks are, the lower system reliability can
be acquired. Our algorithm uses replication to guaran-
tee that the final reliability for each task is higher than
γ . As a result, this method can prevent the decreas-
ing of system reliability as much as possible. There
is another phenomenon presented in Fig. 3a. For the
same set of DAGs, with the increasing of task relia-
bility threshold γ , the system reliability increases for
the two cases of RMSR. This is because the higher the
task reliability threshold is, the higher task final relia-
bility can get. As a result, the system reliability is also
higher correspondingly.

The second set of experiments compare system
reliability of the four cases with respect to different

numbers of processors. As shown in Fig. 3b,
RMSR(99.5 %) significantly outperforms RASD and
HEFT by (10.38 %, 13.97 %), (11.08 %, 14.11 %),
(12.78 %, 14.93 %), (11.32 %, 15.13 %), (9.45 %,
14.69 %), for number of processors of 4, 8, 16,
32, 64, respectively. When the number of processors
is lower than 16, the system reliability of the two
cases of RMSR slightly increases. However, when
the number of processors is higher than 16, the sys-
tem reliability slightly decreases. Therefore, all the
two cases of RMSR choose 16 as the most suitable
processor number. The possible reasons resulting in
this phenomenon are explained as follows. On the
one hand, with the increasing number of processors,
the average number of links from one processor to
another is relatively increased. Hence, link reliabil-
ity decreases and influences the system reliability
indirectly. On the other hand, when the number of pro-
cessors is small, if the failure rate of some processors
is large, this will influence all the tasks allocated to
them. The system reliability is also influenced indi-
rectly. According to the analysis given above, we
assume that when task number is fixed, there exists
a suitable processor number. And for different task
numbers, different suitable processor numbers can be
found.

In the third set of experiments, the results are
depicted in Fig. 3c for all tested parallelism factor
values. With the increasing parallelism factor value,
the results show three different trends for all the four
cases. The explanation is described as follows. For
RASD and HEFT, when the number of tasks is fixed,
the height of a DAG varies inversely with the paral-
lelism factor value. In other words, the smaller the
parallelism factor value is, the greater the number of
predecessors a task has, hence leading to lower sys-
tem reliability. Because of the replication method we
use, the phenomenon RASD shows can not affect our
algorithm. For RMSR, the system reliability is influ-
enced by two parameters. One is the number of sink
tasks. The other is the final reliability of sink tasks.
When the parallelism factor value ranges from 0.2 to
5, the number sink nodes becomes larger for all the
two cases in RMSR. However, with the increasing
task reliability threshold, the range of final reliability
of sink tasks is less. Therefore, the influence of final
reliability of sink tasks is little. We believe that the
results of RMSR(99.5 %) are only influenced by the
first parameter, while the results of RMSR(99.0 %)
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Fig. 3 Average system reliability of random DAGs

are influenced by all the two parameters. In short, our
algorithm outperforms RASD and HEFT significantly
when the parallelism factor is small.

The last set of experiments are with respect to
the CCR. As shown in Fig. 3d, the CCR value does
not significantly affect the relative performance of
scheduling algorithms. In other words, the perfor-
mance comparison shows similar patterns regardless
of CCR. The pattern shows that for the same set
of DAGs, the two cases of our algorithm provide
higher system reliability than RASD and HEFT by the
average value 11.05 % and 15.32 %.

6.2 Application Graphs of Real-World Problems

In addition to randomly generated task graphs, we also
considered application graphs of real-world problems,

i.e., the Gaussian elimination [6, 16, 31, 35] and the
fast Fourier transformation (FFT) [31, 35].

Gaussian elimination Gaussian elimination is used to
determine the solution of a linear system of equations.
Figure 4a gives the sequential program for Gaus-
sian elimination algorithm. The DAG of the algorithm
solving a 5×5 matrix is shown in Fig. 4b. For the
experiments of Gaussian elimination application, the
same CCR and number of processors were used. Since
the structure of the application graph is known, we
do not need other parameters, such as task number,
out degree, and parallelism factor α. A new parame-
ter, matrix size z, is used in place of DAG size m (the
number of tasks in the DAG graph). The total num-
ber of tasks in a Gaussian elimination graph is equal
to 1

2 (z2 + z − 2) [35].
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Fig. 4 a Gaussian
elimination algorithm; b
Task graph for matrix of
size 5; c System reliability
comparison for Gaussian
elimination graph
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Figure 4c shows the system reliability of the four
cases at various matrix sizes from 5 to 20, with an
increment of three, when the number of processors is
equal to eight. The smallest size graph in this exper-
iment has 14 tasks and the largest one has 209 tasks.
With the increasing of matrix size, the results of all
the two cases of RMSR change slightly. The reason
is that the DAG of Gaussian elimination application
has only one sink task. According to our description
before, system reliability is equal to the final reliabil-
ity of this sink task in this situation. Therefore, the
system reliability is larger than γ . Overall, our algo-
rithm RMSR(99.5 %) outperforms RASD and HEFT
by (5.60 %, 7.50 %), (9.45 %, 11.28 %), (11.27 %,
14.70 %), (14.3 %, 17.39 %), (16.07 %, 20.11 %),

(19.15 %, 24.78 %), for matrix sizes 5, 8, 11, 14, 17,
20, respectively.

Generally speaking, when the number of sink tasks
of a DAG is only one, we can guarantee that the
lower bound of system reliability is larger than task
reliability threshold γ .

Fast Fourier transformation (FFT) The recursive,
one-dimensional FFT algorithm [31, 35] and its task
graph (when there are four data points) are given in
Fig. 5. In this figure, A is an array of size z which
holds the coefficients of the polynomial, and array
Y is the output of the algorithm. The behavior of
FFT with input vector size 4 is shown in Fig. 5a.
The algorithm consists of two parts: recursive calls
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Fig. 5 a FFT algorithm; b
The generated DAG of FFT
with 4 points; c System
reliability comparison for
FFT graph FFT A
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(lines 3–4) and the butterfly operation (lines 6–7).
The task graph in Fig. 5b can be divided into two
parts, the tasks above the dashed line are the recur-
sive call tasks and the ones below the line are butterfly
operation tasks. For an input vector size of z, there
are 2z − 1 recursive call tasks and z log2 z butterfly
operation tasks. (We assume that z = 2k for some
integer k.)

When the input vector size is known, the num-
ber of sink nodes of a DAG is fixed correspondingly.
Therefore, the system reliability is affected by the final
reliability of each sink task. As a result, the experi-
ment results of RMSR are only influenced by the input
vector size regardless of other parameters through
replication. The comparison of system reliability of
the four cases is shown in Fig. 5c. It is obvious to
see that our algorithm significantly outperforms both
RASD and HEFT algorithms. For example, the system
reliability of RMSR(99.5 %) is greater than RASD
and HEFT by (3.32 %, 4.07 %), (4.88 %, 6.37 %),
(7.42 %, 9.58 %), (12.47 %, 17.35 %), (16.78 %,

20.55 %), for the input vector size of 2, 4, 8, 16, 32,
respectively. This provides a clear indication that there
is a trend of improved performance with increasing
input vector size.

7 Conclusion

In this paper, we have proposed a new reliability-
aware task scheduling algorithm called RMSR in
heterogeneous computing systems. The aim of this
algorithm is to maximize the system reliability based
on replication. A task reliability threshold is used
when the replication executes. The performance of the
RMSR algorithm is compared to two of the best exist-
ing scheduling algorithms for HC systems, i.e., the
HEFT and RASD algorithms. Because the system reli-
ability achieved by our algorithm is tightly related to
the task reliability threshold, we set two different task
reliability threshold, 99.5 % and 99.0 %, to show the
different performance of RMSR.
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The performance comparison is based on both
randomly generated application DAGs and two real-
world problems, namely, Gaussian elimination and
fast Fourier transformation (FFT). The experimental
results show that the two cases of our algorithm out-
performs both HEFT and RASD in terms of system
reliability. We can also find that for some particular
shapes of DAG whose number of sink tasks is one,
the system reliability of our algorithm can be guaran-
teed by the task reliability threshold. Furthermore, for
a DAG whose number of sink tasks is more than one,
the system reliability of our algorithm is only influ-
enced by task numbers. Overall, RMSR makes a huge
improvement of system reliability.

This work represents our first and preliminary
attempt to study a very complicated problem. Further
study in this area may take the energy saving issue into
account.
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