
•
•

•
-

-

-

•

•

•

 
Dear Author/Editor,
 
Here are the proofs of your chapter as well as the metadata sheets.
 
Metadata

Please carefully proof read the metadata, above all the names and address.
In case there were no abstracts for this book submitted with the manuscript, the first 10-15
lines of the first paragraph were taken. In case you want to replace these default abstracts,
please submit new abstracts with your proof corrections.
 

Page proofs
Please check the proofs and mark your corrections either by

entering your corrections online
 or
opening the PDF file in Adobe Acrobat and inserting your corrections using the tool
"Comment and Markup"
 or
printing the file and marking corrections on hardcopy. Please mark all corrections in
dark pen in the text and in the margin at least ¼” (6 mm) from the edge.

You can upload your annotated PDF file or your corrected printout on our Proofing
Website. In case you are not able to scan the printout , send us the corrected pages via
fax.
Please note that any changes at this stage are limited to typographical errors and serious
errors of fact.
If the figures were converted to black and white, please check that the quality of such
figures is sufficient and that all references to color in any text discussing the figures is
changed accordingly. If the quality of some figures is judged to be insufficient, please send
an improved grayscale figure.

A
ut

ho
r's

 P
ro

of



Metadata of the chapter that will be visualized online
Book Title Handbook on Data Centers

Chapter Title Cloud Storage over Multiple Data Centers

Copyright Springer Science+Business Media New York 2014

Corresponding Author [Aff 1] Family name Mu

Particle

Given name Shuai

Suffix

Division Department of Computer Science and Technology

Organization Tsinghua National Laboratory for Information Science and
Technology (TNLIST), Tsinghua University

Address Beijing, China

email msmummy@gmail.com

Author [Aff 2] Family name Mu

Particle

Given name Shuai

Suffix

Division

Organization Research Institute of Tsinghua University in Shenzhen

Address Shenzhen, China

email msmummy@gmail.com

Author Family name Su

Particle

Given name Maomeng

Suffix

Division

Organization Tsinghua University

Address Beijing, China

email maomengsu19881010@gmail.com

Author Family name Gao

Particle

Given name Pin

Suffix

Division

Organization Tsinghua University

Address Beijing, China

email pin.gao2008@gmail.com

Author Family name Wu

Particle

Given name Yongwei

Suffix

Division

Organization Tsinghua University

Address Beijing, China

email wuyw@tsinghua.edu.cn

Author Family name Li

Particle

Given name Keqin

Suffix

Division Department of Computer Science

A
ut

ho
r's

 P
ro

of



Organization State University of New York at New Paltz

Address New Paltz, USA

email lik@newpaltz.edu

Author Family name Zomaya

Particle

Given name Albert Y.

Suffix

Division Centre for Distributed and High Performance Computing School of
Information Technologies

Organization The University of Sydney

Address Sydney, Australia

email albert.zomaya@sydney.edu.au

Abstract Cloud storage has become a booming trend in the last few years.
Individual developers, companies, organizations, and even
governments have either taken steps or at least shown great
interests in data migration from self-maintained infrastructure into
cloud.

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers

Shuai Mu, Maomeng Su, Pin Gao, Yongwei Wu, Keqin Li
and Albert Y. Zomaya

1 Introduction1

Cloud storage has become a booming trend in the last few years. Individual devel- [AQ1]
2

opers, companies, organizations, and even governments have either taken steps or at3

least shown great interests in data migration from self-maintained infrastructure into4

cloud.5

Cloud storage benefits consumers in many ways. A recent survey among over 6006

cloud consumers [80] has shown that primary reasons for most clients in turning to7

cloud are: (1) to have highly reliable as well as available data storage services; (2) to8

reduce the capital cost of constructing their own datacenter and then maintaining it;9

S. Mu (�)
Department of Computer Science and Technology, Tsinghua National Laboratory
for Information Science and Technology (TNLIST), Tsinghua University, Beijing, China
Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
e-mail: msmummy@gmail.com

M. Su · P. Gao · Y. Wu
Tsinghua University, Beijing, China
e-mail: maomengsu19881010@gmail.com

P. Gao
e-mail: pin.gao2008@gmail.com

Y. Wu
e-mail: wuyw@tsinghua.edu.cn

K. Li
Department of Computer Science, State University of New York at New Paltz,
New Paltz, USA
e-mail: lik@newpaltz.edu

A. Y. Zomaya
Centre for Distributed and High Performance Computing School
of Information Technologies, The University of Sydney, Sydney, Australia
e-mail: albert.zomaya@sydney.edu.au

© Springer Science+Business Media New York 2014 1
S. U. Khan, A. Y. Zomaya (eds.), Handbook on Data Centers,
DOI 10.1007/978-1-4939-2092-1_24

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

2 S. Mu et al.

and (3) to provide high-quality and stable network connectivity to their customers.10

The prosperity of the cloud market has also inspired many companies to provide11

cloud storage services of different quality to vast variety of companies.12

Reliability and availability are the most important issues in designing a cloud13

storage system. In cloud storage, data reliability often refers to that data is not14

lost, and availability refers to data accessibility. To major cloud storage providers,15

accidents of data loss seldom happen. But there was an accident that Microsoft16

once completely lost user data of T-Mobile cellphone users [81]. Because data loss17

accidents seldom happen, data availability is often a more important concern to18

most cloud storage consumers. Almost all cloud storage providers have suffered19

from temporary failures, lasting from hours to days. For example, Amazon failed to20

provide service in October, 2012, which caused many consumers such as Instgram21

to halt their service.22

Data replication is an effective way to improve reliability and availability. Limited23

by cost, cloud providers usually use commodity hardware to store consumers’ data.24

Replicating data into different machines can tolerate hardware failures, and repli-25

cating data into multiple data centers can tolerate failures of a datacenter, caused by26

earthquakes, storms and even wars.27

To reduce cost of replication, data are usually divided into stripes instead of the28

original copy. There are many coding methods for this, originating from traditional29

storage research and practice. Erasure coding, which is widely used in the RAID30

systems, provides suitable features for data striping requirements in cloud storage31

environment.32

Data consistency is also an important issue in cloud storage. As opposed to tra-33

ditional storage systems which usually provide a strong consistency model, cloud34

storage often offers weaker consistency model such as eventual consistency. Some35

also propose other reduced consistency models such as session consistency, and36

fork-join consistency.37

Privacy and security are very essential to some consumers. Consumers are often38

concerned about how their data are visible to cloud providers; whether administrators39

can see their data transparently. For other consumers who are less sensitive to privacy,40

they are more concerned about access control to data, because all the traffic finally41

leads to charges.42

In spite of all the efforts of cloud storage providers, there is an emerging trend43

to build an integration layer on top of current cloud storages, also named “cloud-of-44

clouds”. A cloud-of-cloud system makes use of current cloud storage infrastructure,45

but still provides a uniformed user interface to top-level application developers. It also46

targets the reliability, availability and security issues, but takes a different approach47

of using each cloud as a building block. The advantage of this approach is that it48

can tolerate performance fluctuation of single cloud storage, and can avoid potential49

risks of a provider’s shutdown.50

In the remainder of this chapter, we first review cloud storage architecture at a51

high level in Sect. 2. Section 3 describes common strategies used in data replication.52

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 3

Section 4 gives a brief introduction on data striping. Section 5 introduces the consis-53

tency issue. Section 6 briefly highlights a new model of cloud-of-clouds. Section 754

discusses privacy and security issues in storage systems. Section 8 summarizes and55

suggests future directions to cloud storage research and practice.56

2 Cloud Storage in a Nutshell57

In this section we give an overview of cloud storage architecture and its key compo-58

nents. Cloud storage environments are usually complex systems mixed with many59

mature and new techniques. On a high level, cloud storage design and implementation60

consist of two parts: metadata and data, which will be investigated later.61

2.1 Architecture62

Early public clouds and most of today’s private ones are built into a single datacenter,63

or several datacenters in nearby buildings. They are composed of hundreds or even64

thousands of commodity machines and storage devices, connected by high-speed65

networks. Besides large amounts of hardware, many other storage middleware such66

as distributed file systems are also necessary to provide storage service to consumers.67

The typical architecture of cloud storage usually includes storage devices, distributed68

file system, metadata service, frontend, and other components.69

In practice, we find that the data models and library interfaces of different clouds70

are fairly similar; thus, we could support a minimal set to satisfy most users’ needs.71

The data model shared by most services could be summarized as a “container-object”72

model, in which file objects are put into containers. Most services containers do not73

support nesting; i.e., users cannot create a sub-container in a container.74

In the last decade, major cloud storage such as Amazon S3 [1] and Windows75

Azure Storage [2] have upgrade their service from running in separate datacenters76

to different data centers and different geographic regions. Compared to a single77

datacenter structure, running services in multiple data centers require a multitude of78

more resource management functions, such as, resource allocation, deployment, and79

migration.80

An important feature of cloud storage is the ability to store and provide access to81

an immense amount of storage. Amazon S3 currently has a few hundred petabytes82

of raw storage in production, and it also has a few hundred more petabytes of raw83

storage based on customer demand [21]. Modern cloud storage architecture could84

be divided into three layers: storage service, metadata service, and front-end layer85

(Fig. 1).86

• Metadata service—The metadata service is in charge of following functions: (a)87

handling high level interfaces and data structures; (b) managing a scalable names-88

pace for consumers’ objects; (c) storing object data into the storage service.89

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

4 S. Mu et al.

Fig. 1 Cloud storage architecutre over mutiple data centers

Metadata service holds the responsibility to achieve scalability by partitioning90

all of the data objects within a datacenter. This layer consists of many meta-91

data servers, each of which serves for a range of different objects. Also, it should92

provide load balance among all the metadata servers to meet the traffic of requests.93

• Storage service—This storage service is in charge of storing the actual data into94

disks and distributing and replicating the data across many servers to keep data95

reliable within a datacenter. The storage service can be thought of as a distributed96

file system. It holds files, which are stored as large storage chunks. It also un-97

derstands how to store them, how to replicate them, and so on, but it does not98

understand higher level semantics of objects. The data is stored in the storage99

service, but it is accessed from the metadata service.100

• Front-End (FE) layer—The front-end layer consists of a set of stateless servers that101

take incoming requests. Upon receiving a request, an FE looks up the account,102

authenticates and authorizes the request, then routes the request to a partition103

server in the metadata service. The system maintains a map that keeps track of104

the partition ranges and which metadata server is serving which partition. The FE105

servers cache the map and use it to determine which metadata server to forward106

each request to. The FE servers also file large objects directly from the storage107

service and cache frequently accessed data for efficiency.108

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 5

Fig. 2 Meta-layer architecture

2.2 Metadata Service109

The metadata service contains three main architectural components: a layout man-110

ager, many meta-servers, and a reliable lock service (Fig. 2). The architecture is111

similar to Bigtable [5].112

2.2.1 Layout Manager113

A layout manager (LM) acts as a leader of the meta-service. It is responsible for114

dividing the whole metadata into ranges and assigning each meta-server to serve115

several ranges and then keeping track of the information. The LM stores this assign-116

ment in a local map. The LM must ensure that each range is assigned only to one117

active meta-server, and that two ranges do not overlap. It is also in charge of load118

balancing ranges among meta-servers. Each datacenter may have multiple instances119

of the LM running, but usually they function as reliable replications of each other.120

For this they need a Lock Service to maintain a lease for leader election.121

2.2.2 Meta-Server122

A meta-server (MS) is responsible for organizing and storing a certain set of ranges of123

metadata, which is assigned by LM. It also serves requests to those ranges. The MS124

stores all metadata into files persistently on disks and maintains a memory cache for125

efficiency. Meta-servers keep leases with the Lock Service, so that it is guaranteed126

that no two meta-servers can serve the same range at the same time.127

If a MS fails, LM will assign a new MS to serve all ranges served by the failed128

MS. Based on the load, LM may choose a few MS rather than one to serve the ranges.129

LM firstly assigns a range to a MS, and then updates its local map which specifies130

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

6 S. Mu et al.

Fig. 3 Storage service architecture

which MS is serving each range. When a MS gets a new assignment from LM, it131

firstly acquires for the lease from Lock Service, and then starts serving the new range.132

2.2.3 Lock Service133

Lock Service (LS) is used by both of layout manager and meta-server. LS uses Paxos134

[16] protocol to do synchronous replication among several nodes to provide a reliable135

lock service. LM use LS for leader election; MS also maintains a lease with the LS136

to keep alive. Details of the LM leader election and the MS lease management are137

discussed here. We also do not go into the details of Paxos protocol. The architecture138

of lock service is similar to Chubby [18].139

2.3 Storage Service140

The two main architecture components of the storage service are the namenode and141

chunk server (Fig. 3). The storage service architecture is similar to GFS [4].142

2.3.1 Namenode143

The namenode can be considered as the leader of the storage service. It maintains144

file namespace, relationships between chunks and each file, and the chunk locations145

across the chunk servers. The namenode is off the critical path of client read and write146

requests. In addition, the namenode also monitors the health of the chunk servers147

periodically. Other functions of namenode include: lazy re-replication of chunks,148

garbage collection, and erasure code scheduling.149

The namenode periodically checks the state of each chunk server. If the namenode150

finds that the replication number of a chunk is smaller than configuration, it will start151

a re-replication of the chunk. To achieve a balanced chunk replica placement, the152

namenode randomly chooses chunk server to store new chunk.153

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 7

The namenode is not tracking any information about blocks. It remembers just154

files and chunks. The reason of this is that the total number of blocks is so huge that155

the namenode cannot efficiently store and index all of them. The only client of data156

service is the metadata service.157

2.3.2 Chunk Servers158

Each chunk server keeps the storage for many chunk replicas, which are assigned159

by the namenode. A chunk server machine has many large volume disks attached,160

to which it has complete access. A chunk server deals only with chunks and blocks,161

and it does not care about file namespace in the namenode. Internally on a chunk162

server, every chunk on disk is a file consisting of data blocks and their checksum. A163

chuck server also holds a map which specifies relationships between chunk and file.164

Each chunk server also keeps a view about the chunks it owns and the location of165

the peer replicas for a given chunk. This view is copied from namenode and is kept166

as a local cache by the chunk server. Under instructions from namenode, different167

chunk servers may talk to each other to replicate chunks, or to create new copies of168

an existing replica. When a chunk no longer stores any alive chunks, the namenode169

starts garbage collection to remove the dead chunks and free the space.170

3 Replication Strategies171

3.1 Introduction172

Currently, more data-intensive applications are moving their large-scale datasets173

into cloud. To provide high availability and durability of storage services as well174

as improving performance and scalability of the whole system, data replication is175

adopted by many mature platforms [1, 2, 4, 6, 12] and research studies [7–10, 14, 30]176

in cloud computing and storage. Data replication is to keep several identical copies of177

a data object in different servers that may distribute across multiple racks, houses and178

region-scale or global-scale datacenters, which can tolerate different levels of failures179

such as facility outages or regional disasters [4, 10, 23, 30]. Replication strategy is180

now an indispensable feature in multiple datacenters [1, 2, 6–9, 12], which may181

be hundreds or thousands of miles away from each other, to completely replicate182

data objects of services, not only because wide-area disasters such as power outages183

or earthquakes may occur in one datacenter [10, 23], but also because replication184

across geographically distributed datacenters can mostly reduce latency and improve185

the whole throughput of the services in the cloud [6–9, 11].186

Availability and durability is guaranteed as one data object is replicated on many187

servers across datacenters, thus in the presence of failing of a few number of com-188

ponents such as servers and network at any time [1, 4, 10, 23] or natural disasters189

occurring in one datacenter, the durable service of cloud storage won’t be influenced190

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

8 S. Mu et al.

because applications can normally access their data through servers containing repli-191

cas in other datacenters. Moreover, as each data object is replicated over multiple192

datacenters, it enables different applications to be served from the fastest datacenter193

or the datacenter with the lowest working load in parallel [1, 6, 9, 11, 31], thus194

providing high performance and throughput of the overall cloud storage system.195

Common replication strategies can be divided into two categories: asynchronous196

replication and synchronous replication. They own distinct features and have different197

impacts on availability, performance, and throughput of the whole system. Besides,198

the cloud storage service should provide the upper applications with a consistent view199

of the data replicas especially during faults [6–9, 11], which requires that data copies200

among diverse datacenters should be consistent with each other. However, these two201

replication strategies bring in new challenges to replication synchronization, which202

finally will influence the consistency of data replicas over multiple datacenters.203

Additionally, the placement of data replicas is also an important aspect of repli-204

cation strategy in multiple datacenters as it highly determines the load distribution,205

storage capacity usage, energy consumption and access latency, and many current206

systems and studies [1, 4, 6, 10, 24, 26] adopt different policies for the placement of207

data replicas in the multiple-datacenter design on different demands.208

In this section, we will present the main aspects and features of asynchronous209

replication, synchronous replication, and placement of replicas.210

3.2 Asynchronous Replication211

Figure 4a illustrates the working mechanism of asynchronous replication over mul-212

tiple datacenters. As shown in Fig. 4, the external applications issue write requests213

to one datacenter, which could be a fixed one configured previously or a random one214

chosen by applications, and get a successful response if the write requests completely215

commit in this datacenter. The updated data will be eventually propagated to other216

datacenters in background in an asynchronous manner [1, 2, 12]. Asynchronous217

replication is especially useful when the network latency between datacenters is at a218

high cost as applications only need to commit their write requests in one fast datacen-219

ter and don’t have to wait for the data to be replicated in each datacenter. Therefore,220

the overall performance and throughput for writes will be improved and systems with221

asynchronous replication can provide high scalability as they are decentralized. Now222

many prevailing systems such as Cassandra [12], Dynamo [1], and PNUTS [14] are223

using asynchronous replication.224

However, asynchronous replication presents a big challenge to consistency, since225

replicas may have conflicting changes with each other, that is, the view of all the226

replicas over multiple datacenters has the probability to be inconsistent at some time.227

Figure 5 presents a simple scenario that will cause inconsistency among replicas.228

Assume there are three datacenters A, B and C, and all of them hold data replica d.229

When a write request for d from application P is issued to A and successfully commits230

in A, A will response to P and then replicates the updated data d1 to B and C. However,231

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 9

a b

Fig. 4 The working mechanism of asynchronous replication and synchronous replication over
multiple datacenters. a for asynchronous replication and b for synchronous replication

Fig. 5 A scenario that causes inconsistent view of data replicas among datacenters under
asynchronous replication

at the same time, another write request for d from application Q is issued to C. As C232

hasn’t gotten to know the update of d in A, it normally accepts and processes this write233

request and then d in C turns into d2 and will be replicated to A and B.As a result, there234

are now two different versions of the same data replica, and the system steps into an235

insistent state which means that a subsequent read may get two different data objects.236

As there are also other factors such as server or network failure that will cause237

inconsistency in asynchronous replication over multiple datacenters [1, 11], a few238

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

10 S. Mu et al.

researches have been addressing this challenge of asynchronous replication. Eventual239

consistency [21] model is one scheme that is widely adopted by many studies and240

widespread distributed systems [1, 12–14]. Eventual consistency model allows the241

whole system to be inconsistent temporarily but eventually, the conflicted data objects242

will merge into one singe data object and the view of the data replicas across multiple243

datacenters will become consistent at last. The process of merging conflicted data244

objects is critical in eventual consistency model and the merging decision can be made245

by the write timestamp [12, 21], a chosen master [13, 14] or even the applications [1].246

Under asynchronous replication, a read request may get a stale data object from247

some datacenters, which will decline the performance of current reads and com-248

plicates application development. However, whether this circumstance is adverse249

depends on the applications. If applications such as search engine and shopping250

carts allow weaker consistency at reading or demand high quality of writing ex-251

perience [1, 12], asynchronous replication won’t bring negative impacts to these252

applications.253

3.3 Synchronous Replication254

In contrast to asynchronous replication, synchronous replication requires that the255

updated data objects of write requests must be synchronously replicated to all or a256

majority of datacenters before applications get a successful response from the data-257

center accepting the requests in the cloud, as presented in Fig. 4b. This synchronous258

replication mechanism can effectively guarantee a consistent view of cross-datacenter259

replicated data and it enables developers to build distributed systems that can provide260

strong consistency and a set of ACID semantics like transactions, which, com-261

pared with that in loosely consistent asynchronous replication, simplifies application262

building for the wide-area usage for the reason that applications can make use of se-263

rializable semantic properties while are free from write conflicts and system crashes264

[6, 9, 11, 20, 25].265

The key point of synchronous replication is to keep states of replicas across266

different datacenters the same. A simple and intuitive way to realize this is to use267

synchronous master/slave mechanism [4, 6, 11]. The master waits for the writes to268

be fully committed in slaves before acknowledging to applications and is responsible269

for failure detection of the system. Another method to maintain consistent and up-270

to-date replicas among datacenters is to use Paxos [16], which is a fault-tolerant and271

optimal consensus algorithm for RSM [15] in a decentralized way. Paxos works well272

when a majority of datacenters are alive and at current, many system services adopt273

Paxos [2, 6, 11, 17, 18, 20] as their underlying synchronous replication algorithm.274

However, no matter which method is used, the overall throughput and perfor-275

mance of the services based on synchronous replication will be constrained when276

the communication latencies between datacenters are at high expense [7, 9, 11] and277

scalability is limited by strong consistency to certain extent. As a result, many re-278

searches put forward mechanisms to help improve the throughput and scalability of279

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 11

the whole system while not destroying the availability and consistency for applica-280

tions. These mechanisms include reasonable partitioning of data [2, 6, 11], efficient281

use of concurrent control [7, 11, 31] and adopting combined consistent models [7–9,282

22, 25].283

3.4 Placement of Replicas284

As cloud storage now holds enormous amount (usually petabytes) of data sets from285

large-scale applications, how to place data replicas across multiple datacenters also286

becomes a very important aspect in replication strategy as it is closely related to287

load balance, storage capacity usage, energy consumption and access latency of the288

whole system [6, 10, 19, 24]. It is essential for both efficiently utilizing available289

datacenter resources and maximizing performance of the system.290

Unbalanced replica placement will cause over-provisioning capacity and skewed291

utilization of some datacenters [26]. One way to address this issue is to choose292

a master or use partition layers to decide in which datacenter each data replica is293

placed [2, 4, 6]. This requires the master or partition layers to record the up-to-date294

load information of every datacenter so that they won’t make unbalanced replica295

placement policies and can immediately decide to migrate data between datacenters296

to balance load. Another way is to use a decentralized method, as presented in Fig. 6.297

We can form datacenters as a ring, each responsible for a range of keys. A data298

object can get its key through hash functions such as consistent hash and locate a299

datacenter according to its key. Then, replicas of this data object could be placed in300

this datacenter and its successive ones, similar to [1, 12]. In this way, there is no need301

to maintain a master to keep information of each datacenter and if the hash functions302

could evenly distribute the keys, load balance can be achieved automatically.303

Furthermore, as datacenters now consumes about 1.5 % of the world’s total energy304

and a big fraction of it does come from the consumption of storage in them [28,305

29], the number of datacenters to place the data replicas should also be considered306

carefully. If the number of datacenters to hold replicas increases, the storage capacity307

of the whole system will accordingly decease and the energy consumption improves308

[24, 26, 27] as those datacenters will contain large amounts of replicated data objects309

in storage. In addition, placing data replicas in a high number of datacenters enables310

applications to survive wide-area disasters that will cause a few datacenter failures311

and thus, this can provide high availability for applications at the expense of storage312

capacity and energy consumption [2, 6, 7, 11, 25]. Moreover, when the number313

of datacenters to place replicas is large, applications can have a low access latency314

based on geographic locality, i.e., they can communicate with datacenters that are315

faster or have less working load [6, 7, 9]. Hence, system developers have to consider316

the trade-off between these features for the placement strategy of data replicas across317

multiple datacenters when they are building geographically distributed services for318

applications.319

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

12 S. Mu et al.

Fig. 6 The decentralized method to place data replicas across multiple datacenters

4 Data Striping Methods320

4.1 Introduction321

The main purpose of a storage system is to make data persistent, so reliability and322

availability should be top priority concern for storage systems. Actually, there are a323

variety of factors that may cause storage system unavailable. For example, if a server324

fails, the storage system is unable to provide storage services. Some physical damage325

to a hard disk will result in the loss of data stored. Therefore, it is indispensable for326

storage systems to introduce some techniques to make them reliable.327

A lot of research work has been done in recent years to improve the availabil-328

ity and reliability of storage systems. The main idea is to generate some redundant329

information of every data block and distribute them on different machines. When330

one server becomes outage, another server that holds the redundant data can replace331

the role of the broken server. During this time, the storage system can still provide332

storage service. When one data block is broken, then other redundant data blocks333

will restore the broken one. Thus, the availability and reliability is improved. Gen-334

erally, redundant data can be presented in two ways: one is using full data backup335

mechanism, called full replication; the other is erasure code.336

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 13

Full replication, also known as multi-copy method, is to store multiple replicates337

of data on separate disks, in order to make the data redundant. This method does338

not involve specialized encoding and decoding algorithms, and it has better fault-339

tolerance performance. But full replication has lower storage efficiency. Storage340

efficiency is the sum of effective capacity and free capacity divided by raw capacity.341

When storing N copies of replica, the disk utilization is only 1/N. For relatively342

large storage systems, full replication brings extra storage overhead, resulting in343

high storage cost.344

Along with the increase of the data that a storage system holds, a full replication345

method has been difficult to adapt to mass storage system for redundant mechanism in346

disk utilization and fault tolerance requirements. Therefore, erasure code is becoming347

a better solution for mass storage.348

4.2 Erasure Code Types349

Erasure code is derived from communication field. At first, it is mainly used to solve350

error detection and correction problems in data transmission. Afterwards, erasure351

code gradually applied to improve the reliability of storage systems. Thus, erasure352

code has been improved and promoted according to the characters of storage system.353

The main idea of erasure code is that the original data can be divided into k data354

fragments, and according to the k data fragments, m redundant fragments can be355

computed according some coding theory. The original data can be reconstructed by356

any of the m + k fragments. There are many advantages of erasure code, the foremost357

of these is the high storage efficiency compared with the mirroring method.358

There are many types of erasure code. Reed-Solomon code [52] is an MDS code359

that can meet any number of data disks and redundant disk number. MDS code360

(maximum distance separable code) is a kind of code that can achieve the theoretically361

optimal storage utilization. The main idea of Reed Solomon code is to visualize362

the data encoded as a polynomial. Symbols in data are viewed as coefficients of a363

polynomial over a finite field. Reed Solomon code is a type of horizontal codes.364

Horizontal code has the property that data fragments and redundant fragments are365

stored separately. That is to say, each stripe is neither data stripe nor redundant stripe.366

Reed Solomon codes are usually divided into two categories: one is Vandermonde367

Reed Solomon code, and the other is Cauchy Reed Solomon code [53]. The difference368

between these two categories of Reed Solomon codes is that they are using different369

generation matrix. For Vandermonde Reed Solomon code, the generation matrix is370

Vandermonde matrix, and multiplication on Galois filed is needed which is very371

complex. For Cauchy Reed Solomon code, it is Cauchy matrix, and every operation372

is XOR operation, which is coding efficient. Figure 7 shows the Encoding principle373

for Reed-Solomon codes.374

Compared with Reed Solomon Codes, Array Code [54] is totally based on XOR375

operation. Due to the efficient of encoding, decoding, updating and reconstruction,376

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

14 S. Mu et al.

Fig. 7 Reed-Solomon codes

Array code is widely used. Array code can be categorized as two types due to the377

placement of data fragment and redundant fragment.378

Horizontal parity array codes make data fragments and redundant fragments stored379

on different disks. By doing this, Horizontal parity array codes have better scalability.380

But most of it can just hold 2 disk failures. It has a drawback on updating data. Every381

time updating one data block will result in at least one read and one write operation382

on redundant disk. EVENODD code [55] is one kind of Horizontal parity array codes383

that used widely.384

Vertical parity array codes make data fragment and redundant fragment stored in385

the same stripe. Because of this design, the efficiency of data update operation will386

be improved. However, the balance of vertical parity array code leads to a strong387

interdependency between the disks, which also led to its poor scalability. XCODE388

[56] is a kind of vertical parity array code, which has theoretically optimum efficiency389

on data update and reconstruction operation.390

4.3 Erasure Codes in Data Centers391

In traditional storage systems such as early GFS and Windows Azure Storage, to392

ensure the reliability, triplication has been favored because of its ease of implemen-393

tation. But triplication makes the stored data triple, and storage overhead is a major394

concern. So many system designers are considering erasure coding as an alternative.395

Most distributed file systems (GFS, HDFS, Windows Azure) create an append-only396

write workload for large block size. So data update performance is not a concern.397

Using erasure code in distributed file systems, data reconstruction is a major398

concern. For one data of k data fragment and m redundant fragment, when any one399

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 15

Fig. 8 LRC codes

of that fragment is broken or lost, to repair that broken fragment, k fragments size400

of network bandwidth will be needed. So some researchers found that the traditional401

erasure code does not fit distributed file system very well. In order to improve the402

performance of data repair, there are two ways.403

One is reading from fewer fragments. InWindowsAzure Storage System, a new set404

of code called Local Reconstruction Codes (LRC) [57] is adopted. The main idea of405

LRC is to reduce the number of fragments required to reconstruct the unavailable data406

fragment. To reduce the number of fragments needed, LRC introduced local parity407

and global parity. As Fig. 8 shows below, x0, x1, x2, y0, y1, y2 are data fragments, px408

is the parity fragment of x0, x1, x2. py is the parity fragment of y0,y1,y2. p0 and p1 are409

global parity fragments. px and py are called local parity. p0 and p1 are global parity.410

When reconstructing x0, instead of reading p0 or p1 and other 5 data fragment, it is411

more efficient to read x1, x2 and px to compute x0. As we can see LRC is not a MDS,412

but it can greatly reduce the cost of data reconstruction.413

Another way to improve reconstruction performance is to read more fragments414

but less data size from each. Regenerating codes [58] provide optimal recovery415

bandwidth among storage nodes. When reconstructing fragments, it does not just416

transmit the existing fragments, but sends a liner combination of fragments. By417

doing this, the recovery data size to send will be reduced. Rotated Reed-Solomon418

codes [59] and RDOR [60] improve reconstruction performance in a similar way.419

5 Consistency Models420

5.1 Introduction421

Constructing a globally distributed system requires many trade-offs between avail-422

ability, consistency, and scalability. Cloud storages are designed to serve for a large423

amount of internet-scale applications and platforms simultaneously, which is often424

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

16 S. Mu et al.

named as infrastructure service. To meet operational requirements, cloud storage425

must be designed and implemented as highly available and scalable, in order to426

serve consumers requests from all over the world.427

One of the key challenges in build cloud storage is to provide a consistency428

guarantee to all client requests [63]. Cloud storage is a large distributed system429

deployed world-widely. It has to process millions of requests every hour. All the430

low-probability accidents in normal systems are often to happen in the datacenters of431

cloud storage. So all these problems must be taken care of in the design of the system.432

To guarantee consistent performance and high availability, replication techniques are433

often used in cloud storage. Although replication solves many problems, it has its434

costs. Different client requests may see inconsistent states of many replicas. To solve435

this problem, cloud storage must define a consistency model that all requests to436

replicas of the same data must follow.437

Like many widespread distributed systems, cloud storage such asAmazon S3 often438

provides a weak consistency model called eventual consistency. Different clients439

may see different orders of updates to the same data object. Some cloud storage440

like Windows Azure also provides strong consistency that guarantees linearizability441

of every update from different clients. Details will be discussed in the following442

sub-sections.443

5.2 Strong Consistency444

Strong consistency is the most programmer-friendly consistency model. When a445

client commits an update, every other client would see the update in subsequent446

operations. Strong consistency can help achieve transparency of a distributed system.447

When developer uses a storage system with strong consistency, it appears like the448

system is a single component instead of many collaborating sub-components mixed449

together.450

However, this approach has been proved as difficult to achieve since the middle451

of last century, in the database area for the first time. Databases are also systems with452

heavy use of data replications. Many of such database systems were design to shut453

down completely when it cannot satisfy this consistency because of node failures.454

But this is not acceptable for cloud systems, which is so large that small failures are455

happening every minute.456

Strong consistency has its weak points, one of which is that it lowers system457

availability. In the end of last century, with large-scale Internet systems growing458

up, designs of consistency model are rethought. Engineers and researchers began to459

reconsider the tradeoff between system availability and data consistency. In the year460

of 2000, CAP theorem was introduced [61]. The theorem states that for three prop-461

erties of shared-data systems—data consistency, system availability, and tolerance462

to network partition—only two can be achieved at any given time.463

It is worth noting, that the concept of consistency in cloud storage is different to464

that in transactional storage systems such as databases. The common ACID property465

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 17

(atomicity, consistency, isolation, durability) defined in databases is a different kind466

of consistency guarantee. In ACID, consistency means that the database is in a467

consistent state when a transaction is finished. No go-between situation is allowed.468

5.3 Weak Consistency469

According the CAP theory, a system can achieve both consistency and availability, if470

it does not tolerate network partitions. There many techniques which make this work,471

one of which is to use transaction protocols like two phase commit. The condition472

for this is that both client and server of the storage systems must be in the same473

administrative environment. If partition happens and client cannot observe this, the474

transaction protocol would fail. However, network partitions are very common in475

large distributed systems, and as the system scale goes up, the chances of network476

partition would increase. This is one reason why one cannot achieve consistency and477

availability at the same time. The CAP theory provides two choices for developers: (1)478

sticking to strong consistency and allowing system goes unavailable under partitions479

(2) using relaxed consistency [65] so that system is still available under network480

partitions.481

No matter what kind of consistency model the system uses, it requires that ap-482

plication developers are fully aware of the consistency model. Strong consistency is483

usually the easiest option for client developer. The only problem the developers have484

to deal with is to tolerate the unavailable situation that might happen to the system.485

If the system takes relaxed consistency and offers high availability, it may always486

accept client requests, but client developers have to remember that a write may get487

its delays and a read may not return the newest write. Then developers have to write488

the application in a way so that it can tolerant the delay update and stale read. There489

are many applications that can be design compatible for such relaxed consistency490

model and work fine.491

There are two ways of looking at consistency. One is from the developer/client492

point of view: how they observe data updates. The other is from the server side: how493

updates flow through the system and what guarantees systems can give with respect494

to updates.495

Let’s show consistency models using examples. Suppose we have a storage system496

which we treat as a black box. To judge its consistency model we have several clients497

issuing requests to the system. Assume they are client A, client B, client C. All498

three clients issue both read and write requests to the system. The three clients are499

independent and irrelevant. They could run on different machines, processes, or500

threads. The consistency model of the system can be defined by how and when501

observers (in this case the clients A, B, or C) see updates made to a data object in the502

storage systems. Assume client A has made an update to a data object:503

• Strong consistency. After the update completes, any subsequent access (from any504

of A, B, or C) will return the updated value.505

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

18 S. Mu et al.

• Weak consistency. The system does not guarantee that subsequent accesses will506

return the updated value. A number of conditions need to be met before the507

value will be returned. The period between the update and the moment when it508

is guaranteed that any observer will always see the updated value is dubbed the509

inconsistency window.510

There are many kinds of weak consistency; we list some of the most common ones511

as below.512

• Causal consistency [66]. If client A has communicated to client B that it has513

updated a data item, a subsequent access by client B will return the updated514

value, and a write is guaranteed to supersede the earlier write. Access by client515

C that has no causal relationship to client A is subject to the normal eventual516

consistency rules.517

• Eventual consistency [62]. This is a specific form of weak consistency; the storage518

system guarantees that if no new updates are made to the object, eventually all519

accesses will return the last updated value. If no failures occur, the maximum size520

of the inconsistency window can be determined based on factors such as commu-521

nication delays, the load on the system, and the number of replicas involved in the522

replication scheme. The most popular system that implements eventual consis-523

tency is the domain name system. Updates to a name are distributed according to524

a configured pattern and in combination with time-controlled caches; eventually,525

all clients will see the update [64].526

• Read-your-writes consistency. This is an important model where client A, after527

having updated a data item, always accesses the updated value and never sees an528

older value. This is a special case of the causal consistency model.529

• Session consistency. This is a practical version of the previous model, where a530

client accesses the storage system in the context of a session. As long as the531

session exists, the system guarantees read-your-writes consistency. If the session532

terminates because of a certain failure scenario, a new session must be created533

and the guarantees do not overlap the sessions.534

• Monotonic read consistency. If a client has seen a particular value for the object,535

any subsequent accesses will never return any previous values.536

• Monotonic write consistency. In this case, the system guarantees to serialize the537

writes by the same client. Systems that do not guarantee this level of consistency538

are notoriously difficult to program.539

These consistency models are not exclusive and independent. Some of the above540

can be combined together. For example, the monotonic read consistency can be541

combined with session-level consistency. The combination of the both consistencies542

is very practical for developers in a cloud storage system with eventual consistency.543

These two properties make it much easier for application developers to build up their544

apps. They also allow the storage system to keep a relax consistency and provide545

high availability. As you can see from these consistency models, quite a few different546

circumstances are possible. Applications need to choose whether or not one can deal547

with the consequences of particular consistency.548

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 19

6 Cloud of Multiple Clouds549

6.1 Introduction550

Although cloud storage providers claim that their products are cost saving, trouble-551

free, worldwide 24/7 available and reliable, reality shows that (1) such services are552

sometimes not available to all customers; and (2) customers may experience vastly553

different accessibility patterns from different geographical locations. Furthermore,554

there is also a small chance that clients may not even be able to retrieve their data555

from a cloud provider at all, which usually occurs due to network partitioning and/or556

temporary failure of cloud provider. For example, authors of [67] reported that this557

may also cause major cloud service providers to fail providing services for hours or558

days sometimes. Although cloud providers sign Service Level Agreements (SLA)559

with their clients to ensure availability of their services, users have complained560

that these SLAs are sometimes too tricky to break. Moreover, even when a SLA is561

violated, the compensation is only a minor discount for the payment and not to cover562

a customer’s loss resulted by the violated SLA.563

Global access experience can be considered as one specifically important issue of564

availability. In current major cloud storages, users are asked to create region-specific565

accounts/containers before putting their data blobs/objects into them. The storage566

provider then stores data blobs/objects into a datacenter in the selected locations;567

some providers may also create cross-region replicas solely for backup and disaster568

recovery. A typical result of such topology is an observation where users may experi-569

ence vastly different services based on the network condition between clients and the570

datacenter holding their required data. Data loss and/or corruption are other impor-571

tant potential threats to users’data should it be stored on a single cloud provider only.572

Although users of major cloud storage providers have rarely reported data loss and/or573

corruption, prevention of such problems is not 100 % guaranteed either. Medium to574

small sized cloud providers may provide a more volatile situation to their customers575

as they are also in danger of bankruptcy as well.576

In this section, we present a system named μLibCloud to address the two afore-577

mentioned problems of cloud customers; i.e., (1) availability of data as a whole and578

(2) different quality of services for different customers accessing data from different579

locations on the globe. μLibCloud is designed and implemented to automatically580

and transparently stripe data into multiple clouds—similar to RAID’s principle in581

storing local data. μLibCloud is developed based on Apache libCloud project [3],582

and evaluated through global-wide experiments.583

Our main contributions include: (1) to conduct global-wide experiments to show584

how several possible factors may affect availability and/or global accessibility of585

cloud storage services; (2) to use erasure codes based on observations. We then586

design and implement μLibCloud using erasure code to run benchmarks accessing587

several commercial clouds from different places in the world. The system proved the588

effectiveness of our method.589

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

20 S. Mu et al.

Fig. 9 Layer abstraction of
cloud storage

6.2 Architecture590

Using a “cloud-of-cloud” rationale [68], μLibCloud is to improve availability and591

global access experience of data. Here the first challenge is how to efficiently and592

simultaneously use multiple cloud services. They follow different concepts and offer593

different ways to access their services. As shown in Fig. 9, cloud storage providers594

usually provide REST/SOAP web service interface to developers along with their595

libraries for different programming languages for developers to further facilitate596

building cloud applications. To concurrently use multiple cloud storages, two op-597

tions are available. The first option is to set up proxy among cloud storages and598

applications. In this case, all data requests need to go through this proxy. To store599

data in cloud storages, this proxy receives original data from client, divides the data600

into several shares, and sends each share to different clouds using different libraries.601

To retrieve data, it fetches data shares from each cloud, rebuilds the data, and sends602

it back to clients. The second option—more complicated—is to integrate the sup-603

port for multiple cloud storages directly into a new client library—replacing original604

ones. In this case, client applications only use this newly provided library to connect605

to all clouds. The main difference between these two options is the transparency in606

the second option to spread/collect data to/from multiple clouds.607

The first choice is more straightforward in design; it uses a single layer for extra608

work, keeps the client neat and clean, includes many original libraries when imple-609

mented, and is usually run on independent servers. It also brings more complexity to610

system developers to maintain extra servers and their proper functioning. The second611

choice, on the other hand, benefits developers by providing them a unique tool; this612

approach also reduces security risk because developers do not need to put their secret613

keys on the proxy. It however also leads to other challenges on how to design and614

implement such systems; e.g., how multiple clients can coordinate with each other615

without extra servers. Furthermore, the client library must be efficient and resource616

saving because it needs to be run along with application codes.617

In the design of μLibCloud, we chose to practice the second option so that it will618

have lesser of a burden on application developers. We also assume that consumers619

who choose to use cloud storage rather than to build their own infrastructure would620

not want to set up another server to make everything work. Figure 10 shows the basic621

architecture of μLibCloud with a single client; this figure also shows how μLibCloud622

serves upper-level users, while hiding most of development complexities of such623

systems.624

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 21

Fig. 10 Architecture with
single client

Fig. 11 Principle of erasure
coding

6.3 Data Striping625

As described before, data is first encoded into several original and redundant shares,626

and then stored on different providers. Through this redundancy, data not only is627

protected against possible failures of particular providers—high availability, but also628

tolerates the instability of individual clouds and provides consistent performance.629

Among many possible choices for data encoding [69], we choose the most widely630

used erasure code [70] that is widely used in both storage hardware [71] and dis-631

tributed systems [72]. Here, coding efficiency is a major concern because all the data632

striping algorithm work is performed at clients’ side; i.e., large overheads that could633

decrease performance of applications is strongly unacceptable.634

Figure 11 shows principles of erasure coding. As can be seen, data is first divided635

into k equal-sized fragments called original data shares. Then, r parity fragments636

with the same size as original data shares are computed and called redundant data637

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

22 S. Mu et al.

Fig. 12 Data stripes stored in
each cloud

shares. This will generate a total of m = k + r equal-sized shares. The erasure code638

algorithm guarantees any arbitrary k shares—out of total m shares—is sufficient639

enough to reconstruct the original data. Both k and r are positive values and are640

predefined by each user.641

Here, we also define redundancy rate as R = m/k to reflect the amount of storage642

overhead for storing data. For example, if k = 1, m = 2; then, R = m/k = 200 %. It643

means that each data takes twice of its original size when stored: one original and one644

replica. In this case, each piece is enough to reconstruct the original data—like RAID645

1 (mirroring). If k = 4, m = 5 (like RAID 5); then, R = m/k = 120 %. It means that646

we need extra 20 % of storage to store any data. In this case, every four pieces—out647

of all available five pieces—are enough to reconstruct the original data.648

In practice, we do not simply just divide an object into several parts and encode649

them, but the original data is first divided into several chunks, and then erasure coding650

is performed on each chunk; default chunk’s size is usually 64 KB (Fig. 12). There651

are two benefits in splitting data into several chunks: (1) computation of erasure652

coding can be parallelized, and (2) reading and writing of file data—such as video653

and audio—can also be easily supported.654

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 23

6.4 Retrieving Strategy655

If a developer divides data into (k, m) shares, among all m parts of data the client656

library only needs k parts to reconstruct the original data. Although retrieving all parts657

of data could avoid the potential risks of failures, it is unnecessary in most cases.658

It also wastes more bandwidth and costs more money. Here, although retrieving k659

data shares to recover the data is enough, selecting the best possible k shares can be660

tricky. In μLibCloud we offer the following three data fetching strategies.661

1. Efficient: Users want to use the k most available clouds to retrieve data pieces.662

Here, to determine which ones are faster, μLibCloud dynamically measures their663

download speed. When retrieving an object, all metadata files are downloaded664

first and their link speed is recorded. Upon that, k fastest clouds to fetch data665

are selected. During downloading the main data, μLibCloud keeps recording the666

download speed to compute its average. The larger data is, the more accurate667

network estimation would be.668

2. Economical: If application is mainly run in the background—like a backup pro-669

gram storing data into clouds [73]—, users can tolerate spending more time. In670

such cases, economical cost is more important than speed. μLibCloud also offers671

a cost-saving mode, in which it will select k providers with lowest prices.672

3. Custom: We also offer an option, allowing developers to set priorities of their673

own. This may be preferable in case that they are using computing and storage674

resources provided by the same provider. For example, if a developer is deploying675

applications into EC2 and use storage of S3, it would be reasonable that s/he wants676

to use S3 as the first choice.677

6.5 Mutual Exclusion678

When there is more than one client in the system, they must be able to coordinate679

with each in certain ways to avoid conflicts. Such conflicts can result in not only680

client read failures, but also inconsistent states and/or even data loss. For example,681

if two clients concurrently write to the same data file without any locking, they may682

write to each other’s share and produce problems. In the worst case scenario, if the683

provider takes an eventual consistency model (like Amazon S3), all unordered writes684

would succeed although only the later ones become effective. As a result, it would be685

very probable that a client succeeds modifying several data shares, while the other686

client succeeds in the rest of data shares; both clients would return successful, while687

data inconsistency has already occurred! The following options are among the most688

suitable one for our needs.689

1. Setting up a central lock server such as ZooKeeper [74] to coordinate all writes.690

This approach is easy and correct for a system like μLibCloud, yet with certain691

flaws. Firstly, with this approach clients need to maintain another system, which692

violates goals and principles of using clouds for simplicity in the first place.693

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

24 S. Mu et al.

Secondly, coordinators like ZooKeeper usually have throughput issues because694

of their leader-follower architecture, especially in internet-scale situation. Al-695

though this can be reduced by manually partitioning data onto multiple groups of696

ZooKeeper systems, this would still make the system extremely complex.697

2. Running a client-client agreement protocol. Here, instead of deploying an addi-698

tional central lock service, agreement protocols such as Paxos [75] handles the699

situation. This approach eliminates the trouble of bringing a lock service, but700

requires clients to be able to communicate with each other. In this case, frequent701

membership changes can seriously damage system performance. In fact, this ap-702

proach is almost the same—in logic—as the first option if each client runs with703

a ZooKeeper member deployed to the same machine.704

3. Manipulating lock files on each cloud storage. Instead of setting up an additional705

lock server or running an agreement protocol among clients, there is another ap-706

proach more suitable to this situation. Each client creates empty files on each707

cloud as lock-files; this is called mutual exclusion in the area of distributed algo-708

rithms [76]. This option is more difficult to achieve because each cloud is purely709

an object storage that offers neither computing ability, nor a common compare710

and swap (cas) semantics usually used in fulfilling lock services.711

In order to achieve mutual exclusion without introducing new bottlenecks, we intro-712

duced Algorithm 1 based on the third option. This algorithm is an improved version713

of another algorithm formerly designed by Bessani [77].714

715

716

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 25

Following comments is worth noting about this algorithms.717

1. The algorithm is fault tolerate to possible failures of less than m/2 providers. In718

case a client fails and stops during any step, we add a timestamp tcreate to the name719

of each lock file. Thus, when a client lists a file name with the tcreate + tdelta < tnow,720

s/he can confidently deletes the expiring lock. To maintain correctness, we must721

choose a tdelta large enough to cover the entire operation time when created; it722

must also be able to tolerate possible time differences among clients.723

2. To be correct, the algorithm requires each cloud to have an appropriate consistency724

model. To be specific, after each ‘create’ command all lists must see the creation.725

However, several major cloud providers, such as Amazon S3, employ an eventual726

consistency model [78]. It means the writes are not visible to reads immediately,727

and if one client detects a change, it does not imply other clients can also detect728

it. To tolerate eventual consistency, the client may need to wait for another time729

period, after each write to make sure it can be seen by all clients too. The time730

period is set by observation to model time delays among clients [64].731

Amazon S3 recently releases an enhanced consistency model to most of its cloud732

storages, namely “read-after-write” consistency to ensure that for newly created ob-733

jects, the write (not overwrite) can be seen immediately. Our algorithm (Algorithm 1)734

employs this feature in its locking system; this is why Algorithm 1 creates new lock735

files instead of writing to the old ones.736

3. The algorithm is obstruction-free [79]; i.e., it is still possible—although very737

rare—that no client can progress. This flaw could be tolerated because most738

applications tend to have many more reads than writes—where only very few739

writes require mutual exclusion.740

7 Privacy and Security of Storage System741

7.1 Introduction742

In the last few years, cloud computing has enabled more and more customers (such as743

companies or developers) to run their applications on the remote servers with elastic744

storage capacity and computing resources required on demand. The proliferation745

of cloud computing encourages customers to store and keep their data in the cloud746

instead of maintaining local data storage [32–34, 38, 39]. However, a key factor747

that may hinder the process of data migration from local storage to the cloud is the748

potential privacy and security concerns inside clouds [33, 34]. As customers don’t749

own and manage remote servers directly by themselves, any malicious applications or750

administrators in the cloud can get access to, abuse or even damage the data of normal751

customers’applications. This phenomenon is especially adverse to the confidentiality752

of sensitive data objects of customers such as banks or financial companies. Under753

this circumstance, datacenters in the cloud must maintain strong protections on the754

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

26 S. Mu et al.

privacy and security of data objects against untrustworthy applications, servers and755

administrators during the process of data storing and accessing [34, 36, 39, 46].756

To guarantee data privacy and security in storage system of datacenters in the757

cloud, several basic solutions such as data access control [38–41], data isolation758

[36, 37, 42, 46, 47] and cryptographic techniques [35, 40, 43–45] have been proposed759

by researchers. All these solutions are intended to meet different requirements of760

data privacy and security and to make even the most privacy and security demanding761

applications to migrate their sensitive data into cloud with no concerns. In this section,762

combined with our experience of building privacy and security policies in datacenters763

in the cloud, we will present how these mechanisms can be used in a real world.764

7.2 Fine-Grained Data Access Control765

Data access control is highly related to the privacy and security provided to applica-766

tions when they are accessing the data [33, 38, 39, 41]. Applications, if not allowed,767

don’t have the authority to access the data of others. Besides, each application may768

have its own access control policies to maintain the data privacy and security among769

its users. For instance, one application may require that only its administrators can770

have the authority to modify and delete its data and other common users can only read771

these data. Therefore, storage systems in datacenters must ensure strict and flexible772

data access control mechanisms for upper applications to secure the data object sets773

of every application.774

775

776

Figure 13 illustrates the overview of a fine-grained access control mechanism on777

data object level in a datacenter. As presented in Fig. 13, there are two main data778

structures for the correct process of fine-grained data-object-level access control: a779

set of lists keeping the keys of data objects that belong to each application and a set780

of tables recording each application’s access control policy. Every application owns781

its list of keys and access control policy table. When one application stores a data782

object into the datacenter, the storage system will allocate a globally unique key to783

this data object and add this key into the list of this application, which means this784

data object does belong to such application. Denote an application as Pn, the list of785

Pn as Ln, a data object as dm and the key of data object dm as km, then the process of786

storing data in this mechanism could be summarized as Algorithm 2.787

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 27

Fig. 13 The overview of the fine-grained access control mechanism on the data object level

When an access request for a data object issued from an application arrives at the788

datacenter, the storage system will first get the key of the data object and verifies789

if this key is in this application’s list. Storage system will forbid the application790

to access this data object if the verification fails. This procedure ensures that data791

objects of one application are isolated from the other applications against illegal792

intrusion. Moreover, if the verification passes, the system will further check if this793

access request meets the requirements listed in the access control policies table of the794

application. This will prevent unauthorized application users from abusing operations795

on data of this application that may potentially damage these data. Applications can796

set and modify their access control policies according to their own demands and the797

policy information are recorded in their access control policy tables respectively. The798

access request is accepted and processed only after the check in the access control799

policy table successes. Denote an access request as Rp and access control policies800

table of application Pn as Tn, then the procedure to process an access request can be801

illustrate as Algorithm 3.802

WithAlgorithm 2 andAlgorithm 3, the data privacy and security could be achieved803

across applications through fine-grained data-object-level access control mechanism804

without impacting the normal usage of data by authorized users of each application.805

Furthermore, as these two data structures (lists and tables) that are used by the806

access control mechanism could keep a consistent view across multiple datacenters807

using replication strategy presented in Sect. 3, the privacy and security of data could808

be easily guaranteed through this fine-grained data-object-level data access control809

mechanism among multiple datacenters in the cloud.810

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

28 S. Mu et al.

811

812

7.3 Security on Storage Server813

Under fine-grained data-object-level access control mechanism, the privacy and se-814

curity of applications’ data could be protected against external untrusted users and815

applications. However, data stored in the storages servers of datacenters are still prone816

to abuse or compromise by untrusted processes running in these servers or malicious817

administrators of datacenters that can get the whole authority of the OS [36, 37, 51].818

To address this issue, most studies [36, 37, 42, 46, 47, 51] use virtual-machine-based819

protection mechanisms to isolate applications’ data kept in hardware (memories and820

disks) of storage servers from operating systems and other processes, and to authen-821

ticate the integrity of these data. This protection ensures that even operating systems822

carry out the overall task of managing data they cannot read or modify them. With823

this guarantee, even though malicious administrators or untrusted processes get the824

authority of OS, they have no access to abusing or damaging the data stored in the825

hardware. When trusted applications request to get their data, this mechanism would826

make sure that these applications will be presented with a normal view of their orig-827

inal data, hiding the complex underlying details of protection. Hence, the privacy828

and security of applications’ data can be maintained in storage servers of datacenters829

in the cloud.830

Figure 14 characterizes the architecture of the privacy and security protection831

mechanism in storage servers. The key component, as shown in Fig. 14, to protect832

the privacy and security of applications’data in hardware is the virtual machine mon-833

itor (VMM). The VMM could monitor the process/OS interactions such as system834

calls [36, 42] and directly manage the hardware to isolate memories and disks from835

operating systems [37, 42, 46], which makes it possible to prevent the data privacy836

and security against malicious processes or administrators that can get the authority837

to control operating systems.838

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 29

Fig. 14 The architecture of the privacy and security protection mechanism in a storage server

Generally, each process owns its independent virtual memory address space and839

is associated with a page table that maps the virtual memory address into the physical840

memory address [48] to use memory. The page tables of processes and the operations841

of address mappings are managed by the OS and thus, it has the authority to access842

the memory address space of all processes running on it. As applications’ requests843

are served by specific processes in storage servers of datacenters, once malicious844

processes or administrators steal the operating system’s authority, they can easily845

access the data of other normal processes through their page tables and threaten the846

privacy and security of applications’ data. To address this challenge, VMM could847

protect the page tables of each process and complete the operations of memory848

address mappings instead of operating system [48, 51]. The OS can only access its849

kernel memory space through its own page table, without interleaving with other850

processes. However, even though the OS doesn’t know the distribution of processes’851

virtual memory in the physical memory, malicious processes or administrators could852

also access the physical memory through OS [48, 49] and analyze or tamper the data853

in the memory [42, 50]. As a result, VMM is responsible for keeping the data in the854

physical memory in an encrypted and integrated view [49]. When a process requests855

to put data into memory, VMM will detect this request, encrypt the data and then put856

the encrypted data into the memory. If one trusted process requests to get its data in857

the memory, VMM will first authenticate the integrity of the encrypted data and then858

decrypt them before returning the original clear data to this process, which doesn’t859

have to cover this middle process and just utilizes memory as normal. To complete860

the encrypting and decrypting procedures mentioned above, VMM holds a specific861

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

30 S. Mu et al.

zone of memory that is secure enough against the attacks from operating systems862

and processes. Consequently, when processes are serving applications’ requests in863

memory of storage servers, the privacy and security of their data in memory can be864

strongly protected.865

As most of applications’data will be stored into disks of storage servers in datacen-866

ters, it is also critical to guarantee the privacy and security of data in disks [36, 42, 51]867

not only because untrusted processes and administrators that get the authority of OS868

can directly access data in disks through I/O operations, but administrators could869

fetch disks manually. As a result, data in disks must also be stored in an encrypted870

view so that even some processes or administrators get control on the disks of storage871

servers, they have no way to abuse or compromise the data stored in them. VMM also872

has the responsibility for data encryption/decryption when processes interact with873

disks through the OS. When a process wants to write its data into disks, it will use874

a system call sys_write [48] and passes the data to the operating system, which will875

execute the operations to really write data to disks. VMM will detect this system call876

from the process and obtain the data before passing to the operating system. Then877

VMM encrypts these data and calculate the checksum of the encrypted data for future878

integrity verification. After this procedure, VMM will transfer the encrypted data to879

the operating system that will normally write these data into disks. Similarly, when880

one process requests to get its data from disks, it will issue a system call sys_read881

to the operating system to fetch these data. VMM will also detect this system call882

and wait for the operating system to complete the read operations of the encrypted883

data. Then VMM authenticates the integrity of the encrypted data, decrypts them and884

return plain data to the process. All the underlying details of encryption/decryption885

are still hidden from the processes and to the operating system, although it manages886

the data during the operations of read and write, it only views data after encryption887

and can’t threaten the privacy and security of the original data objects.888

With these virtual-machine-based mechanisms, the data of applications can be889

kept in storage servers of datacenters without concerns of being abused or compro-890

mised by malicious processes or administrators in the datacenters. As data privacy891

and security can be achieved in hardware of each storage server, datacenters in the892

cloud have the ability to provide high privacy and security for applications to move893

their large sets of data into cloud and freely access their data on demands.894

8 Conclusion and Future Directions895

In this chapter we mainly discussed the architecture of modern cloud storage and896

several key techniques used in building such systems. Cloud storage systems are897

typically large distributed systems composed of thousands of machines and network898

devices over many datacenters across multiple continents. Cloud storage and cloud899

computing are the very mixture of modern storage and network technology. To900

build and maintain such systems calls for large amount of efforts from numerous901

developers and maintainers. Although we have discussed about replication, data902

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 31

striping, data consistency, security and some other issues, there are still much more903

of the iceberg we have not touched. Many conventional techniques in traditional904

storage techniques applied in cloud storage have the potentiality to evolve, such as905

the example we give about cloud-of-clouds, which arise from the traditional RAID906

system. To summarize, cloud storage is a valued area in both practice and research,907

and the goal of this chapter is to provide a glimpse into it when it grows into a global908

scale.909

References910

1. Varia, Jinesh. “Cloud architectures.” White Paper of Amazon, jineshvaria. s3. amazonaws.911

com/public/cloudarchitectures-varia. pdf (2008).912

2. Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie,913

Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy914

Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-915

basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj,916

Sowmya Dayanand, Anitha Aduzsumilli, Marvin McNett, Sriram Sankaran, Kavitha Mani-917

vannan, Leonidas Rigas. Windows Azure Storage: a highly available cloud storage service918

with strong consistency. Proceedings of the Twenty-Third ACM Symposium on Operating919

Systems Principles (SOSP’11), pages 143–157, 2011.920

3. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-921

subramanian, P. Vosshall, W. Vogels. Dynamo: amazon’s highly available key-value store.922

Proceedings of twenty-first ACM SIGOPS Symposium on Operating Systems Principles923

(SOSP’ 07), pages 205–220, 2007.924

4. Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung. The Google file system. Proceedings of925

the nineteenth ACM Symposium on Operating Systems Principles (SOSP’ 03), pages 29–43,926

2003.927

5. Chang, Fay, et al. “Bigtable: A distributed storage system for structured data.” ACM928

Transactions on Computer Systems (TOCS) 26.2 (2008): 4.929

6. James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.930

Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson931

Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David932

Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szy-933

maniak, Christopher Taylor, Ruth Wang, Dale Woodford, D. Woodford. Spanner: Google’s934

globally-distributed database. Proceedings of the 10th USENIX conference on Operating935

Systems Design and Implementation (OSDI’ 12), pages 251–264, 2012.936

7. Yair Sovran, Russell Power, Marcos K. Aguilera, Jinyang Li. Transactional storage for geo-937

replicated systems. Proceedings of the Twenty-Third ACM Symposium on Operating Systems938

Principles (SOSP’11), pages 385–400, 2011.939

8. Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, David G. Andersen. Don’t settle for940

eventual: scalable causal consistency for wide-area storage with COPS. Proceedings of the941

Twenty-Third ACM Symposium on Operating Systems Principles (SOSP’11), pages 401–416,942

2011.943

9. Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguica, Rodrigo Rodrigues.944

Making geo-replicated systems fast as possible, consistent when necessary. Proceedings of945

the 10th USENIX conference on Operating Systems Design and Implementation (OSDI’12),946

pages 265–278, 2012.947

10. Luiz André Barroso, Urs Hölzle. The Datacenter as a Computer: An Introduction948

to the Design of Warehouse-Scale Machines. Morgan & Claypool Publishers, DOI:949

10.2200/S00193ED1V01Y200905CAC006, 2009.950

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

32 S. Mu et al.

11. Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Larson,951

Jean-Michel Leon, Yawei Li, Alexander Floyd, Vadim Yushprakh. Megastore: Providing Scal-952

able, Highly Available Storage for Interactive Services. In 5th Conference on Innovative Data953

Systems Research, pages 223–234, 2011.954

12. Avinash Lakshman, Prashant Malik. Cassandra: a decentralized structured storage system.955

ACM SIGOPS Operating Systems Review, 44(2), pages 35–40, 2010.956

13. D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, C. H. Hauser. Man-957

aging update conflicts in Bayou, a weakly connected replicated storage system. Proceedings of958

the fifteenth ACM Symposium on Operating Systems Principles (SOSP’95), pages 172–182,959

1995.960

14. Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip961

Bohannon, Hans-Arno, Nick Puz, Daniel Weaver, Ramana Yerneni. PNUTS: Yahoo!’s hosted962

data serving platform. Proceedings of the VLDB Endowment, 1(2), pages 1277–1288, 2008.963

15. Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: a964

tutorial. ACM Computing Surveys (CSUR), 22(4), pages 299–319, 1990.965

16. Leslie Lamport. Paxos made simple. ACM SIGACT News Distributed Computing Column,966

32(4), pages 18–25, 2001.967

17. Tushar D. Chandra, Robert Griesemer, Joshua Redstone. Paxos made live: an engineering per-968

spective. Proceedings of the twenty-sixth annualACM Symposium on Principles of Distributed969

Computing, pages 398–407, 2007.970

18. Mike Burrows. The Chubby lock service for loosely-coupled distributed systems. Proceedings971

of the 7th symposium on Operating Systems Design and Implementation (OSDI’06), pages972

335–350, 2006.973

19. Jeff Dean. Designs, Lessons, and Advice from Building Large Distributed Systems. Keynote974

from LADIS, 2009.975

20. Stacy Patterson, Aaron J. Elmore, Faisal Nawab, Divyakant Agrawal, Amr El Abbadi. Se-976

rializability, not serial: concurrency control and availability in multi-datacenter datastores.977

Proceedings of the VLDB Endowment, 5(11), PAGES 1459–1470, 2012.978

21. Werner Vogels. Eventually consistent. Communications of the ACM—Rural engineering979

development, 52(1), pages 40–44, 2009.980

22. Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, Thomas Anderson. Scalable981

consistency in Scatter. Proceedings of the Twenty-Third ACM Symposium on Operating982

Systems Principles (SOSP’11), pages 15–28, 2011.983

23. Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong, Luiz984

Barroso, Carrie Grimes, Sean Quinlan. Availability in globally distributed storage systems.985

Proceedings of the 9th USENIX conference on Operating Systems Design and Implementation986

(OSDI’10), No. 1–7, 2010.987

24. Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Carlos Maltzahn. CRUSH: controlled, scalable,988

decentralized placement of replicated data. Proceedings of the 2006 ACM/IEEE conference on989

Supercomputing, 2006.990

25. Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, David G. Andersen. Stronger Seman-991

tics for Low-Latency Geo-Replicated Storage. Proceedings of the 10th USENIX Symposium992

on Networked Systems Design and Implementation (NSDI’13), 2013.993

26. Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, Harbinder994

Bhogan. Volley: automated data placement for geo-distributed cloud services. Proceedings of995

the 7th USENIX conference on Networked Systems Design and Implementation (NSDI’10),996

2010.997

27. Anton Beloglazov, Rajkumar Buyya. Energy Efficient Resource Management in Virtualized998

Cloud Data Centers. Proceedings of the 2010 10th IEEE/ACM International Conference on999

Cluster, Cloud and Grid Computing, pages 826–831, 2010.1000

28. Zhichao Li, Kevin M. Greenan, Andrew W. Leung, Erez Zadok. Power Consumption in1001

Enterprise-Scale Backup Storage Systems. Proceedings of the Tenth USENIX Conference1002

on File and Storage Technologies (FAST ’12), pages 65–71, 2012.1003

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 33

29. J. G. Koomey. Growth in data center electricity use 2005 to 2010. Technical report, Standord1004

University, 2011.1005

30. Yi Lin, Bettina Kemm, Marta Patiño-Martínez, Ricardo Jiménez-Peris. Middleware based data1006

replication providing snapshot isolation. Proceedings of the 2005 ACM SIGMOD international1007

conference on Management of data, pages 419–430, 2005.1008

31. Daniel Peng, Frank Dabek. Large-scale incremental processing using distributed transactions1009

and notifications. Proceedings of the 9th USENIX conference on Operating Systems Design1010

and Implementation, 2010.1011

32. Cong Wang, Qian Wang, and Kui Ren, Wenjing Lou. Privacy-Preserving Public Auditing for1012

Data Storage Security in Cloud Computing. Proceedings of IEEE INFOCOM, 2010.1013

33. S. Subashini, V. Kavitha. A survey on security issues in service delivery models of cloud1014

computing. Journal of Network and Computer Applications, 34(1), pages 1–11, 2011.1015

34. H. Takabi, J.B.D. Joshi, G. Ahn. Security and Privacy Challenges in Cloud Computing1016

Environments. IEEE Security and Privacy, 8(6), pages 24–31, 2010.1017

35. Kevin D. Bowers, Ari Juels, Alina Oprea. HAIL: a high-availability and integrity layer for1018

cloud storage. Proceedings of the 16th ACM conference on Computer and Communications1019

Security (CCS’09), pages 187–198, 2009.1020

36. Fengzhe Zhang, Jin Chen, Haibo Chen, Binyu Zang. CloudVisor: retrofitting protection of1021

virtual machines in multi-tenant cloud with nested virtualization. Proceedings of the Twenty-1022

Third ACM Symposium on Operating Systems Principles (SOSP’11), pages 203–216, 2011.1023

37. Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Wald-1024

spurger, Dan Boneh, Jeffrey Dwoskin, Dan R.K. Ports. Overshadow: a virtualization-based1025

approach to retrofitting protection in commodity operating systems. Proceedings of the 13th1026

international conference on Architectural Support for Programming Languages and Operating1027

Systems, pages 2–13, 2008.1028

38. Wassim Itani, Ayman Kayssi, Ali Chehab. Privacy as a Service: Privacy-Aware Data Storage1029

and Processing in Cloud Computing Architectures. Proceedings of Eighth IEEE International1030

Conference on Dependable, Autonomic and Secure Computing, pages 711–716, 2009.1031

39. Shucheng Yu, Cong Wang, Kui Ren, Wenjing Lou. Achieving Secure, Scalable, and Fine-1032

grained Data Access Control in Cloud Computing. Proceedings of IEEE INFOCOM, 2010.1033

40. Vipul Goyal, Omkant Pandey, Amit Sahai, Brent Waters. Attribute-based encryption for1034

fine-grained access control of encrypted data. Proceedings of the 13th ACM conference on1035

Computer and Communications Security (CCS’06), pages 89–98, 2006.1036

41. Myong H. Kang, Joon S. Park, Judith N. Froscher. Access control mechanisms for inter-1037

organizational workflow. Proceedings of the sixth ACM symposium on Access Control Models1038

and Technologies, pages 66–74, 2001.1039

42. H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang, P. Yew, and W. Mao. Tamper-resistant1040

execution in an untrusted operating system using a virtual machine monitor. Parallel Processing1041

Institute Technical Report, Number: FDUPPITR-2007-0801, Fudan University, 2007.1042

43. Lein Harn, Hung-Yu Lin. A cryptographic key generation scheme for multilevel data security.1043

Computer & Security, 9(6), pages 539–546, 1990.1044

44. Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, Reto Strobl. Asynchronous verifiable se-1045

cret sharing and proactive cryptosystems. Proceedings of the 9thACM conference on Computer1046

and Communications Security (CCS’02), pages 88–97, 2002.1047

45. Phillip Rogaway. Bucket hashing and its application to fast message authentication. CRYPTO,1048

volume 963 of LNCS, pages 29–42, 1995.1049

46. David Lie, Chandramohan A. Thekkath, Mark Horowitz. Implementing an untrusted operating1050

system on trusted hardware. Proceedings of the nineteenth ACM Symposium on Operating1051

Systems Principles (SOSP’03), pages 178–192, 2003.1052

47. Stephen T. Jones, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. Geiger: monitoring1053

the buffer cache in a virtual machine environment. Proceedings of the 12th international con-1054

ference on Architectural Support for Programming Languages and Operating Systems, pages1055

14–24, 2006.1056

A
ut

ho
r's

 P
ro

of



U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

34 S. Mu et al.

48. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne. Operating System Concepts. John1057

Wiley & Sons, 2009.1058

49. Guillaume Duc, Ronan Keryell. CryptoPage: an Efficient Secure Architecture with Memory1059

Encryption, Integrity and Information Leakage Protection. Proceedings of the 22nd Annual1060

Computer Security Applications Conference (ACSAC’06), pages 483–492, 2006.1061

50. David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John1062

Mitchell, Mark Horowitz. Architectural support for copy and tamper resistant software. ACM1063

SIGPLAN Notices, 35(11), pages 168–177, 2000.1064

51. Hou Qinghua, WuYongwei, Zheng Weimin, Yang Guangwen. A Method on Protection of User1065

Data Privacy in Cloud Storage Platform. Journal of Computer Research and Development,1066

48(7), pages 1146–1154, 2011.1067

52. Reed I S, Solomon G. Polynomial codes over certain finite fields [J]. Journal of the Society for1068

Industrial & Applied Mathematics, 1960, 8(2): 300–304.1069

53. Roth R M, Lempel A. On MDS codes via Cauchy matrices [J]. Information Theory, IEEE1070

Transactions on, 1989, 35(6): 1314–1319.1071

54. Blaum M, Farrell P, Tilborg H. Array Codes [M]. Amsterdam, Netherlands: Elsevier Science1072

B V, 1998.1073

55. Blaum M, Brady J, Bruck J, et al. EVENODD: An efficient scheme for tolerating double disk1074

failures in RAID architectures[J]. Computers, IEEE Transactions on, 1995, 44(2): 192–202.1075

56. Xu L, Bruck J. X-code: MDS array codes with optimal encoding[J]. Information Theory, IEEE1076

Transactions on, 1999, 45(1): 272–276.1077

57. Huang, Cheng, et al. “Erasure coding in windows azure storage.” USENIX ATC. 2012.1078

58. Dimakis A G, Godfrey P B, Wu Y, et al. Network coding for distributed storage systems[J].1079

Information Theory, IEEE Transactions on, 2010, 56(9): 4539–4551.1080

59. Khan, Osama, et al. “Rethinking erasure codes for cloud file systems: Minimizing I/O for1081

recovery and degraded reads.” Proc. of USENIX FAST. 2012.1082

60. Xiang, Liping, et al. “Optimal recovery of single disk failure in RDP code storage systems.”1083

ACM SIGMETRICS Performance Evaluation Review. Vol. 38. No. 1. ACM, 2010.1084

61. Brewer, Eric A. “Towards robust distributed systems.” PODC. 2000.1085

62. Vogels, Werner. “Eventually consistent.” Communications of the ACM 52.1 (2009): 40–44.1086

63. Birman, Kenneth P. “Consistency in Distributed Systems.” Guide to Reliable Distributed1087

Systems. Springer London, 2012. 457–470.1088

64. Bermbach, David, and Stefan Tai. “Eventual consistency: How soon is eventual? An evaluation1089

of Amazon S3’s consistency behavior.” Proceedings of the 6th Workshop on Middleware for1090

Service Oriented Computing. ACM, 2011.1091

65. Zhou, Yuanyuan, et al. “Relaxed consistency and coherence granularity in DSM systems: A1092

performance evaluation.” ACM SIGPLAN Notices. Vol. 32. No. 7. ACM, 1997.1093

66. Adve, Sarita V., and Kourosh Gharachorloo. “Shared memory consistency models: A tutorial.”1094

computer 29.12 (1996): 66–76.1095

67. Serious cloud failures and disasters of 2011. http://www.cloudways.com/blog/cloud-failures-1096

disastersof-2011/.1097

68. D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow, “Blueprint for the1098

intercloud—protocols and formats for cloud computing interoperability,” Internet and Web1099

Applications and Services, International Conference on, vol. 0, pp. 328–336, 2009.1100

69. R. G. Dimakis, P. B. Godfrey, Y. Wu, M. O. Wainwright, and K. Ramch, “Network coding for1101

distributed storage systems,” in In Proc. of IEEE INFOCOM, 2007.1102

70. L. Rizzo, “Effective erasure codes for reliable computer communication protocols,” SIG-1103

COMM Comput. Commun. Rev.,vol. 27, no. 2, pp. 24–36, Apr. 1997. [Online]. Available:1104

http://doi.acm.org/10.1145/263876.2638811105

71. H. P.Anvin. The mathematics of raid-6. http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf.1106

72. H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A quantitative1107

comparison,” Peer-to-Peer Systems, pp. 328–337, 2002.1108

A
ut

ho
r's

 P
ro

of

http://www.cloudways.com/blog/cloud-failures-disastersof-2011/
http://www.cloudways.com/blog/cloud-failures-disastersof-2011/
http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf


U
nc

or
re

ct
ed

Pr
oo

f

Book ID: 312181_1_En ChapterID: 24 Dispatch Date: 04-12-2014 Proof No: 1

Cloud Storage over Multiple Data Centers 35

73. M. Vrable, S. Savage, and G. M. Voelker, “Cumulus: Filesystem backup to the cloud,” Trans.1109

Storage, vol. 5, no. 4, pp. 14:1–14:28, Dec. 2009. [Online]. Available: http://doi.acm.org/1110

10.1145/1629080.16290841111

74. P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: waitfree coordination for1112

internet-scale systems,” in Proceedings of the 2010 USENIX conference on USENIX annual1113

technical conference, ser. USENIXATC’10. Berkeley, CA, USA: USENIX Association, 2010,1114

pp. 11–11.1115

75. L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4, pp. 18–25, 2001.1116

76. N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.1117

77. A. Bessani, M. Correia, B. Quaresma, F.Andr´e, and P. Sousa, “Depsky: dependable and secure1118

storage in a cloud-of-clouds,” in Proceedings of the sixth conference on Computer systems,1119

ser. EuroSys’11. New York, NY, USA: ACM, 2011, pp. 31–46.1120

78. W. Vogels, “Eventually consistent,” Communications of the ACM, vol. 52, no. 1, pp. 40–44,1121

2009.1122

79. M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchronization: Double-ended1123

queues as an example,” in Distributed Computing Systems, 2003. Proceedings. 23rd1124

International Conference on. IEEE, 2003, pp. 522–529.1125

80. Csc cloud usage index. http://www.csc.com/.1126

81. D. Ionescu. (Oct. 2009) Microsoft red-faced after massive sidekick data loss. pcworld.1127

A
ut

ho
r's

 P
ro

of

http://doi.acm.org/10.1145/1629080.1629084
http://doi.acm.org/10.1145/1629080.1629084


Chapter 24: Author Query

AQ1. We have inserted city and country in all the authorʼs affiliations. Please check.

A
ut

ho
r's

 P
ro

of


	Chapter 24 Cloud Storage over Multiple Data Centers
	1 Introduction
	2 Cloud Storage in a Nutshell
	2.1 Architecture
	2.2 Metadata Service
	2.2.1 Layout Manager
	2.2.2 Meta-Server
	2.2.3 Lock Service

	2.3 Storage Service
	2.3.1 Namenode
	2.3.2 Chunk Servers


	3 Replication Strategies
	3.1 Introduction
	3.2 Asynchronous Replication
	3.3 Synchronous Replication
	3.4 Placement of Replicas

	4 Data Striping Methods
	4.1 Introduction
	4.2 Erasure Code Types
	4.3 Erasure Codes in Data Centers

	5 Consistency Models
	5.1 Introduction
	5.2 Strong Consistency
	5.3 Weak Consistency

	6 Cloud of Multiple Clouds
	6.1 Introduction
	6.2 Architecture
	6.3 Data Striping
	6.4 Retrieving Strategy
	6.5 Mutual Exclusion

	7 Privacy and Security of Storage System
	7.1 Introduction
	7.2 Fine-Grained Data Access Control
	7.3 Security on Storage Server

	8 Conclusion and Future Directions
	References




