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 0  Abstract 
The increasing popularity of cloud storage services has led many companies to 

migrate their data into clouds for high availability whilst saving infrastructure 

constructions. Within the last few years, the architectures of most major cloud storage 

providers have evolved from single data center to multiple data centers, across 

different geo-locations. This architecture help improve the availability of consumers’ 

data, as well as safety guarantee against disasters that can disable a whole datacenter. 

In this chapter we introduce the architecture evolution of typical cloud storage, and 

common techniques used in the design, such as replication strategies, data striping 

methods and consistency models. We also introduce a trend in the practice of cloud 

storage—cloud of clouds.  

 1  Introduction 
Cloud storage has become a booming trend in the last few years. Individual 

developers, companies, organizations, and even governments have either taken steps 

or at least shown great interests in data migration from self-maintained infrastructure 

into cloud.  

Cloud storage benefit consumers in many ways. A recent survey among over 600 

cloud consumers has shown that primary reasons for most clients in turning to cloud 

are (1) to have highly reliable as well as available data storage services; (2) to reduce 

the capital cost of constructing their own datacenter and then maintaining it; and (3) to 

provide high-quality and stable network connectivity to their customers. The 

prosperity of the cloud market has also inspired many companies to provide cloud 

storage services of different quality to vast variety of companies. 

Reliability and availability are the most important issues in designing a cloud storage 

system. In cloud storage, data reliability often refers to that data is not lost, and 

availability refers to data accessibility. To major cloud storage providers, accidents of 

data loss seldom happen. But there was accident that Microsoft once completely lost 

user data of T-Mobile cellphone users. Because data loss accidents seldom happen, 

data availability is often a more important concern to most cloud storage consumers. 

Almost all cloud storage providers have suffered from temporary failures, lasting 
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from hours to days. For example, Amazon failed to provide service in October, 2012, 

which caused many consumers such as Instgram to stop service. 

Data replication is an effective way to improve reliability and availability. Limited by 

cost, cloud providers usually use commodity hardware to store consumers’ data. 

Replicating data into different machines can tolerate hardware failures, and 

replicating data into multiple data centers can tolerate failures of a datacenter, caused 

by earthquakes, storms and even wars.  

To reduce cost of replication, data are usually divided into stripes instead of the 

original copy. There are many coding methods for this, originating from traditional 

storage research and practice. Erasure coding, which is widely used in the RAID 

systems, provides suitable features for data striping requirements in cloud storage 

environment. 

Data consistency is also an important issue in cloud storage. Different from traditional 

storage systems which usually provide a strong consistency model, cloud storage 

often offer weaker consistency model such as eventual consistency. Some also 

propose other reduced consistency models such as session consistency, and fork-join 

consistency. 

Privacy and security are very essential to some consumers. Consumers are often 

concerned about how their data are visible to cloud providers, whether administrators 

can see their data transparently. For other consumers who are less sensitive to privacy, 

they are more concerned in access control to data, because all the traffic finally leads 

to charges. 

In spite of all efforts of cloud storage providers, there comes up a new trend to build 

up an integration layer on top of current cloud storages, also named “cloud-of-clouds”. 

A cloud-of-cloud system makes use of current cloud storage infrastructure, but still 

provides a uniformed user interface to top-level application developers. It also targets 

on the reliability, availability and security issues, but takes a different approach of 

using each cloud as building blocks. The advantage of this approach is that it can 

tolerate performance fluctuation of single cloud storage, and can avoid potential risks 

of a provider shutdown. 

In the remainder of this chapter, we first look at cloud storage architecture at a high 

level in Section 2. Section 3 describes common strategies used in data replication. 

Section 4 gives a brief introduction on data striping. Section 5 introduces the 

consistency issue. Section 6 briefly highlights a new model of cloud-of-clouds. 

Section 7 discusses about privacy and security issues in storage systems. Section 8 

summarizes and suggests future direction to cloud storage research and practice. 

 2  Cloud Storage in a Nutshell 
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In this section we give an overview of cloud storage architecture and its key 

components. Cloud storage are usually complex systems mixed with many mature and 

pioneer techniques. On a high level, cloud storage design and implementation consist 

of two parts: metadata and data. We will take look at the two parts in later sections. 

 2.1  Architecture 

Early public cloud and most nowadays private cloud, are built in one datacenter, or 

several datacenters in nearby buildings. They are composed of hundreds or even 

thousands of commodity machines and storage devices, connected by high-speed 

networks. Besides large amounts of hardware, many other storage middleware such as 

distributed file systems are also necessity to provide storage service to consumers. 

Typical architecture of a cloud storage usually includes storage devices, distributed 

file system, metadata service, frontend, etc.  

In practice, we find that the data models and library interfaces of different clouds are 

fairly similar; thus, we could support a minimal set to satisfy most users’ needs. The 

data model shared by most services could be summarized as a “container-object” 

model, in which file objects are put into containers. Most services containers do not 

support nesting; i.e., users cannot create a sub-container in a container. 

In the last decade, major cloud storage such as Amazon S3[1] and Windows Azure 

Storage[2] have upgrade their service from running in separate data centers to 

different data centers and different geographic regions. Compare to single datacenter 

structure, running service in multiple data centers require more resource management 

functions such as resource allocation, deployment, migration, etc. 

An important feature of cloud storage is the ability to store and provide access to an 

immense amount of storage. Amazon S3 currently has a few hundred petabytes of raw 

storage in production, and it also has a few hundred more petabytes of raw storage 

based on customer demand. A modern cloud storage architecture could be divided 

into three layers: storage service, metadata service, and front-end layer. (see Figure 1) 
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Figure 1 Cloud storage architecutre over mutiple data centers 

 Metadata service – The metadata service is in charge of following functions: (a) 

handling high level interfaces and data structures; (b) managing a scalable 

namespace for consumers’ objects; (c) storing object data into the storage service. 

Metadata service holds the responsibility to achieve scalability by partitioning all 

of the data objects within a datacenter. This layer consists of many metadata 

servers, each of which serves for a range of different objects. Also, it should 

provide load balance among all the metadata servers to meet the traffic of 

requests. 

 Storage service – This storage service is in charge of storing the actual data into 

disks and distributing and replicating the data across many servers to keep data 

reliable within a datacenter. The storage service can be thought of as a distributed 

file system. It holds files, which are stored as large storage chunks. It also 

understands how to store them, how to replicate them, etc., but it does not 

understand higher level semantics of objects. The data is stored in the storage 

service, but it is accessed from the metadata service.  

 Front-End (FE) layer – The front-end layer consists of a set of stateless servers 

that take incoming requests. Upon receiving a request, an FE looks up the account, 

authenticates and authorizes the request, then routes the request to a partition 

server in the metadata service. The system maintains a map that keeps track of the 

partition ranges and which metadata server is serving which partition. The FE 

servers cache the map and use it to determine which metadata server to forward 

each request to. The FE servers also file large objects directly from the storage 

service and cache frequently accessed data for efficiency. 

 2.2  Metadata Service 
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The metadata service contains three main architectural components, a layout manager, 

many meta servers, and a reliable lock service (see Figure 2). The architecture is 

similar to Bigtable[5]. 
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Figure 2 Meta Layer Architecture 

 2.2.1  Layout Manager 

A layout manager (LM) acts as a leader of the meta service. It is responsible for 

dividing the whole metadata into ranges and assigning each meta server to serve 

several ranges and then keeping track of the information. The LM stores this 

assignment in a local map. The LM must ensure that each range is assigned only to 

one active meta server, and that two ranges do not overlap. It is also in charge of load 

balancing ranges among meta servers. Each datacenter may have multiple instances of 

the LM running, but usually they function as reliable replications of each other. For 

this they need a Lock Service to maintain a lease for leader election. 

 2.2.2  Meta Server 

A meta server (MS) is responsible for organizing and storing a certain set of ranges of 

metadata, which is assigned by LM. It also serves requests to those ranges. The MS 

stores all metadata into files persistently on disks and maintains a memory cache for 

efficiency. Meta servers keep leases with the Lock Service, so that it is guaranteed 

that no two meta servers can serve the same range at the same time.  

If a MS fails, LM will assign a new MS to serve all ranges served by the failed MS. 

Based on the load, LM may choose a few MS rather than one to serve the ranges.  

LM firstly assigns a range to a MS, and then updates its local map which specifies 

which MS is serving each range. When a MS gets a new assignment from LM, it 

firstly acquires for the lease from Lock Service, and then starts serving the new range. 

 2.2.3  Lock Service 
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Lock Service (LS) is used by both of layout manager and meta server. LS uses 

Paxos[16] protocol to do synchronous replication among several nodes to provide a 

reliable lock service. LM use LS for leader election; MS also maintains a lease with 

the LS to keep alive. Details of the LM leader election and the MS lease management 

are discussed here. We also do not go into the details of Paxos protocol. The 

architecture of lock service is similar to Chubby[18]. 

 2.3  Storage Service 
The two main architecture components of the storage service are the namenode and 

chunk server (see Figure 3). The storage service architecture is similar to GFS[4]. 
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Figure 3 Storage service architecture 

 2.3.1  Namenode 

The namenode can be considered as the leader of the storage service. It maintains file 

namespace, relationships between chunks and each file, and the chunk locations 

across the chunk servers. The namenode is off the critical path of client read and write 

requests. In addition, the namenode also monitors the health of the chunk servers 

periodically. Other functions of namenode include: lazy re-replication of chunks, 

garbage collection, and erasure code scheduling. 

The namenode periodically checks the state of each chunk server. If the namenode 

finds that the replication number of a chunk is smaller than configuration, it will start 

a re-replication of the chunk. To achieve a balanced chunk replica placement, the 

namenode randomly chooses chunk server to store new chunk. 

The namenode is not tracking any information about blocks. It remembers just files 

and chunks. The reason of this is that the total number of blocks is so huge that the 

namenode cannot efficiently store and index all of them. The only client of data 

service is the metadata service. 

 2.3.2  Chunk Servers 

Each chunk server keeps the storage for many chunk replicas, which are assigned by 

the namenode. A chunk server machine has many large volume disks attached, to 
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which it has complete access. A chunk server only deals with chunks and blocks, and 

it does not care about file namespace in the namenode. Internally on a chunk server, 

every chunk on disk is a file, consisting of data blocks and their checksum. A chuck 

server also holds a map which specifies relationships between chunk and file. Each 

chunk server also keeps a view about the chunks it owns and the location of the peer 

replicas for a given chunk. This view is copied from namenode and is kept as a local 

cache by the chunk server. Under instructions from namenode, different chunk servers 

may talk to each other to replicate chunks, or to create new copies of an existing 

replica. When a chunk no longer stores any alive chunks, the namenode starts garbage 

collection to remove the dead chunks and free the space. 

 3  Replication Strategies 

 3.1  Introduction 
Currently, more data-intensive applications are moving their large-scale datasets into 

cloud. To provide high availability and durability of storage services as well as 

improving performance and scalability of the whole system, data replication is 

adopted by many mature platforms [1],[4],[6],[2],[12] and research studies 

[7][8][9][10][14][30] in cloud computing and storage. Data replication is to keep 

several identical copies of a data object in different servers that may distribute across 

multiple racks, houses and region-scale or global-scale datacenters, which can tolerate 

different levels of failures such as facility outages or regional disasters 

[4][10][23][30]. Replication strategy is now an indispensable feature in multiple 

datacenters [1][6][2][7][8][9][12], which may be hundreds or thousands of miles 

away from each other, to completely replicate data objects of services, not only 

because wide-area disasters such as power outages or earthquakes may occur in one 

datacenter [10][23], but also because replication across geographically distributed 

datacenters can mostly reduce latency and improve the whole throughput of the 

services in the cloud [6][7][8][9][11]. 

Availability and durability is guaranteed as one data object is replicated on many 

servers across datacenters, thus in the presence of failing of a few number of 

components such as servers and network at any time [1][4][10][23] or natural 

disasters occurring in one datacenter, the durable service of cloud storage won’t be 

influenced because applications can normally access their data through servers 

containing replicas in other datacenters. Moreover, as each data object is replicated 

over multiple datacenters, it enables different applications to be served from the 

fastest datacenter or the datacenter with the lowest working load in parallel 

[1][6][9][11][31], thus providing high performance and throughput of the overall 

cloud storage system. 

Common replication strategies can be divided into two categories: asynchronous 

replication and synchronous replication. They own distinct features and have different 
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impacts on availability, performance and throughput of the whole system. Besides, the 

cloud storage service should provide the upper applications with a consistent view of 

the data replicas especially during faults [6][7][8][9][11], which requires that data 

copies among diverse datacenters should be consistent with each other. However, 

these two replication strategies bring in new challenges to replication synchronization, 

which finally will influence the consistency of data replicas over multiple datacenters. 

Additionally, the placement of data replicas is also an important aspect of replication 

strategy in multiple datacenters as it highly determines the load distribution, storage 

capacity usage, energy consumption and access latency, and many current systems 

and studies [1][4][6][10][24][26] adopt different policies on the placement of data 

replicas in the multiple-datacenter design on different demands. 

In this section, we will present the main aspects and features of asynchronous 

replication, synchronous replication and placement of replicas.  
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Figure 4 The working mechanism of asynchronous replication and synchronous 

replication over multiple datacenters. (a) for asynchronous replication and (b) for 

synchronous replication. 

 3.2  Asynchronous Replication 
Figure 4(a) illustrates the working mechanism of asynchronous replication over 

multiple datacenters. As shown in Figure 4, the external applications issue write 

requests to one datacenter, which could be a fixed one configured previously or a 

random one chosen by applications, and get a successful response if the write requests 

completely commit in this datacenter. The updated data will be eventually propagated 

to other datacenters in background in an asynchronous manner [1][2][12]. 

Asynchronous replication is especially useful when the network latency between 

datacenters is at a high cost as applications only need to commit their write requests in 

one fast datacenter and don’t have to wait for the data to be replicated in each 
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datacenter. Therefore, the overall performance and throughput for writes will be 

improved and systems with asynchronous replication can provide high scalability as 

they are decentralized. Now many prevailing systems such as Cassandra [12], 

Dynamo [1] and PNUTS [14] are using asynchronous replication.  

However, asynchronous replication will bring a big challenge to consistency, since 

replicas may have conflicting changes with each other, that is, the view of all the 

replicas over multiple datacenters has the probability to be inconsistent at some time. 

Figure 5 presents a simple scenario that will cause inconsistency among replicas. 

Assume there are three datacenters A, B and C, and all of them hold data replica d. 

When a write request for d from application P is issued to A and successfully commits 

in A, A will response to P and then replicates the updated data d1 to B and C. However, 

at the same time, another write request for d from application Q is issued to C. As C 

hasn’t gotten to know the update of d in A, it normally accepts and processes this 

write request and then d in C turns into d2 and will be replicated to A and B. As a 

result, there are now two different versions of the same data replica, and the system 

steps into an insistent state which means that a subsequent read may get two different 

data objects. 

As there are also other factors such as server or network failure that will cause 

inconsistency in asynchronous replication over multiple datacenters [1][11], a few 

researches have been addressing this challenge of asynchronous replication. Eventual 

consistency [21] model is one scheme that is widely adopted by many studies and 

widespread distributed systems [1][12][13][14]. Eventual consistency model allows 

the whole system to be inconsistent temporarily but eventually, the conflicted data 

objects will merge into one singe data object and the view of the data replicas across 

multiple datacenters will become consistent at last. The process of merging conflicted 

data objects is critical in eventual consistency model and the merging decision can be 

made by the write timestamp [12][21], a chosen master [13][14] or even the 

applications [1]. 
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Figure 5 A scenario that causes inconsistent view of data replicas among datacenters 

under asynchronous replication. 

Under asynchronous replication, a read request may get a stale data object from some 

datacenters, which will decline the performance of current reads and complicates 

application development. However, whether this circumstance is adverse depends on 

the applications. If applications such as search engine and shopping carts allow 

weaker consistency at reading or demand high quality of writing experience [1][12], 

asynchronous replication won’t bring negative impacts to these applications. 

 3.3  Synchronous Replication 

In contrast to asynchronous replication, synchronous replication requires that the 

updated data objects of write requests must be synchronously replicated to all or a 

majority of datacenters before applications get a successful response from the 

datacenter accepting the requests in the cloud, as presented in Figure 4(b). This 

synchronous replication mechanism can effectively guarantee a consistent view of 

cross-datacenter replicated data and it enables developers to build distributed systems 

that can provide strong consistency and a set of ACID semantics like transactions, 

which, compared with that in loosely consistent asynchronous replication, simplifies 

application building for the wide-area usage for the reason that applications can make 

use of serializable semantic properties while are free from write conflicts and system 

crashes [6][9][11][20][25]. 

The key point of synchronous replication is to keep states of replicas across different 

datacenters the same. A simple and intuitive way to realize this is to use synchronous 

master/slave mechanism [4][6][11]. The master waits for the writes to be fully 

committed in slaves before acknowledging to applications and is responsible for 

failure detection of the system. Another method to maintain consistent and up-to-date 
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replicas among datacenters is to use Paxos [16], which is a fault-tolerant and optimal 

consensus algorithm for RSM [15] in a decentralized way. Paxos works well when a 

majority of datacenters are alive and at current, many system services adopt Paxos 

[6][2][11][17][18][20] as their underlying synchronous replication algorithm. 

D1

D2

D3

D4

D5

...

Key Range [k1,k2)

Key Range [k2,k3)

Key Range [k3,k4)

Key Range [k4,k5)

Key Range [k5,k6)

Hash(data object A)

Key kA in range [k2,k3)

Get key of object A

Locate the datacenter and 

place object A 

Place replicas of object A 

to successive datacenters

Dl for a datacenter

 

Figure 6 The decentralized method to place data replicas across multiple datacenters. 

However, no matter which method is used, the overall throughput and performance of 

the services based on synchronous replication will be constrained when the 

communication latencies between datacenters are at high expense [7][9][11] and 

scalability is limited by strong consistency to certain extent. As a result, many 

researches put forward mechanisms to help improve the throughput and scalability of 

the whole system while not destroying the availability and consistency for 

applications. These mechanisms include reasonable partitioning of data [6][2][11], 

efficient use of concurrent control [7][11][31] and adopting combined consistent 

models [7][8][9][22][25]. 

 3.4  Placement of Replicas 
As cloud storage now holds enormous amount (usually petabytes) of data sets from 

large-scale applications, how to place data replicas across multiple datacenters also 

becomes a very important aspect in replication strategy as it is closely related to load 

balance, storage capacity usage, energy consumption and access latency of the whole 

system [6][10][19][24]. It is essential for both efficiently utilizing available datacenter 

resources and maximizing performance of the system.  
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Unbalanced replica placement will cause over-provisioning capacity and skewed 

utilization of some datacenters [26]. One way to address this issue is to choose a 

master or use partition layers to decide in which datacenter each data replica is placed 

[4][6][2]. This requires the master or partition layers to record the up-to-date load 

information of every datacenter so that they won’t make unbalanced replica 

placement policies and can immediately decide to migrate data between datacenters to 

balance load. Another way is to use a decentralized method, as presented in Figure 6. 

We can form datacenters as a ring, each responsible for a range of keys. A data object 

can get its key through hash functions such as consistent hash and locate a datacenter 

according to its key. Then, replicas of this data object could be placed in this 

datacenter and its successive ones, similar to [1][12]. In this way, there is no need to 

maintain a master to keep information of each datacenter and if the hash functions 

could evenly distribute the keys, load balance can be achieved automatically.  

Furthermore, as datacenters now consumes about 1.5% of the world’s total energy and 

a big fraction of it does come from the consumption of storage in them [28][29], the 

number of datacenters to place the data replicas should also be considered carefully. If 

the number of datacenters to hold replicas increases, the storage capacity of the whole 

system will accordingly decease and the energy consumption improves [24][26][27] 

as those datacenters will contain large amounts of replicated data objects in storage. In 

addtition, placing data replicas in a high number of datacenters enables applications to 

survive wide-area disasters that will cause a few datacenter failures and thus, this can 

provide high availability for applications at the expense of storage capacity and 

energy consumption [6][2][7][11][25]. Moreover, when the number of datacenters to 

place replicas is large, applications can have a low access latency based on geographic 

locality, i.e., they can communicate with datacenters that are faster or have less 

working load [6][7][9]. Hence, system developers have to consider the trade-off 

between these features for the placement strategy of data replicas across multiple 

datacenters when they are building geographically distributed services for 

applications. 

 4  Data Striping Methods 

 4.1  Introduction 
The main purpose of a storage system is to make data persistent, so reliability and 

availability should be top priority concern for storage systems. Actually, there are a 

variety of factors that may cause storage system unavailable. For example, if a server 

fails, the storage system is unable to provide storage services. Some physical damage 

to a hard disk will result in the loss of data stored. Therefore, it is indispensable for 

storage systems to introduce some techniques to make them reliable. 

A lot of research work has been done in recent years to improve the availability and 

reliability of storage systems. The main idea is to generate some redundant 
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information of every data block and distribute them on different machines. When one 

server becomes outage, another server that holds the redundant data can replace the 

role of the broken server. During this time, the storage system can still provide storage 

service. When one data block is broken, then other redundant data blocks will restore 

the broken one. Thus, the availability and reliability is improved. Generally, 

redundant data can be presented in two ways: one is using full data backup 

mechanism, called full replication; the other is erasure code. 

Full replication, also known as multi-copy method, is to store multiple replicates of 

data on separate disks, in order to make the data redundant. This method does not 

involve specialized encoding and decoding algorithms, and it has better fault-

tolerance performance. But full replication has lower storage efficiency. Storage 

efficiency is the sum of effective capacity and free capacity divided by raw capacity. 

When storing N copies of replica, the disk utilization is only 1/N. For relatively large 

storage systems, full replication brings extra storage overhead, resulting in high 

storage cost. 

Along with the increase of the data that a storage system holds, a full replication 

method has been difficult to adapt to mass storage system for redundant mechanism in 

disk utilization and fault tolerance requirements. Therefore, erasure code is becoming 

a better solution for mass storage. 

 4.2  Erasure Code Types 
Erasure code is derived from communication field. At first, it is mainly used to solve 

error detection and correction problems in data transmission. Afterwards, erasure code 

gradually applied to improve the reliability of storage systems. Thus, erasure code has 

been improved and promoted according to the characters of storage system. The main 

idea of erasure code is that the original data can be divided into k data fragments, and 

according to the k data fragments, m redundant fragments can be computed according 

some coding theory. The original data can be reconstructed by any of the m + k 

fragments. There are many advantages of erasure code, the foremost of these is the 

high storage efficiency compared with the mirroring method. 

There are many types of erasure code. 

Reed-Solomon code [52] is an MDS code that can meets any number of data disks 

and redundant disk number. MDS code (maximum distance separable code) is a kind 

of code that can achieve the theoretically optimal storage utilization. The main idea of 

Reed Solomon code is to visualize the data encoded as a polynomial. Symbols in data 

are viewed as coefficients of a polynomial over a finite field. Reed Solomon code is a 

type of horizontal codes. Horizontal code has the property that data fragments and 

redundant fragments are stored separately. That is to say, each stripe is neither data 

stripe nor redundant stripe. Reed Solomon codes are usually divided into two 

categories: one is Vandermonde Reed Solomon code, and the other is Cauchy Reed 
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Solomon code [53]. The difference between these two categories of Reed Solomon 

codes is that they are using different generation matrix. For Vandermonde Reed 

Solomon code, the generation matrix is Vandermonde matrix, and multiplication on 

Galois filed is needed which is very complex. For Cauchy Reed Solomon code, it is 

Cauchy matrix, and every operation is XOR operation, which is coding efficient. 

Figure 7 shows the Encoding principle for Reed-Solomon codes. 

 

Figure 7 Reed-Solomon codes. 

Compared with Reed Solomon Codes, Array Code [54] is totally based on XOR 

operation. Due to the efficient of encoding, decoding, updating and reconstruction, 

Array code is widely used. Array code can be categorized as two types due to the 

placement of data fragment and redundant fragment. 

Horizontal parity array codes make data fragments and redundant fragments stored on 

different disks. By doing this, Horizontal parity array codes have better scalability. 

But most of it can just hold 2 disk failures. It has a drawback on updating data. Every 

time updating one data block will result in at least one read and one write operation on 

redundant disk. EVENODD code [55] is one kind of Horizontal parity array codes 

that used widely.  

Vertical parity array codes make data fragment and redundant fragment stored in the 

same stripe. Because of this design, the efficiency of data update operation will be 

improved. However, the balance of vertical parity array code leads to a strong 

interdependency between the disks, which also led to its poor scalability. XCODE [56] 

is a kind of vertical parity array code, which has theoretically optimum efficiency on 

data update and reconstruction operation. 
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 4.3  Erasure Code in Data Centers 
In traditional storage systems such as early GFS and Windows Azure Storage, to 

ensure the reliability, triplication has been favored because of its ease of 

implementation. But triplication makes the stored data triple, and storage overhead is 

a major concern. So many system designers are considering erasure coding as an 

alternative. Most distributed file systems (GFS, HDFS, Windows Azure) create an 

append-only write workload for large block size. So data update performance is not a 

concern. 

Using erasure code in distributed file systems, data reconstruction is a major concern. 

For one data of k data fragment and m redundant fragment, when any one of that 

fragment is broken or lost, to repair that broken fragment, k fragments size of network 

bandwidth will be needed. So some researchers found that the traditional erasure code 

does not fit distributed file system very well. In order to improve the performance of 

data repair, there are two ways. 

One is reading from fewer fragments. In Windows Azure Storage System, a new set 

of code called Local Reconstruction Codes (LRC) [57] is adopted. The main idea of 

LRC is to reduce the number of fragments required to reconstruct the unavailable data 

fragment. To reduce the number of fragments needed, LRC introduced local parity 

and global parity. As Figure 8 shows below, x0, x1, x2, y0, y1, y2 are data fragments, px 

is the parity fragment of x0, x1, x2. py is the parity fragment of y0,y1,y2. p0 and p1 are 

global parity fragments. px and py are called local parity. p0 and p1 are global parity. 

When reconstructing x0, instead of reading p0 or p1 and other 5 data fragment, it is 

more efficient to read x1, x2 and px to compute x0. As we can see LRC is not a MDS, 

but it can greatly reduce the cost of data reconstruction. 

 

Figure 8 LRC codes. 

Another way to improve reconstruction performance is to read more fragments but 

less data size from each. Regenerating codes [58] provide optimal recovery bandwidth 

among storage nodes. When reconstructing fragments, it does not just transmit the 

existing fragments, but sends a liner combination of fragments. By doing this, the 
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recovery data size to send will be reduced. Rotated Reed-Solomon codes [59] and 

RDOR[60] improve reconstruction performance in a similar way. 

 5  Consistency Models 

 5.1  Introduction 
Constructing a globally distributed system requires many trade-offs among 

availability, consistency and scalability. Cloud storages are designed to serve for a 

large amount of internet-scale applications and platforms simultaneously, which is 

often named as infrastructure service. To meet requirements, a cloud storage must be 

designed and implemented as highly available and scalable, in order to serve 

consumers requests from all over the world. 

One of the key challenges in build cloud storage is to provide a consistency guarantee 

to all client requests[63]. Cloud storage is a large distributed system deployed world-

widely. It has to process millions of requests every hour. All the low-probability 

accidents in normal systems are often to happen in the datacenters of cloud storage. 

So all these problems must be taken care of in the design of the system. To guarantee 

consistent performance and high availability, replication techniques are often used in 

cloud storage. Although replication solves many problems, it has its costs. Different 

client requests may see inconsistent states of many replicas. To solve this problem, 

cloud storage must define a consistency model that all requests to replicas of the same 

data must follow. 

Like many widespread distributed systems, cloud storage such as Amazon S3 often 

provide a weak consistency model called eventual consistency. Different clients may 

see different orders of updates to the same data object. Some cloud storage like 

Windows Azure also provides strong consistency that guarantees linearizability of 

every update from different clients. Details will be discussed in the following sub-

sections. 

 5.2  Strong Consistency 
Strong consistency is the most programmer-friendly consistency model. When a client 

commits an update, every other client would see the update in subsequent operations. 

Strong consistency can help achieve transparency of a distributed system. When 

developer uses a storage system with strong consistency, it appears like the system is 

a single component instead of many collaborating sub-components mixed together.  

However, this approach has been proved as difficult to achieve since the middle of 

last century, in the database area for the first time. Databases are also systems with 

heavy use of data replications. Many of such database systems were design to shut 

down completely when it cannot satisfy this consistency because of node failures. But 
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this is not acceptable for cloud systems, which is so large that small failures are 

happening every minute. 

Strong consistency has its weak points, one of which is that it lowers system 

availability. In the end of last century, with large-scale Internet systems growing up, 

designs of consistency model are rethought. Engineers and researchers began to 

reconsider the tradeoff between system availability and data consistency. In the year 

of 2000, CAP theorem was raised[61]. The theorem states that for three properties of 

shared-data systems—data consistency, system availability, and tolerance to network 

partition—only two can be achieved at any given time. 

It’s worth mentioning that the concept of consistency in cloud storage is different 

from the consistency in a transactional storage systems such as databases. The 

common ACID property (atomicity, consistency, isolation, durability) defined in 

databases is a different kind of consistency guarantee. In ACID, consistency means 

that the database is in a consistent state when a transaction is finished. No go-between 

situation is allowed. 

 5.3  Weak Consistency 
According the CAP theory, a system can achieve both consistency and availability, if 

it does not tolerant network partitions. There many techniques which make this work, 

one of which is to use transaction protocols like two phase commit. The condition for 

this is that both client and server of the storage systems must be in the same 

administrative environment. If partition happens and client cannot observe this, the 

transaction protocol would fail. However, network partitions are very common in a 

large distributed systems, and as the scale goes up, the partition would be more often. 

This is one reason why one cannot achieve consistency and availability at the same 

time. The CAP theory leaves two choices for developers: 1) sticking to strong 

consistency and allowing system goes unavailable under partitions 2) using relaxed 

consistency [65] so that system is still available under network partitions.  

No matter what kind of consistency model the system uses, it requires that the 

application developers are fully aware of the consistency model. Strong consistency is 

usually the easiest option for client developer. The only problem the developers have 

to deal with is to tolerate the unavailable situation that might happen to the system. If 

the system takes relaxed consistency and offers high availability, it may always accept 

client requests, but client developers have to remember that a write may get its delays 

and a read may not return the newest write. Then developers have to write the 

application in a way so that it can tolerant the delay update and stale read. There are 

many applications that can be design compatible for such relaxed consistency model 

and work fine. 

There are two ways of looking at consistency. One is from the developer/client point 

of view: how they observe data updates. The other is from the server side: how 
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updates flow through the system and what guarantees systems can give with respect to 

updates. 

Let’s show consistency models using examples. Suppose we have a storage system 

which we treat it as a black box. To judge its consistency model we have several 

clients issuing requests to the system. Assume they are client A, client B, client C. All 

three clients issue both read and write requests to the system. The three clients are 

independent and irrelevant. They could run on different machines, processes or 

threads. The consistency model of the system can be defined by how and when 

observers (in this case the clients A, B, or C) see updates made to a data object in the 

storage systems. Assume client A has made an update to a data object: 

 Strong consistency. After the update completes, any subsequent access (from any 

of A, B, or C) will return the updated value. 

 Weak consistency. The system does not guarantee that subsequent accesses will 

return the updated value. A number of conditions need to be met before the value 

will be returned. The period between the update and the moment when it is 

guaranteed that any observer will always see the updated value is dubbed the 

inconsistency window. 

There are many kinds of weak consistency, we list some of the most common ones as 

below. 

 Causal consistency [66]. If client A has communicated to client B that it has 

updated a data item, a subsequent access by client B will return the updated value, 

and a write is guaranteed to supersede the earlier write. Access by client C that 

has no causal relationship to client A is subject to the normal eventual 

consistency rules. 

 Eventual consistency [62]. This is a specific form of weak consistency; the 

storage system guarantees that if no new updates are made to the object, 

eventually all accesses will return the last updated value. If no failures occur, the 

maximum size of the inconsistency window can be determined based on factors 

such as communication delays, the load on the system, and the number of replicas 

involved in the replication scheme. The most popular system that implements 

eventual consistency is the domain name system. Updates to a name are 

distributed according to a configured pattern and in combination with time-

controlled caches; eventually, all clients will see the update.[64] 

 Read-your-writes consistency. This is an important model where client A, after 

having updated a data item, always accesses the updated value and never sees an 

older value. This is a special case of the causal consistency model. 

 Session consistency. This is a practical version of the previous model, where a 

client accesses the storage system in the context of a session. As long as the 
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session exists, the system guarantees read-your-writes consistency. If the session 

terminates because of a certain failure scenario, a new session must be created 

and the guarantees do not overlap the sessions. 

 Monotonic read consistency. If a client has seen a particular value for the object, 

any subsequent accesses will never return any previous values. 

 Monotonic write consistency. In this case, the system guarantees to serialize the 

writes by the same client. Systems that do not guarantee this level of consistency 

are notoriously difficult to program. 

These consistency models are not exclusive and independent. Some of the above can 

be combined together. For example, the monotonic read consistency can be combined 

with session-level consistency. The combination of the two consistency is very 

practical for developers in a cloud storage system with eventual consistency. These 

two properties make it much easier for application developers to build up their apps. 

They also allow the storage system to keep a relax consistency and provide high 

availability. As you can see from these consistency models, quite a few different 

circumstances are possible. Applications need to choose whether or not one can deal 

with the consequences of particular consistency. 

 6  Cloud of Multiple Clouds 

 6.1  Introduction 
Although cloud storage providers claim that their products are cost saving, trouble-

free, worldwide 24/7 available and reliable, reality shows that (1) such services are 

sometimes not available to all customers; and (2) customers may experience vastly 

different accessibility patterns from different geographical locations. Furthermore, 

there is also a small chance that clients may not even be able to retrieve their data 

from a cloud provider at all, which usually occurrs due to network partitioning and/or 

temporary failure of cloud provider. For example, authors of [67] reported that this 

may also cause major cloud service providers to fail providing services for hours or 

days sometimes. Although cloud providers sign Service Level Agreements (SLA) 

with their clients to ensure availability of their services, users have complained that 

these SLAs are sometimes too tricky to break. Moreover, even when a SLA is 

violated, the compensation is only a minor discount for the payment and not to cover 

a customer’s loss resulted by the violated SLA. 

Global access experience can be considered as one specifically important issue of 

availability. In current major cloud storages, users are asked to create region-specific 

accounts/containers before putting their data blobs/objects into them. The storage 

provider then stores data blobs/objects into a datacenter in the selected locations; 

some providers may also create cross-region replicas solely for backup and disaster 

recovery. A typical result of such topology is an observation where users may 
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experience vastly different services based on the network condition between clients 

and the datacenter holding their required data. Data loss and/or corruption are other 

important potential threats to users’ data should it be stored on a single cloud provider 

only. Although users of major cloud storage providers have rarely reported data loss 

and/or corruption, prevention of such problems are not 100% guaranteed either. 

Medium to small sized cloud providers may provide a more volatile situation to their 

customers as they are also in danger of bankruptcy as well. 

In this section, we present a system named μLibCloud to address the two 

aforementioned problems of cloud customers; i.e., (1) availability of data as a whole 

and (2) different quality of services for different customers accessing data from 

different locations on the globe. μLibCloud is designed and implemented to 

automatically and transparently stripe data into multiple clouds –similar to RAID’s 

principle in storing local data. μLibCloud is developed based on Apache libCloud 

project [3], and evaluated through global-wide experiments. 

Our main contributions include: (1) to conduct global-wide experiments to show how 

several possible factors may affect availability and/or global accessibility of cloud 

storage services; (2) to use erasure codes based on observations. We then design and 

implement μLibCloud using erasure code to run benchmarks accessing several 

commercial clouds from different places in the world. The system proved the 

effectiveness of our method. 

 6.2  Architecture 
Using a “cloud-of-cloud” rationale [68], μLibCloud is to improve availability and 

global access experience of data. Here the first challenge is how to efficiently and 

simultaneously use multiple cloud services. They follow different concepts and offer 

different ways to access their services. As shown in Figure 9, cloud storage providers 

usually provide REST/SOAP web service interface to developers along with their 

libraries for different programming languages for developers to further facilitate 

building cloud applications. To concurrently use multiple cloud storages, two options 

are available. The first option is to set up proxy among cloud storages and 

applications. In this case, all data requests need to go through this proxy. To store data 

in cloud storages, this proxy receives original data from client, divides the data into 

several shares, and sends each share to different clouds using different libraries. To 

retrieve data, it fetches data shares from each cloud, rebuilds the data, and sends it 

back to clients. The second option –more complicated– is to integrate the support for 

multiple cloud storages directly into a new client library –replacing original ones. In 

this case, client applications only use this newly provided library to connect to all 

clouds. The main difference between these two options is the transparency in the 

second option to spread/collect data to/from multiple clouds. 
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Figure 9 Layer abstraction of cloud storage 

The first choice, is more straightforward in design; it uses a single layer for extra 

work, keeps the client neat and clean, includes many original libraries when 

implemented, and is usually run on independent servers. It also brings more 

complexity to system developers to maintain extra servers and their proper 

functioning. The second choice, on the other hand, benefits developers by providing 

them a unique tool; this approach also reduces security risk because developers do not 

need to put their secret keys on the proxy. It however also leads to other challenges on 

how to design and implement such systems; e.g., how multiple clients can coordinate 

with each other without extra servers. Furthermore, the client library must be efficient 

and resource saving because it needs to be run along with application codes. 

In the design of μLibCloud, we chose to practice the second option so that it has less 

burden on application developers. We also assume that consumers who choose to use 

cloud storage rather than to build their own infrastructure would not want to set up 

another server to make everything work. Figure 10 shows the basic architecture of 

μLibCloud with a single client; this figure also shows how μLibCloud serves upper-

level users, while hiding most of development complexities of such systems. 

Application

µLibCloud

Provider B

Provider C

Provider A

CloudsClient

 

Figure 10 Architecture with single client 

 6.3  Data Striping 

As described before, data is first encoded into several original and redundant shares, 

and then stored on different providers. Through this redundancy, data not only is 

protected against possible failures of particular providers –high availability, but also 

tolerates the instability of individual clouds and provides consistent performance. 
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Figure 11 Principle of erasure coding 

Among many possible choices for data encoding [69], we choose the most widely 

used erasure code [70] that is widely used in both storage hardware [71] and 

distributed systems [72]. Here, coding efficiency is a major concern because all the 

data striping algorithm work is performed at clients’ side; i.e., large overheads that 

could decrease performance of applications is strongly unacceptable. 
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Figure 12 Data stripes stored in each cloud 

Figure 11 shows principles of erasure coding. As can be seen, data is first divided into 

k equal-sized fragments called original data shares. Then, r parity fragments with the 

same size as original data shares are computed and called redundant data shares. This 

will generate a total of m = k + r equal-sized shares. The erasure code algorithm 

guarantees any arbitrary k shares –out of total m shares– is sufficient enough to 

reconstruct the original data. Both k and r are positive values and are predefined by 

each user. 
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Here, we also define redundancy rate as R = m / k to reflect the amount of storage 

overhead for storing data. For example, if k = 1, m = 2; then, R = m / k = 200%. It 

means that each data takes twice of its original size when stored: one original and one 

replica. In this case, each piece is enough to reconstruct the original data – like RAID 

1(mirroring). If k = 4, m = 5 (like RAID 5); then, R = m / k = 120%. It means that we 

need extra 20% of storage to store any data. In this case, every four pieces –out of all 

available five pieces– are enough to reconstruct the original data. 

In practice, we do not simply just divide an object into several parts and encode them, 

but the original data is first divided into several chunks, and then erasure coding is 

performed on each chunk; default chunk’s size is usually 64KB (Figure 12). There are 

two benefits in splitting data into several chunks: (1) computation of erasure coding 

can be parallelized, and (2) reading and writing of file data –such as video and audio– 

can also be easily supported. 

 6.4  Retrieving Strategy 
If a developer divides data into (k, m) shares, among all m parts of data the client 

library only needs k parts to reconstruct the original data. Although retrieving all parts 

of data could avoid the potential risks of failures, it is unnecessary in most cases. It 

also wastes more bandwidth and costs more money. Here, although retrieving k data 

shares to recover the data is enough, selecting the best possible k shares can be tricky. 

In μLibCloud we offer the following three data fetching strategies. 

(1) Efficient: Users want to use the k most available clouds to retrieve data pieces. 

Here, to determine which ones are faster, μLibCloud dynamically measures their 

download speed. When retrieving an object, all metadata files are downloaded first 

and their link speed is recorded. Upon that, k fastest clouds to fetch data are selected. 

During downloading the main data, μLibCloud keeps recording the download speed 

to compute its average. The larger data is, the more accurate network estimation 

would be. 

(2) Economical: If application is mainly run in the background –like a backup 

program storing data into clouds [73]–, users can tolerate spending more time. In such 

cases, economical cost is more important than speed. μLibCloud also offers a cost-

saving mode, in which it will select k providers with lowest prices. 

(3) Custom: We also offer an option, allowing developers to set priorities on their 

own. This may be preferable in case that they are using computing and storage 

resources provided by the same provider. For example, if a developer is deploying 

applications into EC2 and use storage of S3, it would be reasonable that s/he wants to 

use S3 as the first choice. 

 6.5  Mutual Exclusion 
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When there are more than one client in the system, they must be able to coordinate 

with each in certain ways to avoid conflicts. Such conflicts can result in not only 

client read failures, but also inconsistent states and/or even data loss. For example, if 

two clients concurrently write to the same data file without any locking, they may 

write to each other’s share and produce problems. In the worst case scenario, if the 

provider takes an eventual consistency model (like Amazon S3), all unordered writes 

would succeed although only the later ones become effective. As a result, it would be 

very probable that a client succeeds modifying several data shares, while the other 

client succeeds in the rest of data shares; both clients would return successful, while 

data inconsistency has already occurred! The following options are among the most 

suitable one for our needs. 

 (1) Setting up a central lock server such as ZooKeeper [74] to coordinate all writes. 

This approach is easy and correct for a system like μLibCloud, yet with certain flaws. 

Firstly, with this approach clients need to maintain another system, which violates 

goals and principles of using clouds for simplicity in the first place. Secondly, 

coordinators like ZooKeeper usually has throughput issues because of their leader-

follower architecture, especially in internet-scale situation. Although this can be 

reduced by manually partitioning data onto multiple groups of ZooKeeper systems, 

this would still make the system extremely complex. 

(2) Running a client-client agreement protocol. Here, instead of deploying an 

additional central lock service, agreement protocols such as Paxos [75] handles the 

situation. This approach eliminates the trouble of bringing a lock service, but requires 

clients to be able to communicate with each other. In this case, frequent membership 

changes can seriously damage system performance. In fact, this approach is almost 

the same –in logic– as the first option if each client runs with a ZooKeeper member 

deployed to the same machine. 

(3) Manipulating lock files on each cloud storage. Instead of setting up an additional 

lock server or running an agreement protocol among clients, there is another approach 

more suitable to this situation. Each client creates empty files on each cloud as lock-

files; this is called mutual exclusion in the area of distributed algorithms [76]. This 

option is more difficult to achieve because each cloud is purely an object storage that 

offers neither computing ability, nor a common compare and swap (cas) semantics 

usually used in fulfilling lock services. 

In order to achieve mutual exclusion without introducing new bottlenecks, we 

introduced Algorithm 1 based on the third option. This algorithm is an improved 

version of another algorithm formerly designed by Bessani a.l[77].  
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Following comments is worth noting about this algorithms. 

(1) The algorithm is fault tolerate to possible failures of less than m/2 providers. In 

case a client fails and stops during any step, we add a timestamp tcreate to the name of 

each lock file. Thus, when a client lists a file name with the tcreate+tdelta < tnow, s/he can 

confidently deletes the expiring lock. To maintain correctness, we must choose a tdelta 

large enough to cover the entire operation time when created; it must also be able to 

tolerate possible time differences among clients. 

(2) To be correct, the algorithm requires each cloud to have an appropriate 

consistency model. To be specific, after each create command, all lists must see the 

creation. However, several major cloud providers, such as Amazon S3, employs an 

eventual consistency model [78]. It means the writes are not visible to reads 

immediately, and if one client detects a change, it does not imply other clients can 

also detect it. To tolerate eventual consistency, the client may need to wait for another 

time period, after each write to make sure it can be seen by all clients too. The time 

period is set by observation to model time delays among client [79]. 

Amazon S3 recently releases an enhanced consistency model to most of its cloud 

storages, namely ”read-after-write” consistency to ensure that for newly created 

objects, the write (not overwrite) can be seen immediately. Our algorithm (Algorithm 

1) employs this feature in its locking system; this is why Algorithm 1 creates new 

lock files instead of writing to the old ones. 

(3) The algorithm is obstruction-free [80]; i.e., it is still possible –although very rare– 

that no client can progress. This flaw could be tolerated because most applications 

tend to have many more reads than writes –where only very few writes require mutual 

exclusion. 
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 7  Privacy and Security of Storage System 

 7.1  Introduction 

In the last few years, cloud computing has enabled more and more customers (such as 

companies or developers) to run their applications on the remote servers with elastic 

storage capacity and computing resources required on demand. The proliferation of 

cloud computing encourages customers to store and keep their data in the cloud 

instead of maintaining local data storage [32][33][34][38][39]. However, a key factor 

that may hinder the process of data migration from local storage to the cloud is the 

potential privacy and security concerns inside clouds [33][34]. As customers don’t 

own and manage remote servers directly by themselves, any malicious applications or 

administrators in the cloud can get access to, abuse or even damage the data of normal 

customers’ applications. This phenomenon is especially adverse to the confidentiality 

of sensitive data objects of customers such as banks or financial companies. Under 

this circumstance, datacenters in the cloud must maintain strong protections on the 

privacy and security of data objects against untrusted applications, servers and 

administrators during the process of data storing and accessing [34][36][39][46].  

To guarantee data privacy and security in storage system of datacenters in the cloud, 

several basic solutions such as data access control [38][39][40][41], data isolation 

[36][37][42][46][47] and cryptographic techniques [35][40][43][44][45] have been 

proposed by researchers. All these solutions are intended to meet different 

requirements of data privacy and security and to make even the most privacy and 

security demanding applications to migrate their sensitive data into cloud with no 

concerns. In this section, combined with our experience of building privacy and 

security policies in datacenters in the cloud, we will present how these mechanisms 

can be used in a real world. 

 7.2  Fine-grained Data Access Control 
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Figure 13 The overview of the fine-grained access control mechanism on the data 

object level. 

Data access control is highly related to the privacy and security provided to 

applications when they are accessing the data [33][38][39][41]. Applications, if not 

allowed, don’t have the authority to access the data of others. Besides, each 

application may have its own access control policies to maintain the data privacy and 

security among its users. For instance, one application may require that only its 

administrators can have the authority to modify and delete its data and other common 

users can only read these data. Therefore, storage systems in datacenters must ensure 

strict and flexible data access control mechanisms for upper applications to secure the 

data object sets of every application.  

 

Figure 13 illustrates the overview of a fine-grained access control mechanism on data 

object level in a datacenter. As presented in Figure 13, there are two main data 

structures for the correct process of fine-grained data-object-level access control: a set 

of lists keeping the keys of data objects that belong to each application and a set of 

tables recording each application’s access control policy. Every application owns its 

list of keys and access control policy table. When one application stores a data object 

into the datacenter, the storage system will allocate a globally unique key to this data 
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object and add this key into the list of this application, which means this data object 

does belong to such application. Denote an application as Pn, the list of Pn as Ln, a 

data object as dm and the key of data object dm as km, then the process of storing data 

in this mechanism could be summarized as Algorithm 2. 

When an access request for a data object issued from an application arrives at the 

datacenter, the storage system will first get the key of the data object and verifies if 

this key is in this application’s list. Storage system will forbid the application to 

access this data object if the verification fails. This procedure ensures that data objects 

of one application are isolated from the other applications against illegal intrusion. 

Moreover, if the verification passes, the system will further check if this access 

request meets the requirements listed in the access control policies table of the 

application. This will prevent unauthorized application users from abusing operations 

on data of this application that may potentially damage these data. Applications can 

set and modify their access control policies according to their own demands and the 

policy information are recorded in their access control policy tables respectively. The 

access request is accepted and processed only after the check in the access control 

policy table successes. Denote an access request as Rp and access control policies 

table of application Pn as Tn, then the procedure to process an access request can be 

illustrate as Algorithm 3. 

With Algorithm 2 and Algorithm 3, the data privacy and security could be achieved 

across applications through fine-grained data-object-level access control mechanism 

without impacting the normal usage of data by authorized users of each application. 

Furthermore, as these two data structures (lists and tables) that are used by the access 

control mechanism could keep a consistent view across multiple datacenters using 

replication strategy presented in Section 3, the privacy and security of data could be 

easily guaranteed through this fine-grained data-object-level data access control 

mechanism among multiple datacenters in the cloud. 
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 7.3  Security on Storage Server 
Under fine-grained data-object-level access control mechanism, the privacy and 

security of applications’ data could be protected against external untrusted users and 

applications. However, data stored in the storages servers of datacenters are still prone 

to abuse or compromise by untrusted processes running in these servers or malicious 

administrators of datacenters that can get the whole authority of the OS [36][37][51]. 

To address this issue, most studies [36][37][42][46][47][51] use virtual-machine-

based protection mechanisms to isolate applications’ data kept in hardware (memories 

and disks) of storage servers from operating systems and other processes, and to 

authenticate the integrity of these data. This protection ensures that even operating 

systems carry out the overall task of managing these data, they cannot read or modify 

them. With this guarantee, even though malicious administrators or untrusted 

processes get the authority of OS, they have no access to abusing or damaging the 

data stored in the hardware. When trusted applications request to get their data, this 

mechanism would make sure that these applications will be presented with a normal 

view of their original data, hiding the complex underlying details of protection. Hence, 

the privacy and security of applications’ data can be maintained in storage servers of 

datacenters in the cloud. 

Figure 14 characterizes the architecture of the privacy and security protection 

mechanism in storage servers. The key component, as shown in Figure 14, to protect 

the privacy and security of applications’ data in hardware is the virtual machine 

monitor (VMM). The VMM could monitor the process/OS interactions such as 

system calls [36][42] and directly manage the hardware to isolate memories and disks 

from operating systems [37][42][46], which makes it possible to prevent the data 

privacy and security against malicious processes or administrators that can get the 

authority to control operating systems. 

Generally, each process owns its independent virtual memory address space and is 

associated with a page table that maps the virtual memory address into the physical 

memory address [48] to use memory. The page tables of processes and the operations 

of address mappings are managed by the OS and thus, it has the authority to access 

the memory address space of all processes running on it. As applications’ requests are 

served by specific processes in storage servers of datacenters, once malicious 

processes or administrators steal the operating system’s authority, they can easily 

access the data of other normal processes through their page tables and threaten the 

privacy and security of applications’ data. To address this challenge, VMM could 

protect the page tables of each process and complete the operations of memory 

address mappings instead of operating system [48][51]. The OS can only access its 

kernel memory space through its own page table, without interleaving with other 

processes. However, even though the OS doesn’t know the distribution of processes’ 

virtual memory in the physical memory, malicious processes or administrators could 

also access the physical memory through OS [48][49] and analyze or tamper the data 

in the memory [42][50]. As a result, VMM is responsible for keeping the data in the 
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physical memory in an encrypted and integrated view [49]. When a process requests 

to put data into memory, VMM will detect this request, encrypt the data and then put 

the encrypted data into the memory. If one trusted process requests to get its data in 

the memory, VMM will first authenticate the integrity of the encrypted data and then 

decrypt them before returning the original clear data to this process, which doesn’t 

have to cover this middle process and just utilizes memory as normal. To complete 

the encrypting and decrypting procedures mentioned above, VMM holds a specific 

zone of memory that is secure enough against the attacks from operating systems and 

processes. Consequently, when processes are serving applications’ requests in 

memory of storage servers, the privacy and security of their data in memory can be 

strongly protected. 

Hardware (Memories or Disks)

Virtual Machine Monitor (VMM)

OS Kernel

Process 1 Process 2 Process 3 ...

Apps

Isolate data in hardware 

from operating systems 

and processes

Storage Server

 

Figure 14 The architecture of the privacy and security protection mechanism in a 

storage server. 

As most of applications’ data will be stored into disks of storage servers in datacenters, 

it is also critical to guarantee the privacy and security of data in disks [36][42][51] not 

only because untrusted processes and administrators that get the authority of OS can 

directly access data in disks through I/O operations, but administrators could fetch 

disks manually. As a result, data in disks must also be stored in an encrypted view so 

that even some processes or administrators get control on the disks of storage servers, 

they have no way to abuse or compromise the data stored in them. VMM also has the 

responsibility for data encryption/decryption when processes interact with disks 

through the OS. When a process wants to write its data into disks, it will use a system 

call sys_write [48] and passes the data to the operating system, which will execute the 

operations to really write data to disks. VMM will detect this system call from the 

process and obtain the data before passing to the operating system. Then VMM 

encrypts these data and calculate the checksum of the encrypted data for future 
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integrity verification. After this procedure, VMM will transfer the encrypted data to 

the operating system that will normally write these data into disks. Similarly, when 

one process requests to get its data from disks, it will issue a system call sys_read to 

the operating system to fetch these data. VMM will also detect this system call and 

wait for the operating system to complete the read operations of the encrypted data. 

Then VMM authenticates the integrity of the encrypted data, decrypts them and return 

plain data to the process. All the underlying details of encryption/decryption are still 

hidded for the processes and to the operating system, although it manages the data 

during the operations of read and write, it only views data after encryption and can’t 

threaten the privacy and security of the original data objects.  

With these virtual-machine-based mechanisms, the data of applications can be kept in 

storage servers of datacenters without concerns of being abused or compromised by 

malicious processes or administrators in the datacenters. As data privacy and security 

can be achieved in hardware of each storage server, datacenters in the cloud have the 

ability to provide high privacy and security for applications to move their large sets of 

data into cloud and freely access their data on demands. 

 8  Conclusion and Future Directions 
In this chapter we mainly discussed the architecture of modern cloud storage and 

several key techniques used in building such systems. Cloud storage systems are 

typically large distributed systems composed of thousands of machines and network 

devices over many datacenters across multiple continents. Cloud storage and cloud 

computing are the very mixture of modern storage and network technology. To build 

and maintain such systems calls for large amount of efforts from numerous developers 

and maintainers. Although we have discussed about replication, data striping, data 

consistency, security and some other issues, there are still much more of the iceberg 

we have not touched. Many conventional techniques in traditional storage techniques 

applied in cloud storage have the potentiality to evolve, such as the example we give 

about cloud-of-clouds, which arise from the traditional RAID system. To summarize, 

cloud storage is a valued area in both practice and research, and the goal of this 

chapter is to give a sight at it when it grows into the global scale. 
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