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A B S T R A C T

MOOCs (Massive Open Online Courses) offer tens of thousands of courses and attract hundreds
of millions of online learners. After years of development, these platforms have accumulated a
large number of learning action data. These data imply learners’ engagement with the enrolled
courses, reflecting whether learners are willing to spend time on the courses. Meanwhile, the
MOOC dropout rate remains chronically high. This paper experimentally finds that using the
relationship between engagement and dropout rate can help MOOC platforms develop effective
methods to reduce the dropout rate. Firstly, this paper proposes a new Quantified Engagement
method named QE by using learning action data and learning duration to quantify learners’
engagement in enrolled courses. Next, an Engagement Neural Network prediction model named
ENN is proposed to predict learners’ engagement in unenrolled courses. Then, applying QE,
the predicted engagement by ENN, and the aforementioned relationship to personalized course
recommendations to learners, ensuring that the recommended courses are likely to be completed
by learners as much as possible, thus effectively reducing the dropout rate. Finally, the proposed
method is evaluated on two large real-world datasets in XuetangX and KDDCUP. The RMSE and
MAE of ENN are 0.1066 and 0.0727 on XuetangX and 0.062411 and 0.039621 on KDDCUP,
respectively. Dropout rates were reduced by 46.99% and 10.34%, respectively, when 5% of
the courses were recommended. These results demonstrate that the quantification method of
engagement is valid, applying predicted engagement to personalized course recommendations
and reducing dropout rates is available.

∗ Corresponding author at: School of Computer Science, Shaanxi Normal University, Xi’an 710119, China.
E-mail addresses: ls980108@163.com (S. Li), zhaoyuan2233@163.com (Y. Zhao), longjiangguo@snnu.edu.cn (L. Guo), meiruiren@snnu.edu.cn (M. Ren),

in.li@snnu.edu.cn (J. Li), zhanglichen@snnu.edu.cn (L. Zhang), lik@newpaltz.edu (K. Li).
1 The first two authors contributed equally.
vailable online 24 October 2023
306-4573/© 2023 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.ipm.2023.103536
eceived 13 April 2023; Received in revised form 8 September 2023; Accepted 15 October 2023

https://www.elsevier.com/locate/ipm
http://www.elsevier.com/locate/ipm
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
http://moocdata.cn/data/user-activity
mailto:ls980108@163.com
mailto:zhaoyuan2233@163.com
mailto:longjiangguo@snnu.edu.cn
mailto:meiruiren@snnu.edu.cn
mailto:jin.li@snnu.edu.cn
mailto:zhanglichen@snnu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.ipm.2023.103536
https://doi.org/10.1016/j.ipm.2023.103536


Information Processing and Management 61 (2024) 103536S. Li et al.

O

1. Introduction

With the help of the Internet, Artificial Intelligence and education begin to integrate deeply, and various MOOC (Massive Open
nline Course) platforms have emerged and developed rapidly, including Coursera,2 edX,3 Udacity,4 XuetangX,5 FutureLearn,6 etc.

After years of development, these platforms have accumulated a large number of users with their high-quality and massive learning
resources. Among them, XuetangX is one of the largest MOOC platforms in China, offering tens of thousands of courses and attracting
hundreds of millions of users to learn (Feng, Tang, & Liu, 2019). Learners generate a huge amount of learning action data during the
learning process, which implies their engagement with the course, reflecting whether they are willing to spend time on the course.
If engagement can be quantified, it can help MOOC platforms identify learners’ willingness to continue learning in time, so that
they can develop strategies to reduce dropout rates.

Quantification and prediction of learners’ engagement have theoretical and practical implications. According to People’s Daily’s7

latest statistical analysis, as of November 2022, the number of courses in MOOC exceeded 61,900, with 979 million learners. One
of the more serious problems on MOOC platforms is the persistently high dropout rate (Borrella, Caballero-Caballero, & Ponce-
Cueto, 2022; Cheng, Nunes, & Manrique, 2022; D’Aniello, de Falco, Gaeta, & Lepore, 2020; Feng et al., 2019; Molina, Obando,
Bastidas, & Mosquera, 2022). Learners stop learning halfway through the course, and a large number of learning resources are
untouched by the learners, which leads to a waste of platform resources. Quantifying and predicting learners’ engagement can help
MOOC platforms to observe learners’ learning status and determine whether they are willing to spend time on the enrolled courses.
Also, if the relationship between engagement and dropout rate can be analyzed as well as predicting learners’ willingness to study
unenrolled courses, it will also help develop targeted approaches to reduce dropout rates. In addition, quantified and predicted
learners’ engagement can reflect the quality of course design. If the majority of learners have a low level of engagement in the
course, it indicates a lack of interest in the course by the majority of learners, which is a further indication that the course may
not be popular with the majority of learners. At this point, the MOOC platforms go to work to remind course designers to improve
their course design to attract more learners to the course.

The quantification and prediction of learners’ engagement studied in this paper are fundamentally different from the existing
engagement-related work. Several researchers have already started to focus on engagement. Mehta, Prasad, Saurav, Saini, and Singh
(2022) introduced a three-dimensional DenseNet SelfAttention neural network for automatically detecting student engagement
on e-learning platforms. Cole, Lennon, and Weber (2021) correlated self-reports of student engagement intentions with student
behavior tracking data in an online course management system to assess and measure student engagement intentions in online
courses. O’Brien, Arguello, and Capra (2020) captured self-reported task perceptions and recorded search behaviors to discover task
topics influencing user engagement. Song, Rice, and Oh (2019) analyzed the frequency and length of course visits, discussion board
posts, and final scores to obtain learners’ engagement and found it to be strongly correlated with their course scores. Soffer and
Cohen (2019) explored the characteristics of students’ engagement on online courses and their impact on academic performance
and attempts to predict learners’ completion. However, these research works only analyzed learners’ engagement and have not been
able to predict it in unenrolled courses, link it to reduced dropout rates, or develop specific methods to reduce dropout rates.

This paper’s approach to reducing dropout rates based on quantification and prediction of engagement is also quite different
from existing approaches to reducing dropout rates. To date, few studies have explored how to reduce dropout rates in MOOC
platforms. Most studies around dropout rates have explored the main factors that lead learners to drop out and proposed predictive
models to identify learners at risk of dropping out (Cheng et al., 2022; Drousiotis, Pentaliotis, Shi, & Cristea, 2021; Feng et al., 2019;
Mogavi, Ma, & Hui, 2021). This paper designs a strategy to reduce the dropout rate. The core idea of this strategy entails utilizing
the correlation between engagement quantified by QE and dropout rates, as found in this paper, to elucidate that learners have the
potential to complete courses with high engagement. Additionally, it aims to recommend unenrolled courses with high engagement
to learners for course selection. This strategy ensures that the recommended courses are more likely to be completed by learners as
much as possible, and it is fundamentally different from existing course recommendations. Existing course recommendation methods
focus on whether learners will click, register, or be interested in the recommended courses (Lin et al., 2022; Sakboonyarat, Siriporn,
Tantatsanawong, & Panjai, 2019; Wang, Ma, et al., 2022; Yang & Cai, 2022), but do not consider whether learners can complete
the recommended courses. Therefore, existing course recommendation methods do not provide in-depth research on how to reduce
dropout rates.

This paper proposes a new method to Quantify Engagement (QE) by using learning action data and learning duration to
quantify learners’ engagement in enrolled courses, to determine whether they are willing to spend time in enrolled courses,
and experimentally find that learners with high quantified engagement are more likely to complete enrolled courses. Then, an
Engagement Neural Network (ENN) prediction model is proposed to predict learners’ engagement in unenrolled courses by using
the idea of matrix decomposition and combining it with deep learning, which will help MOOC platforms to measure their willingness
to continue learning in unenrolled courses. Finally, using the engagement of unenrolled courses predicted by ENN as well as the
relationship between engagement and dropout rate, personalized course recommendations are made to learners to ensure that the

2 https://www.coursera.org/.
3 https://www.edx.org/.
4 https://www.udacity.com/.
5 https://www.xuetangx.com/.
6 https://www.futurelearn.com/.
7 http://paper.people.com.cn/rmrb/html/2023-02/12/nw.D110000renmrb_20230212_1-05.htm.
2

https://www.coursera.org/
https://www.edx.org/
https://www.udacity.com/
https://www.xuetangx.com/
https://www.futurelearn.com/
http://paper.people.com.cn/rmrb/html/2023-02/12/nw.D110000renmrb_20230212_1-05.htm


Information Processing and Management 61 (2024) 103536S. Li et al.
recommended courses are likely to be completed by learners, thus effectively reducing the dropout rate of the MOOC platforms.
The main contributions are summarized as follows.

• Giving Quantitation Engagement in the Enrolled Courses and Finding the Relationship between Quantified Engage-
ment and Dropout Rate. That aims to quantify whether learners are willing to spend time on enrolled courses using record
of learning activities and learning duration, which is defined as engagement. Then, this paper also finds the dropout rates of
learners reduce gradually with the increase in their quantified engagement. This paper defines this quantification method as
QE.

• Proposing Prediction of Engagement in the Unenrolled Courses using Neural Network and Finding the Relationship
between predicted Engagement and Dropout Rate. It aims to use the deep learning method to complete the matrix
by considering the interaction between learners and courses and their engagement in the enrolled courses, to predict the
engagement in unenrolled courses. By finding the relationship between predicted engagement and dropout rate, this paper
observes that learners with lower predicted engagement were more likely to dropout. This paper defines the prediction model
as ENN.

• Presenting Personalized Course Recommendations by Prediction of Engagement to Reduce Dropout Rate. In this
paper, the utilization of ENN to predict engagement in unenrolled courses, combined with the relationship between predicted
engagement and dropout rate, facilitates the generation of personalized course recommendations for learners. The objective
is to enhance the likelihood of learners completing the recommended unenrolled courses. Comprehensive experiments show
that this will be more beneficial to reduce the dropout rate of MOOC platforms.

• Making Comprehensive evaluation. Thorough experiments on real-world datasets in XuetangX and KDDCUP demonstrate
that the ENN has good predictive capabilities, using engagement to recommend courses for learners can achieve better
recommendation results and makes the learners more likely to complete the recommended courses, which will greatly reduce
learners’ dropout rates. The RMSE and MAE of the ENN model were 0.1066 and 0.0727 on the XuetangX dataset, and 0.0624
and 0.0396 on the KDDCUP dataset, respectively. For top-𝐾 recommendations, the Hit ratio of our experiments improved by
an average of 2.75%, the Recall by an average of 3%, the Precision by an average of 3.38%, and F1-score by an average of
3.62% on two datasets. When recommending 5% of courses, the dropout rate on the MOOC platforms is reduced averagely
by 28.67% on two datasets. The source code for this paper has been published.8

The remainder of the paper is organized as follows. Related work is introduced in Section 2. Section 3 describes the problem
formulation. Section 4 proposes a quantitative method of QE. In Section 5, a predictive model of ENN is proposed. Section 6 details
how to use predicted engagement to personalize course recommendations. Section 7 conducts extensive experiments to verify the
validity of the proposed model through experimental results. Finally, Section 8 gives a summary and outlines future work.

2. Related work

This section investigates and studies the work related to learner engagement, dropout rate and course recommendation, the
details are as follows.

2.1. Learner engagement

Ma, Han, Yang, and Cheng (2015) mentioned that student engagement usually refers to the amount of time students invest in
their academic experience. Plak, van Klaveren, and Cornelisz (2023) wrote engagement in educational activities is an important
prerequisite for academic success. Mehta et al. (2022) introduced a three-dimensional DenseNet SelfAttention neural network for
automatically detecting student engagement on e-learning platforms. Cole et al. (2021) correlated self-reports of student engagement
intentions with student behavior tracking data in an online course management system to assess and measure student engagement
intentions in online courses. Soffer and Cohen (2019) explored the characteristics of students’ engagement in online courses and
their impact on academic performance and attempted to predict learner completion. Almutairi and White (2018) used a statistical
approach to measure learners’ engagement by designing a questionnaire. The questionnaire approach is not suitable for the automatic
quantification of learner engagement in MOOC platforms with a large number of learners and a large number of courses. Raguro,
Lagman, Abad, and Ong (2022) used a decision tree and K-Means algorithm to confirm the existence of a strong relationship between
student behavior and academic performance. Huang, Lu, and Yang (2023) mentioned that personalized video recommendations can
significantly improve academic performance and engagement of students with moderate motivation levels.

In the above studies on engagement, many works have mentioned that engagement is closely related to learners’ academic
completion, but no work can predict learners’ engagement in unenrolled courses, nor link learner engagement with reducing the
dropout rate. This paper proposes a method to quantify learners’ engagement in enrolled courses and uses the ENN model to predict
learners’ engagement in unenrolled courses. Finally, personalized course recommendations are proposed to reduce dropout rates.

8 https://github.com/lishushushushu/PCRM.git/.
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2.2. Dropout rate

Feng et al. (2019) built a CFIN model to predict user dropout rates in MOOCs. Lin, Sun, et al. (2021) designed a two-tower
ramework to predict whether students will drop out this semester. Xing (2019) developed a deep learning algorithm that uses a
eekly time prediction mechanism to build a dropout model. Cheng et al. (2022) used students’ academic data to predict whether

hese students will drop out of school in the next semester. There are some other works (Drousiotis et al., 2021; Hancox & Relton,
022; Mogavi et al., 2021; Zhang & Ma, 2022) that propose methods to do dropout prediction.

Molina et al. (2022) referred to conducting content recommendations and personalization to reduce learner dropout rates. D’Aniell
t al. (2020) proposed a feedback generation approach aimed at increasing learner motivation and engagement to reduce student
ropout rates. Borrella et al. (2022) proposed a framework to design interventions (using individual factors as targets and
nstitutional factors as levers) and provides effective methods to reduce dropout (focusing placed on content and instructional
esign).

Most of the above works on dropout rates explored the main factors that cause learners to drop out and proposed predictive
odels to identify at-risk learners. However, there are few studies on reducing the dropout rate. In this paper, the method of course

ecommendation is adopted to develop personalized learning courses for learners, effectively reducing the dropout rate of MOOC
latforms.

.3. Course recommendation

MOOC resources are numerous and face serious information overload problems, so recommendation system is gradually popular.
t can provide learners with personalized information to meet their learning preferences.

Wang, Ma, et al. (2022) developed a hyperedge-based graph neural network (HGNN), which treated learners as the sets of
ourses in a hypergraph, and considered courses’ long-term and short-term sequential relationships to make course recommendation,
he recommendation aims specifically at the course in which the learner will be enrolled in the upcoming stage. Sakboonyarat
t al. (2019) used deep learning models with multi-layer perceptron architecture suitable for large amounts of data for course
ecommendation, to enable the recommended courses to be enrolled by learners. In addition, there are other works that also judge
he recommendation effect according to whether learners enroll for the recommended course (Jung, Jang, Kim, & Kim, 2022; Lin
t al., 2022; Obeidat, Duwairi, & Al-Aiad, 2019; Shao, Guo, & Pardos, 2021), but these works fail to pay attention to whether learners
ill complete the course.

Zhang, Shen, Yi, Wang, and Feng (2023) proposed a high-performance course recommendation model that uses a heterogeneous
raph describing the relationship between courses and facts to automatically and iteratively estimate the click probability of
earners. Yang and Cai (2022) took a knowledge graph as an auxiliary information source for collaborative filtering and proposed an
nd-to-end framework using a knowledge graph to enrich the semantics of item representation. Apply the deep matrix factorization
odel together with the improved loss function to the course proposal. Other related work is as follows (Ban et al., 2022; Ma, Wang,
hen, & Shen, 2021; Yao, Sun, & Hu, 2020), but all of these work only focused on whether learners would click on the recommended
ourse, not whether learners would complete the course.

Xu, Jia, Shi, and Zhang (2021) tried to use an algorithm combining knowledge graph and collaborative filtering for course
ecommendation. Wang, Zhu, et al. (2022) designed a framework of demand-aware Collaborative Bayesian Variational Network
DCBVN) and Demand-aware Collaborative Ability Attention Network (DCCAN) for course recommendation. But these works focus
n whether learners respond to the recommended course, not whether learners complete the course.

As we can see, most of the hit standards of course recommendation only focus on whether learners will click on, register for, or
e interested in the recommended course, but do not pay much attention to whether learners can complete the recommended course.
his paper takes this into account by quantifying and predicting engagement, and recommending courses based on the relationship
etween engagement and dropout rates, so that learners are not only interested in the recommended courses but also complete
he recommended courses, which are used as the recommendation hit standard in this paper, it reduces the dropout rate of MOOC
latforms. At the same time, due to a large number of MOOC resources, the recommendation systems of online platforms often
ave the problem of sparse rating data (Li et al., 2021). In this paper, not only the engagement matrix but also the rich behavioral
nformation is considered in the recommendation.

.4. Summary

To sum up, quantification and prediction of learners’ engagement have theoretical and practical implications. The quantification
nd prediction of learners’ engagement studied in this paper are quite different from the existing engagement-related work, and the
pproach to reducing dropout rates differs significantly from existing methods. Specifically, existing work on learner engagement
as focused solely on analyzing the correlation between engagement and grades in enrolled courses. However, this paper not
nly quantifies learners’ engagement in enrolled courses by utilizing their action data and learning duration but also establishes
relationship between engagement and dropout rates through experimental analysis. Furthermore, an ENN model is proposed

or predicting learners’ engagement in unenrolled courses. Unlike previous research, which tends to predict learners’ dropout
ates in enrolled courses without linking it to engagement, this paper explores how to reduce dropout rates from a personalized
ecommendation perspective. By recommending courses with higher engagement to learners, this approach aims to increase the
4

ikelihood of learners completing the recommended courses, thereby reducing dropout rates.



Information Processing and Management 61 (2024) 103536S. Li et al.

𝐷
𝐶
𝑈

},
𝐴
a

D

o

r

E
a
m
i

D
𝑡

Table 1
Behavior and Action from XuetangX and KDDCUP dataset.

XuetangX KDDCUP

Behaviors Actions Behaviors

Video Seek_video , Play_video, Pause_video, Stop_video, Load_video. Video
Problem Problem_check, Problem_save, Problem_check_correct, Problem_check_incorrect. Problem
Forum Click_forum, Close_forum. Forum
Courseware Click_courseware, Close_courseware. Wiki

Discussion

3. Problem formulation

The set of learners on the MOOCs is 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑖, … , 𝑢
|𝑈 |

}. The course set include in the online learning platforms is
𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑗 ,… , 𝑐

|𝐶|

}. For each 𝑢𝑖 and his enrolled courses set can be defined as 𝐶(𝑢𝑖)+ = {𝑐𝑗 | 𝑢𝑖 enrolled in 𝑐𝑗 , 𝑐𝑗 ∈ 𝐶}.
(𝑢𝑖) = {𝑐𝑗 | 𝑢𝑖 enrolled in 𝑐𝑗 but dropout, 𝑐𝑗 ∈ 𝐶(𝑢𝑖)+}, 𝐶(𝑢𝑖)+ − 𝐷(𝑢𝑖) = {𝑐𝑗 | 𝑢𝑖 enrolled in 𝑐𝑗 and complete, 𝑐𝑗 ∈ 𝐶(𝑢𝑖)+}.
(𝑢𝑖)− = {𝑐𝑗 | 𝑢𝑖 unenrolled in 𝑐𝑗 , 𝑐𝑗 ∈ 𝐶} represents the set of courses unenrolled by 𝑢𝑖, where 𝐶(𝑢𝑖)+ ⊆ 𝐶, 𝐶(𝑢𝑖)− ⊆ 𝐶.
(𝑐𝑗 )+ = {𝑢𝑖 | 𝑢𝑖 enrolled in 𝑐𝑗 , 𝑢𝑖 ∈ 𝑈} denotes the set of learners enrolled in 𝑐𝑗 , 𝑈 (𝑐𝑗 )− = {𝑢𝑖 | 𝑢𝑖 unenrolled in 𝑐𝑗 , 𝑢𝑖 ∈ 𝑈}

denotes the set of learners unenrolled in 𝑐𝑗 , where 𝑈 (𝑐𝑗 )+ ⊆ 𝑈 , 𝑈 (𝑐𝑗 )− ⊆ 𝑈 .

3.1. Fundamental definitions

Definition 1 (Learning Action Types). After 𝑢𝑖 enrolled in 𝑐𝑗 , there will be a lot of learning behaviors, and each type of learning
behavior is subdivided into a variety of actions. The set of different types of learning behaviors is denoted by 𝐵

(

𝑢𝑖, 𝑐𝑗
)

=

{𝑏(1)𝑖𝑗 , 𝑏
(2)
𝑖𝑗 ,… , 𝑏(𝑣)𝑖𝑗 ,… , 𝑏

(|𝐵
(

𝑢𝑖 , 𝑐𝑗 )|
)

𝑖𝑗 }, where 𝑏(𝑣)𝑖𝑗 ∈ 𝐵
(

𝑢𝑖, 𝑐𝑗
)

represents the 𝑣th learning behavior type. 𝑏(𝑣)𝑖𝑗 = {𝑎(1)𝑖,𝑗,𝑣, 𝑎
(2)
𝑖,𝑗,𝑣,… , 𝑎(𝑝)𝑖,𝑗,𝑣,… , 𝑎

|(𝑏(𝑣)𝑖𝑗 )|
𝑖,𝑗,𝑣

(

𝑢𝑖, 𝑐𝑗 , 𝑏𝑣
)

= 𝑏(𝑣)𝑖𝑗 represents the set of actions contained in the 𝑣th behavior. 𝐴
(

𝑢𝑖, 𝑐𝑗
)

represents the set of different types of learning
ctions that arise after 𝑢𝑖 enrolled in 𝑐𝑗 , where 𝐴

(

𝑢𝑖, 𝑐𝑗 , 𝑏𝑣
)

∈ 𝐴
(

𝑢𝑖, 𝑐𝑗
)

.

𝐵
(

𝑢𝑖, 𝐶(𝑢𝑖)+
)

=
⋃

𝑢𝑖∈𝑈, 𝑐𝑗∈𝐶(𝑢𝑖)+ 𝐵
(

𝑢𝑖, 𝑐𝑗
)

denotes the set of learning behavior types of 𝑢𝑖 in all of his enrolled courses, 𝐵 =
⋃

𝑢𝑖∈𝑈, 𝑐𝑗∈𝐶 𝐵
(

𝑢𝑖, 𝑐𝑗
)

represents all possible types set of learning behaviors. The learning action types set of 𝑢𝑖 in all of his enrolled
courses can be denoted as 𝐴(𝑢𝑖, 𝐶(𝑢𝑖)+) =

⋃

𝑢𝑖∈𝑈, 𝑐𝑗∈𝐶(𝑢𝑖)+ 𝐴
(

𝑢𝑖, 𝑐𝑗
)

, 𝐴 =
⋃

𝑢𝑖∈𝑈, 𝑐𝑗∈𝐶 𝐴
(

𝑢𝑖, 𝑐𝑗
)

denotes all possible types set of learning
actions.

Example 1. Table 1 shows detailed data on behaviors and actions in both the XuetangX and KDDCUP datasets. Among them,
only the data for behavior is available in KDDCUP. However, we can understand that the learning behavior data in KDDCUP is
similar to the learning action data in XuetangX. For the convenience of writing the paper, all the methods described later are based
on the data in the XuetangX dataset, and the data in the KDDCUP dataset were processed similarly. On the XuetangX dataset,
𝐵 = {𝑉 𝑖𝑑𝑒𝑜, 𝑃 𝑟𝑜𝑏𝑙𝑒𝑚, 𝐹𝑜𝑟𝑢𝑚, 𝐶𝑜𝑢𝑟𝑠𝑒𝑤𝑎𝑟𝑒}, 𝐴 = {𝑃 𝑙𝑎𝑦_𝑣𝑖𝑑𝑒𝑜, 𝑃𝑟𝑜𝑏𝑙𝑒𝑚_𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑟𝑟𝑒𝑐𝑡, … , 𝐶𝑙𝑜𝑠𝑒_𝑐𝑜𝑢𝑟𝑠𝑒𝑤𝑎𝑟𝑒}.

efinition 2 (Learning Action Type Clicks). Learning action type clicks set can be regarded as the number of times that learners

perate a certain action in the course, and each click will be recorded. 𝑁
(

𝑢𝑖, 𝐴
(

𝑢𝑖, 𝑐𝑗 , 𝑏𝑣
))

= {𝑛(1)𝑖,𝑗,𝑣, 𝑛
(2)
𝑖,𝑗,𝑣,… ,𝑛(𝑝)𝑖,𝑗,𝑣, … ,𝑛

(|𝑏(𝑣)𝑖𝑗 |)
𝑖,𝑗,𝑣 } represents

the clicks set of each action on the 𝑣th behavior arising after 𝑢𝑖 enrolled in 𝑐𝑗 . The clicks set for different types of learning actions
about 𝑢𝑖 on 𝑐𝑗 is denoted by 𝑁

(

𝑢𝑖, 𝐴
(

𝑢𝑖, 𝑐𝑗
))

, it can be expressed as 𝑁
(

𝑢𝑖, 𝐴
(

𝑢𝑖, 𝑐𝑗
))

= {𝑛(1)𝑖𝑗 , 𝑛
(2)
𝑖𝑗 ,… ,𝑛(𝑝)𝑖𝑗 , … ,𝑛

(

|𝐴(𝑢𝑖 ,𝑐𝑗 )|
)

𝑖𝑗 }, where 𝑛(𝑝)𝑖𝑗 is
𝑝th learning action type clicks. 𝑁

(

𝑢𝑖, 𝐴
(

𝑢𝑖, 𝐶(𝑢𝑖)+
))

denotes the clicks set of each actions about 𝑢𝑖 in enrolled courses.

Definition 3 (Information Matrices 𝐔𝐂, 𝐔𝐀 and 𝐂𝐀).Different learners show different learning actions in the course, this paper
aggregate the learning actions of learners and courses respectively and obtain three relationship matrices. 𝐔𝐂 denotes the incidence
matrix of learners and courses, 𝐔𝐂= (𝑢𝑐𝑖𝑗 )|𝑈 |×|𝐶|

, if 𝑐𝑗 ∈ 𝐶(𝑢𝑖)+, 𝑢𝑐𝑖𝑗 = 1, otherwise 𝑢𝑐𝑖𝑗 = 0. 𝐔𝐀 denotes the average aggregation
matrix of courses, UA= (𝑢𝑎𝑖𝑝)|𝑈 |×|𝐴|, 𝑢𝑎𝑖𝑝 represents the average of 𝑝th learning action type clicks for courses enrolled by 𝑢𝑖,
𝑢𝑎𝑖𝑝 =

1
|𝐶(𝑢𝑖)+|

∑

𝑐𝑗∈ 𝐶(𝑢𝑖)+ 𝑛(𝑝)𝑖𝑗 . 𝐂𝐀 denotes the average aggregation matrix of learners, CA = (𝑐𝑎𝑗𝑝)|𝐶|×|𝐴|, 𝑐𝑎𝑗𝑝 =
1

|𝑈 (𝑐𝑗 )+|
∑

𝑢𝑖∈ U(𝑐𝑗 )+ 𝑛(𝑝)𝑖𝑗
epresents the average of 𝑝th learning action type clicks for all learners enrolled in 𝑐𝑗 .

xample 2. In Fig. 1,this paper analyzes the XuetangX and KDDCUP dataset, learning activity records for learners and courses are
ggregated separately to obtain three matrices. Fig. 1(a) is the incidence matrix, Figs. 1(b) and 1(c) are the average aggregation
atrix of courses and the average aggregation matrix of learners, respectively. It is worth noting that since there is no action data

n the KDDCUP dataset, the behavior data is used when building the 𝐔𝐀 and 𝐂𝐀.

efinition 4 (Learning Duration). Learning Duration represents the amount of time that a learner spends learning a certain course.
𝑖𝑗 denotes the learning duration that 𝑢𝑖 spend on enrolled course 𝑐𝑗 . The set of learning duration for 𝑢𝑖 in enrolled courses can be

expressed as 𝑇 (𝑢 , 𝐶(𝑢 )+)= {𝑡 | 𝑢 enrolled in 𝑐 , 𝑐 ∈ 𝐶(𝑢 )+ }.
5
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Fig. 1. The information matrices 𝐔𝐂, 𝐔𝐀 and 𝐂𝐀.

Fig. 2. Diagram of learners’ cognition level.

Definition 5 (Learners’ Cognition Level). The cognition level of 𝑢𝑖 in all courses is denoted by 𝐂𝐿𝑖 ∈ R|𝐴(𝑢𝑖 ,𝐶(𝑢𝑖)+)|×|𝐵(𝑢𝑖 ,𝐶(𝑢𝑖)+)|×|𝐶(𝑢𝑖)+|,
R is real numbers set. 𝐀𝐂𝐋𝑖 ∈ R|𝐶(𝑢𝑖)+|×|𝐴(𝑢𝑖 ,𝐶(𝑢𝑖)+)| denotes the learning action cognition level of 𝑢𝑖 in all enrolled courses,
𝐂𝐋𝑖𝑗 ∈ R1×|𝐴(𝑢𝑖 ,𝑐𝑗 )| represents the learning action cognition level of 𝑢𝑖 on 𝑐𝑗 , where 𝐀𝐂𝐋𝑖𝑗 = [𝑎𝑐𝑙(1)𝑖𝑗 ,… , 𝑎𝑐𝑙(𝑝)𝑖𝑗 ,… , 𝑎𝑐𝑙

(|𝐴(𝑢𝑖 ,𝑐𝑗 )|)
𝑖𝑗 ]. The

learning behavior cognition level of 𝑢𝑖 on all enrolled courses can be expressed as 𝐁𝐂𝐋𝑖 ∈ R|𝐶(𝑢𝑖)+|×|𝐵(𝑢𝑖 ,𝐶(𝑢𝑖)+)|, the learning behavior
cognition level of each behavior of 𝑢𝑖 on 𝑐𝑗 can be expressed as 𝐁𝐂𝐋𝑖𝑗 = [𝑏𝑐𝑙(1)𝑖𝑗 ,… , 𝑏𝑐𝑙(𝑣)𝑖𝑗 … , 𝑏𝑐𝑙

(|𝐵(𝑢𝑖 ,𝑐𝑗 )|)
𝑖𝑗 ].

Example 3. Fig. 2 gives a schematic representation of the 𝑢𝑖’s cognition level so that the reader can more clearly visualize the
representation, where the cognition level of learners can be divided into learning behavior cognition level 𝐁𝐂𝐋𝑖 and learning action
cognition level 𝐀𝐂𝐋𝑖. In the following content, this paper will specifically explain how to calculate the learning action cognition
level 𝐀𝐂𝐋𝑖, which is calculated in a similar way to the learning behavior cognition level 𝐁𝐂𝐋𝑖.

Definition 6 (Engagement). The engagement reflects how active the learner on all courses, and since there is no learning action data
in the KDDCUP dataset, the learning behavior cognition level is further quantified as engagement. And learning action cognition level
is further quantified as engagement in the XuetangX dataset. It can be defined as 𝐗𝐀 = (𝑥𝑖𝑗 )|𝑈 |×|𝐶|

. 𝐗𝐀
𝑖 = [𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑗 ,… , 𝑥𝑖|𝐶|

]
epresents the engagement of 𝑢𝑖 on all courses, where 0 ≤ 𝑥𝑖𝑗 ≤ 1. The closer 𝑥𝑖𝑗 is to 1, the higher 𝑢𝑖’s engagement in 𝑐𝑗 .

The engagement of the 𝑢𝑖 in all enrolled course can be expressed as 𝐗𝐀
𝑖
+ ∈ R1×|𝐶(𝑢𝑖)+|, it can be quantified by QE, which is

escribed in the Section of Quantitation of Engagement in Enrolled Courses.
𝐗𝐀

𝑖
− ∈ R1×|𝐶(𝑢𝑖)−| represents the engagement for 𝑢𝑖 in unenrolled courses, where 𝑥−𝑖𝑗 ∈ 𝐗𝐀−

𝑖 , 𝑥−𝑖𝑗 also has a potential value between
and 1, it can be predicted by the ENN, which is described in the Section of Prediction of Engagement in Unenrolled Courses using
eural Network.

.2. Research questions

In order to solve the problems presented in this paper, the following three Research Questions (RQ) need to be solved. They
re the quantification of engagement, the prediction of engagement, and the personalized course recommendation by prediction of
ngagement to reduce dropout rate.

RQ 1. How to quantify 𝑢𝑖’s engagement in enrolled courses using learning action data and learning duration? The task
can be described as: Given 𝑁

(

𝑢𝑖, 𝐴
(

𝑢𝑖, 𝐶(𝑢𝑖)+
))

and 𝑇 (𝑢𝑖, 𝐶(𝑢𝑖)+), how to design the QE method to quantify 𝑢𝑖’s engagement in
6
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Fig. 3. The overall model architecture.

Table 2
Main symbols and descriptions in this paper.

Symbol Description

𝑈 Learner set, 𝑈={𝑢1, 𝑢2, . . . , 𝑢𝑖, . . . , 𝑢
|𝑈 |

}, where 𝑢𝑖 ∈ 𝑈 .
𝐶 Course set, 𝐶={𝑐1, 𝑐2, . . . , 𝑐𝑗 , . . . , 𝑐

|𝐶|

}, where 𝑐𝑗 ∈ 𝐶.
𝐴
(

𝑢𝑖 , 𝑐𝑗
)

The set of different types of learning actions of 𝑢𝑖 on 𝑐𝑗 .
𝑁

(

𝑢𝑖 , 𝐴
(

𝑢𝑖 , 𝑐𝑗
))

The clicks set for different types of learning actions arising after 𝑢𝑖 enrolled in 𝑐𝑗 ,

𝑁
(

𝑢𝑖 , 𝐴
(

𝑢𝑖 , 𝑐𝑗
))

= {𝑛(1)𝑖𝑗 , 𝑛
(2)
𝑖𝑗 ,… ,𝑛(𝑝)𝑖𝑗 , … ,𝑛(|𝐴(𝑢𝑖 ,𝑐𝑗 )|)𝑖𝑗 }.

𝐂𝐀 The average aggregation matrix of learners, 𝐂𝐀 = (𝑐𝑎𝑗𝑝)|𝐶|×|𝐴|, 𝑐𝑎𝑗𝑝 represents the average of 𝑝th
learning action type clicks for all learners enrolled in 𝑐𝑗 .

𝐔𝐂 The incidence matrix of learners and courses, 𝐔𝐂= (𝑢𝑐𝑖𝑗 )|𝑈 |×|𝐶|

, 𝑢𝑐𝑖𝑗 represents that whether the learner
𝑢𝑖 will chooses course 𝑐𝑗 , if 𝑐𝑗 ∈ 𝐶(𝑢𝑖)+, 𝑢𝑐𝑖𝑗 = 1, otherwise 𝑢𝑐𝑖𝑗 = 0.

𝐔𝐀 The average aggregation matrix of courses, 𝐔𝐀 = (𝑢𝑎𝑖𝑝)|𝑈 |×|𝐴|, 𝑢𝑎𝑖𝑝 represents the average of 𝑝th
learning action type clicks for courses enrolled by 𝑢𝑖.

𝑇 (𝑢𝑖, 𝐶(𝑢𝑖)+) It represents the amount of time that a learner spends learning a certain course. 𝑇 (𝑢𝑖, 𝐶(𝑢𝑖)+)= {𝑡𝑖𝑗 |

𝑢𝑖 enrolled in 𝑐𝑗 , 𝑐𝑗 ∈ 𝐶(𝑢𝑖)+ }.
𝐂𝐋𝑖 𝑢𝑖 ’s cognition level on all courses, where 𝐂𝐋𝑖 ∈ R|𝐴(𝑢𝑖 ,𝐶(𝑢𝑖 )+ )|×|𝐵(𝑢𝑖 ,𝐶(𝑢𝑖 )+ )|×|𝐶(𝑢𝑖 )+ |.
𝐁𝐂𝐋𝑖 The learning behavior cognition level of 𝑢𝑖in enrolled courses, where 𝐁𝐂𝐋𝑖 ∈ R|𝐶(𝑢𝑖 )+ |×|𝐵(𝑢𝑖 ,𝐶(𝑢𝑖 )+ )|.
𝐀𝐂𝐋𝑖 The learning action cognition level of 𝑢𝑖 in enrolled courses, where 𝐀𝐂𝐋𝑖 ∈ R|𝐶(𝑢𝑖 )+ |×|𝐴(𝑢𝑖 ,𝐶(𝑢𝑖 )+ )|.
𝐄𝐀(𝑢𝑖 , 𝐶(𝑢𝑖)+) It represents 𝑢𝑖 ’s action engagement in all enrolled courses, where 𝐄𝐀(𝑢𝑖 , 𝐶(𝑢𝑖)+) = [𝑒𝑎𝑖1 , 𝑒

𝑎
𝑖2 ,… , 𝑒𝑎𝑖|𝐶(𝑢𝑖 )+ |

].
𝐄𝐓(𝑢𝑖 , 𝐶(𝑢𝑖)+) The time engagement of 𝑢𝑖 in all enrolled courses.
𝐗𝐀

𝑖 The engagement of 𝑢𝑖 on all courses, where 𝐗𝐀
𝑖 = [𝑥𝑖1 , 𝑥𝑖2 ,… , 𝑥𝑖𝑗 ,… , 𝑥𝑖|𝐶|

], where 0 ≤ 𝑥𝑖𝑗 ≤ 1. The
closer 𝑥𝑖𝑗 is to 1, the higher 𝑢𝑖 ’s engagement in 𝑐𝑗 .

𝐗𝐀
𝑖 The engagement of 𝑢𝑖 on all courses predicted by the ENN model, where

𝐗𝐀
𝑖 = [𝑥𝑖1 , 𝑥𝑖2 ,… , 𝑥𝑖𝑗 ,… , 𝑥𝑖|𝐶|

].
PCR@𝐾

(

𝑢𝑖
)

The set of making personalized courses recommended by prediction of engagement to 𝑢𝑖.

RQ 2. How to predict 𝑢𝑖’s engagement in unenrolled courses? The task can be described as: Given the engagement in enrolled
courses 𝐗𝐀+

𝑖 by QE, the incidence matrix of learners and courses UC, and average aggregation information matrix UA, CA, how to
design the ENN model to predict 𝑢𝑖’s engagement in unenrolled courses?

RQ 3. How to make personalized courses recommended by prediction of engagement to 𝑢𝑖, such that 𝑢𝑖 can complete
the recommended courses as much as possible? Given the predicted 𝑢𝑖’s engagement in unenrolled courses based on ENN, the
purpose is how to achieve personalized recommendation for 𝑢𝑖 (𝑢𝑖 ∈ 𝑈 ) so that 𝑢𝑖 completes the recommended courses as much as
possible, thus reducing the dropout rate of the MOOC platforms?

To address these three research questions, this paper use the QE method to quantify the learner’s engagement in enrolled courses
in Section 4; Then use the ENN model to predict the learner’s engagement in unenrolled courses in Section 5; Finally, based on the
magnitude of engagement predicted in Section 6, personalized course recommendations for learners to reduce dropout rates. The
overall model architecture of this paper is shown in Fig. 3, which also shows the relationship between the three sub-problems. The
main symbols and descriptions involved in this paper are show in the Table 2.

4. Quantitation of engagement in enrolled courses

This section details methods for quantifying learner engagement in enrolled courses and finds a relationship between quantified
engagement and dropout rates.
7
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Fig. 4. (a) and (b) are the relationships between learners’ attribute characteristics, action characteristics, learning duration and completion rates, and dropout
rates on XuetangX dataset, respectively.

4.1. Datasets

The analysis of this work analyzed two datasets, Dropout Predication Dataset 9 in XuetangX and KDDCUP Data10 mentioned in
the Feng et al. (2019). They will be referred to as XuetangX and KDDCUP, respectively, in the paper, and will be introduced in the
following:

XuetangX: It offers more than 1,000 courses and attracts more than 10 million enrolled users, each user can enroll in
one or more courses. When one studying a course, the system records multiple types of behavior characteristics, and each
type of behavior contains multiple actions: videos (𝑃 𝑙𝑎𝑦_𝑣𝑖𝑑𝑒𝑜, 𝑆𝑡𝑜𝑝_𝑣𝑖𝑑𝑒𝑜, 𝑃𝑎𝑢𝑠𝑒_𝑣𝑖𝑑𝑒𝑜, 𝑆𝑒𝑒𝑘_𝑣𝑖𝑑𝑒𝑜, and 𝐿𝑜𝑎𝑑_𝑣𝑖𝑑𝑒𝑜), Problem
(𝑃𝑟𝑜𝑏𝑙𝑒𝑚_𝑐ℎ𝑒𝑐𝑘, 𝑃𝑟𝑜𝑏𝑙𝑒𝑚_𝑠𝑎𝑣𝑒, 𝑃𝑟𝑜𝑏𝑙𝑒𝑚_𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑟𝑟𝑒𝑐𝑡, and 𝑃𝑟𝑜𝑏𝑙𝑒𝑚_𝑐ℎ𝑒𝑐𝑘_𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡), Forum (𝐶𝑙𝑖𝑐𝑘_𝑓𝑜𝑟𝑢𝑚 and 𝐶𝑙𝑜𝑠𝑒_𝑓𝑜𝑟𝑢𝑚), and
Courseware (𝐶𝑙𝑖𝑐𝑘_𝑐𝑜𝑢𝑟𝑠𝑒𝑤𝑎𝑟𝑒 and 𝐶𝑙𝑜𝑠𝑒_𝑐𝑜𝑢𝑟𝑠𝑒𝑤𝑎𝑟𝑒). The dataset also contains learner dropouts, where 1 means dropout and 0
means no dropout. Also included are the learner’s start time for each action and the end time. This dataset contains 60884 learners
and 247 courses.

KDDCUP: It provides information on the learning behavior of 39 courses in the XuetangX half-year, which was used for KDDCUP
2015. The dataset includes five behaviors: ‘‘Video’’, ‘‘Problem’’, ‘‘Wiki’’, ‘‘Forum’’, and ‘‘Discussion’’. Also included in this dataset is
whether or not the learner dropouts.

In this paper, considering that learners’ engagement in one part of courses is required to predict another part of courses, learners
who choose less than 2 courses are excluded. In the end, 247 courses and 28989 learners are selected in the XuetangX dataset, in
the KDDCUP dataset choose 39 courses and 18688 learners. Then these data are divided into Training and Test sets in the ratio of
8:2.

4.2. Feature analysis

In traditional classes, the number of times a student raises his hand to answer questions can reflect whether he is active in
class. Identifying these cues in MOOCs is challenging, but the large amount of available data can offset the loss of face-to-face
communication, learners interact with the class by clicking and operating the MOOC platforms, such as ‘‘Play_video’’, ‘‘Click_forum’’,
‘‘Click_courseware’’, and so on. Therefore, clicking and operating can reflect their enthusiasm for an online class. At the same time,
the learning duration of a certain course can also directly reflect whether learners are willing to spend time on the course.

This paper will analyze the relationship between learners’ attribute characteristics, action characteristics, learning duration,
completion rate, and dropout rate in the XuetangX dataset mentioned in Section 4.1, which includes both Training and Test sets,
respectively. It can be seen from Fig. 4(a) that learners’ action characteristics and learning duration have a strong correlation
with completion rates, while learners’ attribute characteristics have a relatively weak relationship with completion rates. Fig. 4(b)
illustrates that there is also a strong correlation between the above characteristics and dropout rates. Therefore, this paper chooses

9 http://moocdata.cn/data/user-activity/DropoutPredictionDataset.
10 http://moocdata.cn/data/user-activity/KDDCUPData.
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Fig. 5. The framework of QE calculation process.

Fig. 6. Schematic diagram of learning duration calculation.

to use learning action data and learning duration to quantify learners’ engagement, making the quantified engagement more related
to the completion and dropout rates.

4.3. Steps to quantify engagement

This paper quantifies the learners’ action data on the course and the learning duration they visit the course as a score between
0 and 1, which is called engagement, to measure whether they are willing to invest time on the course. It is also a reflection of
learners’ satisfaction with the courses they have learned. The specific quantitative method is shown in Fig. 5, and the steps are as
follows,

Step 1. Count the learning action type clicks of 𝑢𝑖 in the enrolled course. When 𝑢𝑖 enrolled in 𝑐𝑗 , there will be multiple
actions. Firstly, the click times of each action need to be counted, which is expressed as 𝑁

(

𝑢𝑖, 𝐴
(

𝑢𝑖, 𝑐𝑗
))

= {𝑛(1)𝑖𝑗 , 𝑛
(2)
𝑖𝑗 ,… ,𝑛(𝑝)𝑖𝑗 ,

… ,𝑛
(|𝐴(𝑢𝑖 ,𝑐𝑗 )|)
𝑖𝑗 }, where 𝑛(𝑝)𝑖𝑗 represents the learning action type clicks of the 𝑝th action of 𝑢𝑖 in 𝑐𝑗 .

Step 2. Calculate the learning duration 𝑢𝑖 spends on a course. This paper records the difference between two consecutive
actions timestamps of 𝑢𝑖 on 𝑐𝑗 , denoted as 𝑡(𝑝+1)𝑖𝑗 − 𝑡(𝑝)𝑖𝑗 , where 𝑡(𝑝)𝑖𝑗 and 𝑡(𝑝+1)𝑖𝑗 represents the start time of the 𝑝 and 𝑝+1 action types of
the 𝑢𝑖 on 𝑐𝑗 , respectively. Finally, this paper adds the difference between all the timestamps on 𝑐𝑗 to calculate the learning duration
of 𝑢𝑖. The formula is as follows:

𝑡𝑖𝑗 =
|𝐴

(

𝑢𝑖 ,𝑐𝑗
)

|

∑

𝑝=1
𝑡(𝑝+1)𝑖𝑗 − 𝑡(𝑝)𝑖𝑗 , (1)

𝑇
(

𝑢𝑖, 𝐶(𝑢𝑖)+
)

=
{

𝑡𝑖𝑗 |𝑢𝑖 enrolled in 𝑐𝑗 , 𝑐𝑗 ∈ 𝐶(𝑢𝑖)+
}

, (2)

where 𝑡(𝑝)𝑖𝑗 and 𝑡(𝑝+1)𝑖𝑗 represents the start time of the 𝑝 and 𝑝+1 action types of the 𝑢𝑖 on 𝑐𝑗 , respectively. The 𝑝 action type and 𝑝+1
action type are continuous in time. 𝑡𝑖𝑗 represents the total learning duration of 𝑢𝑖 on 𝑐𝑗 . 𝑇

(

𝑢𝑖, 𝐶(𝑢𝑖)+
)

denotes the set of learning
duration for 𝑢𝑖 in enrolled courses. The specific calculation diagram is shown in Fig. 6.

Step 3. Calculate the weight matrix of learning action type about 𝑢𝑖. Learners’ actions in different courses are different and
there is a gap in the number of clicks. Different actions have different influences on quantified 𝑢𝑖’s engagement. Therefore, it is
necessary to further calculate the weight of each learning action in all actions in this course, and then form the weight matrix of
learning action 𝐙𝐀

𝑖 = (𝑧(𝑖)𝑗𝑝)|𝐶(𝑢𝑖)+|×|𝐴(𝑢𝑖 ,𝐶(𝑢𝑖)+)|, 𝑧
(𝑖)
𝑗𝑝 = 𝑛(𝑝)𝑖𝑗 ∕

∑|𝐴(𝑢𝑖 ,𝑐𝑗 )|
𝑝=1 𝑛(𝑝)𝑖𝑗 , 𝑧(𝑖)𝑗𝑝 represents the weight value of the 𝑝th action of 𝑢𝑖 on 𝑐𝑗 ,

where ∑|𝐴(𝑢𝑖 ,𝑐𝑗 )|
𝑝=1 𝑧(𝑖)𝑗𝑝 = 1.

Step 4. Calculate the activity matrix of learning action type about 𝑢𝑖. Learners have different learning habits, for the same
course, more active learners tend to make more actions. Therefore, this paper analyzes each action to judge the activity of 𝑢
9
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Fig. 7. Schematic diagram of engagement. The weight on each line reflects the engagement to join the corresponding courses, and the circles represent distinct
courses.

about action in a certain course. The activity matrix of 𝑢𝑖 in all enrolled courses is denoted by 𝐌𝐀
𝑖 = (𝑚(𝑖)

𝑗𝑝)|𝐶(𝑢𝑖)+|×|𝐴(𝑢𝑖 ,𝐶(𝑢𝑖)+)|,
𝑚(𝑖)
𝑗𝑝 = 𝑛(𝑝)𝑖𝑗 ∕𝑚𝑎𝑥𝑖

{

𝑛(𝑝)𝑖𝑗 , 𝑢𝑖 ∈ 𝑈 (𝑐𝑗 )+
}

, while 𝑚𝑎𝑥𝑖
{

𝑛(𝑝)𝑖𝑗 , 𝑢𝑖 ∈ 𝑈 (𝑐𝑗 )+
}

represents the maximum click number of the 𝑝th learning action
for all learners who enrolled in 𝑐𝑗 .

Step 5. Calculate the learning action cognition level about 𝑢𝑖. From the above, it can calculate the weight matrix 𝐙𝐀
𝑖 and the

activity matrix 𝐌𝐀
𝑖 of each learner’s learning action. The following Eq. (3) can be used to calculate 𝑢𝑖’s learning action cognition

level in all enrolled courses.

𝐀𝐂𝐋𝑖 = 𝐙𝐀
𝑖 ⊙𝐌𝐀

𝑖, (3)

where 𝐀𝐂𝐋𝑖 = (𝑎𝑐𝑙(𝑖)𝑗𝑝 )|𝐶(𝑢𝑖)+|×|𝐴(𝑢𝑖 ,𝐶(𝑢𝑖)+)|, 𝑎𝑐𝑙
(𝑖)
𝑗𝑝 is the result obtained by multiplying the corresponding positions of the 𝐙𝐀

𝑖 and 𝐌𝐀
𝑖,

it represents the learning action cognition level of 𝑝-th action about 𝑢𝑖 on 𝑐𝑗 . ⊙ is the Hadamard product of them, each row of the
𝐀𝐂𝐋𝑖 can be represented as 𝐀𝐂𝐋𝑖𝑗 = [𝑎𝑐𝑙(𝑖)𝑗1 , 𝑎𝑐𝑙

(𝑖)
𝑗2 ,… , 𝑎𝑐𝑙(𝑖)𝑗𝑝 ,… , 𝑎𝑐𝑙(𝑖)𝑗|𝐴(𝑢𝑖 ,𝑐𝑗 )|].

Step 6. Calculate 𝑢𝑖’s action engagement using learning action cognition level. 𝐄𝐀(𝑢𝑖, 𝐶(𝑢𝑖)+) represents 𝑢𝑖’s action
engagement in all enrolled courses. The calculating process using learning action cognition level is given as follows by Eq. (4).

𝐄𝐀(𝑢𝑖, 𝐶(𝑢𝑖)+) =

⎧

⎪

⎨

⎪

⎩

|𝐴(𝑢𝑖 ,𝑐𝑗 )|
∑

𝑝=1
𝑎𝑐𝑙(𝑖)𝑗𝑝

|

|

|

|

𝑢𝑖 enrolled in 𝑐𝑗 , 𝑐𝑗 ∈ 𝐶(𝑢𝑖)+
⎫

⎪

⎬

⎪

⎭

, (4)

where 𝐄𝐀(𝑢𝑖, 𝐶(𝑢𝑖)+) = [𝑒𝑎𝑖1, 𝑒
𝑎
𝑖2,… , 𝑒𝑎𝑖|𝐶(𝑢𝑖)+|

].
Step 7. Calculate 𝑢𝑖’s time engagement using learning duration data. Assuming a total of |𝑈 | learners are studying in |𝐶|

courses, there are |𝑈 | ∗ |𝐶| records. This paper takes the top 30% of active learning records and find the average as a criterion for
the degree of activity. The time engagement is then calculated using the following formula,

𝑒𝑡𝑖𝑗 =
𝑡𝑖𝑗

𝑀𝑒𝑎𝑛(top−𝑇 (|𝑈 | ∗ |𝐶|) ∗ 30%)
, 𝑡𝑖𝑗 ∈ 𝑇 (𝑢𝑖, 𝐶(𝑢𝑖)+), (5)

where 𝑡𝑖𝑗 represents the learning duration of 𝑢𝑖 in 𝑐𝑗 , 𝑀𝑒𝑎𝑛(top−𝑇(|𝑈 |∗|𝐶|∗30%)) represents the average learning duration of the top
30% of active records, and time engagement can be denoted as 𝐄𝐓(𝑢𝑖, 𝐶(𝑢𝑖)+) = {𝑒𝑡𝑖𝑗 |𝑢𝑖 enrolled in 𝑐𝑗 , 𝑐𝑗 ∈ 𝐶(𝑢𝑖)+}.

Step 8. Calculate the engagement. In the previous step, this paper calculated the action and time engagement respectively.
This paper added the two in different proportions to calculate the engagement of 𝑢𝑖 on 𝑐𝑗 . The formula is as follows:

𝑥𝑖𝑗 = 𝑒𝑎𝑖𝑗 ∗ 𝜇 + 𝑒𝑡𝑖𝑗 (1 − 𝜇), (6)

when 𝜇 = 60%, the subsequent recommendation results are better. 𝐗𝐀+
𝑖 = [𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑗 ,… , 𝑥𝑖|𝐶(𝑢𝑖)+|] represents the 𝑢𝑖’s engagement

in all enrolled courses.
A real-world case in the XuetangX is shown in Fig. 7, where the engagement of a learner in various courses is quantified. The

weight on each line reflects the engagement to join the corresponding courses, and the circles represent distinct courses. According
10
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Fig. 8. The relationship between quantified engagement by the ENN model and dropout rates on the XuetangX and KDDCUP datasets. The 𝑥-axis is the quantified
interval of engagement in enrolled courses, 𝑦-axis is the dropout rates at each interval.

to the quantified engagement, it is easy to obtain the learning status of this learner in different courses he enrolled in and then
observed whether they are willing to spend time on the courses they have learned.

4.4. Relationship between quantified engagement and dropout rates

Engagement can be a good measure of whether a learner is willing to spend enough time on a particular course, and it also
means whether the learner has the opportunity to complete the course enrolled. This paper quantified learners’ learning action and
learning duration data as engagement by analyzing the dataset mentioned in Section 4.1. As can be seen in Fig. 8, the quantified
engagement is closely related to the dropout rate.

Based on the experimental results in Fig. 8, this paper has the following observation.

Observation 1. The dropout rates of learners in enrolled courses reduce gradually with the increase in their quantified engagement .

5. Prediction of engagement in unenrolled courses using neural network

There are no actions recorded when learners are not enrolled in the class, so they cannot be quantified by QE. This section
proposes a model of ENN, aiming at predicting the engagement of learners in unenrolled courses.

5.1. Overview of framework

The general structure of Fig. 9 for the ENN model, it can predict the engagement of learners in unenrolled courses. 𝐗𝐀 represents
the engagement matrix of all learners in all courses. Gray indicates that the learner is enrolled in the course, and white represents
unenrolled in the course. Assuming that there are |𝐶| courses in the MOOC platforms, 𝐶 = {𝑐1, 𝑐2, 𝑐3,… , 𝑐

|𝐶|

}, different learners
choose different courses. Here 𝑢𝑖 is taken as an example. 𝑢𝑖 chooses 5 of them 𝐶𝑖 = {𝑐1, 𝑐3, 𝑐4, 𝑐5, 𝑐6}, engagement can be calculated
for each course. Firstly, take 𝐗𝐀+

𝑖 out of the 𝐗𝐀 matrix, because the ENN model needs to predict engagement in one part of the class
from engagement in another part of the class, 𝐗𝐀+

𝑖 needs to be divided into two parts 𝐂𝑋(𝑖) and 𝐂𝑌 (𝑖). The divided method can use
𝛼-partition method, which is similar to the cross-validation partitioning of data. As shown in Fig. 9, 𝛼 = 3, so that one valid data can
be trained three times, and the model can obtain the optimal result after training. The result of the first division is 𝐂𝑋(𝑖) = {𝑐3, 𝑐4, 𝑐6},
𝐂𝑌 (𝑖) = {𝑐1, 𝑐5}. The second division after the results as follows 𝐂𝑋(𝑖) = {𝑐1, 𝑐3, 𝑐5, }, 𝐂𝑌 (𝑖) = {𝑐4, 𝑐6}. The result of the third division
after 𝐂𝑋(𝑖) = {𝑐1, 𝑐4, 𝑐5, 𝑐6}, 𝐂𝑌 (𝑖) = {𝑐3}, where each divided course selection record is independent in the subsequent processing. As
we can see, each course can be divided into 𝐂𝑌 (𝑖). As different learners choose different courses, the courses chosen by all learners
will cover all courses after model training. Thus, the 𝛼-partition method improves the predictive power of ENN.

5.2. Neural network structure

Firstly, the average aggregation information of each learner’s corresponding courses in 𝐂𝑋(𝑖) is extracted from the matrix 𝐂𝐀,
expressed as 𝐂𝐀𝑖 = (𝑐𝑎(𝑖)𝑗𝑝)|𝐶(𝑢𝑖)+|×|𝐴(𝑢𝑖 ,𝐶(𝑢𝑖)+)|, where the course in |𝐶(𝑢𝑖)+| is consistent with the course in 𝐂𝑋(𝑖). Moreover, the softmax
processing of 𝐂𝐀𝑖 is denoted as 𝐂𝐀𝑠 = (𝑐𝑎(𝑠𝑖)𝑗𝑝 )

|𝐂𝑋(𝑖)|×|𝐴|, and the formula is as follows:

𝑐𝑎(𝑠𝑖)𝑗𝑝 =
exp(𝑐𝑎(𝑖)𝑗𝑝)

∑

|𝐴| exp
(

𝑐𝑎(𝑖)
) . (7)
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Fig. 9. The model of ENN. is the course for which the learner has enrolled. is not enrolled.

UA’s softmax processing is similar as Eq. (7), it is carried out for each column to make its value distributed between {0, 1}. The
result is denoted as 𝐔𝐀𝑠 = (𝑢𝑎(𝑠)𝑖𝑝 )|𝑈 |×|𝐴| ∈ R|𝑈 |×|𝐴|. 𝐔𝐂 is denoted as 𝐔𝐂𝑠 = (𝑢𝑐(𝑠)𝑖𝑗 )|𝑈 |×|𝐶|

after softmax, and the formula is shown
below, where 𝑢𝑐(𝑠)𝑖𝑗 ∈ {0, 1}.

𝐔𝐂𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑥𝑖𝑠=0)(𝐔𝐂). (8)

Next, obtain the degree of participation of 𝑢𝑖 in various learning actions 𝐔𝐀′ = R1×|𝐴| in the learned lessons through the 𝐂𝐀𝑠
and 𝐂𝑋(𝑖). It shows what actions learners are more inclined to do on the learned course, which is very useful for us to analyze what
actions learners will do in the unenrolled course. As shown in the Eq. (9),

𝐔𝐀′ = 𝐂𝑋(𝑖) ⊗ 𝐂𝐀𝑠, (9)

where ⊗ is matrix multiplication. Through 𝐔𝐀𝑠 and 𝐔𝐂𝑠 get the degree of participation of all learners in each action in all courses,
which is defined as 𝐂𝐀′ =

(

𝑐𝑎′𝑗𝑝
)

|𝐶|×|𝐴|
. And then analyze which actions most learners are more inclined to, to infer the possible

actions of 𝑢𝑖. The formula is shown in Eq. (10), where T is the transpose of 𝐔𝐂𝑠.

𝐂𝐀′ = 𝐔𝐂𝑠
T ⊗ 𝐔𝐀𝑠. (10)

Then, infer the engagement of the 𝑢𝑖 in all courses through the degree of the 𝑢𝑖’s tendency of action in the learned courses and
other learners in all courses. The formula is shown below,

𝐗𝐀
𝑖 = 𝐔𝐀′ ⊗ 𝐂𝐀′T. (11)

Considering that learners will be affected by non-learning factors in the process of course learning, this paper introduces two
offset vector 𝐟 ′ ∈ R|𝐶|, 𝐠′ ∈ R|𝐶|, each element in 𝐟 ′ and 𝐠′ has a slightly smaller initial value, such as 𝑓𝑗 ′ = −2 (1 ≤ 𝑗 ≤ |𝐶|) and
𝑔𝑗 ′ = −2 (1 ≤ 𝑗 ≤ |𝐶|). 𝐟 ′ considers some interference factors that learners like a certain course but have a low engagement in it. For
example, learners who are sick or suffer from epidemics cannot finish the course on time. 𝐠′ considers uncontrollable factors that
learners have a high engagement in a course even if they do not like it, such as the course is related to offline final exams.

After adding offsets 𝐟 ′ and 𝐠′, need to sigmoid them first, 𝐟 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐟 ′), 𝐠 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐠′). Where 𝐟 ′ ∈ R|𝐶| is the parameter of
the model, which is used to calculate 𝐟 , formula such as:

𝑓𝑗 =
1

1 + exp(−𝑓𝑗 ′)
, (12)

𝐠′ ∈ R|𝐶| is the parameter of the model, which is used to calculate 𝐠, same as Eq. (12).
Through the pre-estimation of offset, the final output result of our model is

𝐗𝐀 = 𝐗𝐀 × (1 − 𝐟 ) + (1 − 𝐗𝐀 ) × 𝐠, (13)
12
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where × represents the multiplication of elements at the corresponding position of the vector, 1 represents a vector of all ones.
Algorithm 1 The Prediction Framework of ENN.

Input: 𝐗𝐀+
𝑖 : The learners’ engagement in enrolled course; 𝐂𝐀: Learner aggregation matrix; 𝐔𝐂: the incidence matrix about learners

and courses; 𝐔𝐀: Course aggregation matrix; 𝛼: Random 𝛼-partition divides the data into 𝛼 parts.
Output: 𝐗𝐀

𝑖: The predicted value of learners’ engagement in all course.
1: 𝑓 ′

𝑗 ← −2, 𝑔′𝑗 ← −2(1 ≤ 𝑗 ≤ |𝑁|);

2: 𝐗𝐀 ← ∅, 𝐿𝑜𝑠𝑠 ← 0;
3: for each epoch from 1 to max epoch do
4: for each 𝐗𝐀+

𝑖 in 𝐗𝐀 do
5: Divide the matrix of non-negative elements into 𝐂𝑋(𝑖) and 𝐂𝑌 (𝑖) by 𝛼-partition, there will produce 𝛼 𝐂𝑋(𝑖) and 𝛼 corresponding

𝐂𝑌 (𝑖), denoted as {𝐂1
𝑋(𝑖),𝐂

2
𝑋(𝑖),⋯ ,𝐂𝛼

𝑋(𝑖)} and {𝐂1
𝑌 (𝑖),𝐂

2
𝑌 (𝑖),⋯ ,𝐂𝛼

𝑌 (𝑖)} respectively;
6: 𝐿𝑜𝑠𝑠𝑖 ← 0;
7: for 𝛼 from 1 to 𝛼 do
8: 𝐗𝐀

𝑖 ← ∅;
9: Extract the parameter only related to 𝐂𝛼

𝑋(𝑖) from 𝐂𝐀 and denoted as 𝐂𝐀𝑖;
10: 𝐂𝐀𝑠 ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐂𝐀𝑖, 𝑎𝑥𝑖𝑠 = 1);
11: 𝐔𝐂𝑠 ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐔𝐂, 𝑎𝑥𝑖𝑠 = 0);
12: 𝐔𝐀𝑠 ← 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐔𝐀, 𝑎𝑥𝑖𝑠 = 1);
13: 𝐔𝐀′

← 𝐂𝛼
𝑋(𝑖) ⊗ 𝐂𝐀𝑠;

14: 𝐂𝐀′
← 𝐔𝐂𝑠

T ⊗ 𝐔𝐀𝑠;
15: 𝐗𝐀

𝑖 ← 𝐔𝐀′
⊗ 𝐂𝐀′ 𝑇

;
16: 𝐟 ← 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐟 ′);
17: 𝐠 ← 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐠′);
18: 𝐗𝐀

𝑖 = 𝐗𝐀
𝑖 × (1 − 𝐟 ) + (1 − 𝐗𝐀

𝑖) × 𝐠;
19: Extract the engagement on the matrix 𝐂𝛼

𝑌 (𝑖) from 𝐗𝐀 and denoted as 𝐗𝐀
𝑖;

20: 𝐿𝑜𝑠𝑠𝑖 ← 𝐿𝑜𝑠𝑠𝑖 −
1

|𝐂𝑌 (𝑖)|

∑

𝑥𝑖𝑗∈𝐂𝑌 (𝑖)

𝑥𝑖𝑗∈𝐂𝑌 (𝑖)

[

𝑥𝑖𝑗 log
(

𝑥𝑖𝑗
)

+
(

1 − 𝑥𝑖𝑗
)

log(1 − 𝑥𝑖𝑗 )
]

;

21: end for
22: 𝐿𝑜𝑠𝑠 ← 𝐿𝑜𝑠𝑠 + 𝐿𝑜𝑠𝑠𝑖

𝛼 ;
23: if epoch = max epoch then
24: Add 𝐗𝐀

𝑖 to matrix 𝐗𝐴;
25: end if
26: end for
27: 𝐿𝑜𝑠𝑠 ← 𝐿𝑜𝑠𝑠

|𝑈 |

;
28: Update 𝐟 ′, 𝐠′ and 𝐿𝑜𝑠𝑠;
29: end for
30: return 𝐗𝐴.

Finally, when calculating the loss of the ENN, extracted the engagement on the matrix 𝐂𝑌 (𝑖) from 𝐗𝐀 and denoted as 𝐗𝐀
𝑖. As

shown in Fig. 9, 𝐗𝐀
𝑖 = [𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖|𝐶|

], 𝐶𝑌 (𝑖) =
{

𝑥𝑖1, 𝑥𝑖5
}

, 𝐶𝑌 (𝑖) =
{

𝑥𝑖1, 𝑥𝑖5
}

, by comparing the difference between 𝐶𝑌 (𝑖) and 𝐶𝑌 (𝑖),
the loss of 𝑢𝑖 on each course is calculated, as shown in Eq. (14),

𝐿𝑜𝑠𝑠𝑖 = − 1
𝛼|𝐶𝑌 (𝑖)|

∑

𝑥𝑖𝑗∈𝐶𝑌 (𝑖)
𝑥𝑖𝑗∈𝐶𝑌 (𝑖)

[

𝑥𝑖𝑗 log
(

𝑥𝑖𝑗
)

+
(

1 − 𝑥𝑖𝑗
)

log(1 − 𝑥𝑖𝑗 )
]

.
(14)

he loss of the ENN on all courses’ engagement for all learner is

𝐿𝑜𝑠𝑠 = 1
|𝑈 |

∑

𝑢𝑖∈𝑈
𝐿𝑜𝑠𝑠𝑖. (15)

The optimization goal of the model is to minimize 𝐿𝑜𝑠𝑠. The above process is the forward propagation of the model, in the process
f back propagation, the gradient of 𝐿𝑜𝑠𝑠 to model parameters 𝐟 ′ and 𝐠′ is calculated successively, and the model parameters are
pdated by the Adam algorithm. The specific flow chart of the training algorithm is shown in Algorithm 1. Lines 1–2 initialize the
odel parameters; Lines 4–5 divide each learner’s data into two parts by the 𝛼-partition method; Line 6 initializes 𝐿𝑜𝑠𝑠𝑖; Lines 7–20
escribe the processing of the ENN model to predict the engagement of learners in unenrolled courses; Lines 23–24 are to obtain
13

he engagement of learners in each course; Lines 27–28 are back propagates and updates the parameters.
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Fig. 10. The relationship between predicted engagement by the ENN model and dropout rates on the XuetangX and KDDCUP datasets. The 𝑥-axis is the predicted
interval of engagement in unenrolled courses, the 𝑦-axis is the dropout rates at each interval.

5.3. Relationship between predicted engagement and dropout rates

Through extensive experiments, this paper obtained Fig. 10. These data come from learners and courses in the XuetangX dataset
mentioned in Section 4.1, where the data from the Test set is used here, and it can be seen that the overall trend of the relationship
between predicted engagement and dropout rate is consistent with Observation 1, and thus has the following observation.

Observation 2. The dropout rates of learners in unenrolled courses reduce gradually with the increase in their predicted engagement .

6. Applied to personalized course recommendation by prediction of engagement to reduce dropout in MOOCs

Engagement can be a good measure of whether a learner is willing to spend enough time on a particular course, and it also
means whether the learner has the opportunity to complete the course enrolled. Based on Observation 2, the dropout rates of
learners in unenrolled courses reduce gradually with the increase in their predicted engagement. The experimental proof is shown
in Fig. 10. Hence, this paper proposes a personalized course recommendation framework, which uses predicted engagement to
personalize course recommendations so that learners are more likely to complete the course. This reduces the dropout rate of the
MOOC platforms. The stages are as follows:

Stage 1. Using the QE method to quantify the engagement of 𝑢𝑖 in enrolled courses. QE(𝑁
(

𝑢𝑖, 𝐴
(

𝑢𝑖, 𝐶(𝑢𝑖)+
))

, 𝑇
(

𝑢𝑖, 𝐶(𝑢𝑖)+
)

)
represents quantify the engagement of 𝑢𝑖 in enrolled courses, This paper describes the quantification process as follows:

Iuput: 𝑁
(

𝑢𝑖, 𝐴
(

𝑢𝑖, 𝐶(𝑢𝑖)+
))

, the number of learning action type clicks about 𝑢𝑖 in his enrolled course. 𝑇
(

𝑢𝑖, 𝐶(𝑢𝑖)+
)

, the learning
duration for different courses.

𝐗𝐀+
𝑖 = QE

(

𝑁
(

𝑢𝑖, 𝐴
(

𝑢𝑖, 𝐶(𝑢𝑖)+
))

, 𝑇
(

𝑢𝑖, 𝐶(𝑢𝑖)+
))

. (16)

Output: 𝐗𝐀+
𝑖 = [𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑗 ,… , 𝑥𝑖|𝐶(𝑢𝑖)+|], the 𝑢𝑖’s engagement in each enrolled course quantified by QE method.

Stage 2. Using the ENN model to predict the engagement of 𝑢𝑖 in unenrolled courses. In this paper, the output of QE is
taken as one of the inputs of ENN. ENN

(

𝐔𝐂,𝐔𝐀,𝐂𝐀,𝐗𝐀+
𝑖
)

indicates the prediction of 𝑢𝑖’s engagement in unenrolled courses by UC,
UA, CA and 𝐗𝐀

𝑖
+. The solution process of ENN can be expressed as the following function:

Input: 𝐗𝐀
𝑖
+, 𝑢𝑖’s engagement in enrolled courses. UC, the incidence matrix about learners and courses, UA and CA are the

average aggregation information matrix.

𝐗𝐀−
𝑖 = ENN

(

𝐔𝐂,𝐔𝐀,𝐂𝐀,𝐗𝐀+
𝑖
)

. (17)

Output: The engagement of 𝑢𝑖 in all courses, 𝐗𝐀
𝑖 = [𝑥𝑖1, 𝑥𝑖2,… , 𝑥𝑖𝑗 ,… , 𝑥𝑖|𝐶|

], where 𝐗𝐀−
𝑖 ∈ 𝐗𝐀

𝑖.
Stage 3. Using the engagement of 𝑢𝑖 in unenrolled courses predicted by ENN to make personalized course recommenda-

tions to reduce dropout rates. According to Observation 2, this stage recommends top−𝐾 courses with high predicted engagement
in unenrolled courses to 𝑢𝑖. Here, top−𝐾(𝐗𝐀−

𝑖 ) denotes top−𝐾 courses with high predicted engagement in unenrolled courses for 𝑢𝑖.
Thus, this paper has the following equation Eq. (18):

Input: 𝐗𝐀−
𝑖 , the engagement of 𝑢𝑖 in unenrolled courses.

PCR@𝐾
(

𝑢𝑖
)

= top−𝐾(𝐗𝐀−
𝑖 ). (18)

( )
14

Output: PCR@𝐾 𝑢𝑖 , the set of making personalized courses recommended by prediction of engagement to 𝑢𝑖.
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Fig. 11. The variation of RMSE and MAE for different values of hyperparameters Batch size, 𝛼, and Train/Test set ratio respectively on the XuetangX and
KDDCUP datasets.

7. Experiments

In this section, the datasets and splits, evaluation metrics, baselines, experimental settings, results analysis, and quantitative
relationship interpretability experiments are described.

7.1. Datasets and experimental setup

Datasets introduction: The analysis of this work was performed on XuetangX and KDDCUP dataset, the specific description of
the dataset is given in Section 4.1.

Datasets splits: This paper divided the whole data set 𝐷 into Training set 𝐼 and Test set 𝑆 respectively according to the ratio
of 𝜒 ∶ 𝛽 for the course chosen by each learner. If the learner 𝑢𝑖 is registered for 8 courses, the Training set contains 8 ∗ 𝜒 courses
and the Test set contains 8 ∗ 𝛽 courses, where 8 ∗ 𝜒 + 8 ∗ 𝛽 = 8.

Experimental configuration: The model in this paper was implemented using Python 3.8.12 and Pytorch 1.10.0. All features
were standardized before entering QE and ENN, and Adam was used to optimizing the model. The model is built based on the server
Intel Core I7-7820x CPU @ 3.60GHz×16, 64 GB Memory, NVIDIA GeForce RTX2080, Windows10 64-bit.

7.2. Evaluation for engagement prediction

7.2.1. Evaluation metrics for engagement prediction
In this paper, the ENN model has a good predictive function. The input and output of the model are the learners’ engagement

in a certain course, which is recorded as a score between 0–1, indicating the active degree of learners in learning the course, it also
reflects the willingness of learners to spend time in enrolled courses. Therefore, the paper first chooses MAE and RMSE to measure
the numerical difference between learners’ predicted engagement and their actual engagement. The Eq. (19) is as follows:

𝑀𝐴𝐸 =

∑

|𝑈 |

𝑖=1
∑

|𝐶|

𝑗=1 |𝑥𝑖𝑗 − 𝑥𝑖𝑗 |

|𝑈 | × |𝐶|

, 𝑅𝑀𝑆𝐸 =

√

√

√

√

∑

|𝑈 |

𝑖=1
∑

|𝐶|

𝑗=1 (𝑥𝑖𝑗 − 𝑥𝑖𝑗 )
2

|𝑈 | × |𝐶|

, (19)

where 𝑥𝑖𝑗 is the predicted value of learner 𝑢𝑖’s engagement on 𝑐𝑗 course output by the ENN model, and 𝑥𝑖𝑗 represent the real value
of engagement.

7.2.2. Parameter sensitivity analysis for engagement prediction
The hyperparameters in this paper include Batch size, 𝛼, and Train/Test set ratio, where 𝛼 is the parameter in the random

partition. This paper will analyze the performance of the model of ENN by analyzing these hyperparameters, to optimize the model
and improve its robustness of the model.

On the XuetangX dataset, as shown in Fig. 11(1)(4), when Train: Test= 8:2, change the values of Batch size and 𝛼, the fluctuations
of RMSE and MAE are respectively around 0.002 and 0.003; Fig. 11(2)(5) shows that when Train: Test = 7:3, the values of Batch
size and 𝛼 are changed respectively, and the values of RMSE and MAE changed little; Fig. 11(3)(6) shows the effect of changing
Batch size and 𝛼 on RMSE and MAE when Train: Test = 6:4. On the KDDCUP dataset, as shown in Fig. 11(7)(10), when Train: Test=
8:2, change the values of Batch size and 𝛼; Fig. 11(8)(11) shows that when Train: Test = 7:3, the values of Batch size and 𝛼 are
changed respectively, and the results hardly change in RMSE and MAE; Fig. 11(9)(12) shows the effect of changing Batch size and
𝛼 on RMSE and MAE when Train: Test = 6:4, the values of RMSE and MAE changed little.

In conclusion, it is shown on both datasets XuetangX and KDDCUP that Batch size, 𝛼, and Train/Test set ratio have little influence
on model performance, ENN model is insensitive to hyperparameters.
15
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Fig. 12. ENN model predictive performances versus baselines on the XuetangX and KDDCUP datasets. The 𝑥-axis represents the different baseline models, the
𝑦-axis is the accuracy of RMSE and MAE for different models, respectively.

7.2.3. Baselines for engagement prediction
For the prediction accuracy of engagement, this paper conducted a comparative experiment on the following methods.

• LR: Logistic Regression model.
• SVM: The support vector machine with linear kernel.
• RF: Random Forest model.
• GBDT: Gradient Boosting Decision Tree.
• DNN: 3-layer deep neural network.
• CART: Decision TreeRegressor.

7.2.4. Experimental results for engagement prediction
Fig. 12 shows the results of the ENN model proposed in this paper compared with the baseline models (LR, SVM, RF, GBDT, DNN,

CART) on two datasets, where the RMSE and MAE of ENN on the XuetangX dataset are 0.1066 and 0.0727, respectively. On the
KDDCUP dataset, the RMSE is 0.0624, the MAE is 0.0396. It can be seen that the ENN model has better predictive performance and
outperforms the baseline in predicting the RMSE and MAE of learners’ engagement in unenrolled courses on the XuetangX dataset.
On the KDDCUP dataset, the results of MAE are slightly worse than DNN and RF, but RMSE outperforms all compared models.

In general, the ENN model has advantages in predicting learner’s engagement in unenrolled courses, primarily because it
incorporates a broader spectrum of learner-related information into its framework. This includes factors such as the incidence matrix
of learners and courses 𝐔𝐂, the average aggregation matrix of learners 𝐂𝐀, and the average aggregation matrix of courses 𝐔𝐀, which
enables the model to adapt to the learner’s preferences and discern the courses they are more inclined to pursue. Additionally, the
model takes into account two non-learning factors 𝐟 ′ and 𝐠′ to refine its predictive accuracy.

7.3. Evaluation for personalized course recommendation using engagement

7.3.1. Evaluation metrics for personalized course recommendation using engagement
At the same time, with course recommendations based on the engagement predicted by ENN, this paper will give priority to

recommending courses with high engagement, making learners more likely to complete the course. So it can be regarded as a top-𝐾
recommendation problem. In this paper, Hit ratio@𝐾, Recall@𝐾, Precision@𝐾, and F1-score@𝐾 are selected as evaluation criteria,
which are expressed by Eq. (20), Eq. (21), Eq. (22), and Eq. (23) respectively.

Hit ratio@𝐾 =

∑

𝑢𝑖∈𝑈 |PCR@𝐾
(

𝑢𝑖
)

∩
(

𝐶
(

𝑢𝑖
)+ −𝐷

(

𝑢𝑖
)

)

|

∑

𝑢𝑖∈𝑈 |𝐶
(

𝑢𝑖
)+

|

, (20)

where |PCR@𝐾
(

𝑢𝑖
)

∩
(

𝐶
(

𝑢𝑖
)+ −𝐷

(

𝑢𝑖
)

)

| represents recommended top-𝐾 courses to 𝑢𝑖 and the number of courses he completed.
|𝐶

(

𝑢𝑖
)+

| denotes the number of courses that 𝑢𝑖 enrolled in. Hit ratio@𝐾 will be denoted by Hit@𝐾.

Recall@𝐾 = 1
|𝑈 |

∑

|PCR@𝐾
(

𝑢𝑖
)

∩
(

𝐶
(

𝑢𝑖
)+ −𝐷

(

𝑢𝑖
)

)

|

( )+ ( )

, (21)
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Table 3
When Train: Test = 8:2, Batch size = 8, change the value of 𝛼, the recommendation accuracy of different methods was measured by Hit ratio, Recall, Precision,
and F1-score using the XuetangX dataset. The best results are highlighted in bold.
𝛼 Hit@5 Hit@10 Hit@15 R@5 R@10 R@15 P@5 P@10 P@15 F1@5 F1@10 F1@15

2 16.43% 24.84% 28.74% 17.71% 26.67% 30.76% 16.70% 25.65% 29.59% 17.23% 25.98% 29.97%
3 21.16% 25.77% 28.88% 22.68% 27.61% 30.90% 21.74% 26.53% 29.73% 22.04% 26.88% 30.11%
4 16.88% 24.58% 26.89% 17.90% 26.23% 28.73% 17.02% 25.14% 26.67% 17.30% 25.49% 27.94%

Table 4
When Train: Test = 8:2, Batch size = 8, change the value of 𝛼, the recommendation accuracy of different methods was measured by Hit ratio, Recall, Precision,
and F1-score using the KDDCUP dataset. The best results are highlighted in bold.
𝛼 Hit@3 Hit@5 Hit@10 R@3 R@5 R@10 P@3 P@5 P@10 F1@3 F1@5 F1@10

2 16.15% 28.04% 41.17% 15.87% 27.89% 41.18% 13.47% 23.93% 35.21% 14.22% 25.19% 37.11%
3 15.19% 21.60% 34.82% 15.00% 21.27% 34.34% 12.73% 18.06% 29.16% 11.17% 22.30% 38.48%
4 14.80% 19.90% 32.30% 14.65% 19.51% 31.64% 12.38% 16.41% 26.51% 17.39% 20.69% 37.56%

Table 5
When Batch size = 8, 𝛼 = 3, change the value of Train/Test set ratio, the recommendation accuracy of different methods was measured by Hit ratio, Recall,
Precision, and F1-score using XuetangX dataset. The best results are highlighted in bold.

Train:Test Hit@5 Hit@10 Hit@15 R@5 R@10 R@15 P@5 P@10 P@15 F1@5 F1@10 F1@15

8:2 21.16% 25.77% 28.88% 22.68% 27.61% 30.90% 21.74% 26.53% 29.73% 22.04% 26.88% 30.11%
7:3 18.32% 23.31% 24.93% 19.29% 24.67% 26.36% 15.73% 20.42% 21.82% 16.88% 21.80% 23.29%
6:4 15.96% 25.47% 27.03% 15.67% 25.09% 26.67% 10.72% 17.25% 18.11% 12.31% 19.78% 20.86%

Table 6
When Batch size = 8, 𝛼 = 2, change the value of the Train/Test set ratio, the recommendation accuracy of different methods was measured by Hit ratio, Recall,
Precision, and F1-score using KDDCUP dataset. The best results are highlighted in bold.

Train:Test Hit@3 Hit@5 Hit@10 R@3 R@5 R@10 P@3 P@5 P@10 F1@3 F1@5 F1@10

8:2 16.15% 28.04% 41.17% 15.87% 27.89% 41.18% 13.47% 23.93% 35.21% 14.22% 25.19% 37.11%
7:3 15.84% 22.83% 34.51% 15.68% 22.62% 33.96% 11.21% 15.84% 23.60% 12.58% 17.92% 26.77%
6:4 13.21% 18.86% 30.15% 12.81% 18.16% 28.94% 7.90% 10.49% 16.54% 9.38% 12.82% 20.31%

Table 7
When 𝛼 = 3, Train : Test = 8:2, change the value of Batch size, The recommendation accuracy of different methods was measured by Hit ratio, Recall, Precision,
nd F1-score using XuetangX dataset. The best results are highlighted in bold.
Batch size Hit@5 Hit@10 Hit@15 R@5 R@10 R@15 P@5 P@10 P@15 F1@5 F1@10 F1@15

8 21.16% 25.77% 28.88% 22.68% 27.61% 30.90% 21.74% 26.53% 29.73% 22.04% 26.88% 30.11%
16 21.16% 24.08% 28.71% 22.68% 25.73% 30.34% 21.74% 24.32% 29.03% 22.04% 25.01% 30.01%
32 21.16% 24.03% 28.54% 22.68% 25.68% 30.56% 21.74% 24.60% 29.42% 22.04% 24.95% 29.79%

Table 8
When 𝛼 = 2, Train : Test = 8:2, change the value of Batch size, The recommendation accuracy of different methods was measured by Hit ratio, Recall, Precision,
nd F1-score using KDDCUP dataset. The best results are highlighted in bold.
Batch size Hit@3 Hit@5 Hit@10 R@3 R@5 R@10 P@3 P@5 P@10 F1@3 F1@5 F1@10

8 16.15% 28.04% 41.17% 15.87% 27.89% 41.18% 13.47% 23.93% 35.21% 14.22% 25.19% 37.11%
16 15.65% 20.96% 32.71% 15.45% 20.70% 32.18% 13.10% 17.58% 27.31% 13.84% 18.57% 28.87%
32 8.82% 17.59% 28.11% 8.49% 17.17% 27.29% 7.27% 14.40% 22.92% 7.64% 15.28% 24.32%

|𝐶
(

𝑢𝑖
)+ −𝐷

(

𝑢𝑖
)

| indicates the number of courses completed by 𝑢𝑖, Recall@𝐾 denotes the corresponding Recall when recommending
𝐾.

Precision@𝐾 = 1
|𝑈 |

∑

𝑢𝑖∈𝑈

|PCR@𝐾
(

𝑢𝑖
)

∩
(

𝐶
(

𝑢𝑖
)+ −𝐷

(

𝑢𝑖
)

)

|

|PCR@𝐾
(

𝑢𝑖
)

|

, (22)

where PCR@𝐾
(

𝑢𝑖
)

is the set of making personalized courses recommended by prediction of engagement to 𝑢𝑖. Precision@𝐾 is the
precision with which 𝐾 courses are recommended for learning, which will be denoted by P@𝐾 in the future.

F1-score@𝐾 = 2 ⋅ Precision@𝐾 ⋅ Recall@𝐾
Precision@𝐾 + Recall@𝐾

(23)

here F1-score@𝐾 is the F1-score with which 𝐾 courses are recommended for learning, which will be denoted by F1@𝐾 in the
uture.
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Table 9
Baselines used to evaluate recommendation systems and the hit standards in existing work.

Paper(Ref) Hit Standards Popular Random MF CF SVD

Jing and Tang (2017)

Recommended courses
can only ensure that
learners are interested in
the courses,
but cannot guarantee
their completion.

✓ ✓

Zhang, Huang, Lv, Liu, and Zhou
(2018)

✓

Boratto, Fenu, and Marras (2019) ✓ ✓ ✓

Symeonidis, Malakoudis, et al.
(2019)

✓ ✓

Le, Vo, Nguyen, and Le (2020) ✓ ✓

Xu et al. (2021) ✓

Shao et al. (2021) ✓

Lin, Feng, et al. (2021) ✓

Ma et al. (2021) ✓

Tian and Liu (2021) ✓ ✓ ✓

Ban et al. (2022) ✓

Yang and Cai (2022) ✓

Lin et al. (2022) ✓

Wang, Zhu, et al. (2022) ✓

Wang, Ma, et al. (2022) ✓ ✓

This paper

Recommended courses to
learners so that learners
complete the courses
as much as possible.

✓ ✓ ✓ ✓ ✓

7.3.2. Parameter sensitivity analysis for personalized course recommendation using engagement
Tables 3, 5 and 7 show the influence of changing the value of 𝛼, Train/Test set ratio, and Batch size on each metric of

recommendation accuracy on the XuetangX dataset, where Table 3 shows the influence of changing the value of 𝛼 on each metric of
recommendation accuracy when the Train/Test set ratio is 8:2 and Batch size is 8; Table 5 shows the impact of changing the value
of Train/Test set ratio on each metrics of recommendation accuracy when Batch size is 8 and 𝛼 is 3; Table 7 shows the impact of
changing the value of Train/Test set ratio on each metrics of recommendation accuracy when Batch size is 8 and 𝛼 is 3.

On the KDDCUP dataset, Table 4, Table 6, and Table 8 show the influence of changing the value of 𝛼, Train/Test set ratio, and
Batch size on each metric of recommendation accuracy, where Table 4 shows the impact of changing the value of 𝛼; Table 6 shows
the influence of changing the value of Train/Test set ratio; Table 8 shows the impact of changing the value of Batch size.

To sum up, each evaluation metric value of personalized course recommendation fluctuates greatly with the Train/Test set ratio,
and Batch size and 𝛼 have little influence on recommendation results. After extensive experiments, it is known that the model
performs best on the XuetangX dataset when the Batch size is 8, 𝛼 = 3, and the training/test set ratio is 8:2. And in the KDDCUP
dataset, when the Batch size is 8, 𝛼 = 2, and the Train/Test set ratio is 8:2, using the ENN model to predict the engagement of
unenrolled courses for personalized course recommendation performs best.

7.3.3. Baselines for personalized course recommendation using engagement
Table 9 summarizes the baselines used to evaluate recommendation systems and the hit standards in existing work. It can

be seen that the majority of course recommendation works’ hit standards only focuses on whether learners will be interested in
the recommended course, but failed to pay attention to whether learners can complete it after the recommended course. This
paper considers this in mind, it adopts engagement to recommend courses, and takes learners’ interest in and completion of the
recommended courses as our hit standards.

Moreover, through literature research, most of the course recommended works have chosen Popular, Random, MF, CF, and SVD
as their baselines, where CF is mostly used for the design of course recommendation (Khalid, Lundqvist, & Yates, 2022), it can be
classified into traditional Matrix Factorization (MF)-based methods (Yuan et al., 2021) and deep learning-based methods (Boratto,
Fenu, & Marras, 2021; Gómez, Boratto, & Salamó, 2022; He et al., 2017). Deep learning-based methods are the applications of
neural networks on recommender systems, and have achieved great success in many application areas. For example, Generalized
Matrix Factorization (GMF) applied a linear kernel to model the latent feature interactions, Multi-Layer Perceptron can provide a
high level of nonlinear modeling capabilities, He et al. (2017) proposed to add hidden layers on the concatenated vector, using a
standard MLP to learn the interaction between user and item latent features. Neural Collaborative Filtering (NCF) model (He et al.,
2017) combined GMF with MLP for modeling user-course latent structures, which learns the probability of recommending target
courses to related users.

Therefore, the baseline of this paper can be divided into the following three categories, which are non-personalized recommen-
dation methods (Popular, Random), traditional recommendation algorithms (MF, SVD++), and deep learning-based methods (GMF,
MLP, NCF). The comparison method is as follows.

• Non-personalized

– Popular Recommended courses for which most learners are enrolled.
18

– Random Randomly chooses one of the candidate courses from the pool.
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Table 10
Results of personalized course recommendations using ENN-predicted learner engagement in unenrolled courses and comparing them to baselines using the
XuetangX dataset. All comparison methods use the hit standards proposed in this paper, where learners are not only interested in the recommended course but
can complete it. The best results are highlighted in bold, and the second-best results are underlined.

Methods Hit@5 Hit@10 Hit@15 R@5 R@10 R@15 P@5 P@10 P@15 F1@5 F1@10 F1@15

Popular 7.55% 14.48% 28.23% 7.66% 14.67% 29.22% 1.68% 1.61% 2.09% 2.71% 2.87% 3.88%
Random 3.04% 5.82% 8.77% 3.04% 5.74% 8.71% 2.26% 4.19% 6.32% 2.48% 4.61% 6.96%

QE+MF 6.11% 8.12% 9.00% 6.74% 8.93% 9.80% 6.68% 8.83% 9.6% 6.70% 8.84% 9.66%
QE+SVD++ 2.49% 3.80% 8.56% 2.44% 3.61% 8.40% 2.06% 2.99% 7.22% 2.17% 3.17% 7.57%

QE+GMF 2.11% 3.86% 5.70% 2.05% 3.78% 5.60% 1.81% 3.30% 4.84% 1.88% 3.43% 5.05%
QE+MLP 16.26% 22.18% 25.53% 17.35% 23.59% 26.98% 16.66% 19.89% 22.48% 16.91% 20.21% 22.85%
QE+NCF 16.25% 22.52% 25.96% 17.32% 23.99% 27.50% 16.50% 22.82% 26.02% 16.77% 23.20% 26.49%

QE+ENN 21.16% 25.77% 28.88% 22.68% 27.61% 30.90% 21.74% 26.53% 29.73% 22.04% 26.88% 30.11%

Table 11
Results of personalized course recommendations using ENN-predicted learner engagement in unenrolled courses and comparing them to baselines using the
KDDCUP dataset. All comparison methods use the hit standards proposed in this paper, where learners are not only interested in the recommended course but
can complete it. The best results are highlighted in bold, and the second-best results are underlined.

Methods Hit@3 Hit@5 Hit@10 R@3 R@5 R@10 P@3 P@5 P@10 F1@3 F1@5 F1@10

Popular 13.32% 24.43% 38.79% 13.33% 24.77% 39.42% 4.97% 5.47% 4.35% 7.11% 8.85% 7.76%
Random 10.89% 17.21% 33.97% 10.99% 17.18% 34.16% 8.60% 13.16% 25.98% 9.34% 14.38% 28.47%

QE+MF 3.61% 5.93% 15.63% 3.24% 5.26% 14.49% 2.61% 4.21% 11.65% 2.79% 4.53% 12.53%
QE+SVD++ 8.01% 15.53% 35.85% 7.69% 15.25% 35.56% 6.49% 13.00% 29.82% 6.85% 13.70% 31.61%

QE+GMF 10.35% 17.25% 30.59% 10.08% 16.81% 29.66% 8.52% 14.09% 24.58% 9.01% 14.95% 26.18%
QE+MLP 19.18% 24.98% 37.76% 19.24% 24.95% 37.55% 12.69% 21.36% 31.73% 17.56% 22.51% 33.57%
QE+NCF 12.93% 18.92% 33.22% 12.64% 18.55% 32.46% 10.77% 15.59% 27.12% 11.35% 16.51% 28.79%

QE+ENN 16.15% 28.04% 41.17% 15.87% 27.89% 41.18% 13.47% 23.93% 35.21% 14.22% 25.19% 37.11%

• Traditional

– MF Matrix Factorization. Each learner and his enrolled course are embedded in a fixed-length vector. Whether to
recommend a course depends on the dot product of the learner vector and course vector.

– SVD++ Gradient descent matrix factorization.

• Deep learning-based

– GMF Generalized Matrix Factorization, it applies a linear kernel to model the latent feature interactions.
– MLP This paper proposed to add hidden layers on the concatenated vector, using a standard MLP to learn the interaction

between user and item latent features.
– NCF It is a hybrid model that combines GMF with MLP for modeling user-course latent structures, which learns the

probability of recommending target courses to related users.

QE is integrated into the aforementioned baselines, and the comparison methods can be described as ‘‘QE+MF’’, ‘‘QE+SVD++’’,
‘QE+GMF’’, ‘‘QE+MLP’’, and ‘‘QE+NCF’’ respectively. In addition, all comparison methods use the personalized course recommen-
ation described in the Stage 3 of Section 6. Popular only consider the number of learners enrolled in courses as popularity of
ourses, do not consider the engagement, whereas Random just randomly recommend, it is independent of the engagement.

.3.4. Experimental results for MOOC recommendation using engagement
Tables 10 and 11 show the comparison of the recommendation results of all models on the two datasets. Since the XuetangX

ataset contains 247 courses and the KDDCUP dataset contains 39 courses, this paper chooses different Top-𝐾 for the recom-
endation. For the XuetangX dataset, this paper calculates and compares Top-5, Top-10, and Top-15. For the KDDCUP dataset,

alculate and compare Top-3, Top-5, and Top-10 respectively. On the XuetangX dataset, the ENN model has better results compared
o other models. We can see that when recommending 5 courses, Hit ratio improves by 4.46% on average, Recall improves by
.50% on average, Precision improves by 2.30% on average, and F1-score improves by 4.75% on average. When recommending 10
ourses, it showed a mean improvement of 2.65% in Hit ratio, 3.95% in Recall, 4.67% in Precision, 4.53% in F1-score. The average
mprovement is 3.14% in Hit@15, 3.24% in R@15, 3.24% in P@15, and 4.26% in F1@15.

On the KDDCUP dataset, when recommending 5 courses, The MLP model is slightly higher than the ENN in all three metrics, but
he rest of the metrics are all lower than ENN. Overall, the ENN model has better results in terms of Recall, Hit ratio, Precision, and
1-score compared to baselines (Popular, Random, MF, SVD++, GMF, MLP, NCF). This phenomenon occurs because the ENN model
akes into account the rich course information of the learner, which makes the ENN have good predictive accuracy, so that the
ngagement prediction results closely resemble the learners’ actual engagement within the course. Therefore, using the ENN model
19

o predict learner engagement on unenrolled courses and personalizing course recommendations based on it outperforms baselines.
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Fig. 13. The relationship between dropout rates and the number of recommended courses after applying various recommendation models. The 𝑥-axis represents
recommended top-𝐾 courses ratio, 𝐾 is taken as 5%, 10%, 15%, 20%, 25%, and 30% respectively. The 𝑦-axis indicates the dropout rate of the MOOC platform
after adopting the recommendation strategy. In the left panel, the red dashed line represents the dropout rate observed in the XuetangX dataset before any course
recommendations are made, while the blue dashed line in the right panel represents the initial dropout rate in the KDDCUP dataset before recommendations.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 12
The impact of the components on ENN model predictions.

Method XuetangX KDDCUP

RMSE MAE RMSE MAE

ENN-f (no 𝐟 ′) 0.1085 0.0744 0.0635 0.0409
ENN-g (no 𝐠′) 0.1321 0.0705 0.0709 0.0348
ENN 0.1065 0.0726 0.0624 0.0396

7.4. Theoretical and practical implications: Reducing dropout rate for MOOC platforms using predicted engagement

In addition, this paper does an interesting experiment. Using engagement to personalized course recommendations to learners
can reduce the dropout rates of MOOC platforms. The formula is as follows,

𝐵𝑒𝑓𝑜𝑟𝑒 −𝐷𝑟𝑜𝑝𝑜𝑢𝑡 =
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is the set of recommended top-𝐾 courses to 𝑢𝑖 and which he completed. 𝐶
(
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)+∩PCR@𝐾

(

𝑢𝑖
)

is the set of the top-𝐾 courses recommended to 𝑢𝑖 and enrolled by him.
From Eq. (24), it can be concluded that the course dropout rate of the MOOC platform reaches 75.78% at the beginning of

the XuetangX dataset and 74.55% on the KDDCUP. Fig. 13 illustrates the relationship between dropout rates and the number of
recommended courses after applying various recommendation models. Notably, when recommending a 5% high engagement course
in the XuetangX dataset, all compared methods effectively reduce dropout rates, except for the Random method, which may lead
to higher dropout rates. The lowest dropout rates were observed when recommending unenrolled courses using the engagement
predicted by the ENN model. The ENN model’s dropout rate was on average 25.58% lower than the other recommendation models
when recommending a 15% high engagement course. On the KDDCUP dataset, when recommending 5% high engagement courses,
the MF and GMF approaches to reducing dropout rates are not ideal, but the ENN model proposed in this paper still reduces the
dropout rate the best, from the initial 74.55% to 64.21%, when making recommendations.

In addition, we found an interesting phenomenon that the dropout rate tends to increase with the increase in the number of
recommended courses, which suggests that the course recommendation should not be too much, otherwise it may lead to an increase
in the learning burden of the learners. The experimental results indicate that the utilization of the ENN model, as introduced in this
paper, for predicting learner engagement in unenrolled courses and delivering personalized course recommendations significantly
reduces dropout rates on MOOC platforms. This result carries substantial implications for enhancing the overall effectiveness and
long-term viability of MOOC platforms.
20
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Fig. 14. It shows the effect of the different models in reducing the dropout rate on the two datasets, where the purple horizontal line signifies the MOOC
dropout rate prior to the implementation of course recommendations. The 𝑥-axis represents the recommended top-𝐾 courses ratio, 𝐾 is taken as 5%, 10%, 15%,
20%, 25%, and 30% respectively. The 𝑦-axis indicates the dropout rate of the MOOC platform after adopting the recommendation strategy. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

7.5. Component analysis and feature analysis for ENN

In predicting learner engagement in unenrolled courses using ENN, we added two nonlinear layers 𝐟 ′ and 𝐠′ which were used
to correct the model’s predictions, and in order to assess the impact of these two components, we conducted an ablation study by
removing one of them to show their role in engagement prediction. The definition after removing a component separately is as
follows:

ENN-f (no 𝐟 ′): This is to show the importance of considering 𝐟 ′ components, that is, to predict learner engagement in unenrolled
courses by removing 𝐟 ′ from the ENN.

ENN-g (no 𝐠′): This is to evaluate the importance of 𝐠′ in predicting learner engagement in unenrolled courses, that is, we keep
only one component, 𝐟 ′, and remove component 𝐠′ from the ENN model.

The experimental results are shown in Table 12, at the same time, we tested the effect of removing a component on the reduction
of dropout rates, and the results are shown in Fig. 14. Table 12 shows that the removal of any one of the components 𝐟 ′ and 𝐠′ has
an impact on the predictive ability of the model, especially the 𝐠′ component has a greater impact on the model, and we can see
that although the effect of MAE is better than that of the ENN model, the difference in the error of the RMSE is a little bit larger,
which reflects that there is a large error between the true value and the predicted value when using the model prediction using
ENN-g. In addition, Fig. 14 shows the effect of the different models in reducing the dropout rate on the two datasets, where the
purple horizontal line signifies the MOOC dropout rate prior to the implementation of course recommendations. It can be seen that
ENN reduces the dropout rate better than ENN-f and ENN-g.

8. Conclusion

Firstly, this paper proposes a method to Quantify Engagement (QE), which effectively quantifies the engagement of learners’
enrolled courses according to their learning action data and learning duration. Through experiments, we find that the defined
engagement is closely related to the dropout rate. Secondly, a prediction model of Engagement Neural Network (ENN) was proposed,
the model can predict before learners enroll for a course of online learning participate, it would assist MOOC platforms in gauging
their willingness to continue learning in other unenrolled courses. Finally the relationship between engagement and course dropout
rate is used to make personalized course recommendations to learners to ensure that the recommended courses are likely to be
completed by learners, thus effectively reducing the dropout rate of MOOC platforms.

In summary, this paper represents an initial exploration into the use of personalized course recommendations as a means to
mitigate dropout rates, without exploring alternative strategies for dropout reduction. In our future work, we will try to consider
other characteristics such as friends’ information, course attribute information, and learners’ backgrounds in order to proactively
predict dropout and implement early interventions to further diminish dropout rates on MOOC platforms.
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