
Future Generation Computer Systems 151 (2024) 32–44

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

MMDS: A secure and verifiable multimedia data search scheme for
cloud-assisted edge computing
Shiwen Zhang a,b, Jiayi He a, Wei Liang a, Keqin Li c,∗

a School of Computer Science and Engineering, Hunan University of Science and Technology, XiangTan, Hunan, China
b Advanced Cryptography and System Security Key Laboratory of Sichuan Province, China
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

A R T I C L E I N F O

Keywords:
Keyword search
Fine-grained verification
Independent protection
Internet of Things (IoT)
Blockchain
Cloud-assisted edge computing

A B S T R A C T

With the rapid development and popularity of Internet of Things (IoT) technology, IoT devices can generate
MultiMedia Big Data (MMBD) as multimedia devices. MMBD is often encrypted and stored on an untrusted
cloud server. Searchable encryption is an effective way which can finish a controllable keyword search
of ciphertext. However, there are two limitations to these existing works. On the one hand, it is hard to
independently protect the data privacy of each IoT device. On the other hand, when faced with an untrusted
cloud server, it is difficult to implement more flexible fine-grained verification for search results. To overcome
these limitations, we propose a secure and verifiable MultiMedia Data Search (MMDS) scheme for cloud-
assisted edge computing. To protect the data of IoT devices independently, we designed a secure, flexible,
and efficient keyword search mechanism based on bilinear pairings. To achieve a more flexible and practical
search result verification mechanism, we design a fine-grained verification algorithm combining blockchain and
hashing techniques. We have conducted performance evaluations and security proof and analysis for MMDS
scheme. Finally, we applied MMDS scheme to solve real problems in intelligent multimedia systems. Security
proof and analysis prove the security of MMDS. Performance analyses and evaluations further confirm that
MMDS is efficient and feasible for practical applications.
1. Introduction

As the supply of multimedia devices on the Internet of Things
(IoT) grows exponentially, enormous amounts of MultiMedia Big Data
(MMBD) are being generated [1]. New forecasts from the Interna-
tional Data Corporation (IDC) predict that in 2025, there will be
41.65 billion connected IoT devices generating 79.4 ZB of data. MMBD
greatly enhances current multimedia applications such as multimedia
searches, healthcare services, advertisements, recommendations, and
smart cities [2,3].

Meanwhile, IoT also brings new challenges to MMBD. Due to the
limited storage of IoT devices, MMBD are often outsourced and stored
on a cloud server. Other users can search for stored MMBD using
specific keywords to obtain the desired data. If MMBD is collected
from IoT devices and stored directly on a cloud server, it will lead to
potential security issues. Hence, IoT devices usually encrypt data before
it is outsourced to a cloud server for increased security. However, IoT
devices have limited computing power. They are usually unable to
perform complex encryption algorithms effectively. The emergence of
cloud-assisted edge computing has fortunately compensated for the lack

∗ Corresponding author.
E-mail address: lik@newpaltz.edu (K. Li).

of IoT devices. Edge servers approach IoT devices more closely than the
cloud server. They can provide data computation, data transmission,
and other services to IoT devices [4].

As shown in Fig. 1, edge servers can collect massive amounts of
MMBD from various IoT devices. This article uses file data in MMBD
as an example. To ensure the security of the data, edge servers encrypt
the data and outsource it to the cloud server. However, data encryption
makes the data availability much lower. How to search the encrypted
data is a pressing issue. To search for encrypted data, scholars have
extensively explored Searchable Encryption (SE) technology. Unfortu-
nately, existing schemes [5–10] are not able to independently protect
data from IoT devices, i.e. the edge server uses the same key to encrypt
outsourced data for nearby IoT devices. Such schemes may not be
suitable for deployment in IoT environments. Once an edge server
accidentally leaks the encryption key, the data privacy of all IoT devices
may be violated. One solution is for edge servers to generate indepen-
dent encryption keys for each IoT device in its coverage. But IoT devices
are movable. The IoT devices in the edge server’s coverage are different
and uncertain at different times and spaces. In this case, edge servers
vailable online 27 September 2023
167-739X/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2023.09.023
Received 3 July 2023; Received in revised form 14 September 2023; Accepted 16 S
eptember 2023

https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.future.2023.09.023
https://doi.org/10.1016/j.future.2023.09.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.09.023&domain=pdf

Future Generation Computer Systems 151 (2024) 32–44S. Zhang et al.
Fig. 1. An overview of MMBD sharing for cloud-assisted edge computing.

are required to maintain numerous encryption keys. It will inevitably
result in a heavy key management burden. In addition, data users
would need to submit multiple trapdoors using different encryption
keys to retrieve data. This will directly lead to high communication
and search costs. Therefore, they need a secure, flexible, and efficient
keyword search mechanism to independently protect the data privacy
of IoT devices.

In practice, deletion and tampering of search results by an untrusted
cloud server may be motivated by a variety of reasons. Thus verification
schemes are essential in a keyword search. Most existing verification
schemes [5–8,11–16] only provide coarse-grained verification, i.e. they
can only answer ‘‘yes’’ or ‘‘no’’ to a set of search results returned by a
cloud server. Once they output ‘‘no’’, the set of search results will be
discarded, even though only one of the search results may be incorrect.
Such schemes may not be suitable for practical applications. Because
data users prefer to find out the unqualified ciphertexts from a set
of unqualified search results and use the qualified ciphertexts as the
final search results. Secondly, if the cloud server ignores some search
results, they also want to check how much or which ciphertexts are
not returned. In addition, the cloud server has the same behavior of
tampering with or falsifying the verification information itself. This will
result in ineffective verification. Verification overhead is one of the
main reasons for the existing performance limitations of verification
schemes. Therefore, it is urgent and challenging to implement a more
flexible and practical fine-grained verification scheme.

In this paper, in contrast to existing work, aiming at the challenges
mentioned above, we propose a secure and verifiable multimedia data
search scheme for cloud-assisted edge computing, called MMDS. We
have implemented a secure, flexible, and efficient keyword search
mechanism. Specifically, we use bilinear pairings to encrypt keywords
to build searchable encrypted indexes. The edge servers are able to
build encrypted indexes for IoT devices using random keys, which
protects the data privacy of each IoT device independently. When an
IoT device searches for encrypted data, the edge server sends a trapdoor
to the cloud server without knowing the encryption key. The cloud
server performs a keyword ciphertext search. We also design a fine-
grained verification algorithm that combines blockchain and hashing
techniques. Specifically, we use the hashing function to construct the
verification information. Using the unidirectional and collision resis-
tance of hashing function to protect and verify the search results. The
verification information is recorded on the blockchain. The tamper-
proof function of the blockchain is used to ensure the truthfulness
of the verification information. Moreover, the verification informa-
tion is returned by using the consensus mechanism of the blockchain,
thus enabling fine-grained verification. In addition, to minimize the
computational pressure on IoT devices, we delegate a large number
of computational tasks (e.g., encryption, constructing trapdoors, ver-
ifying search results and decryption, etc.) from IoT devices to edge
33
servers. Finally, high efficiency and safety are well demonstrated in our
scheme through extensive experiments and security proof and analysis.
Summing up, the key contributions of this paper are as follows.

1. We proposed a secure and verifiable multimedia data search
scheme for cloud-assisted edge computing. It independently protects
the data privacy of IoT devices and achieves fine-grained verification.
At the same time, it reduces the overhead of IoT devices. To the best
of our knowledge, it is the first scheme to implement fine-grained
verification for cloud-assisted edge computing.

2. We designed a secure, flexible, and efficient keyword search
mechanism based on bilinear pairs for cloud-assisted edge computing.
It allows edge servers to encrypt data for IoT devices using a random
key. Edge servers can generate a trapdoor for an IoT device without
knowing of the encryption key. The purpose is to search for encrypted
data in the cloud server.

3. We have created a fine-grained search results verification algo-
rithm combining blockchain and hashing technology for cloud-assisted
edge computing. Firstly, the algorithm is able to verify the correctness
and completeness of the search results. Secondly, for a failed search
result, it is able to find the correct ciphertext as the final search result. It
is also able to check how many failed ciphertexts and which ciphertexts
were ignored by the cloud server. Finally, it ensures the validity of the
verification results and delegates all the verification overhead to the
edge servers.

4. We have conducted performance evaluations and security proof
and analysis for the proposed MMDS scheme. In addition, we discuss
proposed schemes for engineering application problems related to in-
telligent multimedia systems (i.e., electronic libraries). The extensive
experiment evaluations prove that MMDS is efficient and feasible.

The remainder of the paper is as follows. Section 2 reviews related
work. In Section 3, the system and threat models and design goals are
presented. Section 4 is a description of the associated preparation work.
Then, Section 5 introduces the details of the proposed MMDS scheme.
Furthermore, Section 6 and Section 7 give the security proof and
analysis and the performance evaluation. Finally, Section 8 concludes
the paper and looks at future work.

2. Related work

An untrusted cloud server may have illegitimate behaviors in the
search process. Therefore, we will focus on keyword search and search
result verification.

2.1. Keyword search in cloud computing

SE is a technique that enables efficient search of encrypted data.
The academic who first proposed the SE concept was Song et al. [17].
In their scheme, the cloud server scans each encrypted keyword in turn,
and this approach makes the search cost overloaded. To raise the search
efficiency, Goh et al. [18] introduced the Bloom Filter technique to
design the index. To address the problem of key distribution in SE,
Boneh et al. [19] proposed Public key Encryption with Keyword Search
(PEKS), in which the sender uses the receiver’s public key to encrypt
emails and constructs a secure index. The receiver uses his private key
to generate a query trapdoor, solving the key distribution. The secure
inverted indexes structure was proposed by [20]. Their starting point
was to enable further improvements in search performance. Zhang
et al. [21] discuss and analyze the security model for multiple data
owners, and the first scheme is proposed. They introduced an additional
management server. To address this difficulty, Yin et al. [22] removed
the administration server and further implemented a sorted search
scheme.

These schemes do not consider the possibility of the untrusted cloud
server, it will return unqualified search results. As a result, various
verification schemes have emerged. Chai et al. [23] first used tree-
based indexing and hash chaining techniques, making verifiable SE

Future Generation Computer Systems 151 (2024) 32–44S. Zhang et al.
schemes a reality. Wang et al. [24] combined the techniques of the
Bloom Filter and the Merkel Hash Trees and implemented a verifiable
data search scheme. The implementation of a multi-user searchable
encryption scheme based on a combination of RSA accumulator and
broadcast encryption is proposed by [25]. Jiang et al. [26] introduced
the theory of relevance score. On the basis of this, they proposed
a verifiable search scheme for ranked multi-keyword. To reduce the
overhead of verification, Zhang et al. [27] introduced the concept
of deterrence, making the cloud server avoid illegal operations. To
improve the practicality of the scheme, Zhu et al. [28] proposed a
multi-user search scheme that enables data updating and verifiability.
Liu et al. [29] implement a sorted search of dynamic document col-
lections with guaranteed verifiability, but this scheme imposes some
expenses. Tong et al. [30] proposed a verifiable data search scheme,
this scheme can prevent key leakage and further improve the security
of verification. Yin et al. [31] first proposed a fine-grained search result
verification scheme using the Counting Bloom Filter. But it exists the
common problem of the Counting Bloom Filter, bringing a large storage
overhead and false positives with a certain probability.

In the context of cloud computing, many keyword search schemes
have been proposed. Their algorithms for encryption, decryption, and
verification have huge overheads. They cannot satisfy the needs of to-
day’s IoT environment anymore. Hence, they lack a certain practicality.

2.2. Keyword search in blockchain

Blockchain technology has features such as decentralization, tamper-
proof, and a complete history of all transactions. Smart contracts in
blockchain are self-executing contracts whose terms are written directly
in the lines of code. Once incidents trigger the terms in the contract,
the code will be executed automatically. As a result, blockchain and
smart contracts are widely used to perform verification operations in
SE schemes. Hu et al. [32] enables decentralized and fair keyword
search of encrypted databases via smart contracts in Ethernet. [33]
have similarities to [32]. In this type of scheme, the search index is
stored in a smart contract, and the search is executed through the
smart contract to ensure the validity of the search results. However,
executing smart contracts can lead to huge gas consumption. Miners
in the blockchain may skip verification and acknowledge the validity
of the search results directly to save computational overhead. This
phenomenon is known as the verifier’s dilemma [34], meaning the
search results are claimed to be verified, but in fact, are not verified.

Therefore, some scholars combined traditional verifiable search
schemes with blockchain. Li et al. [12] proposed a searchable encryp-
tion scheme verification mechanism based on Bitcoin. In this scheme,
blockchain nodes compare the Message Authentication Code (MAC) of
search results with the reserved MAC in the prediction list to verify the
correctness of the search results. Li et al. [13] proposed a verification
using tags stored on the blockchain to construct the Merkle Hash Tree
for public auditing of data integrity. Zhao et al. [14] used blockchain
technology to construct a scheme for checking data integrity using
bilinear pairings, the Lifted EC-ElGamal cryptosystem, and aggregated
signatures for bulk verification. Cai et al. [15] proposed a two-level
verification mechanism, the users and the blockchain nodes perform
verification sequentially to reach a consensus on the search results. In
the [16] scheme, blockchain nodes use intermediate evidence gener-
ated during the matching process to verify the correctness of the search
results. However, none of them implemented fine-grained search results
verification.

2.3. Keyword search for cloud-assisted edge computing

Next, we briefly review recent advances in keyword search schemes
for cloud-assisted edge computing. Combined SSE and public key en-
cryption techniques, Mollah et al. [5] proposed the first secure data-
sharing scheme for cloud-assisted edge computing. But it requires edge
34
servers to share indexed encryption keys. It cannot independently
protect the data security of IoT devices. To solve this problem, Ye
et al. [11] introduced PEKS. It generates public and private keys for
each user. Edge servers use the public key to build encrypted indexes.
Like traditional PEKS, it generates a large number of ciphertext copies.
Moreover, they do not completely offload the computational burden
from IoT devices. Wang et al. [6] delegate expensive operations to the
edge servers and speed up the process of ciphertext generation by the
edge servers. Li et al. [7] absorbed the features of the chinese remainder
theorem and latent dirichlet allocation, and proposed a semantic-based
verification keyword search scheme. With the objective of improv-
ing the search efficiency of edge and the cloud server, a lightweight
SE scheme based on untrusted cloud/trusted edge architecture was
proposed [8]. In order to achieve lightweight access control in the
IoT environment, Zhang et al. [9] proposed a lightweight attribute
encryption scheme. A multi-keyword SE scheme was constructed by
Liu et al. [10] and implemented fine-grained access control based on
attribute encryption.

Cloud-assisted edge computing combined with the advantages of
cloud and edge computing. It can serve today’s IoT environment bet-
ter and provide more feasibility for keyword search schemes [35].
Probably because of the different research focuses of the schemes,
none of them achieve fine-grained validation. But MMDS can achieve
fine-grained verification and protect the data privacy of each IoT
device independently at the same time. Based on this, MMDS also
minimizes the overhead of IoT devices. Thus, MMDS is highly feasible
for real-world IoT environments.

3. Problem formulation

In this section, the system model and threat model of MMDS are
established, and the design goal of our MMDS is stated.

3.1. System model

First, we present the system model of MMDS. In Fig. 2, our system
model consists of five entities: data owners, data users, Cloud Server
(CS), Edge Severs (ESs), and BlockChain (BC), respectively. In the
following, the functions of each entity will be described in detail.

Data owners: Data owners upload a large number of raw data flies
to nearby ESs.

Data users: Data users send search keywords to nearby ESs.
CS: CS is in charge of storing ciphertexts as well as performing

search operations.
ESs: When data owners upload data files, ESs establish encrypted

indexes and encrypt the file sets, as well as generate verification
information for each file; when data users send search requests, ESs
generates trapdoors, verify the search results, and decrypts the correct
ciphertexts.

BC: BC is responsible for storing the verification information and
performing the search operation.

In MMDS, the storage and computing capacity of most IoT devices is
limited, so data owners upload their raw data flies to nearby ESs (Step
(1)). ESs outsource encrypted indexes and ciphertexts to CS (Step (2)),
and store verification information in BC (Step (3)). It is worth noting
that to improve the security and flexibility of our MMDS system, ESs
build encrypted indexes using random keys each time. The encrypted
indexes are built differently for different IoT devices, even for the
same keywords. Data users submit search keywords (Step (4)) via their
nearby ES. Once an ES receives the search request, it generates a
trapdoor and delivers it to the CS and BC (Step (5)). The search result
is returned by CS to ES (Step (6)). The BS returns the corresponding
verification information to the ES (Step (7)). Finally, the ES completes
the fine-grained verification of the search results, decrypts qualified
ciphertext, and returns it to the data users (Step (8)).

Future Generation Computer Systems 151 (2024) 32–44S. Zhang et al.

3

e
i
e
e
t
s
C
w
a
a
(

3

p
u

s

r
k

4

4

t
t
f
(

p

e
𝑎
h

4

t
d
v
f

t

𝐻

4

i
i
e
v

t
h
c
t

t
c
m
W

5

T
s
T

5

s
w
e
o
s
t
a
b
s
g

Fig. 2. System model of MMDS.

.2. Threat model

In the MMDS scheme, data owners and data users are trusted
ntities. ESs are deployed for their IoT devices, so IoT devices trust ESs
n their vicinity. BC are open, transparent, decentralized, non-falsifiable
ntities, which are trusted in terms of correctness and availability of
xecution. Unlike other works, CS in this scheme is malicious. Due
o profit or other motives, it may perform only a small part of the
earch operation, falsifying or tampering with the search results. If
S knows that a search result verification algorithm is deployed, it
ill remove or tamper with the verification information in order to
void responsibility. Besides the above description, our scheme may be
ttacked by CS or external attackers such as Chosen-Plaintext Attack
CPA), which is the goal to be achieved.

.3. Design goals

In this work, our MMDS should satisfy the following three goals:
1. Independent privacy-protection: MMDS should independently

rotect the privacy of data files and keywords of every IoT device. The
nlinkability of trapdoors should also be implemented.

2. Fine-grained verifiability: MMDS should provide a fine-grained
earch results verification mechanism for data users.

3. Search effectiveness and efficiency: MMDS should provide accu-
ate search results for data users. MMDS should efficiently implement
eyword search and verification mechanisms.

. Preliminaries

.1. Bilinear pairing map

Bilinear pairing is a binary mapping, which is used as a construction
ool for cryptographic algorithms and is used in the SE mechanism
o encrypt keywords or data files. Their security is all based on dif-
erent security assumptions, such as DLP (Section 4.2), and DDHP
Section 4.3).

Suppose 𝐺1, 𝐺2 represents the group of two multiplicative cycles of
rime order p, generating element g. A bilinear map 𝑒: 𝐺1 × 𝐺1 → 𝐺2

following nature is guaranteed:
1. Computable: For any 𝑔, ℎ ∈ 𝐺1, there is a time algorithm for the

polynomial to compute 𝑒(𝑔, ℎ) ∈ 𝐺2.
2. Bilinear: For all 𝑥, 𝑦 ∈ 𝑍∗

𝑝 and 𝑔, ℎ ∈ 𝐺1, the equality 𝑒(𝑔𝑥, ℎ𝑦) =
𝑒(𝑔, ℎ)𝑥𝑦 holds.

3. Non-degenerate: If 𝑔, ℎ are generators of 𝐺1, then 𝑒(𝑔, ℎ) is a
35

generator of 𝐺2. w
4.2. Discrete logarithm problem (DLP)

The DLP problem is as follows: 𝑔 represent a generator of the group
𝐺1 with order 𝑝. If the values of 𝑔 and 𝑔𝑎 are given, ask for the
calculation of a ∈ 𝑍∗

𝑝 . The non-existence of polynomial-time algorithms
that have non-negligible advantages in solving DLP.

4.3. Decisional diffie–hellman problem (DDHP)

The DDHP problem is as follows: 𝑔 represent a generator of the
group G with order 𝑝, Randomly generate 𝑎, 𝑏, 𝑐 ∈ 𝑍∗

𝑝 given (𝑔, 𝑔𝑎, 𝑔𝑏),
ffectively distinguishing between 𝑔𝑎𝑏 and 𝑔𝑐 (i.e., determining whether
𝑏 = 𝑐 holds). The non-existence of polynomial-time algorithms that
ave non-negligible advantages in solving DDHP.

.4. Hashing function

In a hash algorithm, a binary value string of any length is mapped
o a fixed length binary value string. It is mapped through the original
ata using the hash algorithm. The result of the mapping is the hash
alue string obtained from the original data. The hash function has the
ollowing properties.

1. Unidirectional: It is not feasible to calculate message 𝑚 according
o 𝐻𝑎𝑠ℎ(𝑚) = ℎ for a given hash value for any hash function.

2. Collision resistance: It is infeasible to find so that 𝐻𝑎𝑠ℎ(𝑚1) ≠
𝑎𝑠ℎ(𝑚2) for two messages 𝑚1 ≠ 𝑚2 for any Hash function.

.5. Consensus mechanism in blockchain

Blocks are sequentially linked into a chain, known as a blockchain,
n the order in which they were formed, where each block holds specific
nformation. The blockchain can be understood as a shared, tamper-
vident ledger. It does not rely on third-party regulation and stores,
erifies, and transmits data through its own distributed nodes.

Storing data as chains in the blockchain is necessary to safeguard
he data from tampering. Each participating node in the blockchain
as equal rights to record data, which is drastically different from
entralized architectures. For consistency and correctness of the data,
he nodes need a consensus mechanism to make the data agreeable.

Consensus mechanisms determine the bookkeeping rights of data
hrough special rules known to each node. The aim is to keep the data
onsistent across the distributed nodes in the blockchain. Some of the
ore common blockchain consensus mechanisms [36–39] are Proof Of
ork (POW), Proof Of Stake (POS), etc.

. Our proposed MMDS scheme

In this section, we firstly introduced the main idea of MMDS.
hen we formally define MMDS, and finally, demonstrate its concrete
tructure. Before that, the main notations and descriptions are given in
able 1.

.1. Main idea

In the previous scheme, the ES used an index key to build a
earchable encrypted index and upload it to the CS. When a data user
ants to access the ciphertext, in order to be able to retrieve the
ncrypted index efficiently, it needs to communicate with the ES to
btain the corresponding key to build a trapdoor. However, there is a
ignificant communication overhead and security risk associated with
his approach. To solve this problem, we have cleverly constructed
n encryption algorithm and a trapdoor generation algorithm using
ilinear pairings. The encryption algorithm allows ESs to construct a
earchable encryption index using a different random key. The trapdoor
eneration algorithm allows ESs to generate trapdoors for data users

ithout having to communicate with other ESs.

Future Generation Computer Systems 151 (2024) 32–44S. Zhang et al.

f
v
f
B
r
a
u
i
i
f
a
i
c
t
r
i
a
e
c
e

5

t
i

Table 1
Notations and Descriptions.

Notations Descriptions

𝐹 = {𝑓1 , 𝑓2 , . . . , 𝑓𝑛} File set
𝐾 Symmetric key of file
𝐶 = {𝑐1 , 𝑐2 , . . . , 𝑐𝑛} Ciphertext set
𝑊 = {𝑤1 , 𝑤2 , . . . , 𝑤𝑚} Keyword set
𝐶𝐼 = {𝑐𝑖𝑤1

, 𝑐𝑖𝑤2
, . . . , 𝑐𝑖𝑤𝑚

} Encryption index in ciphertext of keyword 𝑤

𝑉 = {𝑣1 , 𝑣2 , . . . , 𝑣𝑛} Verification information of file set 𝐹

𝑉 𝐼 = {𝑣𝑖𝑤1
, 𝑣𝑖𝑤2

, . . . , 𝑣𝑖𝑤𝑚
} Encryption index in verification information of keyword 𝑤

𝑇𝑤 Trapdoor of keyword 𝑤

𝐶𝑅𝑤 = {𝑐𝑟1 , 𝑐𝑟2 , . . . , 𝑐𝑟𝑡} Search result set in ciphertext of keyword 𝑤

𝑉 𝑅𝑤 = {𝑣𝑟1 , 𝑣𝑟2 , . . . , 𝑣𝑟𝑡} Search result set in verification information of keyword 𝑤

𝑅 Result of verification
|𝛼| If 𝛼 is a string, |𝛼| denotes the bit length of 𝛼;

If 𝛼 is a set, |𝛼| denotes cardinality of 𝛼.
In addition, previous schemes did not allow for fine-grained veri-
ication of search results. To solve this problem, we have designed a
erification algorithm. We use the unidirectional nature of the hash
unction to protect the search results, and the tamper-proof nature of
C to ensure the validity of the verification information. The collision
esistance of the hash function and the consensus mechanism of BC
chieve fine-grained verification. During the encryption phase, the ESs
se a hash function to compute the verification information and record
t on the BC. In order to be able to obtain the corresponding verification
nformation from the BC, the ESs build a searchable encryption index
or the verification information. This is recorded on the blockchain
long with the verification information in the form of a backward
ndex. If the encrypted indexes of the verification information and the
iphertext are the same, the attackers may find the connection and
he privacy of the data may be leaked. Taking this into account, we
equire that a different indexing key is used each time an encrypted
ndex is constructed. In other words, the same keyword is encrypted
nd indexed differently. Finally, we cleverly design the structure of the
ncrypted index using the nature of bilinear pairings. With no extra
ommunication, only one trapdoor is needed to be able to retrieve the
ncrypted indexes in both CS and BC.

.2. Scheme definition

In the proposed MMDS scheme, system setup, encrypt, generate
rapdoor, search, verify and decrypt are the six algorithms. The follow-
ng formal definitions exist.

• System Setup (1𝜆) → (𝐶𝑃 , 𝑆𝑃): Input security parameters 𝜆 to
the system, output common parameters 𝐶𝑃 and secret parameters
𝑆𝑃 , and distribute the 𝑆𝑃 secretly to ESs in the system.

• Encrypt (𝐹 ,𝑊 ,𝐾, 𝐶𝑃 , 𝑆𝑃) → (𝐶,𝐶𝐼, 𝑉 , 𝑉 𝐼): ESs input file set
𝐹 , keyword set 𝑊 , symmetric key 𝐾, random key 𝑘𝑐 , 𝑘𝑣 ∈
𝑍∗

𝑝 , common parameters 𝐶𝑃 and secret parameters 𝑆𝑃 , output
ciphertext set 𝐶 and its encryption indexes 𝐶𝐼 , and verification
information set 𝑉 and its encryption indexes 𝑉 𝐼 .

• Generate Trapdoor (𝑤,𝐶𝑃 , 𝑆𝑃) → (𝑇𝑤): ESs input a data user’s
search keyword 𝑤, random numbers 𝑟1, 𝑟2 ∈ 𝑍∗

𝑝 , common pa-
rameters 𝐶𝑃 and secret parameters 𝑆𝑃 , and it generates the
corresponding trapdoor 𝑇𝑤.

• Search (𝑇𝑤, 𝐶𝐼, 𝑉 𝐼)→ (𝐶𝑅𝑤, 𝑉 𝑅𝑤): CS inputs trapdoor 𝑇𝑤 and
𝐶𝐼 , outputs the corresponding set of ciphertext search results
𝐶𝑅𝑤. BC inputs 𝑇𝑤 and 𝑉 𝐼 , outputs the corresponding set of
verification information results 𝑉 𝑅𝑤.

• Verify (𝐶𝑅𝑤, 𝑉 𝑅𝑤)→ (𝑅): ESs inputs the set of ciphertext search
results 𝐶𝑅𝑤, the set of verification information search results
𝑉 𝑅𝑤, and outputs the verification results 𝑅.

• Decrypt (𝐶𝑅𝑤, 𝑅, 𝐾)→(𝐹𝑤): ESs inputs the search result set of
ciphertext 𝐶𝑅𝑤, the verification result 𝑅, symmetric key 𝐾, and
outputs the set of correct files 𝐹 .
36

𝑤

Fig. 3. An inverted index.

5.3. Construction of MMDS

5.3.1. System setup
In the system setup phase, our scheme generates the working en-

vironment. We first choose two multiplicative cyclic groups of mero-
morphic order 𝑝, 𝐺1, 𝐺2. 𝑔 is the generating element of 𝐺1. Define the
bilinear mapping 𝐺1 × 𝐺1 → 𝐺2. Choose two one-way conflict-proof
hash functions: 𝐻1: {0, 1}∗→𝑍∗

𝑝 and 𝐻2: {0, 1}∗→{0, 1}𝜆. In addition,
the system generates four large prime numbers and 𝑝1, 𝑝2, 𝑝3, 𝑝4 ∈ 𝑍∗

𝑝 ,
and 𝑝1 × 𝑝2 = 𝑝, 𝑝3 × 𝑝4 = 𝑝. Finally the system issues common
parameter 𝐶𝑃 = {e, 𝑔, 𝑝, 𝐺1, 𝐺2, 𝐻1, 𝐻2} and distributes secret
parameter 𝑆𝑃 = {𝑝1, 𝑝2, 𝑝3, 𝑝4} to ESs.

We assume that before new ESs and data users join the system, strict
system authorization needs to be imposed. Once the authorization is
passed, ESs obtains the 𝑆𝑃 , and data users received the file symmetric
key 𝐾 via a secure communication channel.

5.3.2. Encrypt
For the purpose of reducing the computing costs of IoT devices, data

owners will send data files to their near ESs via security channels, and
abstract keywords send to their near ESs.

An ES receives a data owner file set 𝐹 and a keyword set 𝑊
within its coverage area. To enable data users to securely and efficiently
obtain the data files they need, ESs first construct searchable and secure
indexes. For the purpose of improving search efficiency, an inverted
index structure is used in the scheme. An inverted index is the mapping
of a set of data files (including keywords) that store keywords. As
shown in Fig. 3, an inverted index, where the first row indicates that
the files containing the keyword 𝑤1 are 𝑓1, 𝑓2, 𝑓4, 𝑓8. ESs uses the
following way to encrypt the keyword set 𝑊 of a data owner, as shown
below: 𝐶𝐼𝑤𝑖

= 𝑔𝐻1(𝑤𝑖)+𝑝1⋅𝑘𝑐 , where 1 ≤ i ≤ |𝑊 |. 𝐻1 is a hash function
in the system public parameters. 𝑝1 is an important parameter shared
between the system and ESs. 𝑘𝑐 ∈ 𝑍∗

𝑝 is a random key for the encryption

indexes. ESs uses different random keys every time for data owners. It

Future Generation Computer Systems 151 (2024) 32–44S. Zhang et al.

𝐸
S

c
i
𝐻

b
E
b
i
b
i
o
t
i
a
k

𝐶
p
i
e

5

f
s
E
s

e
d
n
E
k
𝑟
𝑟
s

5

a
𝑐
e

t
i

(
O

a
a
𝑉
f

5

c
t
{
t
t
f

can increase the security of each data owner’s privacy precisely. ESs
uses the different random key for data owners, ensuring protect the
data security of each data owner independently.

To protect the privacy of the files, the ES uses the following formula
to encrypt each file 𝑓𝑖 ∈ 𝐹 : 𝐶𝑖 = Enc(𝑓𝑖, 𝐾), where 1 ≤ i ≤ |𝐹 |.
𝑛𝑐(,) is a systematic encryption method (e.g., AES, DES). 𝐾 is a secret
ymmetric key.

To curb the untrusted cloud server and achieve fine-grained verifi-
ation, the ES uses the following formula to calculate the verification
nformation for each ciphertext 𝑐𝑖 ∈ 𝐶: 𝑣𝑖 = 𝐻2(𝑐𝑖), where 1 ≤ i ≤ |𝐹 |.
2 is a hash function in the system public parameter.

In order to efficiently search for verification information, the ES also
uilds searchable encrypted indexes for the verification information.
ach keyword 𝑤𝑖 ∈ 𝑊 is encrypted by the following method, as shown
elow: 𝑉 𝐼𝑤𝑖

= 𝑔𝐻1(𝑤𝑖)+𝑝3⋅𝑘𝑣 , where 1 ≤ i ≤ |𝑊 |. 𝐻1 is a hash function
n the system public parameters. 𝑝3 is an important parameter shared
etween the system and ESs. 𝑘𝑣 ∈ 𝑍∗

𝑝 is a random key for the encryption
ndexes. Similar to the encrypted indexes used in the construction
f CS. ESs uses a different random key. It independently safeguards
he privacy of each data owner and strengthens privacy security. It
s worth noting that since different keys are used in the scheme, CS
nd BC correspond to different ciphertexts, even if they store the same
eyword.

Finally, the ES stores the ciphertext set 𝐶 and its encrypted indexes
𝐼 in 𝐶𝑆 to enjoy its powerful computing and storage capabilities. To
revent malicious 𝐶𝑆 from deleting or tampering with the verification
nformation, the ES records the verification information 𝑉 and its
ncrypted index 𝑉 𝐼 on the 𝐵𝐶.

.3.3. Generate trapdoor
To enable efficient, low-overhead search for data users, data users

irst log on to their nearby ES and send the search keywords over a
ecure channel to their nearby ES. To protect the search keywords,
Ss encrypts the keywords to generate trapdoors before submitting the
earch request to the 𝐶𝑆.

In order to allow ESs to securely generate trapdoors, keyword
ncryption should satisfy two main conditions. First, ESs can generate a
ifferent trapdoor for the same keyword each time. Second, ESs do not
eed to ask other ESs to generate keys to construct trapdoors. That is,
Ss are able to generate trapdoors independently. ESs encrypt searched
eyword 𝑤 is as follows: 𝑇𝑤 = (𝑔𝑟1⋅𝐻1(𝑤)∕𝑟2 , 𝑔𝑟1⋅𝑟2⋅𝑝2⋅𝑝4 , 𝑔𝑟12⋅𝑝2⋅𝑝4), where
1, 𝑟2 ∈ 𝑍∗

𝑝 are two variable and random numbers. Since the value of
1, 𝑟2 are variable, the security and the randomness of trapdoors have
ignificant improvement.

Finally, ESs sends it to CS and broadcasts it to the full BC.

.3.4. Search
The search process is conducted in two steps.
In the first step, after receiving the trapdoor 𝑇𝑤 = (𝑇1, 𝑇2, 𝑇3) from

n ES, CS searches encrypted indexes 𝐶𝐼 in turn. For each sub-index
𝑖𝑤𝑖

, CS will test for a match between 𝑇𝑤 and 𝑐𝑖𝑤𝑖
by using the following

quation:
𝑒 (𝑐𝑖𝑤𝑖

, 𝑇3)
=𝑒 (𝑔𝐻1(𝑤𝑖)+𝑝1⋅𝑘𝑐 , 𝑔𝑟12⋅𝑝2⋅𝑝4)
=𝑒 (𝑔𝐻1(𝑤𝑖) , 𝑔𝑟12⋅𝑝2⋅𝑝4) 𝑒 (𝑔𝑝1⋅𝑘𝑐 , 𝑔𝑟12⋅𝑝2⋅𝑝4)
=𝑒 (𝑔𝐻1(𝑤𝑖) , 𝑔𝑟12⋅𝑝2⋅𝑝4) 𝑒 (𝑔, 𝑔)𝑟1

2⋅𝑘𝑐 ⋅𝑝1⋅𝑝2⋅𝑝4

=𝑒 (𝑔𝐻1(𝑤𝑖) , 𝑔𝑟12⋅𝑝2⋅𝑝4) 𝑒 (𝑔, 𝑔)𝑟1
2⋅𝑘𝑐 ⋅𝑝⋅𝑝4

=𝑒 (𝑔𝐻1(𝑤𝑖) , 𝑔𝑟12⋅𝑝2⋅𝑝4) × 1
=𝑒 (𝑔𝐻1(𝑤𝑖) , 𝑔𝑟12⋅𝑝2⋅𝑝4),
𝑒 (𝑇1, 𝑇2)
=𝑒 (𝑔𝑟1⋅𝐻1(𝑤)∕𝑟2 , 𝑔𝑟1⋅𝑟2⋅𝑝2⋅𝑝4)
=𝑒 (𝑔𝐻1(𝑤) , 𝑔𝑟12⋅𝑝2⋅𝑝4).
If the above equation holds, it shows the ciphertext corresponding

o the inverted index 𝑐𝑖𝑤𝑖
is the correct search result. Because 𝑒(𝑔, 𝑔)
37

s a group element in 𝐺2 with the order 𝑝 = 𝑝1 × 𝑝2. Therefore r
𝑔, 𝑔)𝑟1
2⋅𝑘𝑐 ⋅𝑝1⋅𝑝2⋅𝑝4 = 𝑒 (𝑔, 𝑔)𝑟1

2⋅𝑘𝑐 ⋅𝑝⋅𝑝4 = 𝑒 (𝑔, 𝑔)(𝑟1
2⋅𝑘𝑐 ⋅𝑝⋅𝑝4)𝑚𝑜𝑑𝑝 = 𝑒 (𝑔, 𝑔)0 = 1.

bviously, 𝑒 (𝑐𝑖𝑤𝑖
, 𝑇3) = 𝑒 (𝑇1, 𝑇2) holds if 𝑤 = 𝑤𝑖.

In the second step, after the BC receives the transaction 𝑇𝑤 from
data user, the nodes of the BC, motivated by the consensus mech-

nism (e.g., POW, POS, etc.), retrieve the encrypted indexes 𝑣𝑖𝑤𝑖
∈

𝐼 recorded in the blockchain in turn. The blockchain will use the
ollowing equation to test whether 𝑇𝑤 and 𝑣𝑖𝑤𝑖

match:
𝑒 (𝑣𝑖𝑤𝑖

, 𝑇3)
=𝑒 (𝑔𝐻1(𝑤𝑖)+𝑝3⋅𝑘𝑣 , 𝑔𝑟12⋅𝑝2⋅𝑝4)
=𝑒 (𝑔𝐻1(𝑤𝑖) , 𝑔𝑟12⋅𝑝2⋅𝑝4) 𝑒 (𝑔𝑝3⋅𝑘𝑣 , 𝑔𝑟12⋅𝑝2⋅𝑝4)
=𝑒 (𝑔𝐻1(𝑤𝑖) , 𝑔𝑟12⋅𝑝2⋅𝑝4) 𝑒 (𝑔, 𝑔)𝑟1

2⋅𝑘𝑣⋅𝑝2⋅𝑝3⋅𝑝4

=𝑒 (𝑔𝐻1(𝑤𝑖) , 𝑔𝑟12⋅𝑝2⋅𝑝4) 𝑒 (𝑔, 𝑔)𝑟1
2⋅𝑘𝑣⋅𝑝⋅𝑝2

=𝑒 (𝑔𝐻1(𝑤𝑖) , 𝑔𝑟12⋅𝑝2⋅𝑝4) × 1
=𝑒 (𝑔𝐻1(𝑤𝑖) , 𝑔𝑟12⋅𝑝2⋅𝑝4),
𝑒 (𝑇1, 𝑇2)
=𝑒 (𝑔𝑟1⋅𝐻1(𝑤)∕𝑟2 , 𝑔𝑟1⋅𝑟2⋅𝑝2⋅𝑝4)
=𝑒 (𝑔𝐻1(𝑤) , 𝑔𝑟12⋅𝑝2⋅𝑝4).
If the above equation holds, the consensus mechanism of the BC will

return the corresponding verification information to the ESs. Obviously
𝑒 (𝑣𝑖𝑤𝑖

, 𝑇3) = 𝑒 (𝑇1, 𝑇2) holds if 𝑤 = 𝑤𝑖.

5.3.5. Verify

Algorithm 1 Verify
Input: 𝐶𝑅𝑤, 𝑉 𝑅𝑤
Output: 𝑅
for 𝑖 ← 1 to {𝐶𝑅𝑤} do

Compute 𝐻2(𝑐𝑟𝑖);
end
if ∏𝑖=|𝐶𝑅𝑤|

𝑖=1 𝐻2(𝑐𝑟𝑖) == ∏𝑗=|𝑉 𝑅𝑤|

𝑗=1 𝑣𝑟𝑖 then
Return true;

else
for 𝑖 ← 1 to {𝑉 𝑅𝑤} do

if 𝑣𝑟𝑖 == 𝐻2(𝑐𝑟𝑖) then
Return i;

else
Return 𝑣𝑟𝑖;

end
end

end

After the search results are received from the CS, in order to
prevent the untrusted cloud server returned incorrect or incomplete
search results, the ES implements a verification algorithm based on the
verification information returned by the BC. The ES takes the param-
eters (𝐶𝑅𝑤, 𝑉 𝑅𝑤) as input to verify the validity of the search results.
This is shown in Algorithm 1. It first verifies the overall correctness
and completeness of the search results. It first gets the product of
the hash values of each ciphertext. If it is equal to the value of the
verification message returned by BC, then the search result is correct
and complete. Otherwise, it further finds out the correct ciphertext in
the search result. It will match the ciphertext with the same hash value
as the verification information, i.e., the correct ciphertext. Finally, for
unmatched ciphertexts, it returns the corresponding file flags {𝑣𝑟𝑖}.

.3.6. Decrypt
The data users send the file symmetric key 𝐾 to the ES via a secure

hannel. If 𝑅 = true, the ES decrypts all search results and sends them to
he data users. Otherwise, the ES decrypts the ciphertext of file number
i} based on the verification result 𝑅. The ES sends it to the data users
ogether with {𝑣𝑟𝑖}. In the following progress, the data users are able
o interact with the data owners or the cloud server to find the missing
iles based on {𝑣𝑟𝑖}, eventually to get the correct and complete search
esults.

Future Generation Computer Systems 151 (2024) 32–44S. Zhang et al.

t
i
p
a
g

o
c

s

{

t

r
a

o
s

A
w
t

𝑚

𝐸
=
a
𝜇
𝐸
n

𝑚

𝜇
𝑔
g

6. Security proof and analysis

We first formally prove the semantic security of MMDS satisfying
CPA by challenger and adversary game. Challenger and adversary
game is a common model for security proofs. The model evaluates
the security of the scheme by simulating a challenger’s attack on the
encryption scheme. Then, we provide a comprehensive security analysis
for MMDS.

6.1. Security proof

In the encryption phase of MMDS, we construct two encryption
indexes, the encryption index of the ciphertext and the encryption
index of the verification information. Their basic encryption blocks can
be expressed as 𝐸(𝑚) = 𝑔𝑚+𝑞𝑟, of which 𝑟 is the random key, 𝑞 represent
he 𝑝1 or 𝑝3 of secret parameter. Before proving that the encryption
ndex in MMDS satisfies semantical security against CPA. We define a
olynomial challenger 𝑋 has a non-negligible advantage, namely the
bility to break the 𝐸 with the traditional challenger and adversary
ame, as we will demonstrate.
Setup: The challenger setup the algorithm through the system. The

pponent has access to the common parameters announced by the
hallenger.
Phase 1: The adversary adaptively accesses oracle 𝐸 multiple times,

then outputs never accessed for oracle 𝐸 with two equal length mes-
ages 𝑚0, 𝑚1.
Challenge: The challenger sends 𝐸(𝑚𝑏) to the opponent, where 𝑏 ∈

0,1} is chosen randomly by the challenger.
Phase 2: Same as Phase 1. The adversary enters any message other

han 𝑚0 and 𝑚1 and continues to access oracle 𝐸.
Guess: The opponent makes a guess on 𝑚0 or 𝑚1, and outputs the

esult 𝑏′. If 𝑏′ = 𝑏, it means that the opponent wins. The opponent’s
dvantage is:
𝐴𝑑𝑣𝐶𝑃𝐴

𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑦 = |𝑃𝑟[𝑏′ = 𝑏]- 12 |.
Definition 1. If the adversary 𝑋 without any polynomial has a non-

negligible advantage. Then the encryption 𝐸 of MMDS satisfies the
indistinguishable security under CPA.

Theorem 1. If the DDHP assumption holds, the encryption 𝐸 of
satisfies indistinguishable security under CPA in random oracle model.

Proof: If the polynomial adversary 𝑋 can win the game by breaking
racle 𝐸 with a non-negligible advantage 𝜀, then we can construct a
imulator 𝑆, 𝑆 can solve the DDHP with a non-negligible advantage.

The challenger 𝑍 first flips a binary coin 𝜇, if 𝜇 = 0, 𝑍 sets 𝑡0 = (𝑔,
= 𝑔𝑎, B = 𝑔𝑏, C = 𝑔𝑎𝑏). If 𝜇 = 1, 𝑍 sets 𝑡1 = (𝑔, A = 𝑔𝑎, B = 𝑔𝑏, C=𝑔𝑐),
here a, b, c are chosen from 𝑍∗

𝑞 at random uniformly. 𝑍 will sent 𝑡𝜇
o 𝑆, and 𝑆 plays the role of challenger 𝑍 in the following game.
Setup: 𝑆 sends common parameters {𝑔, 𝑝} to 𝑋.
Phase 1: 𝑋 accesses oracle 𝐸 several times by using any information

in 𝑍∗
𝑞 , and asks for the corresponding ciphertext each time. Finally, he

outputs two equal-length and unaccessed oracle 𝐸 informations 𝑚0 and
1, and sends them to 𝑆.
Challenge: 𝑆 tosses the coin 𝑏 ∈ {0,1}, and encrypts message 𝑚𝑏 as

′ = 𝑔𝑚𝑏 × C. If 𝜇 = 0, C = 𝑔𝑎𝑏, We let 𝑎𝑏 = 𝑞𝑟, 𝐸′ = 𝑔𝑚𝑏 × C = 𝑔𝑎𝑏 × C
𝑔𝑚𝑏+𝑞𝑟. Since 𝑟 is a randomly chosen element of oracle 𝐸, 𝑞𝑟 is also
random element. Therefore, 𝐸′ is a valid encryption for oracle 𝐸. If
= 1, C = 𝑔𝑐 . Then we have 𝐸′ = 𝑔𝑚𝑏+𝑐 , Since c is a random element,
′ is a random element in 𝐺1 from the point of view of 𝑋 and contains
o message about 𝑚𝑏.
Phase 2: 𝑋 continues to access any message in oracle 𝐸 other than

0 and 𝑚1.
Guess: 𝑋 outputs a guess 𝑏′ of 𝑏. Then 𝑆 outputs a guess 𝜇′ = 0 of

. This means that 𝑍 sends a valid encrypted tuple 𝑡0 = (𝑔, A = 𝑔𝑎, B =
𝑏, C = 𝑔𝑎𝑏) to 𝑆. Since 𝑋 has the advantage of breaking 𝐸, 𝑋 outputs a
uess 𝑏′ of 𝑏 that satisfies 𝑏′ = 𝑏 with probability 1

2+𝜀. Correspondingly,
𝑋 outputs a guess 𝜇′ = 𝜇 = 0 with probability 1

2+𝜀. If 𝑏′ ≠ 𝑏, then 𝑍
outputs a guess 𝜇′ = 1 of 𝜇. This means that a random tuple 𝑡 is sent to
38

1

𝑆. Thus, 𝑋 outputs a guess 𝑏′ ≠ 𝑏 with probability 1
2 . Correspondingly,

S outputs a guess 𝜇′ that satisfies 𝜇′ = 𝜇 = 1 with probability 1
2 .

Thus, the overall advantage of 𝑆 solving the DDHP is:
𝐴𝑑𝑣𝐶𝑃𝐴

𝑆
=|

1
2𝑃𝑟[𝜇 = 𝜇′

|𝜇 = 0] + 1
2𝑃𝑟[𝜇 = 𝜇′

|𝜇 = 1] − 1
2 |

=|] 1
2 (

1
2 + 𝜀) + 1

2 × 1
2] − 1

2 |

= 𝜀
2 .

Clearly, if 𝑋 can break 𝐸 with a non-negligible advantage 𝜀, the
𝑆 able to solve the DDHP with the non-negligible advantage 𝜀

2 . All of
these contradict the DDHP assumption.

6.2. Security analysis

1. Security of data files: Based on the security of symmetric encryp-
tion (e.g., AES, DES), data files also possess indistinguishability. As long
as the symmetric key is not leaked, the cloud server cannot obtain the
information in the data file from the ciphertext.

2. Security of trapdoor: If the DLP assumption holds, it is impossible
to recover the search keyword 𝑤 from 𝑇𝑤. At the same time, ESs
introduce random numbers 𝑟1, and 𝑟2 each time when a trapdoor is
constructed, ensuring the unlinkability of the trapdoor.

3. Security of encrypted indexes: In Section 6.1, we demonstrate
that our encrypted indexes satisfy the indistinguishable security in the
random oracle model under CPA based on the DDHP. Our encrypted
indexes are more compatible with the security requirements of keyword
search in cloud-assisted edge environments. ESs uses different keys to
build encrypted indexes for different IoT devices each time. Even if an
edge server accidentally leaks an encryption key, it will not endanger
the data security of other IoT devices. It independently protects the
privacy of each IoT device. Secondly, each encryption index is built
using a different random key, even if the same keyword generates a
different encryption index, ensuring the flexibility and security of the
system.

4. Security of verification information: In MMDS, each verification
information is encrypted by a hash function. The unidirectional hash
function ensures the security of the verification information. The secu-
rity is demonstrated in [40]. In addition, the tamper-evident nature of
the BC and the consensus mechanism [36–39] ensures the authenticity
of the verification information.

7. Performance analysis and evaluations

In this section, in order to simulate a real IoT environment, we chose
time cost and storage costs as the evaluation indicators to compare the
performance of the algorithms. We implement all the necessary pro-
cesses such as constructing encryption indexes, generating trapdoors,
searching, generating verification information, and verifying. In the
experimental tests, for each scheme, we averaged the results of multiple
experiments to ensure accuracy.

We compare some representative schemes with similar research
directions as in this paper, such as CECS [11] and QRVS [31]. CECS
achieves secure and flexible data sharing for cloud–edge collaborative
storage. It uses traditional PEKS to avoid the burden of key manage-
ment. It uses each data user’s public key to construct an encrypted
index. But a large number of data users would place a huge burden
on CECS. It still requires the IoT device itself to generate a trapdoor.
It is not friendly to resource-constrained IoT devices. Our scheme
cleverly uses the nature of bilinear pairings to design the structure of
the encrypted index, effectively avoiding these problems. CECS, like
most other schemes, does not implement fine-grained verification of
search results. QRVS implements fine-grained verification in the cloud
environment with the Counting Bloom Filter. The Counting bloom filter
take up a lot of space to ensure their accuracy, and complex deletion
operations can be computationally burdensome. Our scheme uses the
small size and speed of hash functions to improve efficiency while
ensuring security and accuracy.

Future Generation Computer Systems 151 (2024) 32–44S. Zhang et al.
Table 2
Summary of theoretical analysis.

Schemes CECS [11] QRVS [31] MMDS

Computation costs Storage costs Computation costs Storage costs Computation costs Storage costs

Encryption index 𝑑(2E+P+𝐻1+𝐻2) 𝑑(|𝑍∗
𝑝 |+|𝐺1|) / / E+𝐻1 |𝐺1|

Trapdoor E+𝐻1 |𝐺1| / / 3E+𝐻1 3|𝐺1|

Search 𝑑𝑚(P+𝐻2) / / / 2𝑚P /

Verification information 𝑛𝐻2 𝑛|𝐻2| 𝑚{𝑓𝑤𝑚𝑎𝑥
(𝐻2+𝑙𝐻3)} 𝑚|𝐵| 𝑚(E+𝐻1)+𝑛𝐻2 𝑚|𝐺1|+𝑛|𝐻2|

Verify 𝑡𝐻2 / 𝑡(𝐻2+𝑙𝐻3) / 𝑡𝐻2 /

Notes. 𝑑: Number of data users; 𝑚: Number of keywords; 𝑛: Number of files; 𝑡: Number of search results; |𝐵|: length of a counting bloom filter 𝐵; 𝑙: number of hash function in a
counting bloom filter; /: Without consideration.
Fig. 4. Storage costs of encrypted indexes.
t
l
o
t
t
o
i
a
g
T
a

a
F
n
o
t
Q
b
F
M
k
l

7.1. Theoretical analysis

Table 2 presents an analysis of the theoretical overheads around
the computational and storage costs of the above schemes. Before the
analysis, we introduced some time-consuming operations. For example,
E: modular exponentiation operation in group G; 𝐻1: a hash operation
which maps any string with arbitrary length into a group element in
𝑍∗

𝑞 ; 𝐻2: a hash operation which maps any string with arbitrary length
into a group element in 256 bits (e.g., Sha-256); 𝐻3: a hash operation
which maps any string with arbitrary length into a group element in
counting bloom filters.

The outcomes in Table 2 reveal the MMDS performance in con-
structing encrypted indexes, searching, generating verification infor-
mation, and verifying is significantly better than the other schemes.
Compared to CECS, the computational and storage overhead of MMDS
does not increase as the increase of data users in the system. A pro-
fessional, powerful system may include hundreds or thousands of data
users, and MMDS is far more efficient and responsive. MMDS has a
slightly higher computational and storage overhead for trapdoor than
CECS. In MMDS, ESs bear the cost of generating trapdoors for data
users in the coverage area. It is acceptable for ESs with some compu-
tational and storage capacity. However, in CECS data users bear the
cost of trapdoor generation, which is unaffordable for most resource-
constrained IoT devices. MMDS has a slightly higher computational
cost for verification information than CECS, but CECS is only able to
perform verification of the correctness of search results. Compared to
MMDS, QRVS introduces the Counting Bloom Filter, bringing with it
significant computational and storage costs and false positives with
a certain. MMDS performs fine-grained verification of search results
for data users via ESs, easing the burden on resource-constrained data
users.

7.2. Experiment setup

We build a subset of our experiment by selecting 2000 random
files on the real Request For Comments Database data set and then
39
extracting 200 keywords from them. The maximum number of files
contained in a keyword is 600. Our code uses Java Pairing-Based
Cryptography (JPBC) library.

Edge servers are Windows 10 desktop systems with an i7-7700HQ
and 8 GB RAM, which are responsible for the execution of encrypted
indexes, trapdoors, and the generation of verification information. The
cloud server is also Windows 10 desktop system with an i7-7700 CPU
and 8 GB RAM, which is responsible for performing search operations.

7.3. Storage costs

We invoke the API getLengthInBytes() to acquire the size. |𝑧∗𝑞 | = 128
bytes, |𝐺1| = |𝐺2| = 260 bytes of group elements in elliptic curves of
ype A1. Fig. 4(a) shows that the storage size of MMDS and CECS is
inearly related to the number of encrypted indexes. When the number
f encrypted indexes is 100 for a single data user, the storage size of
heir indexes is 25.39 KB, and 37.81 KB respectively. Fig. 4(b) shows
hat when m = 10, the index storage size varies with the number
f data users 𝑑. We can observe that the index storage size in CECS
ncreases as 𝑑 increases, whereas the storage size in MMDS is not
ffected by 𝑑. This is because the number of encrypted indexes in CECS
rows exponentially in line with the increasing quantity of data users.
his denotes that the more data users there are, the more obvious the
dvantage of MMDS.

According to QRVS, when we set up the number of hash functions
t 7, the size of a counting bloom filter is set to approximately 4 KB.
ig. 5(a) shows the cost of storing verification information for different
umbers of data files, and it can be observed that the storage overhead
f MMDS increases linearly when the amount of files changes from 100
o 500 for m = 5, while the amount of data files on the verification of
RVS information has little effect on the storage overhead of QRVS,
ut the storage overhead of QRVS is much higher than that of MMDS.
ig. 5(b) shows that given 1000 data files, the storage overhead of
MDS grows independently of the keyword number, as the number of

eywords changes from 10 to 50, while the storage costs of QRVS grow
inearly. This is because CECS constructs a counting bloom filter for

Future Generation Computer Systems 151 (2024) 32–44S. Zhang et al.
Fig. 5. Storage costs of verification information.
Fig. 6. Time cost of constructing encryption indexes.
each keyword and therefore imposes heavy storage overhead. MMDS
only needs to store a small number of encrypted indexes and hashes. It
shows that MMDS has a greater advantage when faced with large-scale
data with a large number of keywords.

7.4. Time cost

In Fig. 6(a) and 6(b), we take into account both the quantity of
encrypted indexes and those of data users. In Fig. 6(a), it is known
that the linear increase in time overhead is accompanied by an increase
in the number of encrypted indexes for a single data user. The time
overhead of CECS is higher than that of MMDS because CECS requires
more power and pairing operations. In Fig. 6(b), when the number of
keywords is set to m = 5, the time cost of CECS increases linearly for
an increasing number of data users 𝑑, while MMDS is not affected by
𝑑. This is because CECS data owners are required to build an encrypted
index for each data user using their public key, resulting in a large time
overhead, whereas the data owner of MMDS needs only one encrypted
index. A system should have a large number of data users, which means
that MMDS is more practical in real-life situations.

Fig. 7 shows as the number of keywords varies, the time cost of
generating trapdoors. As the number of trapdoors changes from 1
to 8, the time overhead for MMDS and CECS construction increases
linearly, and it is obvious that MMDS requires more time overhead
than CECS. This is because MMDS requires one additional pairing when
constructing a trapdoor. However, data users in CECS need to generate
trapdoors on IoT devices using private keys. MMDS generates trapdoors
for data users by ESs, and the overhead incurred is borne by the ES. It
means MMDS is more friendly and attractive to data users, especially
40

to resource-constrained data users.
Fig. 7. Time cost of generating trapdoors.

In Fig. 8(a) and 8(b), the two factors we need to consider, include
the impact on search performance of the number of encrypted indexes
and the number of data users. Fig. 8(a) shows that the time overhead
of MMDS and CECS increases linearly with the number of encrypted
indexes for a single data user. The time overhead of MMDS is slightly
higher than that of CECS. This is because MMDS requires one more
pairing. And in Fig. 8(b), we set the number of keywords to 10 and it
shows the change in time overhead with the increase in the number of
data users. We can see that the time overhead of CECS increases linearly
with the increase of data users, while MMDS is hardly affected. This is
because the increase in the number of data users leads to an increase in
the number of encrypted indexes, and thus requires more pairings. This
further suggests that MMDS is the more efficient and practical scheme.

Fig. 9(a) shows the time cost of verification information when the
number of data files varies. It can be observed that MMDS time cost

Future Generation Computer Systems 151 (2024) 32–44S. Zhang et al.

c
i
n
a
m
a
W
Q
o
n
t
d

c
c
t
f
e

Fig. 8. Time cost of searching.
Fig. 9. Time cost of generating verification information.
Fig. 10. Time cost of verifying.

an be seen to increase linearly at m = 5 when the number of files is
ncreased from 100 to 700. While the number of data files has almost
o effect on QRVS. This is due to the fact that in our scheme, we require
hash operation for each data file. But the time overhead of QRVS is
uch. Fig. 9(b) shows that with 1000 data files, MMDS time cost has

lmost no effect when the number of keywords changes from 2 to 10.
hile the time overhead of QRVS grows linearly. This is because, in
RVS, a counting bloom filter is generated for each keyword, regardless
f the number of data files, even if some keywords include only a small
umber of files. And each counting bloom filter has an almost constant
ime overhead. That means that MMDS is more advantageous in large
ata sets.

The content of Fig. 10 shows the time cost of search result verifi-
ation. Both MMDS and QRVS time overheads increase linearly for the
hange in the number of data files from 100 to 900. QRVS has a higher
ime overhead than MMDS. MMDS only needs one hash operation per
ile. QRVS requires finishing multiple hash functions, and need to delete
lement in the Counting Bloom Filter, incurring additional overhead.
41
7.5. Engineering applications

With the application of technologies such as 5G and IoT bringing
massive growth in data, in order to enjoy the vast benefits of cloud-
assisted edge computing, multimedia devices in an increasing number
outsource their MMBD to a cloud server via edge servers. Intelligent
multimedia systems are already used in large numbers of industrial
applications such as healthcare, vehicles, and education. An electronic
library is a typical application. As shown in Fig. 11, considering the
following example: library staff collect ebooks in various locations
and they use IoT devices to store the ebooks on the cloud server via
nearby edge servers. Readers are also able to use IoT devices to access
the ebooks they want via the edge servers. However the untrusted
cloud server can control or maliciously leak these ebooks. Currently,
most research into this problem involves encrypting ebooks before they
are uploaded to the cloud server. In this case, the implementation of
searching for encrypted ebooks in the cloud server is one of the key
issues for privacy protection.

To protect the library’s privacy, edge servers need to encrypt ebooks
before they can be uploaded cloud server, and at the same time build
searchable encrypted indexes. However, staff members and readers are
on the move. The edge servers near them are uncertain. If all edge
servers use the same indexing key, this will reduce the security of the
system. If the edge servers use different index keys, when a user wants
to search for an ebook, the edge server will need to obtain authorization
from other edge servers and build multiple trapdoors to be able to
perform a useful search. This would result in significant communication
overhead and security risks. In this case, the data privacy of the
library may be compromised. We can use the proposed MMDS scheme
to protect the library’s privacy for a cloud-assisted edge computing
environment, and at the same time accomplish a secure and efficient
search. Specifically, after a staff member of the library collects ebooks

in various locations, he/she can upload them to nearby edge servers

Future Generation Computer Systems 151 (2024) 32–44S. Zhang et al.
Fig. 11. SE example of electronic library.

Fig. 12. Application diagram of MMDS scheme in electronic library.

(e.g., wireless sensor networks, etc.) via IoT devices (e.g., smartphones,
tablets, laptops, etc.). The edge server in the area encrypts the ebooks
and stores them on to cloud server according to keywords such as title
and genre. At the same time, to prevent the malicious cloud server from
deleting or tampering with the search results, the edge server uses a
hash function to calculate the verification information stored on the
blockchain.

When a reader wants to search for ‘‘secure’’ related ebooks, he/she
can use his/her smartphone to send the search keyword: ‘‘secure’’
via nearby edge servers. The edge server encrypts the keyword to
generate a trapdoor to the cloud server and blockchain at the same
time. Cloud server and blockchain respectively respond to the search
request, returning the corresponding encrypted ebook and verification
information to the edge server. For the purpose of ensuring the use-
fulness of the search results, as shown in Fig. 12, the edge server
first verifies that all qualified, correct encrypted ebooks are returned;
otherwise, it further verifies the correctness of each encrypted ebook.
Finally, the edge servers decrypt the valid ebook ciphertext and return
the ebook to the user’s smartphone. With the MMDS scheme, electronic
libraries can efficiently complete the storage and search of ebooks while
protecting data privacy. As described above, our next work will focus
on the implementation of the MMDS scheme, which is proposed in
other areas, and applied to more complex engineering problems that
can help people enjoy a more convenient life.

8. Conclusion and the future work

In this paper, we propose a secure and verifiable multimedia data
search scheme for cloud-assisted edge computing. It exploits the nature
42
of bilinear pairings to achieve keyword search on encrypted data.
It utilizes blockchain and hashing techniques to achieve fine-grained
verification of search results. It reduces the burden on IoT devices
by introducing edge servers. In terms of function, it supports more
secure, flexible, and lightweight keyword search. It also supports more
efficient fine-grained verification. The results of the security proof and
analysis show that it is secure and effective. We have also evaluated
its performance through several simulation experiments, indicating its
efficiency and practicality. It can also be applied to solve practical
problems in intelligent multimedia systems, such as electronic libraries.
We will explore multi-keyword search and keyword sorting search
schemes for cloud-assisted edge computing in future work.

CRediT authorship contribution statement

Shiwen Zhang: Conceptualization, Methodology, Data acquisition
and processing, Analysis, Writing – original draft, Writing – review &
editing, Project administration, Funding acquisition. Jiayi He: Concep-
tualization, Methodology, Data acquisition and processing, Analysis,
Writing – original draft, Writing – review & editing. Wei Liang: Con-
ceptualization, Analysis, Project administration, Writing – review &
editing. Keqin Li: Conceptualization, Project administration, Writing
– review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Shiwen Zhang reports financial support was provided by National
Natural Science Foundation of China. Shiwen Zhang reports financial
support was provided by Research Foundation of Education Bureau of
Hunan Province.

Data availability

Data will be made available on request.

Acknowledgments

This work is supported in part by the Open Fund of Advanced Cryp-
tography and System Security Key Laboratory of Sichuan Province un-
der Grant SKLACSS-202206, the Natural Science Foundation of Hunan
Province under Grant No. 2022JJ30267, the Natural Science Founda-
tion of Fujian Province under Grant No. 2022J05106, and the Scientific
Research Fund of Hunan Provincial Education Department under Grant
No. 21B0493.

References

[1] Aparna Kumari, Sudeep Tanwar, Sudhanshu Tyagi, Neeraj Kumar, Michele
Maasberg, Kim-Kwang Raymond Choo, Multimedia big data computing and
internet of things applications: A taxonomy and process model, J. Netw. Comput.
Appl. 124 (2018) 169–195.

[2] Pengjie Zeng, Anfeng Liu, Chunsheng Zhu, Tian Wang, Shaobo Zhang, Trust-
based multi-agent imitation learning for green edge computing in smart cities,
IEEE Trans. Green Commun. Netw. 6 (3) (2022) 1635–1648.

[3] Shaobo Huang, Zhiwen Zeng, Kaoru Ota, Mianxiong Dong, Tian Wang, Neal N.
Xiong, An intelligent collaboration trust interconnections system for mobile
information control in ubiquitous 5G networks, IEEE Trans. Netw. Sci. Eng. 8
(1) (2020) 347–365.

[4] Miaojiang Chen, Wei Liu, Tian Wang, Shaobo Zhang, Anfeng Liu, A game-based
deep reinforcement learning approach for energy-efficient computation in MEC
systems, Knowl.-Based Syst. 235 (2022) 107660.

[5] Muhammad Baqer Mollah, Md Abul Kalam Azad, Athanasios Vasilakos, Secure
data sharing and searching at the edge of cloud-assisted internet of things, IEEE
Cloud Comput. 4 (1) (2017) 34–42.

[6] Wei Wang, Peng Xu, Dongli Liu, Laurence Tianruo Yang, Zheng Yan,
Lightweighted secure searching over public-key ciphertexts for edge-cloud-
assisted industrial IoT devices, IEEE Trans. Ind. Inform. 16 (6) (2019)
4221–4230.

http://refhub.elsevier.com/S0167-739X(23)00356-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb5
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb5
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb5
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb5
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb5
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb6
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb6
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb6
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb6
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb6
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb6
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb6

Future Generation Computer Systems 151 (2024) 32–44S. Zhang et al.
[7] Jiayi Li, Jianfeng Ma, Yinbin Miao, Lei Chen, Yunbo Wang, Ximeng Liu,
Kim-Kwang Raymond Choo, Verifiable semantic-aware ranked keyword search
in cloud-assisted edge computing, IEEE Trans. Serv. Comput. 15 (6) (2021)
3591–3605.

[8] Jawhara Aljabri, Anna Lito Michala, Jeremy Singer, ELSA: A keyword-based
searchable encryption for cloud-edge assisted industrial internet of things,
in: 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing, CCGrid, IEEE, 2022, pp. 259–268.

[9] Ke Zhang, Jiahuan Long, Xiaofen Wang, Hong-Ning Dai, Kaitai Liang, Muham-
mad Imran, Lightweight searchable encryption protocol for industrial internet of
things, IEEE Trans. Ind. Inform. 17 (6) (2020) 4248–4259.

[10] Jingwei Liu, Yating Li, Rong Sun, Qingqi Pei, Ning Zhang, Mianxiong Dong,
Victor C.M. Leung, EMK-ABSE: Efficient multikeyword attribute-based searchable
encryption scheme through cloud-edge coordination, IEEE Internet Things J. 9
(19) (2022) 18650–18662.

[11] Ye Tao, Peng Xu, Hai Jin, Secure data sharing and search for cloud-edge-
collaborative storage, IEEE Access 8 (2019) 15963–15972.

[12] Huige Li, Haibo Tian, Fangguo Zhang, Jiejie He, Blockchain-based searchable
symmetric encryption scheme, Comput. Electr. Eng. 73 (2019) 32–45.

[13] Jiaxing Li, Jigang Wu, Guiyuan Jiang, Thambipillai Srikanthan, Blockchain-based
public auditing for big data in cloud storage, Inf. Process. Manage. 57 (6) (2020)
102382.

[14] Quanyu Zhao, Siyi Chen, Zheli Liu, Thar Baker, Yuan Zhang, Blockchain-based
privacy-preserving remote data integrity checking scheme for IoT information
systems, Inf. Process. Manage. 57 (6) (2020) 102355.

[15] Chengjun Cai, Jian Weng, Xingliang Yuan, Cong Wang, Enabling reliable
keyword search in encrypted decentralized storage with fairness, IEEE Trans.
Dependable Secure Comput. 18 (1) (2018) 131–144.

[16] Wenyuan Yang, Boyu Sun, Yuesheng Zhu, Dehao Wu, A secure heuristic semantic
searching scheme with blockchain-based verification, Inf. Process. Manage. 58 (4)
(2021) 102548.

[17] Dawn Xiaoding Song, David Wagner, Adrian Perrig, Practical techniques for
searches on encrypted data, in: Proceeding 2000 IEEE Symposium on Security
and Privacy, S&P 2000, IEEE, 2000, pp. 44–55.

[18] Eu-Jin Goh, Secure indexes, Cryptol. ePrint Arch. (2003).
[19] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, Public

key encryption with keyword search, in: Advances in Cryptology-EUROCRYPT
2004: International Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, May 2-6, 2004. Proceedings 23, Springer,
2004, pp. 506–522.

[20] Reza Curtmola, Juan Garay, Seny Kamara, Rafail Ostrovsky, Searchable symmet-
ric encryption: improved definitions and efficient constructions, in: Proceedings
of the 13th ACM Conference on Computer and Communications Security, 2006,
pp. 79–88.

[21] Wei Zhang, Yaping Lin, Sheng Xiao, Jie Wu, Siwang Zhou, Privacy preserving
ranked multi-keyword search for multiple data owners in cloud computing, IEEE
Trans. Comput. 65 (5) (2015) 1566–1577.

[22] Hui Yin, Zheng Qin, Jixin Zhang, Lu Ou, Fangmin Li, Keqin Li, Secure conjunctive
multi-keyword ranked search over encrypted cloud data for multiple data owners,
Future Gener. Comput. Syst. 100 (2019) 689–700.

[23] Qi Chai, Guang Gong, Verifiable symmetric searchable encryption for semi-
honest-but-curious cloud servers, in: 2012 IEEE International Conference on
Communications, ICC, IEEE, 2012, pp. 917–922.

[24] Jianfeng Wang, Xiaofeng Chen, Xinyi Huang, Ilsun You, Yang Xiang, Verifiable
auditing for outsourced database in cloud computing, IEEE Trans. Comput. 64
(11) (2015) 3293–3303.

[25] Xueqiao Liu, Guomin Yang, Yi Mu, Robert H. Deng, Multi-user verifiable
searchable symmetric encryption for cloud storage, IEEE Trans. Dependable
Secure Comput. 17 (6) (2018) 1322–1332.

[26] Xiuxiu Jiang, Jia Yu, Jingbo Yan, Rong Hao, Enabling efficient and verifiable
multi-keyword ranked search over encrypted cloud data, Inform. Sci. 403 (2017)
22–41.

[27] Wei Zhang, Yaping Lin, Gu Qi, Catch you if you misbehave: Ranked keyword
search results verification in cloud computing, IEEE Trans. Cloud Comput. 6 (1)
(2015) 74–86.

[28] Jie Zhu, Qi Li, Cong Wang, Xingliang Yuan, Qian Wang, Kui Ren, Enabling
generic, verifiable, and secure data search in cloud services, IEEE Trans. Parallel
Distrib. Syst. 29 (8) (2018) 1721–1735.

[29] Qin Liu, Yue Tian, Jie Wu, Tao Peng, Guojun Wang, Enabling verifiable and
dynamic ranked search over outsourced data, IEEE Trans. Serv. Comput. 15 (1)
(2019) 69–82.

[30] Qiuyun Tong, Yinbin Miao, Ximeng Liu, Kim-Kwang Raymond Choo, Robert H.
Deng, Hongwei Li, VPSL: Verifiable privacy-preserving data search for cloud-
assisted internet of things, IEEE Trans. Cloud Comput. 10 (4) (2020)
2964–2976.

[31] Hui Yin, Zheng Qin, Jixin Zhang, Lu Ou, Keqin Li, Achieving secure, univer-
sal, and fine-grained query results verification for secure search scheme over
encrypted cloud data, IEEE Trans. Cloud Comput. 9 (1) (2017) 27–39.
43
[32] Shengshan Hu, Chengjun Cai, Qian Wang, Cong Wang, Xiangyang Luo, Kui
Ren, Searching an encrypted cloud meets blockchain: A decentralized, reliable
and fair realization, in: IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, IEEE, 2018, pp. 792–800.

[33] Lanxiang Chen, Wai-Kong Lee, Chin-Chen Chang, Kim-Kwang Raymond Choo,
Nan Zhang, Blockchain based searchable encryption for electronic health record
sharing, Future Gener. Comput. Syst. 95 (2019) 420–429.

[34] Loi Luu, Jason Teutsch, Raghav Kulkarni, Prateek Saxena, Demystifying in-
centives in the consensus computer, in: Proceedings of the 22Nd ACM Sigsac
Conference on Computer and Communications Security, 2015, pp. 706–719.

[35] Jing Bai, Guosheng Huang, Shaobo Zhang, Zhiwen Zeng, Anfeng Liu, GA-DCTSP:
An intelligent active data processing scheme for UAV-enabled edge computing,
IEEE Internet Things J. 10 (6) (2022) 4891–4906.

[36] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, Huaimin Wang, An
overview of blockchain technology: Architecture, consensus, and future trends,
in: 2017 IEEE International Congress on Big Data, BigData Congress, IEEE, 2017,
pp. 557–564.

[37] Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niyato, Ping
Wang, Yonggang Wen, Dong In Kim, A survey on consensus mechanisms and
mining strategy management in blockchain networks, IEEE Access 7 (2019)
22328–22370.

[38] Yinghui Luo, Yiqun Chen, Qiang Chen, Qinglin Liang, A new election algo-
rithm for dpos consensus mechanism in blockchain, in: 2018 7th International
Conference on Digital Home, ICDH, IEEE, 2018, pp. 116–120.

[39] Tyler Crain, Vincent Gramoli, Mikel Larrea, Michel Raynal, DBFT: Efficient
byzantine consensus with a weak coordinator and its application to consortium
blockchains, 2017, arXiv preprint arXiv:1702.03068.

[40] Mihir Bellare, Ran Canetti, Hugo Krawczyk, Keying hash functions for message
authentication, in: Advances in Cryptology—CRYPTO’96: 16th Annual Interna-
tional Cryptology Conference Santa Barbara, California, USA August 18–22, 1996
Proceedings 16, Springer, 1996, pp. 1–15.

Shiwen Zhang received his B.S. degree in Information and
Computing Science from the University of Changsha, China,
in 2010, and received his Ph.D. degree from the College
of Computer Science and Electronic Engineering, Hunan
University, in 2016. He is currently an associate professor
at the School of Computer Science and Engineering, Hunan
University of Science and Technology. He is a member
of IEEE and CCF. His research interests include security
and privacy issues in social networks, protection, and
information security. Email: shiwenzhang@hnust.edu.cn.

Jiayi He received a B.S. degree from Hunan University of
Arts and Science, and currently pursuing an M.S. degree
from the school of Computer Science and Engineering
at Hunan University of Science and Technology. His re-
search interests include security and privacy issues in cloud
computing and edge computing. Email: jiayihehnust@163.
com.

Wei Liang is an Associate Professor at the College of
Information Science and Engineering, Hunan University. He
received his Ph.D. degree at Hunan University in 2013. He
is a postdoctoral scholar at the Department of Computer
Science and Engineering at Lehigh University in the USA in
2014–2016. His research interests include Networks Security
Protection, embedded systems and Hardware/IP protection,
Fog computing, and Security Management in WSN. Email:
weiliang99@hnu.edu.cn.

Keqin Li (Fellow, IEEE) received the B.S. degree in com-
puter science from Tsinghua University, Beijing, China, in
1985 and the Ph. D. degree in computer science from the
University of Houston, Houston, Texas, USA, in 1990. He
is currently a SUNY Distinguished Professor of Computer
Science with the State University of New York, Albany,
NY, USA. He is also a National Distinguished Professor
with Hunan University, Changsha, China. He has authored
or coauthored more than 850 journal articles, book chap-
ters, and refereed conference papers. He holds over 70
patents announced or authorized by the Chinese National
Intellectual Property Administration, Beijing, China. His
current research interests include parallel and distributed
computing, cloud computing security. He is currently an

http://refhub.elsevier.com/S0167-739X(23)00356-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb7
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb8
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb15
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb15
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb15
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb15
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb15
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb17
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb17
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb17
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb17
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb17
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb18
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb22
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb22
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb22
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb22
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb22
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb24
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb24
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb24
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb24
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb24
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb25
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb25
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb25
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb25
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb25
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb29
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb29
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb29
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb29
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb29
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb30
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb30
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb30
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb30
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb30
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb30
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb30
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb31
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb31
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb31
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb31
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb31
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb32
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb34
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb35
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb35
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb35
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb35
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb35
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb36
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb36
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb36
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb36
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb36
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb36
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb36
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb37
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb37
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb37
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb37
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb37
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb37
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb37
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb38
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb38
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb38
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb38
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb38
http://arxiv.org/abs/1702.03068
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb40
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb40
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb40
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb40
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb40
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb40
http://refhub.elsevier.com/S0167-739X(23)00356-4/sb40
mailto:shiwenzhang@hnust.edu.cn
mailto:jiayihehnust@163.com
mailto:jiayihehnust@163.com
mailto:weiliang99@hnu.edu.cn

Future Generation Computer Systems 151 (2024) 32–44S. Zhang et al.
Associate Editor for the ACM Computing Surveys and the
CCF Transactions on High Performance Computing. He was
on the Editorial Board of the IEEE TPDS, the IEEE ToC, the
44
IEEE TCC, the IEEE TSC, and the IEEE TSUSC. He is a Fellow
of the AAIA and a member of the Academia Europaea.
Email: lik@newpaltz.edu.

mailto:lik@newpaltz.edu

	MMDS: A secure and verifiable multimedia data search scheme for cloud-assisted edge computing
	Introduction
	Related work
	Keyword search in cloud computing
	Keyword search in blockchain
	Keyword search for cloud-assisted edge computing

	Problem formulation
	System model
	Threat model
	Design goals

	Preliminaries
	Bilinear pairing map
	Discrete Logarithm Problem (DLP)
	Decisional Diffie–Hellman Problem (DDHP)
	Hashing function
	Consensus mechanism in blockchain

	Our proposed MMDS scheme
	Main idea
	Scheme definition
	Construction of MMDS
	System setup
	Encrypt
	Generate trapdoor
	Search
	Verify
	Decrypt

	Security proof and analysis
	Security proof
	Security analysis

	Performance analysis and evaluations
	Theoretical analysis
	Experiment setup
	Storage costs
	Time cost
	Engineering applications

	Conclusion and the future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

