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A B S T R A C T

Hardware Trojans (HTs) are malicious modifications embedded in Integrated Circuits (ICs) that pose a
significant threat to security. The concealment of HTs and the complexity of IC manufacturing make them
difficult to detect. An effective solution is identifying HTs at the gate level through machine learning
techniques. However, current methods primarily depend on end-to-end training, which fails to fully utilize the
advantages of large-scale pre-trained models and transfer learning. Additionally, they do not take advantage
of the extensive background knowledge available in massive datasets. This study proposes an HT detection
approach based on large-scale pre-trained NLP models. We propose a novel approach named NtNDet, which
includes a method called Netlist-to-Natural-Language (NtN) for converting gate-level netlists into a natural
language format suitable for Natural Language Processing (NLP) models. We apply the self-attention mechanism
of Transformer to model complex dependencies within the netlist. This is the first application of large-scale pre-
trained models for gate-level netlists HT detection, promoting the use of pre-trained models in the security field.
Experiments on the Trust-Hub, TRIT-TC, and TRIT-TS benchmarks demonstrate that our approach outperforms
existing HT detection methods. The precision increased by at least 5.27%, The True Positive Rate (TPR) by
3.06%, the True Negative Rate (TNR) by 0.01%, and the F1 score increased by about 3.17%, setting a new
state-of-the-art in HT detection.
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1. Introduction

1.1. Background

Hardware Trojans (HTs) are malicious modifications embedded in
ntegrated Circuits (ICs), posing a significant security threat. These
rojans are designed to disrupt, alter, or secretly monitor device oper-

ations. HTs hide in the ICs until triggered, then activate their payload
and begin destructive behavior. The miniaturization and complexity of
ICs mean that HTs are very small and hidden. The hidden nature of HTs
makes them difficult to detect during standard testing and verification
processes.

Furthermore, IC production is globally distributed and involves
ultiple stages across different regions and companies. The complexity

f the supply chain makes it difficult to maintain consistent safety
versight and integrity checks. The IC production process includes
esign, manufacturing, and testing stages, and security vulnerabili-
ies may exist at each stage (Ashok, Turner, Walsworth, Levine, &

Chandrakasan, 2022). These vulnerabilities create opportunities for
T implantation, leading to serious consequences such as data theft,

ystem paralysis, and device performance degradation (Bhunia, Hsiao,
Banga, & Narasimhan, 2014; Dhavlle, Hassan, Mittapalli, & Dinakarrao,
2021). Therefore, developing practical methods to detect HTs is crucial
to protect ICs from hidden threats and maintain their security and
operational integrity.

Traditional methods for detecting HTs have primarily relied
on functional testing, structural analysis, and side-channel analysis
(Narasimhan et al., 2012; Pan & Mishra, 2021). These approaches
have been widely used to identify anomalies in ICs by examining
their behavior, structure, and side-channel signals. In recent years,
deep learning techniques have emerged as a promising avenue for HT
detection. Deep learning methods aim to learn intricate patterns and
features from data automatically. These methods include models based
on Graph Neural Networks (GNNs) (Wu et al., 2020; Zhou et al., 2020)
nd Natural Language Processing (NLP) (Otter, Medina, & Kalita, 2020;

Qiu et al., 2020), which can capture complex relationships within
ircuit designs and enhance the detection capabilities for HTs.

1.2. Motivation

Despite advancements in detection techniques, the hidden nature of
Ts and the complexity of modern ICs continue to make HT detection a

ignificant challenge. Researchers have explored deep learning methods
o address this issue, with approaches primarily based on GNNs and
LP.

• GNN-based HT detection methods focus on the topology of the cir-
cuit and capture physical connections (Alrahis, Patnaik, Shafique,
& Sinanoglu, 2022; Cheng et al., 2023; Chowdhury, Yang, &
Nuzzo, 2021; Muralidhar, Zubair, Weidler, Gerdes, & Ramakrish-
nan, 2021). While effective in modeling structural information,
2

they may have limitations in fully capturing the semantic infor-
mation of the circuit, such as the functional roles of different com-
ponents and the contextual relationships between them. These
methods often require extensive feature extraction and a detailed
understanding of the circuit structure.

• NLP-based HT detection methods are almost all based on ar-
chitectures such as Recurrent Neural Networks (RNNs), Long
Short-Term Memory Networks (LSTMs), or Convolutional Neural
Networks (CNNs). These methods rely on end-to-end training,
cannot rely on the large amount of contextual information accu-
mulated by pre-trained models, and may have limited generaliza-
tion capabilities. In addition, these architectures usually ignore
the attention mechanism and may not be able to effectively grasp
global relationships.

• Transfer learning, which involves using knowledge gained from
one task to solve related tasks (Niu, Liu, Wang, & Song, 2020; Zhu,
Lin, Jain, & Zhou, 2023), opens up new avenues for HT detection.
Both netlists and natural languages involve structured arrange-
ments of elements with specific grammatical rules, hierarchical
structures, and reliance on contextual understanding. Inspired
by the similarities between netlists and natural language, we
propose applying large-scale pre-trained NLP models to improve
HT detection.

By leveraging the structural similarity between IC netlist files and
natural language texts, we can transfer knowledge from natural lan-
guage understanding to IC netlists. This approach reduces the de-
pendence on large labeled datasets and enhances the generalization
capability of HT detection models. The success of pre-trained language
models in NLP has demonstrated the effectiveness of transfer learn-
ing (Ravimaram, Sathish, Vatchala, Rawat, TF, et al., 2023; Taneja
& Vashishtha, 2022). Powerful models such as Bidirectional Encoder
Representations from Transformers (BERT) (Devlin, Chang, Lee, &
Toutanova, 2019), Generative Pre-trained Transformer (GPT) (Radford
& Narasimhan, 2018), and Text-to-Text Transfer Transformer (T5) (Raffe
t al., 2020) are adept at capturing syntactic, semantic, and contextual
nformation from large amounts of textual data. Applying these models
o HT detection can improve accuracy and efficiency.

1.3. Contributions

The main contributions of this study are as follows.

• This is the first study to apply transfer learning to gate-level
netlists HT detection. We propose an HT detection approach
based on large-scale pre-trained NLP models, including BERT,
GPT-2 (Radford et al., 2019), and T5.

• We propose a novel HT detection approach named NtNDet, which
includes a method called Netlist-to-Natural-Language (NtN) to
convert gate-level netlists into a natural language format suitable
for NLP models, improving the readability and comprehension of
gate-level netlists.
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• We use the Transformer’s self-attention mechanism to effectively
model relationships within gate-level netlists, which can capture
local and global information and enhance the understanding of
circuit structure.

• We treat HT detection as a logical gate classification problem
without the need for golden model comparison. Experiments
are conducted on the Trust-Hub, TRIT-TC, and TRIT-TS bench-
marks (Salmani, Tehranipoor, & Karri, 2013; Trust-Hub, 2024),
to demonstrate the generalizability and robustness of our NtNDet
approach. The results indicate that our approach achieves state-
of-the-art performance, improved the precision by at least 5.27%,
the True Positive Rate (TPR) by 3.06%, the True Negative Rate
(TNR) by 0.01%, and the F1 score increased by about 3.17%.

1.4. Organization of the paper

The remainder of this paper is structured as follows: Section 2
reviews related work in the field of hardware Trojan detection, focusing
on machine learning approaches. Section 3 presents the preliminar-
ies and provides an overview of our proposed method. Section 4
details the NtNDet approach for HT detection, including the Netlist-
to-Natural-Language conversion method. Section 5 describes the ex-
perimental setup and results, demonstrating the effectiveness of our
approach. Section 6 discusses our work’s scalability, limitations, and
future directions. Finally, Section 7 concludes the paper.

2. Related work

The rapid development of machine learning has spawned many
deep network models, including HT detection models (Ketan, Shetty,
et al., 2024; Rahimifar, Jahanirad, & Fathi, 2024; Samyukta & Ramesh,
2023; Sankaran, Mohan, & Purushothaman, 2021; Surabhi et al., 2022).
Hasegawa et al.’s method marked the first application of machine
learning in HT detection (Hasegawa, Oya, Yanagisawa, & Togawa,
2016). Subsequent machine learning-based HT detection methods are
mainly based on GNNs or NLP.

2.1. GNN-based methods

GNNs are neural networks designed to process graph-structured
data, capturing local and global information within graphs. They have
been effectively applied to HT detection due to their ability to model
circuit topologies. Yasaei et al. proposed a gold-free reference HT
detection method for Register-Transfer Level (RTL) and gate-level
netlists (Yasaei, Chen, Yu, & Al Faruque, 2022), leveraging GNNs
to learn the behavior of hardware design circuits through data flow
graphs. Hassan et al. introduced an IC topology and behavior-aware HT
detection approach, extracting different structural features of the un-
derlying IC along with behavioral information for HT detection (Hassan,
Meng, Basu, & Dinakarrao, 2023). Yasaei et al. presented GNN4TJ
(Yasaei, Yu, & Al Faruque, 2021), which converts Verilog designs into
corresponding data flow graphs and uses GNNs to extract features
and learn the underlying structure. Hasegawa et al. proposed an HT
detection method, R-HTDetector, using adversarial training to improve
robustness against modified HTs (Hasegawa, Hidano, Nozawa, Kiy-
omoto, & Togawa, 2022). Ma et al. proposed a method to transform
RTL code into a data flow graph (Ma, Shang, et al., 2024), and node
feature extraction and node label marking are carried out during the
transformation process. Chen et al. proposed a two-stage graph neural
network model GNN4HT for HT multi-function classification (Chen
et al., 2025). In the first stage, HT is located and the positioning results
are converted into HT information graphs; in the second stage, the
multi-functions of HT are classified.

While these GNN-based methods effectively model structural infor-
mation, they often require extensive feature extraction and detailed
circuit knowledge, such as the number of logic gate fans, flip-flops, and
primary input levels. Additionally, focusing primarily on the circuit’s
topology may not fully capture the semantic information or functional
roles of different components.
3

Fig. 1. Overview of the IC design and pre-manufacturing process.

2.2. NLP-based methods

NLP is an interdisciplinary subfield of computer science and lin-
guistics, primarily concerned with enabling computers to process and
analyze human language data. In the context of HT detection, NLP
techniques have been applied to interpret circuit designs similarly to
how language is processed.Shen et al. (2017) first proposed applying
NLP techniques to HT detection, using the LMDet model to demonstrate
the potential of language models in capturing circuit patterns through
n-gram analysis. Lu et al. developed GramsDet (Lu et al., 2019), which
uses gate embeddings of order-sensitive matrices to capture generic
circuit representations better and reduce parameter overload. Ye et al.
introduced SeGa (Ye et al., 2021), a method that extracts semantic
information from gate-level netlists using feature vectors for neural
network-based Trojan detection. Yu et al. proposed a data-driven HT
detection system (Yu, Gu, Liu, & O’Neill, 2022) that uses a hybrid of
LSTM and CNN architectures to improve detection accuracy. Ma et al.
developed a circuit path sentence extraction algorithm based on signal
propagation rules. They proposed PS-TextCNN for HT detection based
on text convolutional neural network (Ma, Wang, & Wang, 2024). Dofe
et al. proposed a supervised learning approach using RNNs for HT
detection within FPGA configuration bitstreams (Dofe et al., 2024).

While these NLP-based methods have shown promise, many rely
on end-to-end training approaches without utilizing large-scale pre-
trained models, which often require large amounts of labeled data and
may limit their generalization capabilities. Consequently, they may not
benefit from the extensive contextual knowledge that has advanced NLP
tasks in other domains. The related works are summarized in Table 1.

3. Preliminaries and overview

3.1. HT fundamentals and threat model

HTs are a significant security threat in the IC design and develop-
ment process (Agrawal, Baktir, Karakoyunlu, Rohatgi, & Sunar, 2007;
Hu et al., 2021). With the globalization of chip design, malicious
attackers insert HTs into third-party modules and Intellectual Properties
(IPs). HTs are implanted at critical moments since these IP cores are
integrated at various stages, from system-level design to RTL design to
gate-level netlists.

Gate-level netlists are particularly vulnerable when the circuit’s
logical design is finalized, making it a crucial point for potential HTs
insertion (Dong et al., 2020; Xue, Gu, Liu, Yu, & O’Neill, 2020). Fig. 1
shows an overview of the IC design and pre-manufacturing process. The
gate-level netlists are the basis for describing the hardware structure
without chip layout information. These netlists become the critical
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Table 1
Summary of Machine Learning-Based HT Detection Methods.

Reference Key contribution Datasets Model Abstraction level Evaluation

Yasaei et al. (2022) A golden reference-free pre-silicon
HT detection based GNN

Trust-hub
DES RC5

GNN Gate-level netlist
RTL

Precision:91% Recall:84% (netlist)
Precision:92% Recall:97% (RTL)

Hassan et al. (2023) A circuit-topology aware
hardware Trojan detection
method based GNN

Trust-hub GNN Gate-level netlist Precision:93.5% TPR:91.38%
F1-score:91.28%

Yasaei et al. (2021) A golden reference-free HT
detection method based GNN4TJ

Trust-hub GNN RTL Precision:92% Recall:97%

Hasegawa et al. (2022) A robust HT detection method
using adversarial training;
R-HTDetector

Trust-hub
TRIT-TC

GNN Gate-level netlist TPR:83.5% TNR:94.6%
(Trust-hub) TPR:94.9%
TNR:85.3% (TRIT-TC)

Chen et al. (2025) A two stage GNN model for HTs’
multifunctional classification;
GNN4HT

Trust-hub
TRTC-IC

GNN Gate-level netlist
RTL

Precision:80.95% TPR:94.28%
TNR:97.22% (netlist)

Ma, Shang, et al. (2024) A variety of GNN classification
models are built for detecting
RTL HTs

Trust-hub GNN RTL Precision:94.5% F1-score:96.7%

Shen, Tan, Li, Zhang, and Li (2017) A scheme distinguishing the
unnaturalness of HTs from the
naturalness of normal circuits;
LMDet

Trust-hub
OpenCores

n-gram Gate-level netlist TPR:96.5% TNR:82.6%

Lu, Shen, Su, Li, and Li (2019) A approach to detect HT through
capturing suspicious circuit
connection structure; GramsDet

Trust-hub n-gram LSTM Gate-level netlist TRP:82.1% TNR:96.0%

Ye, Li, Shen, Li, and Li (2021) A novel circuit gate embedding
method; SeGa

Trust-hub LSTM Gate-level netlist TPR:85.1% TNR:93.58%

Ma, Wang, and Wang (2024) PS-TextCNN for HT detection Trust-hub TextCNN Gate-level netlist TPR:88.9% TNR:98.5%

Dofe, Danesh, More, and Chaudhari (2024) A supervised learning approach
using RNNs

ISCAS 85 RNN Xilinx 7-series
bitstream

Sequential acc:91%
Combinational acc:93.5%
Fig. 2. HT detection in the IC design process.

stage in the design when HT may be inserted. Fig. 2 illustrates the HTs
detection in the IC design process. Third-party vendors A and B provide
IP cores that must pass HT testing before being integrated into the IC
design. It is critical to perform a rigorous review process to ensure
safety, and only verified safety IP cores enter manufactured.

This study focuses on detecting HT in gate-level netlists during
the IC design phase. Gate-level netlists provide a basic description of
the hardware structure and do not include the physical layout of the
chip. Conducting a thorough circuit logic analysis can identify and
remove hardware Trojans early, enhancing the preliminary design’s
overall security. The threat model for this research is based on several
assumptions.

• Because of the globalization of chip design, attackers can insert
HTs into third-party IP cores.
4

• The attacker aims to disrupt the IC product, cause damage, or
leak information through logic rather than using power, electro-
magnetic, or other side-channel attacks.

• These HTs have a low probability of triggering, and the triggering
conditions and payload information are usually hidden, making
them challenging to detect during conventional logic testing.

3.2. Transfer learning

In the field of NLP, large datasets and increased computing power
have led to the emergence of pre-trained models for various lan-
guage tasks. After unsupervised pre-training and fine-tuning, these
models have demonstrated excellent representation learning and ca-
pabilities (Hu et al., 2024). This study explores NLP techniques and
transfer learning in HT detection.

NLP models are pre-trained on a large-scale corpus to accumulate
universal knowledge. This knowledge is transferred to the specialized
domain of gate-level netlists, which represent the complex logic of ICs.
Fig. 3 illustrates this approach; model A is trained using big data from
a large NLP corpus to acquire universal knowledge. This knowledge is
then applied to model B, fine-tuned on a small dataset of gate-level
netlists for effective HT detection. By converting circuit structure data
into the format of NLP input, we can perform HT detection based on
large-scale pre-trained models. This approach reduces the need for large
labeled datasets, lowers computational costs, and improves the model’s
ability to capture complex relationships in ICs.

3.3. Overview of the NtNDet

Recognizing the similarities in structure and expression between
gate-level netlists and natural language, we liken them to unique
language frameworks for IC design. Our NtN method transforms netlists
into natural language structures, making netlists related to natural
language.

Our HT detection approach overview is shown in Fig. 4.
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Fig. 3. Transfer learning for HT detection.

(1) Netlist-to-Natural-Language. The process begins by converting
the original gate-level netlists into a natural language format using the
NtN method. This conversion makes the netlists easily processable by
the NLP model.

(2) Netlist encoding. Once the netlists are transformed into natural
language format, they are encoded into a suitable representation that
can be inputted into a pre-trained NLP model. This encoding step
involves netlist embedding and positional encoding.

(3) Netlist Modeling. Transfer learning is applied to adapt the
model to the HT detection task by leveraging a large-scale pre-trained
NLP model. The pre-trained NLP model is fine-tuned using the encoded
netlists to learn specific features related to HT detection.

The modeled netlists pass through the liner and softmax layers to
output the prediction results and classify whether the netlists contain
HTs. By integrating NLP techniques and transfer learning, our approach
effectively leverages the strengths of pre-trained NLP models to address
the challenges in HT detection.

3.4. Problem statement

In the process of IC design and manufacturing, the gate-level netlist
is an important part of describing the logic structure of the circuit,
and it is also the key location for attackers to implant HT. The NtN
method converts the gate-level netlists into a natural language format
suitable for the NLP model, improving readability and comprehension.
We regard the converted gate-level netlist as text data and use a
Transformer-based binary classification model to identify whether there
is a Trojan in the netlists.

Formally, our dataset is represented as  = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, where
𝑥𝑖 denotes the textual representation of the 𝑖-th line in the gate-
level netlist, and 𝑦𝑖 ∈ {0, 1} is a binary label indicating whether
the 𝑖-th line belongs to a Trojan circuit (𝑦𝑖 = 1) or not (𝑦𝑖 = 0).
We use a pre-trained Transformer-based model for fine-tuning, de-
fined by the function 𝑓 (𝑥𝑖) = 𝜎(𝑊 ⋅ Transformer(𝑥𝑖; 𝜃pre) + 𝑏), where
Transformer(𝑥𝑖; 𝜃pre) represents the output from the pre-trained Trans-
former model for input 𝑥𝑖, with 𝜃pre being its parameters. Here, 𝑊
and 𝑏 are the weights and bias of the classification layer, respectively,
and 𝜎 denotes the Sigmoid activation function, which outputs the
probability �̂�𝑖 of the 𝑖-th line belonging to a Trojan circuit. The model is
trained by minimizing the binary cross-entropy loss , optimizing the
parameters 𝜃 = {𝜃pre, 𝑊 , 𝑏} to accurately distinguish between lines that
are part of Trojan circuits and those that are not. Further mathematical
formulations and optimization details are provided in Section 5.
5

4. The NtNDet approach for HT detection

Our approach involves three main processes: First, we format gate-
level netlists using the NtN method. Next, we encode them for input
to neural networks. Finally, we apply transfer learning to model the
netlists for HT detection.

4.1. Netlist-to-natural-language

We observe that gate-level netlists share some standard features
with NLP, such as order, specific grammatical rules, hierarchical struc-
ture, and the need for contextual understanding. We additionally
note that linguistic pre-training methods offer more than just a struc-
tural match to netlists. Large-scale language models inherently excel
at capturing contextual dependencies over long sequences. By for-
matting gate-level netlists as if they were sentences, where a gate
(e.g., MUX21X1) acts like a ‘‘verb’’, and signals (e.g., WX11155, WX3
442) act like ‘‘nouns’’. The model can interpret how signals and gates
relate to each other across distant parts of the circuit, much like
tracking entities in text. This goes beyond the basic grammar or
hierarchical rules and leverages the model’s ability to learn subtle
patterns from extensive training on large corpora. Consequently, when
Trojan triggers or payloads are distributed across the netlist, the fine-
tuned pre-trained model is better equipped to recognize suspicious
dependencies or anomalies.

We employ a three-step process to convert these gate-level netlists
into a format compatible with NLP models. For most netlists, the
process concludes after the second step; the third step is only necessary
for netlists containing certain characters, which account for only a
small fraction of HT netlists. The example we provide below illustrates
a special case requiring the third step.

(1) Natural Language Formatting. The first step is to define gate
types, gate names, inputs, and outputs using a consistent grammar of
natural language constructs. We use colon and comma punctuation to
separate each attribute and quotes to explicitly define string values,
such as gate names and port identifiers. For example, the original
netlists ‘‘MUX21X1 Trojan_Payload2 .IN1(WX11155), .IN2(WX3442),
.S(Trojan_SE), .Q(WX11155_Tj_Payload);’’ is a 2:1 multiplexer that se-
lects one of two inputs based on a selection line and outputs it. These
netlists are formatted as follows.

• Gate_type: MUX21X1
• Gate_name: Trojan_Payload2
• Input_ports: ‘‘IN1:WX11155,IN2:WX3442,S:Trojan_SE’’
• Output_port: ‘‘Q:WX11155_Tj_Payload’’

(2) Gate Name Elimination. In the second step, we need to elim-
inate the model’s reliance on specific gate names, which can lead
to overfitting. In the provided netlist example, the gate name Tro-
jan_Payload2 is removed, allowing the model to focus on gate types and
circuit structure characteristics.

• Gate_type: MUX21X1
• Input_ports: ‘‘IN1:WX11155, IN2:WX3442, S:Trojan_SE’’
• Output_port: ‘‘Q:WX11155_Tj_Payload’’

For the vast majority of netlists, the process concludes after this
step. However, in rare cases, if the netlist contains Trojan-related
characters, we apply an additional third step to prevent the model from
overfitting.

(3) Trojan-related Characters Treatment. When Trojan-related
characters are present, we replace them with generic symbols to ensure
the model generalizes well to all HTs. In the example, the Trojan-
related characters Trojan_SE and WX11155_Tj_Payload are replaced,
indicated by the symbol ‘‘*’’. In the experimental section, we discuss
the methods for replacing Trojan-related characters. In practice, the
identifiers do not appear; they are included in the benchmark to
improve readability. The final format is as follows.
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Fig. 4. Overview of the NtNDet.
Fig. 5. Netlist-to-Natural-Language.

• Gate_type: MUX21X1
• Input_ports: ‘‘IN1:WX11155, IN2:WX3442, S:*_SE’’
• Output_port: ‘‘Q:WX11155_*_*’’

This processing helps avoid bias introduced by specific terms and
maintains consistency and reliability across the detection process. The
NtN process is shown in Fig. 5. The ‘‘Gate_type’’ in the figure rep-
resents the type of the gate, while ‘‘Input_port’’ and ‘‘Output_port’’
represent the connection relationship. This process eliminates the influ-
ence of the gate name and Trojan-related characters. The NtN method
makes the netlist conform to grammatical conventions and improves
interpretability, improving the model’s understanding.

The previous example illustrated the transformation of a single gate
in the netlist; the same principles can be applied to more complex
circuits consisting of multiple gates. Each gate is processed individually,
and their interconnections are maintained in the transformed netlist
format. The following example demonstrates how the transformation
process works for a netlist consisting of multiple gates.

Assume that this is part of a netlist consisting of three simple gates.
The original netlist is as follows:
6

Fig. 6. Netlist representation transformation.

• OR2X1 U1 (.A(n1), .B(n2), .Y(n3)) ;
• INVX1 U2 (.A(n3), .Y(n4)) ;
• AND2X1 U3 (.A(n4), .B(n5), .Y(n6)) ;

After natural language formatting:

• Gate_type: OR2X1 Gate_name: U1 Input_ports: ‘‘A: n1, B: n2’’
Output_port: ‘‘Y: n3’’ ;

• Gate_type: INVX1 Gate_name: U2 Input_port: ‘‘A: n3’’ Output_port:
‘‘Y: n4’’ ;

• Gate_type: AND2X1 Gate_name: U3 Input_ports: ‘‘A: n4, B: n5’’
Output_port: ‘‘Y: n6’’ ;

After gate name elimination:

• Gate_type: OR2X1 Input_ports: ‘‘A: n1, B: n2’’ Output_port: ‘‘Y: n3’’
;

• Gate_type: INVX1 Input_port: ‘‘A: n3’’ Output_port: ‘‘Y: n4’’ ;
• Gate_type: AND2X1 Input_ports: ‘‘A: n4, B: n5’’ Output_port: ‘‘Y:
n6’’ ;

Fig. 6 shows the conversion of the netlist representation. The NtN
process transforms the original circuit described by the netlist into a
new format. In this format, gates correspond to nodes with ‘‘Gate_type’’
attributes, and edges represent signal connections defined by ‘‘In-
put_port’’ and ‘‘Output_port’’. This representation preserves meaningful
gate types and their relationships, enabling NLP models to directly
leverage semantic features for modeling.
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Fig. 7. Netlist encoding.

4.2. Netlist encoding

After the NtN step, the netlist is in the form of natural language, for
example: Gate_type: MUX21X1 Input_ports: ‘‘IN1:WX11155, IN2:WX3442,
S:*_SE’’ Output_port:‘‘Q:WX11155_*_*’’ . The netlist must be encoded to
convert the structured netlist data into a format that the NLP model
can understand and process. The gate-level netlist encoding process is
as follows.

(1) Structuring Components. This step involves processing the
gate-level netlists pre-processed by the NtN method. The process aims
to extract and identify basic components such as gate types, input ports,
and output ports. This structured organization helps with subsequent
processing.

(2) Token ID Generation. After the parsing step, the components
are tokenized. Each component is converted into a discrete token and
assigned a unique token ID. These token IDs are used as indices in the
NLP model training vocabulary.

(3) Embedding matrix generation. Token IDs are converted into
embedding vectors representing semantics in a multidimensional vector
space. The conversion involves an embedding lookup operation, where
each token ID is matched with its unique embedding vector. This
process creates an embedding matrix, with each row representing the
embedding vector of a token.

(4) Position encoding matrix generation. Positional encoding
uses sines and cosines to preserve the position information of the
tokens in the sequence and arranges them into a matrix. The positional
encoding is calculated by

𝑃 𝐸(𝑖, 2𝑗) = sin
(

𝑖
100002𝑗∕𝑑

)

,

𝑃 𝐸(𝑖, 2𝑗 + 1) = cos
(

𝑖
)

.
(1)
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100002𝑗∕𝑑
PE stands for position encoding, 𝑖 is the sequence position, 𝑑 is the total
dimension of the embedding, and 𝑗 is the dimension index.

(5) Aggregation matrix generation. The embedding vector TE
and the position encoding vector PE of each token are aggregated
by element-wise addition. This operation forms a new vector that
represents the integration of semantics and position. These vectors are
then aggregated into a matrix

𝑀𝑎𝑔 𝑔 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑇 𝐸(𝑇 𝐼1) + 𝑃 𝐸(𝑇 𝐼1)
𝑇 𝐸(𝑇 𝐼2) + 𝑃 𝐸(𝑇 𝐼2)

⋮
𝑇 𝐸(𝑇 𝐼𝑛) + 𝑃 𝐸(𝑇 𝐼𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

, (2)

𝑇 𝐼𝑖 represents the token ID of the 𝑖th token. 𝑀𝑎𝑔 𝑔 is an aggregate matrix
containing token embeddings and positional encodings, which is finally
pre-processed for input to the NLP model. This process includes adjust-
ing the sequence length by padding or truncation and incorporating
special tokens required by the Transformer model.

Fig. 7 illustrates the netlists encoding process. First, the gate-level
netlists are converted into a series of tokens. These tokens are encoded
as token IDs, and their corresponding embeddings are calculated. Posi-
tional encodings are added to enhance the model’s understanding of the
token order. The embeddings and positional encodings are combined
and aggregated into a complete input matrix. This matrix is then
processed by the Transformer model for further analysis.

4.3. Netlist modeling

The basis of our approach is to model the gate-level netlists us-
ing Transformer. The Transformer architecture, designed for relational
data, constructs a hierarchical representation by layering multiple self-
attention and feedforward neural networks. This structure aids in ex-
tracting both local and global structural information from gate-level
netlists. The self-attention mechanism is

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐,𝐊,𝐕) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥
(

𝐐𝐊⊤
√

𝑑𝑘

)

𝐕. (3)

𝐐 (Query), 𝐊 (Key), and 𝐕 (Value) are generated by applying linear
transformations to the input sequence. The correlation between input
elements is measured by calculating the dot product between the query
and key vectors, then normalized into a probability distribution.

The Transformer architecture uses a multi-head attention mecha-
nism that allows the model to compute self-attention representations
simultaneously. In the multi-head attention mechanism, the input se-
quence representation is partitioned into multiple independent sub-
spaces, each represented by a unique set of query, key, and value ma-
trices. The self-attention representation of each subspace is calculated
independently by

𝐂(𝑖) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐𝐖(𝑖)
𝑞 ,𝐊𝐖(𝑖)

𝑘 ,𝐕𝐖(𝑖)
𝑣 ). (4)

𝐖(𝑖)
𝑞 , 𝐖(𝑖)

𝑘 , and 𝐖(𝑖)
𝑣 are respectively the weight matrices of query,

key and value in the graph aggregate these representations to form
multi-head attention 𝐂 calculated by

𝐂 = 𝑐 𝑜𝑛𝑐 𝑎𝑡(𝐂(1),𝐂(2),… ,𝐂(𝑟)). (5)

Multi-head attention aggregation integrates the relationship between
different representation spaces and enhances the understanding of the
input sequence structure and semantic information.

Fig. 8 illustrates the netlists Transformer modeling process. For
example, this circuit contains an AND, OR, and NOT gate.

(1) Circuit-to-Local Attention. The original circuit is divided into
subcircuits, each modeled as a local attention processing unit. Local
Attention 1, Local Attention 2, and Local Attention 3, each unit being
processed independently.

(2) Local Attention Processing. Each local attention unit pro-
cesses its respective subcircuit, focusing on its local characteristics and
capturing relevant features within each subcircuit.
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Fig. 8. Netlist modeling.

(3) Local-to-Global Attention. The local attention units are then
integrated into global attention. This step ensures that local insights
from each subcircuit are combined to understand the entire circuit
topology comprehensively.

(4) Global Attention Processing. The global attention unit pro-
cesses the integrated attention information, combining local and global
insights to create a holistic representation of the circuit.

(5) Attention Aggregation. Finally, the local and global atten-
tion information is aggregated to form the aggregated attention, and
forwarded to subsequent processing.

The gate-level netlists include input and output ports, various logic
gate components, and interdependent relationships. The self-attention
and feedforward neural network layers capture these dependencies and
structural information. This capture ability enables the model to extract
and integrate information from multiple levels of the gate-level netlist,
enhancing its understanding and processing capabilities.

4.4. Advantages of approach

our approach leverages the advantages of large-scale pre-trained
NLP models. These models are trained on extensive and diverse cor-
pora, providing them with rich semantic understanding capabilities.
The specific reasons and benefits of this approach are as follows.

• Rich Semantic Understanding. Large-scale pre-trained models
are trained on a wide variety of textual data, including technical
terminologies such as ‘‘Gate type’’, ‘‘Input ports’’, and ‘‘Output
port’’. These models already understand what these terms mean
in the context of natural language.

• Handling of Punctuation. The natural language format uses
punctuation to separate and organize information. Pre-trained
models can accurately interpret and process these punctuation
marks, ensuring precise parsing of netlist information.

• Potential Knowledge of Circuit-Related. Pre-trained models
may have learned circuit-related knowledge from the diverse
technical documents on which they were trained. For example, a
term like ‘‘MUX21X1’’ might be recognized as a 2:1 multiplexer.
This inherent knowledge provides an advantage when processing
circuit netlists.

• Semantic graph parsing. This approach can be viewed as seman-
tic graph parsing, where each gate type is considered a node, and
connections (input and output ports) are semantically meaningful
8

Table 2
Benchmarks in our experiments.

Benchmarks

Trust-Hub TRIT-TC TRIT-TS

RS232-T1000 c2670-T000 s1423-T400
RS232-T1100 c2670-T001 s1423-T401
RS232-T1200 c2670-T002 s1423-T402
RS232-T1300 c3540-T000 s13207-T400
RS232-T1400 c3540-T001 s13207-T401
RS232-T1500 c3540-T002 s13207-T402
RS232-T1600 c5315-T000 s15850-T400
s35932-T100 c5315-T001 s15850-T401
s35932-T200 c5315-T002 s15850-T402
s35932-T300 s1423-T000 s35932-T400
s38417-T100 s1423-T001 s35932-T401
s38417-T200 s1423-T002 s35932-T402
s38417-T300 s13207-T000
s38584-T100 s13207-T001
s38584-T200 s13207-T002
s38584-T300
s15850-T100

edges, similar to how nodes and edges are interpreted in a graph.
In addition, this approach incorporates semantic information be-
yond the typical structural representation in GNNs, providing a
richer context for the analysis.

In summary, we can improve gate-level netlists parsing and process-
ing by converting it into natural language format and using pre-trained
models. This approach enhances the performance and reliability of HT
detection.

5. Experiments

This section covers the experimental setup, analysis of Trojan-
related characters processing, performance evaluation on different
benchmarks, and robustness and generalization evaluation.

5.1. Experimental setup

(1) HT Detection Benchmarks. We use three benchmarks in the
experiments: Trust-Hub, TRIT-TC, and TRIT-TS. Trust-Hub is a platform
that provides hardware security and trust benchmarks, covering various
design types, including combinational logic, sequential logic, and cir-
cuits of different complexity. TRIT-TC contains 580 benchmarks from
8 designs, and TRIT-TS contains 334 benchmarks from 4 designs. We
selected some data from these three benchmarks for experiments, as
shown in Table 2.

(2) Training Configuration and Evaluation Metrics. We are using
four NVIDIA 3090 GPUs for distributed training alongside dual Intel
Xeon E5-2666 v3 CPUs. The PyTorch framework was implemented on
Ubuntu 20.04 LTS.

We use a batch size of 64 for training and run for 20 epochs. The
maximum length of the text input is limited to 256 characters. We
employ the CrossEntropyLoss function as the optimization objective
and select the AdamW optimizer with a learning rate of 2e-5. These
choices align with our use of large-scale pre-trained NLP models such
as BERT, GPT2, and T5, which are typically trained using CrossEn-
tropyLoss for their language modeling objectives. Additionally, AdamW
is preferred for its stability and efficiency in optimizing transformer-
based architectures, ensuring better convergence and generalization
performance in our HT detection task. We employ Leave-One-Group-
Out cross-validation to ensure that each data subset is used exactly once
for validation. In each iteration, one group from the dataset is set aside
as the validation set, while the remaining groups are used to train the
model. This process is repeated until every group has been used once
as the validation set.
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Fig. 9. The loss of GPT-2 per epoch on the TRIT-TS benchmark. The points of different
colors represent different folds, and the blue curve represents the average loss.

We use TPR, TNR, and F1 score for experimental evaluation, and
the metrics are calculated as follows:

𝑇 𝑃 𝑅 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 ,

𝑇 𝑁 𝑅 = 𝑇 𝑁
𝑇 𝑁 + 𝐹 𝑃 ,

𝐹1 = 2 × 𝑃 × 𝑅
𝑃 + 𝑅

.

(6)

TP represents True Positive (correctly identified Trojan samples), FP
represents False Positive (normal samples are incorrectly classified as
Trojans), TN represents True Negative (correctly identified normal sam-
ples), and FN represents False Negative (Trojan samples are incorrectly
classified as normal). TPR and TNR evaluate the model’s accuracy in
detecting Trojans and normal samples, respectively. 𝑃 (Precision) is
defined as (TP / (TP + FP)), and 𝑅 (Recall) is defined as (TP / (TP +
FN)). Precision measures the proportion of correct Trojan predictions,
while recall measures the proportion of Trojans detected. The F1 score
balances precision and recall to provide a comprehensive measure of
model performance.

(3) Class Imbalance and Loss Function. To address the significant
imbalance between the number of HT samples and normal samples,
we adjusted the CrossEntropyLoss function with dynamically calculated
class weights. The class weights are calculated by

𝑤pos =
1

√

𝑁pos
, 𝑤neg = 1

√

𝑁neg

. (7)

𝑁pos and 𝑁neg denote the number of samples in the positive and
negative classes, respectively. The initial class weights 𝑤pos and 𝑤neg
are determined by the inverse of the square root of the number of
samples in each class. To normalize these weights so that their sum
is equal to one, we use the following equations:

𝑤′
pos =

𝑤pos

𝑤pos +𝑤neg
, 𝑤′

neg =
𝑤neg

𝑤pos +𝑤neg
. (8)

The normalized class weights 𝑤′
pos and 𝑤′

neg are then incorporated into
the CrossEntropyLoss function, which is calculated by

𝐿(𝑦, �̂�) = −
𝐶
∑

𝑖=1
[𝑤′

pos𝑦𝑖 log(�̂�𝑖) +𝑤′
neg(1 − 𝑦𝑖) log(1 − �̂�𝑖)]. (9)

𝑦 represents the true label, �̂� represents the predicted probability,
𝑤′

pos and 𝑤′
neg represent the weighting coefficients of the positive and

negative classes respectively. This loss function solves the problem of
class imbalance.

(4) Model Configuration and Selection. Since Leave-One-Group-
Out is used, which iteratively trains on different dataset subsets, we
need to select the best model based on a comprehensive performance
metric that combines accuracy and loss. The metric for each model is
calculated by

𝑠𝑐 𝑜𝑟𝑒𝑖 = 𝛼 ⋅ 𝑎𝑐 𝑐𝑖 − (1 − 𝛼) ⋅ 𝑙 𝑜𝑠𝑠𝑖, (10)

𝑎𝑐 𝑐𝑖 and 𝑙 𝑜𝑠𝑠𝑖 represent the accuracy and loss of the 𝑖th model, re-
spectively, and 𝛼 is a balance parameter set at 0.5 to weigh accuracy
9

and loss equally. We normalize these scores across all models to assign
weights calculated by

𝑤𝑖 =
𝑠𝑐 𝑜𝑟𝑒𝑖

∑𝑛
𝑗=1 𝑠𝑐 𝑜𝑟𝑒𝑗

, (11)

𝑛 is the total number of models. The model with the highest normalized
score is chosen for further analysis and use in subsequent experiments.

Fig. 9 provides an illustrative example of the epoch loss performance
of GPT-2 on the TRIT-TS benchmark. Additionally, we evaluate the
performance of BERT, GPT-2, and T5 models on the Trust-Hub, TRIT-
TC, and TRIT-TS benchmarks to determine the best model for each
dataset.

5.2. Character processing analysis

Experiment 1. The netlists in the experimental benchmarks are differ-
ent from real scenarios. They include Trojan-related characters such as
‘‘Payload’’, ‘‘Trojan’’, ‘‘Tg’’, ‘‘Tj’’, and ‘‘Trigger’’ for easier identification,
but these characters do not exist in reality. To resolve this difference,
we must eliminate the impact of these characters. Instead of removing
these characters, we explored several replacement methods to preserve
data structure and context completeness.

We conduct experiments using BERT on the Trust-Hub benchmark
to evaluate these character processing strategies. We then extend these
experiments to GPT-2 and T5, and extend testing to the TRIT-TC and
TRIT-TS benchmarks. We employ ‘‘BertForSequenceClassification’’, a
variant of the BERT model designed for sequence classification tasks.
It uses BERT’s bidirectional encoder representation to capture contex-
tual differences in the training text. We use ‘‘BertTokenizer’’, which
combines the WordPiece algorithm and automatically adds special
tokens: [CLS] is added to the beginning of each sequence, and [SEP]
is added to the end. The model uses the relative representation of
[CLS] tags to predict sequence classes. The model is initialized using
‘‘bert-base-uncased’’ and is case-insensitive.

We analyzed five processing methods, from method A to Method E.
Table 3 displays the benchmark’s performance under different charac-
ter processing strategies. Below, we analyze each strategy.

• Method A: using the original data. Retains all Trojan-related
characters. This method achieves high detection rates but risks
the model focusing more on identifying these specific characters,
rather than understanding the overall data structure and semantic
content.

• Method B: replacing with ‘‘unk’’. Replace Trojan-related char-
acters with unknown. This method maintains the structural in-
tegrity of the data by preserving the positions of Trojan-related
characters. However, it anonymizes its content, which may result
in the loss of some contextual information.

• Method C: replacing with ‘‘mask’’. Mask Trojan-related charac-
ters to reduce reliance on specific vocabulary while retaining their
location context. Like Method B, this method treats all Trojan-
related characters uniformly, which may limit the model’s ability
to distinguish them.

• Method D: replace with ‘‘node X’’. Replace Trojan-related char-
acters with ‘‘node X’’, where ‘‘X’’ represents random characters.
This method performs well but may lead to overfitting if the
character ‘‘node’’ mainly appears in Trojan samples.

• Method E: Replace with random characters. Replace Trojan-
related characters with random sequences of corresponding
length. This approach minimizes the reliance on specific terms
while preserving the distinction between different Trojan-related
characters. Allows the model to focus on structure and semantic
content rather than particular characters.

Finally, we choose the ‘‘Method E: Replace with random charac-
ters’’ strategy because it can eliminate the influence of Trojan-related
characters. This method effectively balances the generalization and
specificity of the model. We will also adopt this method in subsequent
experiments.



Expert Systems With Applications 271 (2025) 126666S. Kuang et al.

e
b
‘
o

G
t
e

‘
s
a

Table 3
Performance of BERT with different character processing strategies on the Trust-Hub Benchmark.

Benchmarks Method A Method B Method C Method D Method E
TPR TNR F1 TPR TNR F1 TPR TNR F1 TPR TNR F1 TPR TNR F1

RS232-T1000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
RS232-T1100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
RS232-T1200 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
RS232-T1300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
RS232-T1400 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
RS232-T1500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
RS232-T1600 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
s35932-T100 100.0 100.0 100.0 86.7 100.0 92.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
s35932-T200 100.0 100.0 100.0 75.0 100.0 85.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
s35932-T300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
s38417-T100 100.0 100.0 100.0 91.6 100.0 95.6 100.0 99.9 96.0 100.0 100.0 100.0 100.0 100.0 100.0
s38417-T200 100.0 100.0 100.0 73.3 100.0 84.6 100.0 99.9 96.8 100.0 100.0 100.0 100.0 100.0 100.0
s38417-T300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 98.9 100.0 100.0 100.0 100.0 100.0 100.0
s38584-T100 100.0 100.0 100.0 88.8 100.0 94.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
s38584-T200 100.0 100.0 100.0 100.0 100.0 100.0 98.8 100.0 99.4 100.0 100.0 100.0 98.8 100.0 99.4
s38584-T300 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
s15850-T100 100.0 100.0 100.0 92.5 100.0 96.1 100.0 100.0 100.0 100.0 100.0 100.0 97.6 100.0 98.8

AVG 100% 100% 100% 94.6% 100% 97.0% 99.9% 100% 99.5% 100% 100% 100% 99.8% 100% 99.9%
T
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Table 4
Performance of GPT-2 and T5 on the Trust-Hub benchmark.

Benchmarks GPT-2 T5

TPR TNR F1 TPR TNR F1

RS232-T1000 100.0 100.0 100.0 100.0 100.0 100.0
RS232-T1100 100.0 99.51 95.65 100.0 100.0 100.0
RS232-T1200 100.0 100.0 100.0 100.0 100.0 100.0
RS232-T1300 100.0 100.0 100.0 100.0 100.0 100.0
RS232-T1400 100.0 100.0 100.0 100.0 100.0 100.0
RS232-T1500 100.0 100.0 100.0 92.86 100.0 96.30
RS232-T1600 100.0 100.0 100.0 100.0 100.0 100.0
s35932-T100 100.0 100.0 100.0 100.0 100.0 100.0
s35932-T200 100.0 100.0 100.0 100.0 100.0 100.0
s35932-T300 100.0 100.0 100.0 100.0 100.0 100.0
s38417-T100 100.0 100.0 100.0 100.0 100.0 100.0
s38417-T200 100.0 100.0 100.0 100.0 100.0 100.0
s38417-T300 100.0 100.0 100.0 100.0 100.0 100.0
s38584-T100 100.0 100.0 100.0 100.0 100.0 100.0
s38584-T200 98.80 100.0 99.39 98.80 100.0 99.39
s38584-T300 100.0 99.98 99.93 100.0 99.98 99.93
s15850-T100 100.0 100.0 100.0 100.0 100.0 100.0

AVG 99.93% 99.97% 99.70% 99.51% 99.99% 99.74%

5.3. Benchmarks performance analysis

We evaluate the approach on the Trust-Hub, TRIT-TC, and TRIT-
TS benchmarks. Furthermore, a comparative analysis with existing
advanced approaches.

Experiment 2. Based on validating the character replacement strat-
gy in Experiment 1, we extend the experiments on the Trust-Hub
enchmark to GPT-2 and T5. We utilize the ‘‘GPT2LMHeadModel’’ and

‘T5ForConditionalGeneration’’ models to evaluate their performance
n HT detection tasks.

Unlike BERT, which is primarily optimized for classification tasks,
PT-2 and T5 were originally designed for generative tasks. To adapt

hese models for HT detection, we added a classification head to each,
nabling generative models to handle classification tasks.

We have previously analyzed BERT’s performance under differ-
ent character processing strategies, detailed in Method E of Table 3.
For GPT-2, we employ the ‘‘GPT2LMHeadModel’’ variant and utilize
‘GPT2Tokenizer’’ with byte pair encoding to break down the text into
ubwords. For T5, we use the ‘‘T5ForConditionalGeneration’’ model
long with ‘‘T5Tokenizer’’, applying the SentencePiece algorithm to

optimize token granularity and sequence length. Both models were
initialized with ‘‘gpt2’’ and ‘‘t5-small’’ using their respective tokenizers
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and pre-trained weights. The experimental results are presented in
Table 4.

We evaluate the performance of three models on the Trust-Hub
benchmark. Across all circuit datasets, these models show high ef-
fectiveness, achieving near-optimal TPR, TNR, and F1 score. GPT-2
achieved an average TPR of 99.93%, TNR of 99.97%, and F1 score of
99.7%. T5 performed equally well, with an average TPR of 99.51%,
TNR of 99.99%, and F1 score of 99.74%. As shown in the ‘‘Method
E ’’ column of Table 3, BERT achieves an average TPR of 99.8%, a

NR of 100%, and an F1 score of 99.9%. While these models achieve
igh accuracy in most cases, there are some exceptions, such as the
S232-T1500 and s38584-T200 netlists, where the model performance
egrades slightly. Overall, BERT, GPT-2, and T5 models performed
ell with equal-length random character replacement on the Trust-Hub

benchmark.

Experiment 3. This experiment evaluates our approach to the TRIT-TC
and TRIT-TS benchmarks. Unlike the Trust-Hub processing, in addition
to the character processing in Experiment 1, we remove the characters
introduced in the TRIT-TC and TRIT-TS benchmarks that affect HT
detection, such as ‘‘troj’’ and ‘‘trig’’.

Table 5 shows the performance of BERT, GPT-2, and T5 on the TRIT-
TC and TRIT-TS benchmarks. Performance on the TRIT-TC benchmark
presents that the TPR, TNR, and F1 score of the three models are all
over 99%, but the T5 model slightly outperforms the other two models
in these indicators. T5 has a TPR of 99.33%, a TNR of 99.99%, and an
F1 score of 99.98% on the TRIT-TC benchmark. These results present
that T5 has a slight advantage in HT detection compared to BERT and
GPT-2. Similarly, the evaluation of the TRIT-TS benchmark reached a
similar conclusion. Since T5 achieved high scores in TPR, TNR, and
F1, it achieved excellent performance on the TRIT-TC and TRIT-TS
enchmarks. However, while GPT-2 performs well on both benchmarks,
ts F1 score (99.61%) on the TRIT-TC benchmark is slightly lower than

that of BERT and T5. This suggests that GPT-2 may be less effective in
balancing precision and recall on TRIT-TC.

These results suggest that the NtN method and Trojan-related char-
cter replacement methods contribute to HT detection performance.

Experiment 4. This experiment compares the latest netlists-based HT
detection methods, focusing on performance metrics such as TNR, TPR,
and F1 score. Precision (P) is added to the performance metrics for
a more comprehensive comparison with other studies that use this
metric.
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Fig. 10. The performance of our approach. (a) Performance of BERT, (b) Performance of GPT-2, (c) Performance of T5.
Table 5
Performance on the TRIT-TC and TRIT-TS Benchmarks.

Metrics BERT GPT-2 T5

TPR (TRIT-TC) 99.33% 99.26% 99.33%
TNR (TRIT-TC) 99.99% 99.99% 99.99%
F1 (TRIT-TC) 99.98% 99.61% 99.98%

TPR (TRIT-TS) 99.92% 99.92% 100%
TNR (TRIT-TS) 99.99% 99.99% 100%
F1 (TRIT-TS) 99.96% 99.96% 100%

Table 6
Comparison of different approaches.

Precision TPR TNR F1 score

LMDet (Shen et al., 2017) – 82.8% 97.7% –
GramsDet (Lu et al., 2019) – 82.1% 96.0% –
SeGa (Ye et al., 2021) – 85.10% 93.58% –
Netlist Info Ext.
(Yu et al., 2022)

– 86.38% 99.98% –

Topology-aware
(Hassan et al., 2023)

93.5% 91.38% – 91.28%

GNN (Alrahis et al., 2022) 91.2% 84.1% – 86.0%
GNN4TJ (Yasaei et al.,
2021)

92.3% 96.6% – 94.0%

GNN classification
(Ma, Shang, et al., 2024)

94.5% – – 96.7%

PS-TextCNN
(Ma, Wang, & Wang, 2024)

– 88.9% 98.5% –

GNN4HT (Chen et al.,
2025)

80.95% 94.28% 97.22% –

NtNDet (BERT) 99.82% 99.68% 99.99% 99.95%
NtNDet (GPT-2) 99.73% 99.70% 99.99% 99.76%
NtNDet (T5) 99.76% 99.61% 99.99% 99.91%

NtNDet (AVG) 99.77% 99.66% 99.99% 99.87%

Fig. 10 illustrates the individual performance of BERT, GPT-2, and
T5 on the Trust-Hub, TRIT-TC, and TRIT-TS benchmarks and the com-
bined average performance of all these models. We use average per-
formance as a comparison. Table 6 summarizes the performance of
different models on these benchmarks, showing that models based on
our approach consistently outperform other excellent methods on all
evaluation metrics. In our analysis, our average model demonstrates a
substantial improvement over the best-performing model in the control
group. The precision increased by at least 5.27%, TPR by 3.06%, and
TNR by 0.01%. Additionally, the F1 score shows an increase of around
3.17%. However, it is essential to note that the datasets used in these
studies vary; some use custom datasets while others use subsets of
public datasets, which could potentially affect the comparative analysis.

Our approach has advantages in HT detection, such as higher accu-
racy, adaptability, no golden reference features, and automatic feature
extraction. In particular, pre-trained models can obtain rich repre-
sentations from many unlabeled data, which differs from traditional
end-to-end strategies. While GNNs can handle structured data well,
pre-trained models can capture complex dependencies and provide
greater semantic richness. These features make our HT inspection very
effective.
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5.4. Generalization and robustness assessment

To assess our NLP-based approach’s robustness and generalization
capabilities, we examine how changes in netlist data representation im-
pact detection performance. Since our model processes netlists similarly
to language data, it is crucial to emphasize its robustness against vari-
ations in data representation. Unlike traditional HT detection methods,
which focus on physical robustness to withstand environmental factors
or perturbations, our approach prioritizes data-level robustness issues.

Considering that the TRIT-TC and TRIT-TS benchmarks have many
netlists of the same type, they are more suitable for generalization
and robustness experiments. We extracted evaluation samples with the
same circuit names but different suffixes from the TRIT-TC and TRIT-
TS benchmarks. We randomly selected 10 netlist files for each circuit,
which means 50 and 40 netlist files were obtained from the TRIT-
TC and TRIT-TS benchmark test sets, respectively. It is important to
note that these selected netlists are independent of the training netlists;
we excluded netlists T000, T001, and T002 to ensure an unbiased
evaluation.

Experiment 5. This experiment evaluates the generalization ability
of our approach to the TRIT-TC and TRIT-TS benchmarks. We use the
selected 90 netlists as an independent evaluation dataset and use BERT,
GPT-2, and T5 for generalization evaluation.

Fig. 11(a) exhibits the three models’ commendable performance in
the TRIT-TC benchmark testing involving 50 netlist files. BERT, on
average, accomplished a TPR of 99.27%, a TNR of 99.99%, and an F1
score of 99.61%. Conversely, GPT-2 garnered slightly lower average
scores, with a TPR of 99.26%, a TNR of 99.99%, and an F1 score
of 99.6%. In stark contrast, T5 outperformed both by achieving near-
perfect average scores of 99.99% across all metrics. The conversion
to the TRIT-TS benchmark containing 40 netlist files, as shown in
Fig. 11(b). T5 continued its lead with near-perfect average scores of
99.99% across TPR, TNR, and F1 score. BERT’s average scores stood
at 99.54% for TPR, 99.99% for TNR, and 99.77% for F1 score. GPT-2
closely trailed T5, with average scores of 99.97% for TPR, 99.99% for
TNR, and 99.99% for F1 score.

Experiment 6. This experiment evaluates the robustness of our ap-
proach to data shuffling. We randomly shuffle each line of the netlist
files and conduct experiments on the datasets of Trust-Hub, TRIT-TC,
and TRIT-TS benchmarks using BERT, GPT-2, and T5.

This experiment simulates real-world scenarios where the order
within the netlists does not follow any specific pattern, as shown in
Table 7. Even though the order in the netlists changes, the model’s
performance on TPR, TNR, and F1 score metrics stays consistent with
the original data. This consistency shows that the model can recog-
nize and encode important patterns and structures, regardless of the
input order. It demonstrates the robustness of our shuffle-disturbance
method, which can effectively identify critical features within the
netlists and ensure reliable HT detection, no matter where the HT is
located.
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Fig. 11. Generalization performance of BERT, GPT-2, and T5 models on the TRIT-TC and TRIT-TS benchmarks. (a) Generalization on TRIT-TC, (b) Generalization on TRIT-TS.
Table 7
Benchmark Performance with Data Shuffling.

Metrics BERT GPT-2 T5

TPR (Trust-Hub) 99.80% 99.93% 99.51%
TNR (Trust-Hub) 100% 99.97% 99.99%
F1 (Trust-Hub) 99.99% 99.70% 99.74%

TPR (TRIT-TC) 99.33% 99.26% 99.33%
TNR (TRIT-TC) 99.99% 99.99% 99.99%
F1 (TRIT-TC) 99.98% 99.61% 99.98%

TPR (TRIT-TS) 99.92% 99.92% 100%
TNR (TRIT-TS) 99.99% 99.99% 100%
F1 (TRIT-TS) 99.96% 99.96% 100%

6. Discussion

6.1. Scalability and limitations

The NtNDet approach leverages a Transformer-based architecture
that is inherently scalable due to its parallel processing capabilities
and its ability to capture long-range dependencies. These properties
enable our method to handle larger and more complex circuits without
significantly degrading performance as circuit size increases.

While our primary focus is on gate-level HT detection, the underly-
ing principles of NLP-based netlist analysis can be extended to a variety
of emerging security challenges. Similar threats appear in automotive
electronics (e.g., advanced driver assistance systems), data center ac-
celerators (e.g., AI-specific chips), and consumer system-on-chip (SoC)
designs, including Internet of Things (IoT) devices. NtNDet may de-
tect malicious modifications early in the design process, proactively
addressing increasingly sophisticated hardware attacks.

However, it must be acknowledged that our approach is compu-
tationally expensive and time-consuming, primarily due to the use
of large-scale pre-trained models. Our current approach is limited to
detecting known HTs in the training data. This means that novel or
previously unseen Trojans may not be effectively identified, potentially
limiting the model’s applicability in real-world scenarios where new
Trojans could emerge.

6.2. Future directions

Based on the current work, we plan to carry out the following
research directions:

• Integration with Lightweight Models: Explore lightweight
transformer variants such as DistilBERT (Sanh, 2019) and Mo-
bileBERT (Sun et al., 2020), which can be trained and fine-tuned
for our HT detection task. These models aim to reduce compu-
tational resource requirements while maintaining high detection
performance.
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• Extension to RTL-level: Extend our approach to RTL-level, lever-
aging their structural similarities to gate-level designs. This will
broaden the applicability of our model across different levels of
circuit abstraction, enhancing its versatility in hardware security
analysis.

• Detection of Unknown or Novel Trojans: Investigate techniques
for identifying unknown or novel HTs not present in the train-
ing data. This will improve the effectiveness of our method in
real-world situations where new types of Trojans may emerge,
ensuring that our model remains robust against evolving threats.

• Optimization Strategy Exploration: Explore the potential of
a two-stage fine-tuning approach, in which we transition from
AdamW to SGD in the later stages of training. This strategy may
help refine the model’s performance, mitigate overfitting, and
improve generalization, potentially leading to more stable and
reliable accuracy levels.

By addressing these areas, we aim to enhance the scalability, ef-
ficiency, and practical applicability of our HT detection method, con-
tributing to more robust and secure integrated circuit designs.

7. Conclusion

This study proposes a new approach to detecting HT using large-
scale pre-trained NLP models. We introduce the NtN approach, which
converts gate-level netlists into a format compatible with NLP mod-
els, leveraging Transformer models to capture the netlist’s complex
relationships. Our experiments on the Trust-Hub, TRIT-TC, and TRIT-
TS benchmarks show that NtNDet outperforms existing HT detection
methods. This approach shows great potential for advancing the field
of HT detection and can serve as a foundation for further research.
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