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Abstract

Quantitative analysis of pulmonary nodules is necessary for the early diagnosis and treatment of lung cancer, improving the
possibility of patient survival. Although deep convolutional neural networks (DCNN5s) have been widely used in the quantifi-
cation of pulmonary nodules, these models generally suffer from poor detailed information learning and a large model size. In this
paper, for solving the problem of insufficient learning on the surface detailed information of pulmonary nodules and excessive
model parameters and computation, we propose a 3D Dual Attention Shadow Network (DAS-Net) to solve the problem of
accurate pulmonary nodules segmentation. The model consists of a shadow mapping encoder, a shadow mapping decoder and an
adaptive double-branch attention module. An encoder-decoder based on shadow mapping is designed, which greatly shrinks
parameters and computation while ensuring the richness of feature mapping. We also design an adaptive double-branching
attention module that focuses on learning the surface detailed information of nodules by using an attention mechanism. We
evaluate our model on the LIDC-IDRI which is the largest publicly available dataset. Experimental results not only demonstrate
the effectiveness of DAS-Net, but higher dice score and Hausdorff distance of segmentation results of our method compared with

other deep learning methods.
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1 Introduction

In 2020, the number of deaths caused by lung cancer reached
1.8 million, ranking first in the number of cancer deaths [1].
Lung cancer develops quickly and has a high mortality rate.
There are no obvious symptoms in the early stage of lung
cancer, but most patients are in the middle and late stages
when it is found. Once lung cancer has spread, the five-year
survival rate is only about 13% [2, 3]. Most of the early indi-
cations of lung cancer appear in the form of lung nodules.
Pulmonary nodules are classified as solid, partially solid and
ground glass, and the probability of canceration is about 7%,
63% and 18%, respectively [4]. Computed Tomography (CT)
is increasingly used in the detection of pulmonary nodules,
automatic screening and diagnosis of lung cancer because of
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its detailed parameters, clear anatomical relationship and low
cost. After communicating with physicians, we find that the
shape and surface information of pulmonary nodules are valu-
able for the diagnosis of tumors (The information of tumor
boundary in CT data is referred to as surface information in
3D space). [5] At present, the segmentation task of lung nod-
ules are mostly done manually by radiologists with profes-
sional knowledge and experience, which is a tedious, time-
consuming and experiential task. In contrast, the use of
computer-aided diagnosis to complete the segmentation task
of pulmonary nodules can significantly improve work effi-
ciency of the radiologist and robustness of the nodule segmen-
tation results. At the same time, accurate segmentation results
are extremely helpful to assist physicians in diagnosis and
treatment.

In the past few years, the segmentation methods for pulmo-
nary nodules are mainly based on traditional image processing
algorithms and deep learning. In the past ten years, the tradi-
tional image algorithm has played a major role in segmenta-
tion task of pulmonary nodules. The idea based on the tradi-
tional algorithms are to capture the position, brightness, con-
trast and pixel distribution in the image to complete the seg-
mentation task. Savi et al. [6] carried out a segmentation
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algorithm based on the fast-moving method, which divided
the image into regions with similar features, and then merges
the different regions through the k-means algorithm. This
method was effective for round and irregular nodules. Suji
et al. [7] used the optical flow algorithms Farneback, Horn-
Schunck and Lucas-Kanade, which were commonly used in
moving object segmentation tasks, to segment nodules from
CT images. Traditional algorithms have achieved outstanding
results in the nodules segmentation task, nevertheless, the seg-
mentation accuracy of traditional algorithms is low due to the
limitations of data quality, like nodules size small and the
susceptibility to adhesion (see Fig. 1).

The deep learning-based approaches have superior perfor-
mance in the pulmonary nodules segmentation task. Pawar
et al. [8] extracted multi-scale intensive features from the im-
ages using encoder paths, and the decoder paths obtained lung
segmentation images based on the multi-scale features. Wu
et al. [9] constructed a coarse-to-fine segmentation of pulmo-
nary nodules using a combination of image enhancement and
dual-branch neural networks. Firstly, the images were pre-
processed so that the purpose of roughly localizing the lesion
area, eliminating background noise and focusing boundary

Fig. 1 Pulmonary nodules have
tissue adhesions, small capillary
adhesions and ground glass
shadows. The tumors have
different shapes and large size
spans, which bring tremendous
challenges to the segmentation
task
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features could be achieved. Secondly, a double-branch net-
work was designed to effectively explore the information of
nodules in 2D sections and the relationship between adjacent
sections, to achieve more accurate segmentation. Pezzano
et al. [10] made all the background and minor vital elements
in CT into two masks, and used DCNN to learn the two masks
and encode them as context information. After that, the nod-
ules were segmented by subtracting the context information
from the CT images. Liu et al. [11] explored a fully automatic
algorithm for accurately segmenting lungs from chest CT im-
ages. A DCNN model was first constructed to implement the
classification of the chunked lung images to extract the initial
lung regions. Then the pre-processed chest CT as a hyperpixel
segmented and the lung contours were locally refined using
the adjacency point statistics method. However, since the ob-
ject of 2D deep learning method is a single image, the inter-
layer context information of the focal organs is lost for med-
ical images containing three-dimensional information. As the
consequence, the improvement of segmentation accuracy is
limited.

As deep learning techniques and computer hardware con-
tinue to evolve, it is possible to process CT images in 3D.




DAS-Net: A lung nodule segmentation method based on adaptive dual-branch attention and shadow mapping

Hence, 3D deep learning method has been widely adopted in
the field of segmentation of pulmonary nodules. Sahu et al.
[12] showed a multi-stage algorithm for lung 3D segmentation
in CT scans. The first stage used 3D CNN to obtain the coarse
segmentation of the left and right lungs. In the second stage,
3D structural correction CNN was used to correct the shape of
the segmented mask. Finally, a flood-fill operation was used
to up-sampling and optimize the segmented mask after shape
correction. Nishio et al. [13] described a model which based
on the generative adversarial network to segment pulmonary
nodules and generated a 3D result. To improve the segmenta-
tion accuracy, the nodule size was integrated into the model as
the guidance information. Sun et al. [14] explained a semi-
supervised 3D segmentation network for pulmonary nodules.
This method retrieved multi-scale features from three different
views and obtained spatial and semantic information at differ-
ent scales. Then, for some samples that were difficult to iden-
tify, a mixed loss function with adjustment factor was pro-
posed to make the network devote more focus to the learning
process of these samples. It is easy to find that most of the
research focuses on increasing the information abundance to
strengthen the model’s learning of nodules, but most methods
ignore the small blood vessels and organ adhesions at the
edges of the nodules, and do not make targeted improvements
to the network. In addition, few studies have spotlighted on
the explosion of parameters and computation difficulties
caused by 3D methods in the medical segmentation field.

In this paper, we propose the Dual Attention Shadow
Network (DAS-Net) to accurately segment 3D pulmonary
medical images. Our DAS-Net adopts a UNet-like architec-
ture, which is made up of an encoder-decoder based on shad-
ow mapping and an adaptive double-branching attention mod-
ule. Here, the encoder codes the spatial and surface feature
information of the nodules contained in the volume data as
high-level features. The adaptive dual-branch attention mod-
ule calculates the long-distance dependence which contained
in voxels in high-level features from two dimensions of spatial
and channel. The results of the attention module, which can be
seen as a kind of guidance information, and high-level features
are input into the decoder simultaneously to improve the per-
ceptual learning ability of the model for nodular boundary
information (see Fig. 2). We evaluate the proposed DAS-Net
model on the LIDC-IDRI dataset, and achieved the most ad-
vanced performance on this pulmonary nodules segmentation
task. The main contributions of this paper are summarized as
follows:

—  We suggest a dual-attention module with adaptive capa-
bility and call it an adaptive dual-attention module, in
which the adaptive weight matrix can enhance the
model’s ability to perceive the detailed information of
3D nodule surface and increase the segmentation
accuracy.

—  We construct the 3D shadow mapping layer and use it to
build the basic structure of the whole network. This meth-
od can guarantee the feature richness extracted by the
network while effectively shrinking the number of model
parameters and computation. To the best of our knowl-
edge this is the first time it is used in the field of 3D
medical image segmentation.

— We present an accurate 3D lung nodule segmentation
model with small number of parameters, called DAS-
Net, which has superior performance to the most ad-
vanced methods in lung nodule segmentation tasks.

2 Related work
2.1 Medical image segmentation

During the past few years, Deep Convolution Neural Network
(DCNN) has made remarkable achievements in the area of
medical image processing [9, 15—17]. Ronneberger et al.
[18] created U-Net based on the idea of an encoder-decoder,
at the same time, skip-connection was added between the
encoder and the decoder to maximize the retention of impor-
tant information in the feature maps of different sizes during
the feature extraction process. This method achieved excellent
segmentation performance in a variety of 2D medical image
segmentation tasks. Kushnure et al. [19] enhanced the multi-
scale features in the CNN to improve the network receptive
field by capturing global and local features at a finer-grained
level in the image. They also realigned the channel responses
between multi-scale features to enhance the segmentation ca-
pability of the network. Fang et al. [20] developed a kind of
novel selective feature aggregation network that could learn
the tumor boundary region and the central region separately to
predict the target region and the boundary to improving the
segmentation capability. These 2D methods cannot effectively
segment the spatial information contained in medical images,
resulting in limited segmentation accuracy. These 2D methods
have a common problem. Because of the 2D method cannot
effectively use the spatial information contained in the medi-
cal image for segmentation, the segmentation accuracy is
limited.

With the rapid development of 3D convolution, 3D DCNN
could take volume data as input, and the extracted spatial
information could effectively enrich the information abun-
dance. Compared with 2D DCNN, 3D DCNN has obvious
advantages in medical image segmentation. Perslev et al.
[21] designed a comprehensive 3D segmentation method to
slice data from multiple angles. They used multiple encoders
to extract lesion information from these images which cutted
in different angles and integrated it into a single decoder to
restore the final 3D segmentation results. Rickmann et al. [22]
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extended the Squeeze-and-Excitation (SE) [23] module to
three-dimensional space and carried out the project & excite
(PE) module based on the idea of SE. In this method, more
spatial information was retained by compressing the feature
image and the information was added into the network
decoding path in the excitation step to better complete the
three-dimensional segmentation task of medical images.
Usman et al. [24] relied on the residual U-Net [25] to complete
the detection and segmentation of nodules. They offered adap-
tive Rol region algorithm to dynamically explore the nodules
in the volume. After detected 3d nodules, the deep residual U-
Net was used to complete the segmentation task from the three
views of the nodules.

2.2 Attention learning

The aim of attention mechanism is that the model can ignore
irrelevant information and focus on important information just
like human. Flexible application of attention mechanism can
improve the results of semantic segmentation task. Vaswani
et al. [26] delivered to integrate the self-attention mechanism
into the sequence model, and built (key, query, value) triad
vectors to capture long-distance dependence through Scaled
Dot-Product Attention module. This method achieved great
success. Wang et al. [27] found an efficient non-local module
on the basis of constructing triples. This module could im-
prove the modeling effect of long-distance dependence.
Huang et al. [28] created a novel cross-attention module,
which collected the context information of all pixels in each
pixel’s cross-path and constructed the long-distance depen-
dency of the whole image through further cyclic operation.
Fu et al. [29] used two forms of attention on spatial and chan-
nel to learn long-distance dependence in slices, and then fused
these dependency features, achieving final results. Sinha et al.
[30] captured richer contextual relevance by using a guided
self-attention mechanism. This method integrated the local
features with their corresponding global dependencies, and
highlighted the interdependent channel feature maps in an
adaptive way, thus improving the segmentation accuracy.
Park et al. [31] developed a simple and effective bottleneck
attention module, which could generate attention diagrams for
the features at each down-sampling (bottleneck) of the model
along two different paths of channel and space to guide the
segmentation task.

2.3 Balance the computation and model performance

The balance between computation and model performance is a
problem that must be faced by every model. The principle is to
decrease the number of parameters and computation of the
model as much as possible without reducing the model per-
formance. Yu et al. [32] employed dilation convolution for
extending the perceptual field while acquiring multi-scale
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contextual information. Dilated convolution could expand
the receptive field of the model with the same image resolu-
tion without introducing additional parameters. Zeng et al.
[33] proposed a 3D Tilted Convolution (3D-TC) method to
solve the problem that the number of 3D segmented network
parameters was too large. The parameters in multiple convo-
lution cores were learned in the same layer, which could great-
ly reduce the amount of 3D model computation without re-
ducing the model performance. Han et al. [34] developed a
new Ghost module that could generate more features using
fewer parameters on the basis of the original features.

3 Method
3.1 Overview

Our proposed DAS-Net learns the long-range dependence in
volume data through adaptive attention module, which de-
creases the network parameters while increasing the accuracy
of the segmentation task. First of all, we develop an adaptive
dual-attention module. By calculating the spatial and channel
long-range dependencies between voxels, we can adaptively
assign higher weights to important positions and channels,
which solves the difficulty of learning the positional correla-
tion of the previous attention model. Then, a shadow mapping
encoder-decoder is built using a shadow mapping layer
substituted for the convolutional layer in DCNN. This ap-
proach can make effective reduction in parameters and com-
putation while guaranteeing feature diversity. Analogous to
[35], we merge the outputs of the encoder and decoder layers
which have the same feature scale by skip-connection to lower
the missing information caused by the max-pooling operation.
Figure 2 illustrates the architectures of our model, it composed
of a shadow mapping encoder, a shadow mapping decoder
and an adaptive dual-attention module.

3.2 Encoder-decoder based on shadow mapping

In the traditional CNN model, different high-level features can
be extracted after the convolution calculation of images with
different parameters. However, there are many convolution
kernels with high similarity in the traditional convolution cal-
culation process, and many similar feature mappings can be
obtained. So, there is data and computational redundancy in
CNN, which seems to be a common problem in CNN.
Compared with 2D convolution, the number of parameters
in 3D convolution method will increase by D times (D stands
for convolutional kernel depth), and the computation will in-
crease by D? times. The 3D method enlarges the redundancy
of data and computation. It also increases the difficulty of
training the model. To solve this problem, inspired by [34],
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Fig. 2 DAS-Net structure diagram. It consists of an encoder, an adaptive dual attention module and a decoder. # is the height and width of the cropped

volume during training

we extend this idea to 3D space and built 3D shadow map-
ping. Specifically, we suppose that a 3D convolution gener-
ates m feature mappings as Y € R/wxdxm.

Y = X% (1)

where * indicates convolution operation; f* € Re*kxkxkxm jg
the core convolution kernel of this layer, and £ x & x k means
the length, width and height of the convolution kernel f. To
enlarge the feature richness further, we carry out linear trans-
formation operations on the basis of the core feature Y and
obtain the final Shadow feature:

yU:¢,/(Y,), szl,,mijl,,s (2)

where ¢;;() represents a linear operation to generate the ;*
shadow feature, and y;; is the 7™ shadow feature obtained from
Y;. Through the operation, we can get n = m - s (s represents
the number of linear operations) shadow features on the basis
of m core features. We concatenate the core features and shad-
ow features, and then perform batch normalization and
PReLU activation. The linear operation ¢ can make the task
that originally required n k3 size convolution kernels to com-
plete, now it only m can be completed. Compared with the
traditional 3D convolution method, the number of parameters
and the computation are reduced by k> x (n — m) and 2 x k3
x (n — m) respectively (the input feature length, width, height
and number of channels are the same as the traditional meth-
od). Yu and Koltun [32] and Zeng and Zheng [33] reduce the
model size by using dilated convolution, the presence of emp-
ty holes in the convolution will lose a lot of surface detail
information of the nodules. In contrast, each convolution in

the shadow mapping method extracts the fully surface detailed
information in the voxels and ensures the feature integrity to
the maximum extent.

Based on the shadow mapping, we build the shadow map-
ping layer(SML), as shown in Fig. 3. The encoding part codes
volume data into high-level features. The decoding part re-
stores extracted nodules surface detail information to a
voxel-by-voxel representation. A shadow mapping unit is
composed of 3 x 3 x 3 convolution operation, linear map-
ping, batch normalization and PReLU. The coding path has
six shadow mapping units, and each of two mapping units
constitutes one layer. The 3D Max Pooling operation is used
for the down-sampling of the feature map for each layer. The
decoding path also includes six shadow mapping units. The
two units are combined into one layer. The feature maps are
upsampled from the bottom up and connected to the same
scale in the encoding path. 1 x 1 x 1 convolution and sigmoid
activation function applied by us in the last layer of the
decoding path to merge the features and derive the segmented
results.

3.3 Adaptive dual-branch attention module

When DCNN learns each object (organ or tumor) in the three-
dimensional medical image, the network has poor learning
effect on the detail information of the object. Consequently,
this situation leads to a network that is less sensitive to details
of objects in adjacent slices, especially tissue adhesions and
small blood vessels. Motivated by the success of the self-
attentive mechanism [26] in mining long-range dependencies,
we design an adaptive dual-attention module inspired by [29].

@ Springer



S. Luo et al.

Fig.3 Shadow mapping layer (M represents the number of channels after basis of the core features. After concatenating these two features to get the
convolution). The core features are obtained by normal convolution output of the shadow mapping layer
operation, then shadow features are obtained by linear mapping on the

Fig. 4 Structure of adaptive dual-
branch attention module
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This module adaptively computes the positional correlation
between voxels based on high-level features extracted by the
encoder, enhancing the learning ability of object details by the
network.

Figure 4 is a schematic diagram of our proposed attention
module. It has two branches, that we named Adaptive Spatial
Axial Attention Block (ASAA) and Adaptive Channel
Attention Block (ACA) individually. These two blocks take
the output result F' of the encoder as input, then calculate the
position correlation information and channel correlation infor-
mation at the voxel level through the two attention modules of
space and channel. In this way, spatial voxel feature Fpuia
and channel voxel feature Fpguner can be obtained respective-
ly. At last, these two features and the high-level feature F
extracted by the encoder are summed as the input of the de-
coder to better perceive and semantic segmentation of the
relations between voxels.

Adaptive spatial axial attention block In order to construct
global dependent information in features and better learn de-
tailed features in medical images, we first need to construct
spatial attention matrix, which can describe the correlation
information among voxels. Since the relationship between
the number of compatible parameters and the integrity of spa-
tial information is needed, we choose to encode the spatial
correlation information of high-level features after coding path
processing. Inspired by [36], weuse3 x 1 x 1,1 x 3 x 1,and
1 x 1 x 3 convolution in 3D space to learn the correlation
information in volume data from different directions. Batch
normalization and PReLU activation are carried out after the
convolution operation. PReLU makes tailored optimization
for overfitting during network optimization than ReLU, which
ensures the robustness of the deep model without increasing
the computational effort. After calculation, we get three fea-
ture matrices Q5 € ROH*WxD | K}S € REHXWXD gpnq Rf

€ ROMXWxD "where C represents the number of input chan-

nels. H, W, and D represent the height, width, and depth of the
input data, separately. These matrices take H, W, and D as
axes to learn the correlation information among voxels from
three directions, and the constructed spatial attention matrix is
used to capture the edge details of nodules. In the next step, we
reshape these three feature maps to RV, where N = H x W

xD. First, 0% " and Rf perform matrix multiplication to fuse
the voxel correlation matrices calculated with height direction

as axis and depth direction as axis. Next, the same operation is
T . .
performed for Kf and Rf to fuse the voxel correlation matri-

ces calculated with width direction as the axis and depth di-

rection as the axis. However, we find that certain locational

correlations are difficult to learn, and there are biases in

encoding voxel affinity matrices. In the case that the voxel
. . . S S

affinity matrix is not accurate enough, O, K and R; can lead

to insufficiently accurate long-range dependencies in the

computation of voxel correlations. As result, we add adaptive
spatial correlation matrices Wy, € RV and W,, € RV*N
when performing matrix operations on Q% T, Rf and Kf T, Rf
respectively. It can adaptively optimize and control the bias in
the calculation of the affinity between the current voxel and
other locations in the back propagation, and reduce the influ-
ence in the process of voxel affinity coding. Where 05 " and
K} " are 07 and K} transpose. In the end, the voxel affinity
matrix VAM (., is calculated by Softmax function, as shown
below:

VAM(yy. = Sofimax| (Wee x 057 < B) - (Wi x K37 x RS |
(3)

where VAM ( represents the affinity between the voxels at

th

X),2)
X",y and 7" position and other positions. Next, we perform
1 x 1 x 1 convolution on the input high-level feature F to
obtain a reduced-dimensional feature map V5 € ROH>WxD,

The voxel affinity matrix reshaped by us to obtain
VAM (o) € RE*W*D “and then perform matrix multiplica-
tion between VS and VAM (xy,) to obtain the voxel-level
attention enhancement feature Fg € RE*#*W*D Finally, the
raw high-level features and voxel correlation features are
element-wise summed to obtain the output of the ASAA
block. In this part, voxel correlation in all directions of 3D
data is taken into consideration, and spatial location informa-
tion is effectively used for segmentation calculation to im-
prove segmentation accuracy.

Adaptive channel attention block Each channel contains a
kind of unique category characteristic in the high-level fea-
tures obtained by the encoder part. The category features of
different channels are interdependent. In order to calculate the
interdependence information of different channels, an adap-
tive channel attention block is proposed by us to further syn-
thesize the feature representation. We reshape the high-level
feature F extracted from the encoder as R . The reshaped
features are expressed as O¢ € R©N and K€ € ROV, respec-
tively. Next, the channel affinity matrix is calculated by the
following formula:

CAM = Softmax(QC x KCT) 4)

where CAM € R€*€ represents the calculated channel affinity
matrix. If the similarity of category features is high, the cate-
gory features between channels can promote each other, oth-
erwise, they can inhibit each other. Similar to the learning
process of voxel affinity matrix, we find that there are biases
in the learning process of channel similarity, which can lead to
the performance degradation of the model. For reducing this
kind of biases, similar to the ASAA block, an adaptive

@ Springer



S. Luo et al.

channel correlation matrix W € R“*€ is added in the process
of calculating channel affinity matrix. This matrix can adjust
the inter-channel dependence during the back propagation of
the model, effectively reduce the bias. At the same time, this
matrix also enhances the model’s ability to recognize nodule
details and background. The calculation method is as follows:

CAM = Soﬁmax(Wc % 0° x KCT) (5)

We use 1 x 1 x 1 convolution on the high-level feature F’
which is extracted by encoder to get V¢ € ROH>*WxD - At
the same time, the channel affinity matrix CAM is reshaped
into ROH*WxD Next, CAM is multiplied with V¢ to obtain
the attention feature of voxel-level channel Fo € REXH*XWxD,
Similar to the method of adaptive spatial axial attention block,
we sum the channel attention feature with the original advanced
feature to get the output of ACA block. The details of the model
architecture information are shown in Table 5, which we put at
the end of the paper due to the length of the table.

Compared with the original dual-attention mechanism [29]
the proposed adaptive dual-attention module has a stronger
learning ability for long-range dependencies. On the one hand,
the convolution of the ASAA module is able to dig more
intently into the dependencies on a single direction in the
space and aggregate the information on the affinity of the
constituent spatial voxels. On the other hand, the adaptive
matrices in the ASAA and ACA blocks inhibit the impairment
of dependencies by abnormal voxels and abnormal channels.

3.4 Loss function

In volume data, pulmonary nodules account for a small pro-
portion compared to the background. To minimize the diver-
gence between predicted and ground truth, we choose Dice
Coefficient Loss Lp;.. as the loss function, which can reduce
the deviation generated in the learning of the central region of
pulmonary nodules in the training process. In addition, we
also add Boundary Loss [37] Lgoundary to promote the learning
of nodules and blood vessels and other fine tissues. The over-
all loss function of our method is determined as:

‘CTotal = LDice + LBoundary (6)

where Dice Coefficient loss Lp;.. and Boundary 10ss Lgoundary
are defined as:

ZZN pigite
L ice — 1 - - = 7
P Z,\:1p’2+zz{i1g’z+€ ( )
LBoundaly = / (/)G(V)SQ(V)dV (8)
(%)

In (7), N represents the number of voxels, p; € [0, 1] indicates
the predicted probability of the i” voxel, and g; € [0, 1] means
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the ground truth of the i/ voxel. The parameter € is the
Laplacian smoothing factor, it is used to avoid instabilities
of model and to speed up the convergence during the training
session (e = 1.0 ). In (8), v represents the voxel in volume
data, is the spatial domain of volume data, and ¢ (v) calcu-
lates the distance of spatial distribution between the ground
truth of the boundary voxel and the prediction, which is de-
fined as:

9c(v) = [[v— Pred(v)]] ©)

where s4(v) represents the probability that the voxel v is pre-
dicted to be foreground or background, and ||-|| represents the
L2 distance.

4 Experiments
4.1 Datasets

In this study, the LIDC-IDRI open dataset [38] is used for all
experiments. The dataset is initiated and collected by the
National Cancer Institute and include 1, 018 patients. The
CT data of every patient are annotated by four experienced
chest radiologists. We screen the dataset to remove the slice
data which slice thickness greater than 2.5mm and missing
labeling information. In the end, we obtain complete patient
data for 862 patients with a total of 1160 nodules. We ran-
domly select 162 patients data as the test set and the rest 700
cases as the training set. We perform a five-fold cross-valida-
tion on the training set, testing the model once per fold and
taking the average of the five experiments as the final result.

4.2 Setting details

Our DAS-Net is realized by PyTorch framework and and exe-
cuted all experiments on a workstation fitted with an NVIDIA
Titan XP GPU. The data are treated by some pre-processing
method, such as linear mapping the HU values of all CT voxels
to [0, 1]. Then, the nodules are cut as volume centers to size 1
6 x 128 x 128 for training and testing. The clipped size of 16
x 128 x 128 cover the entire range of nodule sizes. To reduce
overfitting, we use a simple data enhancement technique in-
volving random scaling and flipping in three directions.
During the training process, the batch size and initial learning
rate (Ir) are set at 8 and le — 4, correspondingly. Stochastic
gradient descent (SGD) is utilized as our optimizer by setting
the weight decay to 0.8 and setting epoch to 500.

4.3 Assessment indicators

To better demonstrate the effectiveness of the proposed meth-
od in this paper, we measure the performance on the LIDC-
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IDRI dataset [39] using the Dice coefficient, Sensitivity and
Hausdorff distance.

Dice coefficient This is a measure of the similarity between
the segmented prediction Vi, and the relative ground truth
Vir, defined as follows:

Vseg N VGT
Vseg + VGT

Dice = 2% (10)
Sensitivity This index is used to measure the performance of

voxel classification and the correctness of segmentation re-
gion. It is defined as follows:

_ Vseg N VGT
Vseg

Sen (11)
Hausdorff distance It evaluates the quality of segmented sur-
face details by computing the maximized gap between the
prediction and the ground truth, which is defined as follows:
H(Vseg7 VGT) = MaXxevgy {minyEVseg{”xayH}} (12)
where ||, *|| represents the Euclidean distance. When the
Dice coefficient is large, the sensitivity is large or the
Hausdorff distance is small, the segmentation results are more
accurate.

4.4 Result
4.4.1 Comparative experiment

To better illustrate the capability of our method in extracting
detailed features, our method is respectively compared with
most advanced two kind of 2D segmentation methods and
seven 3D methods. These methods are 2D U-Net [18], DA-
Net [40], V-Net [39], 3D-CRF [41], 3D-Res2UNet [42], 3D
TC U-Net [33], A-Roi algorithm [24], CoLe-CNN [10] and
DB-ResNet [43]. DA-Net [40] replaces the convolution with
an atrous convolution and uses a dense connection to extract
rich features, completing the widening of the filter’s field of
view without producing losses. V-Net [39] is a classic model
in 3D medical image segmentation. This method replaced 2D
convolution with 3D convolution operation and introduced
residual information to make up for the feature loss caused
by the convolution operation. At the same time, convolution
operations replaced the original pooling operations which
used to up-sampling and down-sampling for reduce the loss
when the image resolution changes. 3D-CRF [41] added 3D
Conditional Random Field Post-processing algorithm to 3D
U-Net for capturing global context information and assisting
in better predicted accuracy. 3D-Res2UNet [42] is the combi-
nation of Res2Net and 3D-UNet, allowing the network to be
more sensitive to small nodule targets. 3D TC U-Net [33]
proposed a method to learn the parameters of multiple

convolution cores in the same layer, which effectively reduced
the model parameters and calculation amount, and also im-
proved the model segmentation performance. DB-ResNet
[43] proposed a new pooling operation to select the intensity
features of block center voxels and merge them with the multi-
view and multi-scale features of the nodules to jointly solve
the segmentation task. This method also added a weighted
sampling strategy to select voxels at boundary locations to
raise the accuracy of the model. The other three models have
been described earlier and not repeated here.

The experimental results of the 2D work demonstrates that
the 3D approach is superior in the lung nodule segmentation
task, with the 3D approach outperforming them correspond-
ingly by 18.75% and 11.02% in dice score and by 20.31% and
3.61% in sensitivity. Our analysis suggests that the 2D method
cannot capture richer inter-layer contextual information to en-
hance the segmentation effect, so the 3D method is more ad-
vantageous. Compared to several other 3D methods, our pro-
posed method is 3.88%, 3.76%, 1.89%, 4.85%, 4.5%, 5.95%
and 2.71% higher than the other seven methods in the Dice
score, respectively. It means that our proposed DAS-Net can
learn the core region of the nodules in volume data better than
the other methods. For HD evaluation index, our method is
7.8,2.92, 148, 11.15, 0.85, 4.67 and 0.76 lower than other
methods, respectively, which proves that our approach outper-
forms the other seven approaches for learning surface detail
capabilities. The results of indicators Dice Score and HD dem-
onstrated that our method offers better performance than other
methods on aspects of surface detail learning. Results con-
firms that the method proposed by us is effective in resolving
the complex issues of nodule segments, such as segmentation
of small fine vessels and segmentation of tissue adhesions at
the nodule margins. By comparing the standard deviation of
Dice Score in Table 1, we consider our approach to be more
stable than other approaches.

Figure 5 shows the segmentation results of 2D U-Net com-
pared with our method on three cases of data. From the results,
it can be found that the 2D method is more sensitive to the core
region of the nodule which could lead failure of capture richer
edge information. There are also cases of segmentation errors.

The segmentation results of the 3D method for the three
case test data in the LIDC dataset are given in Fig. 6. The
results show that all eight methods are very effective in learn-
ing the core structure of the nodules, whereas the other seven
methods had weaknesses in learning the surface details of the
nodules. A comparison of the results in Fig. 6 indicates that
the other seven methods are incapable of accurate segmenta-
tion of tissue adhesions and small vascular adhesions. Our
method extracts more precise features of nodule details, espe-
cially to distinguish the adhesion of blood vessels or tissues. In
general, our method shows higher segmentation accuracy and
better segmentation reliability in terms of Dice Score,
Sensitivity and HD, which indicates that the segmentation
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Table 1 Performance comparison

of different segmentation Method Result
methods (mean =+ standard
deviation) Dice score(%) Sensitivity(%) Hausdorff distance(mm)
Ronneberger et al. [18] 73.3+£8.36 70.5+6.51 15.14£7.24
Magsood et al. [40] 81.00+0.00 87.2+0.00 -
Milletari et al. [39] 88.17+7.93 91.524+9.30 11.73£6.62
Wu et al. [41] 88.29+4.37 91.20+6.58 5.48+2.56
Xiao et al. [42] 90.16+8.84 89.85+10.24 5.41£3.06
Zeng et al. [33] 87.20+10.73 85.39+10.68 15.08+8.97
Usman et al. [24] 87.55+10.58 91.63+8.47 4.78+2.21
Pezzano et al. [10] 86.10+8.59 90.00+9.46 8.60+7.10
Cao et al. [43] 89.34+10.19 90.27+11.79 4.69+4.11
Ours 92.05+3.08 90.814+6.35 3.93+1.87
effect of the proposed method is obviously superior to other LIDC-IDRI22  LIDC-IDRI141  LIDC-IDRI 209

methods.

4.4.2 Ablation study

In this paper, we replace the traditional convolutional layer in
CNN by using shadow mapping layer to diminish the model
size, and introduce an adaptive dual-attention module to
strengthen the model’s perception of nodules detail informa-
tion. The efficiency of our approach is evaluated on a local
dataset.

Table 2 lists the performance of DAS-Net with or without
the shadow mapping layer and the adaptive dual-attention
module. The dual-branch attention module we proposed ex-
tracts feature information from two perspectives of channel
and spatial to construct an attention matrix to enhance the
model’s learning of edge detail information. We also verify
the contributions of the two attention modules separately and

LIDC-IDRI 22 LIDC-IDRI 141 LIDC-IDRI 209

Original Image

Ronneberger et al. [18]

Ours

Ground Truth

Fig. 5 Comparison of our method with 2D U-Net results
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Fig. 6 The comparison results for 3d segmentation methods (we selected
three cases from the test set for comparison, and the order of the methods
is V-Net, 3D-CRF, 3D-Res2UNet, 3D TC U-Net, A-Roi algorithm,
CoLe-CNN, DB-ResNet, Ours and Ground Truth)
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Table 2 Comparison of model

performance with/without Model name SML ASAA ACA Dicescore (%)  Sensitivity (%)  Hausdorft distance (mm)
shadow mapping and adaptive
dual attention module on the baseline - - - 87.41+£2.81 89.70+4.83 8.63+3.39
LIDC dataset (among the table, baseline+ vV - - 86.52+3.47 89.44+1.68 9.25+1.42
SML, ASAA and ACA represent SML
shadow mapping layer, adaptive baseline + DA — Vv - 90.63+3.60 91.31+7.80 3.34+1.12
spatial axial attention block and =y (ojjne 4 pA - - J 89.6542.50 90.47+4.14 5324131
adaptive channel attention block, .
separately) baseline + DA — vV vV 91.21+2.33 92.12+45.84 2.54+1.11
DAS-Net v v v 92.05+3.08 90.81+6.35 3.93:1.87

present the results in Table 2. We use 3D U-Net as baseline
and control variable method to keep all settings unchanged
except for the contrast part.

The results show that the designed adaptive dual attention
module helps to improve the effectiveness of the model in
segmentation of lung nodules. The role of shadow mapping
layer will be analyzed in the next section. Compared with the
baseline model, the model after adding the adaptive dual

LIDC-IDRI 22 LIDC-IDRI 141  LIDC-IDRI 209
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DAS-Net

Ground Truth

BERRRRRR

A

Fig. 7 Visualized results of ablation study (one of the three samples was
randomly selected from the test set for comparison)

attention module has improved 3.8% in Dice score and re-
duced 4.7 in Hausdorff distance. Using the two attention mod-
ules alone can improve the baseline performance to a certain
extent. The model integrating the two attention modules out-
performs the other three models in all evaluation metrics.
These results prove the effectiveness of the designed dual
attention module.

Adding the segmentation results and 3D visualization of
each module as shown in Figs. 7 and 8. The baseline model
is better for learning the core area of the nodules, but it loses a
lot of detailed features of the nodules, and there are situations
where the tissue adhesion cannot be distinguished. The model
with the adaptive dual attention module can better learn the
detailed characteristics of the nodules, especially for the case
of tissue adhesion. However, we find that the model with the
adaptive dual attention module learns too many details of the
vascular tissue, resulting in a big difference from ground truth.
This may be the reason for the lower Dice score. The results
obtain by DAS-Net are closer to ground truth. The quantita-
tive evaluation of Table 2 and the qualitative evaluation of
Figs. 6 and 7 all prove the effectiveness of the DAS-Net pro-
posed in this paper in the segmentation of three-dimensional
lung nodules.

Ablation research of shadow mapping feature ratio Our
DAS-Net changes the convolution operation to shadow map-
ping. The ratio of the core feature to the number of shadow
features is controlled by the parameter ». We conduct 4 exper-
iments on the LIDC dataset, and set » to 1, 2, 3, and 4,
separately. The proportions of core features and shadow fea-
tures were 1:0, 1:1, 1:2, and 1:3. We add shadow mapping
with different proportions on the basis of the baseline. The
comparisons are made from the four aspects of model param-
eters, calculation time per epoch, Dice score and Hausdorff
distance. The results are shown in Table 3.

From the results in Table 3, it can be found that as the
number of core features decreases, the amount of model pa-
rameters and Dice score decrease, while HD increases, and the
instability of the model also increases. Through the analysis
results, we believe that the reason for the fluctuation of the
calculation time is that the linear mapping process of shadow
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LIDC-IDRI 22

LIDC-IDRI 141

LIDC-IDRI 209

Baseline+DA
(ASAA)

Baseline+SL

Baseline

Baseline+DA Baseline+DA DAS-Net Ground Truth

(AcA)

Fig. 8 3D visualization of the results of the ablation study (the 3D visualization angles of different models of the same nodule are the same)

mapping is performed on the basis of convolution, which
causes the calculation time to be slightly higher than the base-
line. As the number of core features decreases, the diversity of
features decreases. The network learns too much redundant
information, which leads to a decrease in Dice score. We
balance the feature diversity and model parameters. We think
that the feature diversity is more abundant when the feature
ratio is 1:1, which is more suitable for the advancement of
segmentation tasks.

Ablation research of attention module In the process of
constructing the adaptive dual attention module, we try three
different combinations: connecting the adaptive spatial axial
attention block and the adaptive channel attention block in
parallel; connecting the two blocks serially in different se-
quences. We implement three combinations of these two
blocks on the basis of the baseline, and the comparison results
are given in Table 4.

The number in ASAA block and ACA block in Table 4
indicate the connection sequence. The results reveal that all
three connection ways can enhance the performance of the
model, but parallel connection has the strongest effect on the
model performance. Therefore, we choose to construct our
DAS-Net in parallel connection. As far as we are concerned,
because the previous attention block will omit part of the

information that is useless for the current block in the process
of extracting information, the effect of the serial connection
method is worse than the parallel connection. However, the
missing information is not useless for the latter block. The
effect of the model will be reduced. In the end, we combine
the two attention blocks in parallel connection to effectively
help the model strengthen the learning of boundary informa-
tion, thereby improving segmentation performance.

5 Conclusion

In this paper, we propose DAS-Net with 3D adaptive dual
attention module and 3D shadow mapping to improve the
ability of DCNN to learn the edges and details of nodules,
thereby improving the accuracy of segmenting lung volume
medical images. We evaluate our model on the LIDC-IDRI
dataset. Our results demonstrate that our DAS-Net outper-
forms current most advanced methods in the task of lung
nodule segmentation. The ablation study partially confirmed
the validity of the desigened module. In the future, we intend
to detect nodule targets in lung space by video target detection
algorithms and use them as input to our current method. On
this basis, we will study how to design an end-to-end 3D lung

Table 3 Core features and

shadow feature ratio settings (In Index  Feature Parameters Computation Time Per Dice Hausdorff distance
the table below, Feature Ratio Ratio Epoch(second) score(%) (mm)
means core features : shadow
features) 1 1:0 16.2 x 10° 63 87.41+2.81  8.63+3.39
2 1:1 8.13 x 105 69 86.52+3.47  9.25+1.42
3 1:2 549 x 10 65 83.12+7.26  10.89+5.20
4 1:3 4.10 x 10° 50 72.56 14.76£6.26
+11.38

@ Springer



DAS-Net: A lung nodule segmentation method based on adaptive dual-branch attention and shadow mapping

Table 4 Comparison results of
the three combinations of
adaptive dual attention modules

Table 5 Model architecture information

Layer Name

Ghost_layer 1

Ghost_layer 2

MaxPool3d layer 3
Ghost _layer 4

Ghost layer 5

MaxPool3d layer 6
Ghost layer 7

Ghost layer 8

MaxPool3d layer 9

Convl x -1_layer 10

ASAA Block 11

ACA Block 12

Fusing_layer 13

UpSample_layer 14
MaxPool3d layer 15

Ghost layer 16

Ghost layer 17

UpSample_layer 18

MaxPool3d layer 19

Ghost_layer 20

Ghost _layer 21

UpSample layer 22

MaxPool3d layer 23

Ghost layer 24

Ghost layer 25

Activation_layer 26

Index ASAA ACA Dice score(%) Sensitivity(%) Hausdorff distance(mm)
1 1 91.21+2.33 92.12+5.84 2.54+1.11
1 2 90.47+3.40 92.01+4.72 3.73+2.02
2 1 89.76+1.85 90.50+4.50 4.18+1.84
Output Size Structure
[-1,32, 4, 128, 128] Conv3d(3 x -3 x -3, stride=1, padding=1), BatchNorm3d, PReLU
Conv3d(3 x -3 x -3, stride=1, padding=1, groups=16), BatchNorm3d, PReLU
[-1, 64, 4, 128, 128] Conv3d(3 x -3 x -3, stride=1, padding=1), BatchNorm3d, PReLU
Conv3d(3 x -3 x -3, stride=1, padding=1, groups=32), BatchNorm3d, PReLU
[-1, 65, 4, 64, 64] AdaptiveMaxPool3d
[-1, 64, 4, 64, 64] Conv3d(3 x -3 x -3, stride=1, padding=1), BatchNorm3d, PReLU
Conv3d(3 x -3 x -3, stride=1, padding=1, groups=32), BatchNorm3d, PReLU
[-1, 128, 4, 64, 64] Conv3d(3 x -3 x -3, stride=1, padding=1), BatchNorm3d, PReLU
Conv3d(3 x -3 x -3, stride=1, padding=1, groups=64), BatchNorm3d, PReLU
[-1, 192, 4, 32, 32] AdaptiveMaxPool3d
[-1, 128, 4, 32, 32] Conv3d(3 x -3 x -3, stride=1, padding=1), BatchNorm3d, PReLU
Conv3d(3 x -3 x -3, stride=1, padding=1, groups=64), BatchNorm3d, PReLU
[-1, 256, 4, 32, 32] Conv3d(3 x -3 x -3, stride=1, padding=1), BatchNorm3d, PReLU
Conv3d(3 x -3 x -3, stride=1, padding=1, groups=128), BatchNorm3d, PReLU
[-1, 384, 4, 16, 16] AdaptiveMaxPool3d
[-1, 256, 4, 16, 16] Conv3d(l x -1 x -1, stride=1)
[-1,256, 4, 16, 16] Conv3d(l x -3 x -1, stride=1, padding=(0, 1, 0))
Conv3d(3 x -1 x -1, stride=1, padding=(1, 0, 0))
Conv3d(l x -1 x -3, stride=1, padding=(0, 0, 1))
Softmax(dim=-1)
[-1, 256, 4, 16, 16] Conv3d(l x -1 x -1, stride=1)
Softmax(dim=-1)
[-1, 256, 4, 16, 16] Conv3d(l x -1 x -1, stride=1)
[-1, 256, 8, 32, 32] Upsample(scale factor=2.0, mode=trilinear)
[-1, 256, 4, 32, 32] AdaptiveMaxPool3d
[-1, 256, 4, 32, 32] Conv3d(3 x -3 x -3, stride=1, padding=1), BatchNorm3d, PReLU
Conv3d(3 x -3 x -3, stride=1, padding=1, groups=128), BatchNorm3d, PReLU
[-1, 256, 4, 32, 32] Conv3d(3 x -3 x -3, stride=1, padding=1), BatchNorm3d, PReLU
Conv3d(3 x -3 x -3, stride=1, padding=1, groups=128), BatchNorm3d, PReLU
[-1, 256, 8, 64, 64] Upsample(scale_factor=2.0, mode=trilinear)
[-1, 256, 4, 64, 64] AdaptiveMaxPool3d
[-1, 128, 4, 64, 64] Conv3d(3 x -3 x -3, stride=1, padding=1), BatchNorm3d, PReLU
Conv3d(3 x -3 x -3, stride=1, padding=1, groups=64), BatchNorm3d, PReLU
[-1, 128, 4, 64, 64] Conv3d(3 x -3 x -3, stride=1, padding=1), BatchNorm3d, PReLU
Conv3d(3 x -3 x -3, stride=1, padding=1, groups=64), BatchNorm3d, PReLU
[-1, 128, 8, 128, 128] Upsample(scale factor=2.0, mode=trilinear)
[-1, 128, 4, 128, 128] AdaptiveMaxPool3d
[-1, 64, 4, 128, 128] Conv3d(3 x -3 x -3, stride=1, padding=1), BatchNorm3d, PReLU
Conv3d(3 x -3 x -3, stride=1, padding=1, groups=32), BatchNorm3d, PReLU
[-1, 2,4, 128, 128] Conv3d(l x -1 x -1, stride=1, padding=1), BatchNorm3d, PReLU
Conv3d(l x -1 x -1, stride=1, padding=1), BatchNorm3d, PReLU
[-1,2, 4, 128, 128] Sigmoid
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nodule detection segmentation model to better complete the
lung nodule segmentation task.
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