
IE
EE

Pr
oo

f

Boafft: Distributed Deduplication
for Big Data Storage in the Cloud

Shengmei Luo, Guangyan Zhang, Chengwen Wu,

Samee U. Khan, Senior Member, IEEE, and Keqin Li, Fellow, IEEE

Abstract—As data progressively grows within data centers, the cloud storage systems continuously facechallenges in saving storage

capacity and providing capabilities necessary to move big data within an acceptable time frame. In this paper, we present the Boafft, a

cloud storage system with distributed deduplication. The Boafft achieves scalable throughput and capacity usingmultiple data servers

to deduplicate data in parallel, with a minimal loss of deduplication ratio. Firstly, the Boafft uses an efficient data routing algorithm based

on data similarity that reduces the network overhead by quickly identifying the storage location. Secondly, the Boafft maintains an in-

memory similarity indexing in each data server that helps avoid a large number of random disk reads and writes, which in turn

accelerates local data deduplication. Thirdly, the Boafft constructs hot fingerprint cache in each data server based on access

frequency, so as to improve the data deduplication ratio. Our comparative analysis with EMC’s stateful routing algorithm reveals that

the Boafft can provide a comparatively high deduplication ratio with a low network bandwidth overhead. Moreover, the Boafft makes

better usage of the storage space, with higher read/write bandwidth and good load balance.

Index Terms—Big data, cloud storage, data deduplication, data routing, file system

Ç

1 INTRODUCTION

C URRENTLY, the enterprise data centers manage PB or
even EB magnitude of data. The data in those cloud

storage systems (e.g., GFS [1], HDFS [2], Ceph [3], Eucalyp-
tus [4], and GlusterFS [5]) that provide a large number
of users with storage services are even larger. The cost of
enterprise data storage and management is increasing rap-
idly, and the improvement of storage resource utilization
has become a grand challenge, which we face in the field of
big data storage. According to a survey, about 75 percent
data in the digital world are identical [6], and especially the
data redundancy in backup and archival storage systems is
greater than 90 percent [7]. The technique of data deduplica-
tion can identify and eliminate duplicate data in a storage
system. Consequently, the introduction of data deduplica-
tion into cloud storage systems brings an ability to effec-
tively reduce the storage requirement of big data and lower
the cost of data storage.

Data deduplication replaces identical regions of data
(files or portions of files) with references to data already
stored on the disk. Compared with the traditional compres-
sion techniques, data deduplication can eliminate not only
the data redundancy within a single file, but also the data

redundancy among multiple files. However, to find redun-
dant data blocks, deduplication has to make content com-
parison among a large amount of data. Deduplication is
both computation-intensive and I/O-intensive, which easily
has a negative impact on the performance of data servers.
To reduce this negative impact of data deduplication, an
attractive approach is to implement it in parallel by distrib-
uting the computational and I/O tasks to individual nodes
in a storage cluster. This can utilize the computation capa-
bility and storage capacity of multiple nodes in cloud stor-
age to solve the bottleneck of data deduplication.

One of technical challenges with regards to distributed
data deduplication is to achieve scalable throughput and a
system-wide data reduction ratio close to that of a central-
ized deduplication system. By querying and comparing the
entire data globally, we can achieve the best data deduplica-
tion ratio (DR). However, it is required to maintain a global
index library. Both index data updates and duplicate data
detection will cause network transmission overheads.
Therefore, such a global deduplication will have a severe
performance degradation, especially in a cloud storage sys-
tem with hundreds of nodes. An alternative approach is a
combination of content-aware data routing and local dedu-
plication. When using this approach, one will face the
challenge of designing a data routing algorithm with low
computing complexity and high deduplication ratio.

In this paper, we present Boafft,1 a cloud storage system
with distributed deduplication. Boafft creates super-chunks
that represent consecutive smaller data chunks, then
routes super-chunks to nodes according to data content,
and finally performs local deduplication at each node.
Boafft uses an efficient data routing algorithm based on
data similarity that reduces the overhead of network

� S. Luo, G. Zhang, and C. Wu are with the Department of Computer
Science and Technology, Tsinghua University, Beijing 100084, China.
E-mail: luo.shengmei@zte.com.cn, gyzh@tsinghua.edu.cn, wcw14@mails.
tsinghua.edu.cn.

� S. Khan is with the Department of Electrical and Computer Engineering,
North Dakota State University. E-mail: samee.khan@ndsu.edu.

� K. Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561. E-mail: lik@newpaltz.edu.

Manuscript received 15 Jan. 2015; revised 10 Aug. 2015; accepted 10 Dec.
2015. Date of publication 0 . 0000; date of current version 0 . 0000.
Recommended for acceptance by J. Chen, I. Stojmenovic, and I. Bojanova.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2015.2511752 1. an abbreviation of “Birds of a feather flock together”.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016 1

2168-7161� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

IE
EE

Pr
oo

f

bandwidth and calculates the storage location of data
quickly. For a data set, multiple representative fingerprints,
instead of only one fingerprint, are used to find more simi-
larity in datasets. The data routing algorithm leverages data
similarity to enable superblocks with high similarity to co-
locate in the same data server, where Boafft performs local
data deduplication. This provides a minimal loss of dedu-
plication ratio, while reducing the network overhead.

Moreover, Boafft accelerates data routing and local data
deduplication by two key technologies. First, Boafft con-
structs hot fingerprint cache in each data server based on
access frequency, which accelerates data routing and guar-
antees data deduplication ratio by leverage of data locality.
Second, Boafft maintains an in-memory similarity index
table in each data server that aids in avoiding a large num-
ber of random disk reads and writes, and in turn accelerates
local data deduplication.

We implement the Boafft prototype by modifying the
source code of the widely-used Hadoop distributed file sys-
tem (HDFS). Our results from detailed experiments using
data center traces show that Boafft achieves scalable I/O
throughput using multiple storage nodes to deduplicate in
parallel, with a minimal loss of deduplication ratio. Com-
pared with the EMC’s stateful routing algorithm, the Boafft
can provide a comparatively high deduplication ratio with
a low network bandwidth overhead. Moreover, the Boafft
can achieve better storage space utilization, with higher
read/write bandwidth and good load balance.

The rest of this paper is organized as follows. Section 2
discusses related work, then Section 3 describes an over-
view of our Boafft system. Section 4 focuses on data routing
for distributed deduplication, and Section 5 depicts how
local deduplication is performed within a single data server.
We present our experimental methodology, datasets, and
the corresponding experimental results in Section 6. Finally,
conclusions are presented in Section 7.

2 RELATED WORK

Commonly used lossless compression algorithms include
Huffman coding [8], Lempel_ziv [9], and Range encoding
[10]. For example, the design of DEFLATE [11] algorithm
that was applied in the Gzip compression software, is based
on the two lossless compression algorithms of Lempel and
Huffman.

For data deduplication, the granularity is the key factor
that determines the deduplication ratio. Currently, there are
four main granularities in deduplication, namely: file, data
block, byte, and bit. File granularity deduplication [12] sys-
tems, such as FarSite system [13] and EMC Center System
[14] perform data deduplication by judging whether the
whole file is identical. File granularity deduplication can
only deduplicate when the files are identical, but cannot
deduplicate redundant data blocks within a file. Although
deduplication with data block, byte, or bit granularity
can deduplicate within a file, it does utilize more system
resources.

In terms of data block partitioning, there are two main
techniques, namely: fixed-sized partitioning [15] and con-
tent-defined chunking [15]. OceanStore [16] and Venti [17]
are based on fixed-sized partitioning. Content-defined

chunking, which is a content based method, partitions data
into data blocks with variable size by using sliding window
and Rabin’s fingerprint algorithm [18]. Consequently, it can
achieve a higher deduplication ratio, which is the primary
reason for its widespread adoption in many systems, such
as LBFS [19], Pastiche [20], Extreme Binning [21], EMC Clus-
ter Deduplication [22], and Deep Store [23]. Apart from the
aforementioned algorithms, some researchers proposed
many other partitioning algorithms based on the features of
dataset, such as TTTD [24], ADMAD [25], Fingerdiff [26],
and Bimodal CDC [27].

In the process of deduplication, the judgment of redun-
dant data blocks is based on the search and match of finger-
prints. Therefore, the optimization of indexing and
querying is an effective way to improve the I/O perfor-
mance and reduce the bottleneck of disk search in dedupli-
cation systems. There are three main methods to optimize
the data block index. The first method is the optimization
strategy based on data locality. For example, in the design
of DDFS [28], Zhu et al. proposed summary vector, stream-
informed segment layout, and locality-preserved caching,
which are based on locality to reduce the number of disk I/
O and improve cache hit ratio to optimize the process of
data block index and query. However, with the increase of
the scale of storage, a lot of system resources are required.
Therefore, the methodology tends to be used in a one-node
system. The second method is based on data similarity. For
example, DDFS [28] uses the technique of Bloom Filter [29]
to reduce the size of data index table. Lillibridge et al. pro-
posed sparse indexing [30], which samples data blocks
based on similarity to reduce the amount of data to be
indexed and queried, and then deduplicates those data seg-
ments with higher similarity. The HP’s extreme binning
strategy [21] is also based on data similarity that eliminates
the bottleneck of disk in the process of index querying.
Based on Broder’s theory of min-wise independent permu-
tations [31], it determines weather two files are similar by
comparing their minimum fingerprint. This method uses a
two-level indexing, so each data block query only costs a
disk access, which reduces the number of index query. The
third method is based on the SSD’s index. Due to better per-
formance of the SSDs on random reads, storing the index of
fingerprints and file’s Metadata in the SSD can accelerate
the query. For example, Microsoft Research proposed
ChunkStash [32] that stores data block’s index within the
SSD to improve system throughput.

The construction of a large-scale, high performance, dis-
tributed deduplication system needs to take various factors
into consideration, such as system’s global deduplication,
single node’s throughput, data distribution, and scalability.
It is noteworth to mention that the system overhead, dedu-
plication ratio, and scalability are all interdependent as
well. The EMC’s Data Domain [33] global deduplication
array has a good scalability in a small-scale cluster, but the
deduplication ratio, I/O throughput, and communication
overheads are the major drawbacks. Nippon Electric
Company’s (NEC) HYDRAstor [34] distributes data by dis-
tributed hash tables (DHT). The HYDRAstor distributes
data blocks to different virtual super node according to the
fingerprint. Thereafter, data deduplicates in each of the vir-
tual super node. Consequently, it can scale out a storage

2 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016

IE
EE

Pr
oo

f

system quickly. However, it cannot maintain data locality
due to the size of the 64 KB data block granularity.

Extreme binning utilizes file similarity to perform state-
less routing. First, it selects the minimum fingerprint in the
file as its characteristic fingerprint, according to Broder’s
theory of min-wise independent permutations. Thereafter,
it routes the files that are similar to the same deduplication
server to deduplicate. Although extreme binning can keep
its system performance and scalability in a large-scale clus-
ter, since its granularity is file, it can only perform well
when data locality is good. Dong et al. [22] proposed a solu-
tion for high performance deduplication cluster, which
takes super-chunk as its granularity to improve overall sys-
tem routing efficiency. Besides, they presented stateless and
stateful routing strategies based on super-chunk. Stateless
strategy uses conventional DHT to route super-chunk,
which has good load balance in a small cluster. But in a
large-scale cluster, it is hard to keep load balance, and its
deduplication ratio is comparatively low. While stateful
strategy matches the super-chunk’s fingerprint with stored
fingerprints in all nodes according to the index table, with
the consideration of load balance, it determines the route
with a good deduplication ratio in the node. The stateful
strategy can avoid imbalance and achieve a good deduplica-
tion performance, but it has an increased cost in computa-
tion, memory and communication, especially when the
storage scale grows rapidly.

Frey et al. proposed a probabilistic similarity metric [35]
that identifies the nodes holding the most chunks in com-
mon with the superblock being stored. By introducing
this metric, the computational and memory overheads of
stateful routing at the superblock granularity can be mini-
mized. As some workloads express poor similarity and
some others may have poor locality, some systems (e.g.,
DDFS, ChunkStash) can only perform well when workloads
exhibit good locality, and others (e.g., Extreme Binning)
can do well only when workloads have good similarity.
Based on this observation, SoLi [36] exploits both similarity
(by grouping strongly correlated small files into a segment
and segmenting large files) and locality (by grouping
contiguous segments into blocks) in backup streams to
achieve near-exact deduplication. However, it only add-
resses the intra-node challenge of single deduplication
server.

P
-Dedupe [37] leverages data similarity and local-

ity to make a sensible tradeoff between high deduplication
ratio and high performance scalability for cluster dedupli-
cation. Some other deduplication systems focus on offline
deduplication, such as DEBAR [38] and ChunkFarm [39].
These two systems split data partitioning and signature cal-
culations from the global index lookup, and update opera-
tions in parallel, and batch access to the index.

3 OVERVIEW OF THE BOAFFT

The Boafft is a cluster-based deduplication system that is
built on a distributed storage system, where each data
server has not only storage capacity but also certain compu-
tational capability. First, to better utilize the cluster’s capa-
bility, data servers perform local data deduplication in
parallel that guarantees overall system performance and
storage bandwidth in cloud storage environments. Second,

each client sends those data with high data similarity to the
same data server by using an efficient routing algorithm
based on data similarity, which ensures the high global
deduplication ratio. Finally, we optimize the storage of fin-
gerprint index, reduce the index query overhead, and
achieve a good deduplication ratio in a single node, by
implementing similarity index querying, storage container
caching, and hot fingerprint cache.

3.1 Theoretical Basis

Boafft uses MinHash (or the min-wise independent permu-
tations locality sensitive hashing scheme) [31], [41] to
quickly estimate how similar two superblocks are. The Jac-
card similarity coefficient [40] is a commonly used indicator
of the similarity between two sets. As shown in Equa-
tion (1), the Jaccard similarity coefficient is defined as the
size of the intersection divided by the size of the union of
the sample sets.

simðA;BÞ ¼ JðA;BÞ ¼ jA
T
Bj

jA S
Bj : (1)

According to min-wise independent permutations, we
get Equation (2). Here, Let h be a hash function that maps
the members of A and B to distinct integers, and for any set
S define hminðSÞ to be the member x of S with the minimum
value of hðxÞ. That is, the probability that hminðAÞ ¼ hminðBÞ
is true is equal to the similarity JðA;BÞ, assuming randomly
chosen sets A and B.

Pr½hminðAÞ ¼ hminðBÞ� ¼ JðA;BÞ: (2)

Then, we have a result as expressed in Equation (3).

simðA;BÞ ¼ Pr½hminðAÞ ¼ hminðBÞ�: (3)

If r is the random variable that is one when hminðAÞ ¼
hminðBÞ and zero otherwise, then r is an unbiased estimator
of JðA;BÞ. r is too high a variance to be a useful estimator
for the Jaccard similarity on its own—it is always zero or
one. The idea of the MinHash scheme is to reduce this vari-
ance by averaging together several variables constructed in
the same way. As a result, we use the k representative fin-
gerprints of a data set, by calculating minimal fingerprints
of its k data subsets, to find more similarity in datasets. In
Section 6.3.1, we discuss the effect of different k, and how to
select k in reality.

3.2 System Architecture

Fig. 1 demonstrates the architecture design of Boafft. Logi-
cally, the system is composed of clients, a metadata server
and data servers. A out-of-band distributed file system is
built on those data servers and the metadata server. Clients
interact to those servers via network connection to perform
data deduplication.

Themain function of clients is to provide interactive inter-
faces. Clients perform data preprocessing for data dedupli-
cation, e.g., data block partitioning, fingerprint extraction,
organization of data into superblocks. Clients get the routing
address of a superblock by interacting with the data servers
in the distributed file system, and then send the data and the
corresponding fingerprints to the selected data server.

LUO ET AL.: BOAFFT: DISTRIBUTED DEDUPLICATION FOR BIG DATA STORAGE IN THE CLOUD 3

IE
EE

Pr
oo

f

The metadata server mainly handles the storage of meta-
data, the management and maintenance of the cluster. More
specifically, it manages the process of data storage, main-
tains and manages the whole metadata in the distributed
file system and its storage status, guides the data routing
and maintains system load balance.

A data server performs local data deduplication, and
the storage and the management of data. A data server
communicates with clients via network to update the sta-
tus of data reception and node’s storage asynchronously.
When receiving a write request, a data server is responsi-
ble for receiving and deduplicating the data within the
node, and constructing corresponding index association of
the fingerprint. In addition to that, a data server needs to
build a connection between fingerprint and data blocks,
index data block’s fingerprint, map the file and data
blocks, and use the container to manage the storage of data
and fingerprint.

The network communication module provides clients
with a highly efficient communication to the nodes in the
distributed file system. In detail, the communication exists
among clients, the metadata server, and data servers. The
main way to conduct those communications is Remote Pro-
cedure Call (RPC), by which the metadata and a small
amount of control information can be exchanged. Moreover,
the transmission of large quantity of data and fingerprints
can be done by a stream socket.

3.3 Work Flow

Boafft’s work procedure is shown in Fig. 2. Initially, a client
partitions the write data stream into multiple chunks, calcu-
lates a fingerprint for each chunk, and organizes them into
superblocks for data routing. To get the routing address for
a superblock, Boafft selects a chunk fingerprint as the fea-
ture fingerprint of the superblock, and interacts with the
data routing engine of the metadata server. Finally, the cli-
ent sends the superblock to the corresponding data server
for storage and processing.

The metadata server preserves the whole session, and
manages the cluster. To assign a routing address for a
superblock, it uses a local similarity routing algorithm to
determine the best storage node. Meanwhile, we need to
take a thorough consideration of storage status of each data
server and query results in the process, which require us to
select the target node dynamically to balance the storage

utilization among data servers, so that the system’s storage
can be balanced.

Boafft only performs local data deduplication within a sin-
gle data server. On the basis of data similarity and data local-
ity, Boafft uses self-describing containers to store andmanage
data and fingerprints. Containers are self-describing in that a
metadata section includes the segment descriptors for the
stored segments. When a superblock arrives at a data server,
the data server loads the fingerprints of the bestmatched con-
tainer according to the similarity index, and organizes them
into a subset of the similarity index. The Boafft will then com-
pare the superblock with the subset of similarity index for
data deduplication, which is able to avoid largemount of I/O
operations. Therefore, the overhead of fingerprint query can
be decreased greatly. Although this will lower deduplication
ratio to some extent, it can get a great promotion in terms of
I/O throughput. In addition, to overcome the problem of
lower deduplication ratio when only matching similar con-
tainers, we design a strategy of container cache and finger-
print index to optimize the index query, and improve the
deduplication ratio from the aspect of data stream locality.

4 DATA ROUTING FOR DISTRIBUTED DEDUP

The Boafft’s data routing algorithm is based on the similar-
ity of data, with which a superblock is sent to the corre-
sponding data server according to their content. The goal of
the data routing algorithm is to make superblocks with high
similarity co-locate in the same data server, where Boafft
performs local data deduplication. Boafft selects super-
block’s feature fingerprint by sampling, and completes the
data routing by using stateful routing. In this manner, the
improvement of deduplciation ratio can be achieved, while
the performance of the storage cluster can be guaranteed.

4.1 Routing Granularity

A granularity of data routing determines a tradeoff between
throughput and capacity reduction ratio. Taking small

Fig. 2. Work flow of the Boafft system.

Fig. 1. Architecture of the Boafft system.

4 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016

IE
EE

Pr
oo

f

chunk as routing granularity can improve the deduplication
ratio but will decrease overall system throughput. While tak-
ing a file as routing granularity will make a great decrease in
deduplication ration, andwill cause imbalance of data distri-
bution among data servers. Boafft takes superblock as its
basic unit of data routing. When uploading a file, Boafft uses
a partitioning algorithm to divide a file into many small
chunks. A superblock is made up of a number of continuous
chunks. In this way, a file is splitted into some continuous
superblocks, and then take superblock as a basic routing
unit, which is sent to the selected data server to deduplicate.

The selection of the superblock size is the key factor
that affects deduplicaiotn ratio and system performance.
Through the experiments on actual datasets, we found that
when the superblock size varies between 4 and 16 M, the
write efficiency of data stream and the system throughput
can be improved, while the deduplication ratio of system
can be ensured as well. Refer to the section of experimental
evaluation for more details. Moreover, taking a superblock
as the granularity of data routing will partition a data
stream into some superblocks that will be sent to different
data servers, by which we can utilize computing resources
of a cluster efficiently and satisfy the applications’ demands
of parallel processing on big data in the cloud storage sys-
tem. Besides, it can keep the data locality, improve the per-
formance of read/write, reduce the overhead of network
communication, and avoide the problem of data distribu-
tion skew when routing a whole file. Besides, we can
achieve good deduplication ratio.

4.2 Choosing Feature Fingerprint

In the process of data routing, we assume the incoming data
streams have been divided into chunks with a content-
based chunking algorithm, and the fingerprint has been
computed to identify each chunk uniquely. The main task
of data routing is to quickly determine the target data server
where an incoming chunk can be deduplicated efficiently.
Sending all chunk fingerprints to all data servers for match-
ing will cause huge network overhead. Moreover, it is unre-
alistic to load all fingerprints into memory in a data server,
which will cause a large amount of disk I/Os, and degrad-
ing system performance severely. The Boafft takes feature
fingerprints for data routing, which was sampled from the
data to be routed. Therefore, the Boafft uses similarity
matching instead of globally exact matching.

The process of selecting a feature fingerprint for a super-
block is shown in Fig. 3. The Boafft divides a superblock
into multiple segments based on the principle of fixed size
or equal number of chunks. Every segment was composed
by some continuous chunks, and the segment is taken as a
unit when selecting a representative fingerprint. According

to the Broder’s theory [31], Boafft selects the Min-Hash as
the representative fingerprint of the segment. After the com-
pletion of the sampling of all segments in a superblock, the
Boafft organizes the selected representative fingerprints of
all segments into a characteristic set, and takes the set as the
feature fingerprint of the superblock.

The EMC’s Cluster Deduplication determines the routing
path by adopting simple stateless routing or global search,
and system deduplication ratio and throughput will be best
when the superblock size is 1MB. However, in cloud storage
environments, for these online compression and deduplica-
tion systems, forwarding small data blocks consumes a
large amount of network resources, and in turn increases
systems response time and lowers I/O throughput seri-
ously. Therefore, we redefine the size of a superblock, and
sample according to the similarity-based theory to ensure
highly efficient deduplication within the data server and
satisfy cloud storage’s fast response requirement better.

4.3 Stateful Data Routing

Boafft uses the stateful routing algorithm based on data sim-
ilarity. When storing a data superblock, Boafft sends the fea-
ture fingerprint of this superblock to every data server, gets
the similarity values of the superblock with the data stored
in each data server, and chooses the best matched data
server according to similarity values and storage utilization
of data servers. Consequently, Boafft can ensure compara-
tively high deduplication ratio and achieve load balance
among data servers.

Each data server maintains a similarity index table, which
is used to store the characteristic fingerprints of the super-
blocks in data containers. When storing a superblock in an
open container, the characteristic fingerprint of that super-
block will be loaded into similarity index as the container’s
representative characteristic fingerprint. The similarity index
can be loaded into memory. A client sends a superblock’s
characteristic fingerprint to all data servers. Each data server
compares the received fingerprint with the similarity index
table in memory to get the hit number of the characteristic
fingerprints. According to Border theory, the equal Min-
Hash of two setsmeans that the two sets have high similarity.
Therefore, a superblock’s hit number in a data server repre-
sents that the value of similarity the superblock with the cor-
responding data server. If the hit number in a data server is
large, we believe that the data stored in the node have a high
similarity with the superblock.

We determine the final routing address on the basis of a
reference value viðvi ¼ hi=uiÞ. It is a comprehensive reflec-
tion of similar characteristic fingerprint’s hit number and
the storage utilization of a data server. In this equation, hi is
the hit number of characteristic fingerprints in data server i,
and ui is the percentage of the storage capacity of data
server i that is be used. As we can see, when hi is great, the
reference value vi is great as well, which means selecting
such a node i will have a good effect on deduplication ratio.
The large value ui will lead to small reference value vi,
which indicates that the storage utilization of this server has
been significantly higher than the average, so we should
decrease the probability of selecting node i. Therefore, we
can maintain the balance among nodes’ storage utilization
to some extent in the premise of not decaying the

Fig. 3. The procedure of choosing feature fingerprint for a superblock.

LUO ET AL.: BOAFFT: DISTRIBUTED DEDUPLICATION FOR BIG DATA STORAGE IN THE CLOUD 5

IE
EE

Pr
oo

f

deduplication ratio. It should be noted that it also works
well for a heterogeneous system with data servers having
different storage capabilities.

4.4 Description of Data Routing Algorithm

Algorithm 1 shows the pseudo code of local similarity rout-
ing algorithm. (1) First, a client partitions the incoming data
stream into multiple superblocks, and selects representative
fingerprints for it (lines 1-3). (2) The client sends the repre-
sentative fingerprints of the superblock to all data servers,
and collects the numbers of fingerprint hits h from data
servers (lines 4-7). (3) The client calculates each data server’s
reference value v. The data server with the greatest refer-
ence value is the ideal one (lines13-18). (4) If reference val-
ues v of all data servers are zero, the client selects one
randomly, from the ones whose storage utilization is the
lowest, as the routing address of the superblock.

Algorithm 1. Local Similarity Routing Algorithm

Input:
s: the superblock to be routed.

Output:
id: the ID of data server selected.

1: split superblock s into k segments;
2: fingerprint fi min hash of Segment i, ð0 � i < kÞ;
3: representative fingerprint set Sf ff0; f1; . . . ; fk�1g;
4: for each data serverDj do
5: connect data serverDj through RPC;
6: cj hits_from_similarity_index(Dj, Sf);
7: end for
8: hit count set C fc0; c1; . . . ; cn�1g;
9: if 8cj 2 C, cj ¼ 0 then
10: id min_used_node();
11: return id
12: else
13: for each data serverDj do
14: uj storage_usage(Dj);
15: vj compute_value (Dj, cj, uj);
16: end for
17: value set V fv0; v1; . . . ; vn�1g;
18: id m, if vm is max(V);
19: return id;
20: end if

Local similarity routing algorithm is based on data local-
ity and data similarity, we take superblock as routing granu-
larity and redefine superblock’s organization to meet the
demands of the performance of big data’s storage in cloud
storage. In our implementation, we do logic partition on
superblock, select similar characteristic fingerprint locally,
and get the data distribution of each node to select the best
deduplication node according to stateful data routing algo-
rithm.Meanwhile, to maintain the balance of system storage,
we design the routing reference value of each node according
to node’s current storage status, and the best routing address
is determined by the value of this reference value.

5 LOCAL DEDUPLICATION WITHIN A DATA SERVER

In this section, we describe how a data server works when a
data read/write request arrives. Especially, we deliberate on
how it performs data deduplication and data regeneration.

5.1 The Procedure of Data Deduplication

A data server deduplicates locally for the incoming data.
Fig. 4 shows the process of deduplication in a data server. In a
data server, thread DataXceiver is responsible for receiving
and processing the read/write requests from client. Once
DataXceiver receive the write request, the data server will
start thread BlockReceiver to receive and store data. The
deduplication engine alsoworks in the BlockReceiver thread.

First of all, a data server receives superblock’s character-
istic fingerprints and metadata, determines the matched
data container by querying Hot Index and similarity index
table. A I/O read is required since the container is stored in
disk. We use the LRU container cache to take a direct match,
which can decrease the number of disk I/O operations to
some extent. After organizing the determined container into
index subsets, Boafft can search the index for the super-
block. If matched, there is no need to store the original data.
Otherwise, Boafft selects an open container to store the
remaining data. Finally, Boafft writes every chunk’s storage
information into the disk.

After deduplicating all the chunks in a superblock, Boafft
then writes the remained data into the container at once.
Compared with the method of writing deduplicated chunk
one by one, it can reduce the number of I/O operations and
improve the data server throughput when receiving data.

Another important aspect is the maintenance of index in
the process of deduplication. Index update can be divided
into three parts:

� Update of index in cache, the update of LRU con-
tainer cache is based on data server’s read/write
requests and the update of cache is in a way of LRU.

� Update of similarity index table, after storing the
container, we need select a characteristic fingerprint
from superblocks in the container, and update it to
the similarity index table for the later use of querying
and matching of similar fingerprint.

� Update of Hot Index table, we update the Hot Index
according to the access frequency of chunk’s finger-
print, and the chunk stored in a container of the LRU
container cache.

Fig. 4. The procedure of data deduplication in a data server.

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016

IE
EE

Pr
oo

f

5.2 The Procedure of Data Reorganization

When reading a file, a client sends a request to the metadata
server for the file metadata. Then, the metadata server
returns the data server address of the superblock and the
superblock ID to the client. The client establishes a connec-
tion with the data server, by which the client reads the cor-
responding superblock. To handle the read request from a
client, a data server reorganizes the data content of the
superblock, and returns the whole data to the client.

Fig. 5 shows the process of superblock reorganization in
data server. When the DataXceiver thread receives read
requests, the system starts the BlockSender thread, which
reads and sends the requested superblock. In more detail,
BlockSender first positions the physical address of the
superblock metadata, and loads the superblock metadata.
BlockSender then reorganizes the superblock according to
the superblock metadata. Finally, BlockSender sends the
reorganized superblock to the client.

When a data server performs local read operations, if the
chunk to be read next is not the data but the address of the
data, it will cause random disk read. That is, the read of a
chunk will across some files. To eliminate the bottleneck of
random disk reads, Boafft performs data deduplication
only among some similar containers. In this way, there will
be not too many I/O operations and will not open many
files for data reorganization, which will decrease the possi-
bility of random reads greatly.

5.3 Updating Hot Data Index

On the basis of LRU cache, Boafft uses Hot Index based on
the access frequency of fingerprints to improve the dedupli-
cation ratio within a single node. With the adaption of Hot
Index, when newly coming superblock was not deduplici-
ated in the similar containers, we can turn to the Hot Index
for a second deduplication. In this cache, we set the fre-
quency of the fingerprint in the container when match the
fingerprint in the cache, update the Hot Index. Algorithm 2
shows the pseudo code of Hot Index’s update.

Selecting the match container by similar fingerprint can-
not get a good deduplication result, since the similar finger-
print is not a good representation of the container’s data

characteristics. And the feature of data locality will gather
the duplicate data, which promise a good performance for
system’s deduplication. Consider the situation that some
fingerprints of a container being continuously hit, combined
with the data locality, there is no doubt that the possibility
of the other data in the container that detected as duplica-
tion data will increase.

Algorithm 2.Hot Index Update Algorithm

Input:
c: the incoming chunk; l: data container cache list.

Output:
the HotIndex.

1: h lru_get_cache(l, c);
2: if h ¼ NULL then
3: delete_fingerprint(HotIndex, c);
4: else
5: update_ref_count(l, c);
6: T now();
7: if T - lastupTime(h) > INTERVAL then
8: lastupTime(h) T ;
9: sort(l);
10: update(HotIndex, l);
11: end if
12: end if

6 EXPERIMENTAL EVALUATION

6.1 Implementation and System Settings

By revising the source code of widely-used Hadoop’s dis-
tributed file system, we implemented the Boafft prototype.
Here we conclude the main modifications on HDFS as
follows.

� In a client, we revised the original data storage code,
and implemented functions of data partition, finger-
print calculation, and data routing in the process of
data storage.

� In the metadata server, we retained the metadata
and cluster managements, and replaced the network
distance perception routing algorithm with our simi-
larity-based data routing algorithm.

� In a data server, we modified the organization of
data storage, adding deduplication engine and data
reorganization engine, LRU cache, and Hot Index
based on data locality and access frequency. Use Ber-
keley DB for persistent storage, such as a fingerprint
similarity index table (Similarity Index) and other
metadata.

We used three servers to build up our cluster environ-
ment, each server’s configurations is shown in Table 1.
We test the effect of deduplication in multiple nodes by
building virtual machines in physical machines to simulate
it. In a simulated environment, we start multiple processes
to simulate large scale cluster environment in each machine.

6.2 Evaluation Metrics and Data Sets

We use deduplication ratio, relative deduplication ratio,
deduplicaiton performance, deduplicaiotn throughput, and
cluster storage balance to analyze and evaluate cluster

Fig. 5. The procedure of data reorganization in a data server.

LUO ET AL.: BOAFFT: DISTRIBUTED DEDUPLICATION FOR BIG DATA STORAGE IN THE CLOUD 7

IE
EE

Pr
oo

f

deduplication system. Deduplication ratio is the ratio of log-
ical to physical size of the data. Relative deduplication ratio
(RDR) is the ratio of DR obtained by similarity matching
within a node to that of DRs get by globally matching.
Deduplication throughput (DT) is the ratio of the size of
original data with the time for uploading data. Deduplicai-
tion performance (DP) is the size of data that deleted by
deduplication per unit time. Cluster storage balance (CSB)
is the variance of nodes’ storage resource utilization, which
is used to test cluster storage balance.

Table 2 shows the datasets used by our experiments.
Dataset 1 and Dataset 2 are real datasets, whose sources are
the backup data from the web server of the department of
computer science of FIU and its mail server [42]. Dataset 3 is
the vdi images of five Linux virtual machines in our lab.
The deduplication ratio in Table 2 is under the circumstance
of 4 KB block size and global search in a single node.
Among them, DRs of Dataset 3 are 2.06 and 2.36 by using
Fixed-sized partitioning (FSP) [26] and Content-defined
chunking (CDC) [15], respectively.

6.3 Micro Benchmarks

6.3.1 Partitioning of SuperBlock

In our experiments, we partition the data stream into
chunks in the client, which is a widely used granularity
today. The chunk size is 4 KB in FSP. While the average size
of chunk is 4 KB, and the slide window is 48 bytes in CDC.
Besides, we set the maximum size of chunk to 8 KB, the
minimum to 2 KB. Our experiments show that different con-
tainer sizes in data servers have little impact on the dedupli-
cation ratio. We set the container size to a fixed value 16 MB
based on the three reasons.

� The fixed container size makes allocation and deallo-
cation of containers easier.

� The implementation of Boafft is based on HDFS,
which is friendly with large chunks.

� The large granularity of a container write achieves
high I/O throughput.

The goal of our first set of Micro benchmarks is to test the
size of superblock and the number of superblock’s segments

these two factors’ effects on deplication ratio and deduplica-
tion throughput. Since there is no data routing overhead in
a single node, the number of segment is the main factor that
affects deduplication ratio. Henceforth, We test the dedupli-
cation ratio by setting different superblock sizes and differ-
ent segment numbers in each case.

As shown in Fig. 6, for a certain size of superblock, the
relative deduplication ratio is improving along with the
increase of the number of segments. For different size of
superblock, the deduplicaiotn ratio keeps steady when the
segment number reaches to a certain value, which we call
superblock’s best number of segments. This is because the
more the number of segments is, the higher the sample fre-
quency of fingerprints is, and the number of containers that
need to be compared will increase as well. Moreover, the
similarity index of Hash Map will occupy more memory.
That is, the increased number of segments do not improve
the deduplication ratio but cost more memory. As we can
see from the experiments, the best numbers of segments for
superblocks with different sizes are—four for 1 MB, eight
for 2 and 4 MB, 16 for 8 MB, 32 for 16 MB, and 64 for 32 MB,
respectively. In other words, we can divide a superblock
into some 512 KB segments on average.

Fig. 7 shows the effects of different superblock sizes on
deduplication throughput. We divided a given size of
superblock into its best number of segments. As shown in
the figure, the deduplication throughput increases gradu-
ally along with the increase of the superblock size. The

TABLE 2
Description of Data Sets

Dataset Size DRs

1 Web Dataset 52 GB 2.25
2 Mail Dataset 247 GB 4.91
3 VM Dataset 159 GB 2.06/2.36

Fig. 6. The impact of superblock size and segment number on dedup
ratio.

Fig. 7. The impact of superblock size on deduplication throughput.

TABLE 1
Configuration of the Machines

item configuration

CPU Intel Xeon E5-2620@2.00GHz
Memory 32 GB
Disk 1 TB � 2
Network Intel Gigabit 100 Mbps
Operating system Ubuntu 12.04 64 bit
Kernel Linux 3.5.0-23-generic
Operating environment Jdk1.7

8 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016

IE
EE

Pr
oo

f

reason for this increase is that the upload of larger super-
blocks needs to load and match fingerprints of similar con-
tainers for fewer times, which results in lower overheads.
However, when the superblock size goes beyond a value,
the number of characteristic fingerprints that a data server
needs to compare is large. The data server receiving a super-
block will performs a lot of disk I/Os, and in turn brings a
negative impact on system performance. On the other hand,
with the increase of the superblock size, although dedupli-
cation throughput will increase to some extent, the dedupli-
cation ratio in a large scale cluster is low. Therefore, we
measure the deduplication performance in the following by
choosing the superblock size between 4 and 16 MB.

6.3.2 Impact of Hot Fingerprint Cache

When a data server receives the routing data, it only loads
the similar characteristic fingerprint of the container into
the Hash to represent the storage information of the con-
tainer. On the basis of data locality and access frequency,
we designed Hot Index to further improve the deduplica-
tion ratio within a data server.

Fig. 6 shows the effects of the different size of superblock
and the best number of segments on system deduplication
ratio. In Fig. 8, we can see a 5-10 percent improvement of
RDR after the adaption of Hot Index. The experiment result
also show that there exits spatial locality and temporal local-
ity among data.

6.4 Macro Benchmarks

6.4.1 Deduplication Ratio

We conducted our experiments in cluster by setting the size
of superblock to 8 MB, and constituting the scale of the clus-
ter to 1 128 respect, and compared with these systems based
on EMC’s Stateful and Stateless routing algorithms. As we
can see from Fig. 9, the testing results of the three datasets
have the same change rule, and Boafft’s deduplication ratio
can maintain between EMCStateful and EMCStateless.
When the number of node is one, the RDR is always equal
to 1. RDR of Boafft, EMCStateless, and EMCStateful is
decreasing along with the increase of node. The above result
must exits since the increase of available nodes for storage
and the difference of data distribution. EMCStateless uses
stateless routing algorithm, so its deduplication ratio
decreases sharply. When the number of node in the cluster

reached to 128, we can only get a about 65 percent RDR of
that within a single node. Hence, this stateless algorithm is
not feasible in large scale cluster.

For an EMCStateful cluster with 128 nodes, its RDR can
reach to 80-90 percent. This way of global stateful data rout-
ing can guarantee system a relatively high deduplication
ratio. Although Boafft do not have the high deduplication
ratio as EMCStateful, its deduplication ratio did not fall fast
as EMCStateless. And Boafft’s dediplication ratio main-
tained at around 80 percent, when the cluster has 128 nodes.
Above all, in large scale cluster of deduplication system that
is based on cloud storage, the local similar routing algorithm
applied in Boafft can get a good RDR to some extent.

The EMCStateful has a good performance in deduplica-
tion ratio, but since the best storage node was decided by

Fig. 8. The impact of hot fingerprint to dedup ratio.

Fig. 9. Relative deduplication ratio with different system sizes.

LUO ET AL.: BOAFFT: DISTRIBUTED DEDUPLICATION FOR BIG DATA STORAGE IN THE CLOUD 9

IE
EE

Pr
oo

f
matching all indexes of the node, the overhead of transmit-
ting fingerprint is too large. In addition, the overhead of
global match within a node is its main bottleneck.

6.4.2 System Overhead

Figs. 10 and 11 shows the experiments of the deduplication
throughput and system performance of Boafft, EMCStateful
and EMCStateless under different scale of cluster. EMC-
Stateless has high deduplication throughput and system
performance. The main reason lies in that it does not con-
sume any network transmission overheads in the process of
data routing, even if the scale of the cluster is large.

Boafft and EMCStateful implemented stateful data rout-
ing, so their storage performance decreases along with the
increase of the number of data nodes. However, Boafft’s

storage performance is better than EMCStateful with the
increase of nodes. This is because the amount of matched
information transmitted by Boafft’s similar match is 1/128
of that by EMCStateful, and the memory usage of finger-
print matching in data server is 1/128 of that in EMCState-
ful. Therefore, although Boafft does not achieve high
deduplication ratio as EMCStateful, its storage performance
is better and the consumed memory is less.

6.4.3 Load Balance among Data Servers

The balance of storage utilization is a main aspect of evalu-
ating a distributed system. In different scale of cluster, we
can get each node’s disk usage after the upload of datasets
and get the cluster’s status of storage balance by the calcula-
tion of CSB.

Fig. 10. System throughput with different system sizes. Fig. 11. System performance with different system sizes.

10 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016

IE
EE

Pr
oo

f

Fig. 12 shows the CSB results in our experiments. With
the increase of cluster’s node, the deviation of storage
increases gradually. From the above observation, we can
see that the storage deviation of each node in Boafft is
increased under the condition of the cluster’s scale is large.
However, CSB tend to increase slowly from the trend,
which means the routing algorithm of Boafft did not have
very negative impact on system storage balance. This is
because our routing algorithm takes the status of storage
into consideration and decides the data routing address
dynamically online.

6.4.4 I/O Bandwith

Finally, we test the read/write bandwidth of Boafft,
EMCStateless and EMCStateful to analyze their I/O
Bandwiths in different scale of cluster. Fig. 13 shows the
write bandwidth. The write performance of the system
with deduplication was significantly lower than the orig-
inal Hadoop system.

With the increase of the scale of cluster, system’s write
bandwidth decreases. The above phenomenon results from
the errors caused by the simulation of large-scale clusters
on a single physical machine. However, as we can see
from the experimental results, it is obvious that the write
bandwidth of Boafft is larger than EMCStateful. One of

the reasons is that Boafft’s memory cost is only 1/128 of
that in EMCStateful.

Fig. 14 shows the read bandwidth of four storage cluster
systems. First, Hodoop’s read bandwidth is greater than
the others with cluster deduplication. This is because
Hadoop read file sequentially, while the addition of dedu-
plication changes sequential storage of data on disk into
random storage, there are random reads in data reads. Sec-
ond, Boafft’s read bandwidth is larger than EMCStateful
and EMCstateless in different scale of cluster. Boafft’s
deduplication is based on a small amount of similar con-
tainers, which saves the overheads of comparing too much
containers’ fingerprints.

7 CONCLUSIONS

In this paper, we present Boafft, a cloud storage system with
distributed deduplication. It achieves scalable throughput
and capacity using multiple storage nodes to deduplicate in
parallel, with a minimal loss of deduplication ratio. First,
Boafft adopts efficient data routing algorithm based on data
similarity, which not only reduce the overhead of network
bandwidth, but can also calculate the storage location of
data fast. Second, each data server maintains a similarity
index table in memory, which can be used to deduplicate
data partially, and a large number of disk random reads/
writes can be avoided. Third, we improve the data dedupli-
cation ratio in single node with the help of cache container
of hot fingerprint based on access frequency.

We implemented the prototype system of Boafft by revis-
ing the source code of widely-used Hadoop distributed file
system. Experiment results show that Boafft can provide a
relatively high deduplication ratio, and compared with
EMCStateful, its network overheads is lower, memory
usage can reduced to 1/128 of the EMCStateful, storage uti-
lization and read/write bandwidth is higher, and load bal-
ance is also good.

ACKNOWLEDGMENTS

We are grateful to Zhiran Li for providing helpful com-
ments and assistance with our experimentation. This work
was supported by the National Natural Science Foundation

Fig. 14. The read bandwidth of cluster storage system.
Fig. 12. The deviation of storage utilization with the increase of cluster
nodes.

Fig. 13. The write bandwidth of cluster storage system.

LUO ET AL.: BOAFFT: DISTRIBUTED DEDUPLICATION FOR BIG DATA STORAGE IN THE CLOUD 11

IE
EE

Pr
oo

f

of China under Grants 61170008, and 61272055, the National
Grand Fundamental Research 973 Program of China under
Grant No. 2014CB340402, and the National High Technol-
ogy Research and Development Program of China under
Grant 2013AA01A210. The work was also support in part
by the National Science Foundation grant CNS 1229316.
G. Zhang is the corresponding author of this paper.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file sys-
tem,” ACM SIGOPS Operating Syst. Rev., vol. 37, no. 5, pp. 29–43,
2003.

[2] K. Shvachko, H. Kuang, S. Radia, et al., “The Hadoop distributed
file system ,” in Proc. IEEE 26th Symp.Mass Storage Syst. Technol.,
2010, pp. 1–10.

[3] S. A. Weil, S. A. Brandt, E. L. Miller, et al., “Ceph: A Scalable,
High-Performance Distributed File System”, in Proc. 7th USENIX
Symp. Operating Syst. Design Implementation, 2006, pp. 307–320.

[4] D. Nurmi, R. Wolski, C. Grzegorczyk, et al., “The eucalyptus
open-source cloud-computing system,” in Proc. 9th IEEE/ACM
Int. Symp. Cluster Comput. Grid, 2009, pp. 124–131.

[5] Gluster File System [Online]. Available: http://www.gluster.org/
community/documentation/index.php, visited in 2015.

[6] J. Gantz, and D. Reinsel, “The digital universe decade»are you
ready?” IDC White Paper, May 2010[J]. 2011.

[7] H. Biggar, “Experiencing data de-duplication: Improving effi-
ciency and reducing capacity requirements,” White Paper, the
Enterprise Strategy Group, Feb. 2007[J]. 2012.

[8] A. Jas, J. Ghosh-Dastidar, M. E. Ng, et al., “An efficient test vector
compression scheme using selective Huffman coding[J],” IEEE
Trans. Comput.-Aided Des. Integrated Circuits Syst., vol. 22, no. 6,
pp. 797–806, Jun. 2003.

[9] J. H. End III, “Hardware-based,” LZW data compression Co-pro-
cessor: U.S. Patent 6624762[P]. Sep. 9, 2003.

[10] H. Che, Z. Wang, K. Zheng, et al., “DRES: Dynamic range encod-
ing scheme for tcam coprocessors,” IEEE Trans. Comput., vol. 57,
no. 7, pp. 902–915, Jul. 2008.

[11] L. P. Deutsch, “DEFLATE compressed data format specification
version 1.3,” RFC Editor, 1996.

[12] K. Jin and E. L. Miller, “The effectiveness of deduplication on vir-
tual machine disk images,” in Proc. SYSTOR: Israeli Experimental
Syst. Conf., 2009, p. 7.

[13] A. Adya, W. J. Bolosky, M. Castro, et al., “FARSITE: Federated,
available, and reliable storage for an incompletely trusted envi-
ronment[J],” in Proc. 5th Symp. Operating Syst. Des. Implementation,
2002, pp. 1–14.

[14] (2002). EMC Centera, content addressed storage, product descrip-
tion [Online]. Available: http://www.emc.com/pdf/products/
centera/centera_guide.pdf

[15] D. Meister and A. Brinkmann, “Multi-level comparison of data
deduplication in a backup scenario[C],” in Proc. Israeli Exp. Syst.
Conf., 2009, p. 8.

[16] J. Kubiatowicz, D. Bindel, Y. Chen, et al., “Oceanstore: An archi-
tecture for global-scale persistent storage[J],” ACM Sigplan Notices,
vol. 35, no. 11, pp. 190–201, 2000.

[17] S. Quinlan and S. Dorward, “Venti: A new approach to archival
Storage,”in Proc. Conf. File Storage Technol., 2002, vol. 2, pp. 89–101.

[18] M. O. Rabin, “Fingerprinting by random polynomials,” Center for
Research in Computing Technol., Harvard Univ., Cambridge,
MA, USA, Tech. Rep. TR-15-81, 1981.

[19] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” ACM SIGOPS Operating Syst. Rev., vol. 35,
no. 5, pp. 174–187, 2001.

[20] L. P. Cox, C. D. Murray, and B. D. Noble, “Pastiche: Making
backup cheap and easy,” ACM SIGOPS Operating Syst. Rev.,
vol. 36, no. SI, pp. 285–298, 2002.

[21] D. Bhagwat, K. Eshghi, D. D. E. Long, et al., “Extreme binning:
Scalable, parallel deduplication for chunk-based file backup,” in
Proc. IEEE Int. Symp. Modell. Anal. Simulation Comput. Telecommun.
Syst., 2009, pp. 1–9.

[22] W. Dong, F. Douglis, K. Li, et al., “Tradeoffs in scalable data rout-
ing for deduplication clusters,” Proc. Conf. File Storage Technol.,
2011, pp. 15–29.

[23] L. L. You, K. T. Pollack, and D. D. E. Long, “Deep Store: An archi-
val storage system architecture,” in Proc. 21st Int. Conf. Data Eng.,
2005, pp. 804–815.

[24] K. Eshghi and H. K. Tang, “A framework for analyzing and
improving content-based chunking algorithms[J],” Hewlett-Pack-
ard Labs, Palo Alto, CA, USA, Tech. Rep. HPL-2005-30R1, 2005.

[25] C. Liu, Y. Lu, C. Shi, et al., “ADMAD: Application-drivenmetadata
aware de-duplication archival storage System,” in Proc. 5th IEEE
Int.Workshop Storage Netw. Archit. Parallel I/Os, 2008, pp. 29–35.

[26] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki, “Improving
duplicate elimination in storage systems,” ACM Trans. Storage,
vol. 2, no. 4, pp. 424–448, 2006.

[27] E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal content
defined chunking for backup streams,” in Proc. USENIX Conf. File
Storage Technol., 2010, pp. 239–252

[28] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system,” in Proc. Conf. File
Storage Technol., 2008, vol. 8, pp. 1–14.

[29] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[30] M. Lillibridge, K. Eshghi, D. Bhagwat, et al., “Sparse indexing:
Large scale, inline deduplication using sampling and locality,” in
Proc. Conf. File Storage Technol., 2009, vol. 9, pp. 111–123.

[31] A. Z. Broder, “On the resemblance and containment of doc-
uments,” in Proc. Compression Complexity Sequences, 1997, pp. 21–29.

[32] B. Debnath, S. Sengupta, and J. Li, “ChunkStash: Speeding up
inline storage deduplication using flash memory,” in Proc. Conf.
USENIX Annu. Techn. Conf., 2010, pp. 16–16.

[33] EMCData Domain Global Deduplication Array [Online]. Available:
http://www.datadomain.com/products/global-deduplication-
array.html, visited in 2015.

[34] C. Dubnicki, L. Gryz, L. Heldt, et al., “HYDRAstor: A Scalable Sec-
ondary Storage[C],” FAST, 2009, vol. 9, pp. 197–210.

[35] D. Frey, A.-M. Kermarrec, and K. Kloudas, “Probabilistic Dedupli-
cation for Cluster-based Storage Systems[C],” in Proceedings of the
Third ACMSymposium on Cloud Computing, 2012, pp. 17:1–17:14.

[36] W. Xia, H. Jiang, D. Feng, and Y. Hua, “SiLo: A Similarity-locality
Based Near-exact Deduplication Scheme with Low RAM Over-
head and High Throughput[C],” ATC, 2011.

[37] Y. Fu, H. Jiang, and N. Xiao, “A Scalable Inline Cluster Deduplica-
tion Framework for Big Data Protection[C],” Proceedings of the 13th
International Middleware Conference, 2012, pp. 354–373.

[38] T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, and Y. Wan, “DEBAR:
A scalable high-performance de-duplication storage system for
backup and archiving[C],” in Proc. IEEE Symp. Parallel Distrib. Pro-
cess, 2010, pp. 1–12.

[39] T. Yang, D. Feng, Z. Niu, and Y. Wan, “Scalable high performance
deduplication backup via hash join,” J. Zhejiang Univ.–Sci., 2010,
vol. 11, pp. 1–13.

[40] R. Real and J. M. Vargas, “The probabilistic basis of Jaccard’s
index of similarity,” Syst. Biol., 1996, pp. 380–385.

[41] A. Z. Broder, M. Charikar, A. M. Frieze, et al., “Min-wise indepen-
dent permutations,” J. Comput. Syst. Sci., vol. 60, no. 3, pp. 630–
659, 2000.

[42] FIU IODedup.Traces [Online]. Available: http://iotta.snia.org/
traces/391, visited in 2015.

Shengmei Luo received the Bachelor’s and
Master’s degrees in communication and elec-
tronic from the Harbin Institute of Technology, in
1994 and 1996, respectively. He is currently
working toward the PhD degree at the Tsinghua
University. He joined the ZTE company in 1996,
and his current research interests include big
data, cloud computing, and network storage.

12 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. X, XXXXX 2016

IE
EE

Pr
oo

f

Guangyan Zhang received the Bachelor’s and
Master’s degrees in computer science from the
Jilin University, in 2000 and 2003; the doctor’s
degree in computer science and technology
from the Tsinghua University, in 2008. He is
currently an associate professor in the Depart-
ment of Computer Science and Technology
Tsinghua University. His current research
interests include big data computing, network
storage, and distributed systems. He is a pro-
fessional member of the ACM.

Chengwen Wu received the Bachelor’s degree
in computer science from the Beijing University of
Posts and Telecommunications, in 2014. He is
currently working toward the Master’s degree at
the Department of Computer Science and Tech-
nology, Tsinghua University. His current research
interest is in big data processing and network
storage.

Samee U. Khan received the BS degree in 1999
from the Ghulam Ishaq Khan Institute of Engi-
neering Sciences and Technology, Topi, Paki-
stan, and the PhD degree in 2007 from the
University of Texas, Arlington, TX. He is currently
an associate professor of Electrical and Com-
puter Engineering at the North Dakota State Uni-
versity, Fargo, ND. His research interests include
optimization, robustness, and security of: cloud,
grid, cluster, and big data computing, social net-
works, wired and wireless networks, power sys-

tems, smart grids, and optical networks. His work has appeared in over
275 publications. He is on the editorial boards of leading journals, such
as IEEE Transactions on Computers, IEEE Access, IEEE Cloud Com-
puting Magazine, IEEE Communications Surveys and Tutorials, IEEE IT
Pro Magazine, Scalable Computing, Cluster Computing, Security and
Communication Networks, and International Journal of Communication
Systems. He is a fellow of the Institution of Engineering and Technology
(IET, formerly IEE), and a fellow of the British Computer Society (BCS).
He is a senior member of the IEEE.

Keqin Li is a SUNY Distinguished Professor of
computer science. His current research interests
include parallel computing and highperformance
computing, distributed computing, energy-effi-
cient computing and communication, heteroge-
neous computing systems, cloud computing, big
data computing, CPU-GPU hybrid and coopera-
tive computing, multicore computing, storage and
file systems, wireless communication networks,
sensor networks, peer-to-peer file sharing sys-
tems, mobile computing, service computing,

Internet of things and cyber-physical systems. He has published over
380 journal articles, book chapters, and refereed conference papers,
and has received several best paper awards. He is currently or has
served on the editorial boards of IEEE Transactions on Parallel and Dis-
tributed Systems, IEEE Transactions on Computers, IEEE Transactions
on Cloud Computing, Journal of Parallel and Distributed Computing. He
is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LUO ET AL.: BOAFFT: DISTRIBUTED DEDUPLICATION FOR BIG DATA STORAGE IN THE CLOUD 13

