
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025 1985

High Performance OpenCL-Based GEMM Kernel
Auto-Tuned by Bayesian Optimization

Shengle Lin , Guoqing Xiao , Member, IEEE, Haotian Wang , Wangdong Yang ,
Kenli Li , Senior Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract—OpenCL has become the favored framework for
emerging heterogeneous devices and FPGAs, owing to its versatility
and portability. However, OpenCL-based math libraries still face
challenges in fully leveraging device performance. When deploying
high-performance arithmetic applications on these devices, the
most important hot function is General Matrix-matrix Multipli-
cation (GEMM). This study presents a meticulously optimized
OpenCL GEMM kernel. Our enhanced GEMM kernel emphasizes
two key improvements: 1) a three-level double buffer pipeline that
efficiently overlaps data fetching with floating-point computations;
2) a fine-grained prefetching strategy of private memory to increase
device occupancy by optimizing register unit utilization. Further-
more, this work presents a Bayesian Optimization (BO) tuner
for kernel auto-tuning. Experimental results demonstrate consid-
erable optimization improvement and performance advantages
achieved on diverse OpenCL devices. Additionally, the BO tuner
demonstrates superior efficiency and robustness, outperforming
contemporary tuning methods.

Index Terms—OpenCL, GEMM, auto-tuning, Bayesian
optimization, high-performance computing.

I. INTRODUCTION

IN the realm of parallel computing, heterogeneous architec-
tures are becoming increasingly popular due to their cost

efficiency, flexibility, and potential for development. For de-
ploying high-performance arithmetic applications across these
platforms, the most important routine is General Matrix-matrix

Received 16 April 2024; revised 22 December 2024; accepted 7 July 2025.
Date of publication 10 July 2025; date of current version 31 July 2025. The work
was supported in part by the National Key R&D Program of China under Grant
2023YFB3002702, in part by the Key Program of National Natural Science
Foundation of China under Grant U21A20461, Grant 92055213, and Grant
62227808, in part by the Natural Science Foundation of Hunan Province, China
under Grant 2023GK2002 and Grant 2024JJ2026, and in part by the Natural
Science Foundation of Chongqing under Grant CSTB2022NSCQ-MSX1213.
Recommended for acceptance by P. D’Ambra. (Corresponding author: Guoqing
Xiao.)

Shengle Lin, Haotian Wang, Wangdong Yang, and Kenli Li are with the
College of Computer Science and Electronic Engineering, Hunan University,
Changsha 410082, China, and also with the National Supercomputing Center
in Changsha, Hunan 410082, China (e-mail: lsl036@hnu.edu.cn; wanghao-
tian@hnu.edu.cn; yangwangdong@hnu.edu.cn; lkl@hnu.edu.cn).

Guoqing Xiao is with the College of Computer Science and Electronic
Engineering, Hunan University, Changsha 410082, China, and also with the
Research Institute of Hunan University, Chongqing 401135, China (e-mail:
xiaoguoqing@hnu.edu.cn).

Keqin Li is with the College of Computer Science and Electronic Engineering,
Hunan University, Hunan 410082, China, also with the National Supercomput-
ing Center in Changsha, Hunan 410082, China, and also with the Department of
Computer Science, State University of New York, New Paltz, NY 12561 USA
(e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TPDS.2025.3587673

Fig. 1. Unstable performance of auto-tuned CLBlast on lightweight devices.

Multiplication (GEMM) [1], [2]. Nevertheless, achieving high
performance and portability in GEMM kernel, especially when
dealing with varying data patterns on devices with diverse ar-
chitectures, is a formidable challenge.

While several high-performance variants of Netlib BLAS
exist for CPUs [3], [4], [5], options for heterogeneous platforms
consisting of GPUs, General Purpose Digital Signal Proces-
sors (GPDSPs), field-programmable gate arrays (FPGAs), and
other processors or accelerators remain limited. For example,
cuBLAS [6] is renowned for its high performance and propri-
etary API, yet its reliance on CUDA restricts it to NVIDIA
devices. Similarly, AMD’s ROCBLAS [7] is tailored for AMD
GPUs that support ROCm. The Open Computing Language
(OpenCL) addresses this gap by offering a unified, cross-
platform framework that efficiently executes high-performance
computing tasks across diverse hardware architectures, mak-
ing it essential in areas requiring heterogeneous computational
power. Moreover, Intel SYCL and Huawei AscendCL further
simplify the development process while still providing pro-
cessing power on heterogeneous platforms. The OpenCL-based
libraries like CLBLAS [8] and CLBlast [9] can deliver good
arithmetic performance from CPUs to GPUs and beyond. Note
that CLBlast further leverages parameterized kernels and auto-
tuning techniques to offer a superset of BLAS routines with
greater performance portability.

However, in the case of emerging lightweight accelerators,
our empirical analysis has revealed the suboptimal performance
of GEMM kernels when benchmarking these OpenCL-based
libraries. Specifically, matrix data prefetching is limited to lo-
cal memory, leading to inefficient utilization of vector register
units. Moreover, current auto-tuning strategies typically rely
on random search or heuristic algorithms [9], [10], resulting
in considerable search overheads and unsatisfactory configura-
tions. As demonstrated in Fig. 1, our observation shows that the
auto-tuned configurations of CLBlast SGEMM kernels achieve

1045-9219 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3329-0924
https://orcid.org/0000-0001-5008-4829
https://orcid.org/0000-0002-0086-6301
https://orcid.org/0000-0003-2681-7898
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0001-5224-4048
mailto:lsl036@hnu.edu.cn
mailto:wanghaotian@hnu.edu.cn
mailto:wanghaotian@hnu.edu.cn
mailto:yangwangdong@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:xiaoguoqing@hnu.edu.cn
mailto:lik@newpaltz.edu

1986 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

TABLE I
MAINSTREAM OPENCL PLATFORM INFORMATION

sub-optimal performance on Jingjia Micro 9230 and Intel FPGA
Emulation Platform for OpenCL, because it accidentally dis-
abled the usage of local memory.

In this context, we design a highly optimized OpenCL-based
GEMM kernel developed based on the CLBlast. Utilizing its
extensive compatibility with a variety of devices, we have imple-
mented a double-buffer pipeline optimization and a fine-grained
prefetching strategy. Furthermore, we introduce an adaptive
tuning component based on Bayesian Optimization (BO), facil-
itating rapid identification of optimal parameter configurations
for all kernels within a minimal number of iterations. Our
experimental results show SGEMM performance improvements
of 32.89% on Intel FPGA Emulation, 30.82% on Jingjia Micro,
12.39% on AMD RX550, 13.76% on NVIDIA A100-40 GB, and
75.58% on Intel Xeon 5120 CPU compared to CLBlast. Addi-
tionally, our Bayesian optimization (BO) tuner can find param-
eters obtaining 94.74% (near-optimal) of the best-known per-
formance configuration while incurring a mere 10.35% search
overhead compared to random search. In general, these results
prove that our carefully designed GEMM is highly competitive
on diverse devices, and the BO tuner can effectively improve
configuration efficiency and accuracy. In the future, these critical
optimization technologies have the prospect of being extended to
other parallel programming frameworks akin to OpenCL, such
as Intel SYCL and Huawei AscendCL.

II. BACKGROUND & MOTIVATION

A. OpenCL Basics

The OpenCL is recognized as a framework facilitating hetero-
geneous computing [11]. As a generic open standard, it enables
general-purpose parallel programming across diverse hetero-
geneous platforms encompassing various processors such as
CPUs, GPUs, DSPs, and FPGAs [12], [13], [14]. In stark contrast
to CUDA and ROCm, which are constrained to NVIDIA’s and
AMD’s GPUs respectively, OpenCL boasts unique compatibil-
ity across diverse accelerators from a multitude of vendors—
including AMD, NVIDIA and Intel, as listed in Table I. This
feature markedly enhances the portability of OpenCL-based
kernels in comparison to other vendor-specific programming
frameworks.

An OpenCL platform typically operates under the governance
of a host-end, which controls one or more OpenCL devices. The
device-end generally comprises numerous compute units (CUs),
each housing multiple process elements (PEs). Upon kernel
execution, the host-end defines an N-dimensional space, called
NDRange, determining the distribution of multiple work-items

Fig. 2. Multi-level GEMM Tiling implementation based on OpenCL.

for task execution. Each work-item, bearing a unique worker ID,
is systematically assigned into a work-group. During the execu-
tion, the computational tasks of a work-group are scheduled to
a CU, where all PEs concurrently engage in computation. The
execution unit is the minimum unit being executed by CUs in
parallel, whose size depends on the architecture of the particular
hardware (usually 32 or 64 work-items), and is called wavefront
or warp on AMD or NVIDIA GPUs, respectively.

Within an OpenCL kernel, memory access by work-items is
structured across three levels of abstract hierarchical memory.
The global memory serves as a shared domain, accessible for
read/write operations by all work-items. Within each compute
unit, OpenCL defines local memory dedicated to a particu-
lar work-group, enabling data sharing amongst all work-items
within that group. The final tier, private memory, typically
correlates with the register files in most devices, ensuring data
privacy such that the private memory of each work-item remains
invisible to others.

B. Parameterized GEMM on OpenCL

General matrix-matrix multiplication (GEMM) is a funda-
mental but crucial routine in BLAS, and its standard operation
is defined as follows:

C = α · op(A)× op(B) + β · C, (1)

where α and β are scalar values, and op(A), op(B) and C are
matrices of dimensions M ×K,K ×N and M ×N , respec-
tively. The op(·) operator specifies whether the matrix should
be transposed(T) or not(N), resulting in four types of matrix
multiplications.

Matrix tiling, also called blocking, is an indispensable tech-
nique for achieving high-performance computations across var-
ious architectures. Since matrix multiplication requires O(N3)
floating-point multiply-add operations on O(N2) data, matrix
tiling efficiently leverages the hierarchical memory structures
of devices, thereby enhancing the data reuse ratio and overall
performance. In the context of OpenCL, the classic implemen-
tation of the GEMM employs a two-level tiling strategy [15],
[16], as shown in Fig. 2. The first tiling level focuses on global
memory and local memory within a work-group computation.
The second level further divides the matrix tiles, distributing

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: HIGH PERFORMANCE OPENCL-BASED GEMM KERNEL AUTO-TUNED BY BAYESIAN OPTIMIZATION 1987

Fig. 3. Extra tuning parameters for loading tiles and vectorization.

matrix elements to work-items to alleviate the access overhead
between local memory and registers.

As shown in Fig. 2(a), a work-group computes the results
for an Mwg ×Nwg tile of matrix C. To perform the multipli-
cation, each work-group loads an Mwg ×Kwg tile of A and a
Kwg ×Nwg tile of B. Here, Kwg acts as the tiling factor along
the K-dimension, ensuring that both tile A and tile B fit into
local memory. Fig. 2(b) illustrates the further tiling strategy.
The gray region represents the MdimC ×NdimC work-group
grid and the orange area denotes the elements computed by
a single work-item. Each work-item accumulates results for
an Mwi ×Nwi sub-block of C, where Mwi = Mwg/MdimC

and Nwi = Nwg/NdimC . In this example, the work-item uses
strided memory access to mitigate potential bank conflicts.

To achieve high performance across devices, CLBlast further
offers a highly parameterized GEMM kernel that can be easily
tuned. As illustrated in Fig. 3, CLBlast incorporates extra pa-
rameters such as MdimA, NdimB for reshape of work-group to
optimize data loading patterns. Moreover, vector widths VWM

and VWN for different devices, and loop unrolling factor Kwi

are also taken into account.

C. Contributions

Although CLBlast sets a large number of tunable parameters
to achieve performance portability, there is still room for further
optimization of its GEMM implementation. First, it solely relies
on the OpenCL compiler for low-level optimizations, which
leads to data access and computation being difficult to cover
efficiently. Second, register reuse is not finely considered, re-
sulting in low device occupancy. Furthermore, our observations
(Fig. 1) show that there is an urgent need for a reliable and
stable tuning method to improve the performance of kernels on
different devices. In light of these shortcomings, the primary
contributions of this work are outlined as follows:
� Design a pipelined GEMM kernel that significantly alle-

viates the overhead associated with data access between
hierarchical memory structures.

� Implement a fine-grained prefetching strategy to enhance
the reuse ratio of register units, thereby improving effi-
ciency and occupancy.

� Retain 11 tunable parameters and propose a Bayesian
optimization tuner to achieve adaptive parameters tuning
across devices with high accuracy and efficiency.

III. OPENCL GEMM OPTIMIZATION SCHEME

Our optimized kernel retains the 11 critical parameters to en-
sure high-performance portability. These parameters encompass
several aspects as follows:
� Mwg, Nwg,Kwg: determine the matrix tiling size to ex-

plore the utilization of local memory;
� MdimC , NdimC : determine the size of work-group for

work-item level parallelism;
� MdimA, NdimB : define the data loading reshape to lever-

age memory bandwidth;
� STRM , STRN : define whether or not to strided memory

access (Fig. 2(b)) to mitigate possible bank conflict;
� VWM , V WN : define vector width (SIMD) of private

memory to utilize instruction level parallelism.
Based on these parameter settings, we implement a three-level

pipelined double-buffer algorithm and a fine-grained register
prefetching optimization for the GEMM kernel under the as-
sumption that local memory is available.

A. Three-Level Double-Buffer Policy

The execution of a GEMM operation on a hierarchical mem-
ory device typically involves the following four steps:

1) Loading Tiles: The Mwg ×Kwg tile of matrix A and
the Kwg ×Nwg tile of matrix B are loaded from global
memory into temporary registers.

2) Storing Tiles: These loaded tiles are transferred from the
temporary registers to local memory.

3) Sub-block Fetching: Within each inner loop, each work-
item loads an Mwi ×Kwi sub-block of A and a Kwi ×
Nwi sub-block of B into private memory.

4) Arithmetic Computing: Floating-point Fused Multiply
Add (FFMA) operations are performed to update the
corresponding Mwi ×Nwi sub-block of C.

These four steps, which depend on three levels of memory
hierarchies (global, local and private) and different instruction
components, are typically executed sequentially in OpenCL
BLAS libraries, as shown in Fig. 4(a). Each memory-accessing
step, characterized by high instruction latency, necessitates syn-
chronization operations to ensure data consistency.

In OpenCL, two common strategies are employed to mitigate
the high latency associated with memory access: work-item
level parallelism and instruction level parallelism. The GEMM
kernel inevitably employs the outer-product algorithm to im-
prove arithmetic intensity for addressing the issue of bandwidth
bottleneck [1], [3]. However, the substantial register consump-
tion by outer-product results in low occupancy on computing
devices, which makes it challenging for groups of work-items
(namely warps or wavefronts) parallelism to overlap the la-
tency effectively. Consequently, to improve the parallelism of
the instruction level within a single execution unit, it becomes
essential to implement a pipeline for the four steps of the GEMM
kernel.

In Fig. 4(b), we present a three-level pipeline design for
the GEMM kernel, leveraging a double-buffer strategy at each
memory hierarchy to overlap access latency. Specifically, local
memory is partitioned into two buffers to accommodate double

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

1988 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

Fig. 4. GEMM kernel pipelining optimization overview.

tiles in alternating iterations. While the previous tile undergoes
computation in internal loops, the next tile is prefetched into
the other buffer. Similarly, private memory is divided into two
parts to enable sub-block prefetching. To better mask the latency
in the double-buffer kernel, the loop unrolling factor Kwi is
fixed to 1. Assuming that Kwg = 4, each work-item executes 4
loops to accumulate the partial results for sub-block C. Fig. 4(b)
illustrates the memory space required for each level of double
buffering. Our approach expects to maximize the utilization of
hardware resources by ensuring that data access at odd iterations
overlaps as much as possible with FFMA computations at even
iterations. Therefore, this three-level double buffer policy effec-
tively eliminates data dependencies and mitigates data transfer
overhead across different memory hierarchies.

B. Analysis Model for Pipeline

To address the challenge of determining the optimal sizes
for tiles and sub-blocks for pipelining, we rely on a simple but
useful model to quantitatively evaluate the data transfer cost and
computation time. In a practical scenario, the ideal situation is to
attain a theoretical equilibrium where one buffer is loading data
for the next iteration while another buffer is engaged in FFMA
computation.

Consider an OpenCL-supported device with a global memory
bandwidth of BWG and a local memory bandwidth of BWL.
For simplicity, we assume that the loading and writing band-
widths are equivalent. The register access latency is typically
about a single clock cycle, which is negligible for our analysis.
Suppose that matrix A has dimension M ×K, matrix B has
dimension K ×N , and matrix C is M ×N . Each tile of matrix
A is defined as T ileA = Mwg ×Kwg , and the tile size of B
is T ileB = Kwg ×Nwg . Thus, the time required for loading
tile A and tile B from global memory to local memory can be
expressed as:

TA,g2l =
T ileA × sizeof(data)

BWG
+

T ileA × sizeof(data)

BWL
,

(2)

TB,g2l =
T ileB × sizeof(data)

BWG
+

T ileB × sizeof(data)

BWL
,

(3)

where the two terms of the above equations correspond to the
processes of loading and storing a tile (blue and green blocks in
Fig. 4) through intermediate registers, respectively.

Subsequently, each tile is further partitioned into sub-blocks,
which are loaded into the private memory by individual work-
items. Assume that the dimensions of sub-block A and B
are subBLKA = Mwi ×Kwi and subBLKB = Kwi ×Nwi,
respectively. So the time of loading A,B sub-blocks from local
memory to private memory can be described as:

TA,l2p =
subBLKA × sizeof(data)

BWL
, (4)

TB,l2p =
subBLKB × sizeof(data)

BWL
. (5)

Given that the 2D work-group grids parallelize at the M and
N dimensions, the number of sub-blocks that each work-item
needs to process is Kn = Kwg/Kwi. Let’s consider that each
FFMA operation takes CFMA instruction cycles to complete,
the frequency of computing device is denoted as f , and each
work-item can compute V elements in parallel through SIMD
processing. Thus the computation time of sub-block C could be
estimated as:

Tc,workitem =
Mwi ·Kwi ·Nwi

· CFMAV · f. (6)

Correspondingly, the time required to compute a tile C within a
work-group can be expressed as:

Tc,workgroup =
Mwi ·Kwg ·Nwi

· CFMAV · f. (7)

In order to maximize the utilization of computational re-
sources while minimizing idle time, it’s crucial to take into
account the three-level memory hierarchies and ensure that
data accessing and computing times overlap as much as pos-
sible. Based on the analysis above, the theoretical double-buffer

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: HIGH PERFORMANCE OPENCL-BASED GEMM KERNEL AUTO-TUNED BY BAYESIAN OPTIMIZATION 1989

Fig. 5. The general prefetching strategy of a work-item in private memory for
a 4× 4 sub-block accumulation.

pipelining optimization should be organized as follows:{
Tc,workitem = TA,l2p + TB,l2p (local memory)
Tc,workgroup = TA,g2l + TB,g2l (global memory).

(8)

As illustrated in Fig. 4(b), the objective is not only to ensure that
the computation of each sub-block overlaps with the prefetching
of the next sub-block (local memory level) but also to balance
the cost of computing and buffering within a tile (global memory
level). Due to the differences in architectural parameters across
diverse devices, we consider utilizing these pipeline analysis
formulas in the auto-tuning module (Section IV) to speed up the
tuning process.

C. Fine-Grained Prefetching Strategy

In the context of Fig. 2, each work-item is responsible for
executing FFMA operations within private memory. Typically,
it’s essential to fully utilize the vector register unit’s capacity
to enhance instruction-level parallelism. However, the rareness
of private memory leads to the fact that its utilization directly
impacts the parallelism among execution units (warps or wave-
fronts) [17], [18]. In other words, the additional consumption
by register double buffering affects work-item level parallelism,
which in turn reduces the hardware resource occupancy. Recent
studies [19], [20] have shown performance enhancements by ef-
ficiently utilizing register units on GPUs. Therefore, we propose
a fine-grained vector register prefetching strategy to strike a bal-
ance between work-item level parallelism and instruction-level
parallelism.

Considering a 4× 4 sub-block C, we analyze the general
double buffer scheme in Fig. 5. This approach generally results
in an extra private memory overhead of about 50% while loading
the Ap1 and Bp1. The increase is attributable to the use of 4× 4
vector registers for accumulating sub-block C, coupled with
the allocation of an additional 2× (4 + 4) register units for the
double-buffer prefetching.

We design the following strategy to optimize private memory
reuse while maintaining the tiling hierarchy intact for work-item
parallelism. As illustrated in Fig. 6(a), a 4× 4 sub-block of C
is further partitioned into four 2× 2 blocks C0, C1, C2 and C3.
Initially, A0 and B0 are loaded from local memory into private
memory. In iteration 0, A0 ×B0 is accumulated to subblock

Fig. 6. The fine-grained prefetching optimization with different sub-block
sizes in private memory.

C0 with concurrent prefetching B1 to RegB[1]. Subsequently,
RegA[0] is reused to compute C1 += A0 ×B1 while prefetch-
ingA1 toRegA[1]. Upon completing this computation,RegA[0]
becomes available to prefetch A′

0 for the next iteration. In the
following step, the accumulation C2 += A1 ×B1 effectively
reuses RegB[1], while RegA[0] is simultaneously overwrit-
ten by A′

0. Next, RegB[1] will be overwritten by B′
0, while

accumulating C3 += A1 ×B0 with the reuse of RegA[1]. In
subsequent iterations, we continue to accumulate this sub-block
C with a similar register reuse logic. The primary difference lies
in the alternating overwriting of vector register B.

Our fine-grained prefetching strategy efficiently utilizes pri-
vate memory, employing only a total of (4 + 4) vector register
units for accumulating sub-block C. In contrast to the general
method, our approach enables GEMM to conserve 8 register
units (50%) for double-buffering, which can improve the overall
occupancy of OpenCL devices. During sub-block arithmetic, our
carefully designed computation order will augment the reuse
of registers, which is of benefit to reducing instruction latency
and enhancing computational throughput for the kernel. Further-
more, our fine-grained prefetching optimization can be easily
adapted to various sub-block sizes, like 4× 6, 4× 8, 6× 8, and
so on. As depicted in Fig. 6(b), we provide an example for a
6× 4 sub-block kernel. Note that the reuse of RegA[0] within
an iteration allows us to load both A0 and A2, thereby further
enhancing private memory utilization. Since it still only requires
(4 + 4) units of private memory for prefetching, the savings in
vector register units are more significant (150%) than for the
4× 4 case.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

1990 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

In summary, the fine-grained prefetching strategy for private
memory can be viewed as a delicate trade-off between Sin-
gle Instruction Multiple Data (SIMD) parallelism and device
occupancy. Since different matrix sizes need to be handled,
and each requires distinct group-thread partitions tailored to
the specific OpenCL devices, we provide a range of template
implementations for fine-grained micro-kernels.

IV. AUTO-TUNING KERNELS BY BO

Identifying the optimal parameter setting for the GEMM ker-
nel is complicated due to the intricate interplay among double-
buffer overlap, local and private memory utilization, and the
balance between occupancy and instruction-level parallelism.
Additionally, the cross-device characteristic of OpenCL com-
pounds more challenges, as optimal settings vary with diverse
matrix sizes and distinct architectures. Thus, with an emphasis
on Gflops as a straightforward and intuitive performance metric,
we consider introducing an auto-tuning technology to assess the
impact of parameter selection.

Some existing OpenCL-based libraries use random search
and heuristic algorithms for parameter tuning. However, the
instability of these tuning methods often leads the kernel to get a
terrible parameter configuration, as shown in Fig. 1. In response
to these challenges and to harmonize our two optimizations
across diverse OpenCL devices, we consider utilizing a machine
learning algorithm for auto-tuning. Summarily, we provide an
efficient, robust, and reliable adaptive parameter tuner based on
Bayesian Optimization (BO).

A. Bayesian Optimization Analysis

Bayesian Optimization (BO) [21], [22] is an efficient al-
gorithm designed for optimizing complex black-box objective
functions that are expensive to evaluate. Its utility is pronounced
in situations with extensive search space that happens to be a
feature of our kernel. The overview of the Bayesian Optimization
algorithm is as follows:
� Modeling the black-box function: BO relies on a Surrogate

Probabilistic Model to approximate the behavior of the
objective function within the expansive search space. It
will be iteratively updated as new samples are collected,
allowing it to converge towards the optimal solution.

� Acquisition Function: BO uses an Acquisition Function to
direct the search process. It dictates the next sampling loca-
tions, adeptly balancing exploration (sampling in uncertain
regions) and exploitation (where the model predicts high
performance).

� Iterative updating: Once a new sample is determined, BO
will run the real object function to evaluate its performance.
The corresponding result will be used to back-update the
surrogate probabilistic model, refining its understanding of
the objective function’s behavior.

� Convergence: The iterative process persists until a prede-
fined stopping criterion is satisfied, either when the results
converge to an optimum or when the maximum number of
iterations has been completed.

Fig. 7. An overview of BO-based adaptive tuner.

Compared to stochastic search methods and heuristic algo-
rithms, BO at least has three significant advantages. First, BO
leverages a probabilistic model that can incorporate prior knowl-
edge into the search process. This model can be continually re-
fined with new sample points, enabling it to make well-informed
decisions aimed at achieving improved performance. Second,
BO is well-suited for handling noisy objective functions [23]
because the surrogate model can account for noise during its
predictions. This enhances robustness and provides greater con-
fidence when evaluating the performance of the OpenCL kernels.
Finally, BO aims to find the best configuration with as few
evaluations as possible, which is meaningful in the case of large
parameter dimensions.

B. BO-Based Adaptive Tuner

Fig. 7 illustrates the structure of our BO-based adaptive tuner
for generic OpenCL kernels. The first component is the search
space for a specific kernel, referred to as the Bayesian domain.
This domain categorizes parameters into various types such as
discrete, categorical, and continuous, thereby facilitating the
involvement of diverse variable types in the tuning process. For
our GEMM kernel, all parameters are discrete, dictating aspects
like tile shapes, work-group grids, or the vector width of the
device.

Initially, the BO tuner begins by randomly sampling t param-
eter combinations X = {x1, x2, . . ., xt} and recording their ac-
tual performances by benchmarking. This process generates the
initial sampling dataset D1:t = {(x1, y1), . . ., (xt, yt)}. From
these samples, the BO tuner constructs a Surrogate Model em-
ploying Gaussian processes (GPs). The Gaussian Process [24]
is a renowned non-parametric method for inferring distributions
over black-box functions. Specifically, it is a random process
where any point xi has its random variable f(xi) = yi and
where the joint distribution of a finite number of variables
p(f(x1), . . ., f(xN)) is itself Gaussian:

p(f | X) = N (f | μ,K), (9)

where μ is the mean function and Kij = κ(xi, xj) is a positive
definite function called Gaussian Kernel. In BO tuner we use
common setting μ = 0 and the squared exponential kernel K,

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: HIGH PERFORMANCE OPENCL-BASED GEMM KERNEL AUTO-TUNED BY BAYESIAN OPTIMIZATION 1991

also known as Gaussian kernel:

κ (xi, xj) = σ2exp

(
− 1

2l2
(xi − xj)

T (xi − xj)

)
, (10)

where σ is the variance that controls vertical variation, l is length
scale that controls smoothness of function f . When a new sample
point (x∗, y∗) arrives, the GP surrogate model will be updated
by GP posterior p(f∗ = y∗ | x∗,X, f):(

f

f∗

)
∼ N

(
0,

(
K K∗
KT

∗ K∗∗

))
, (11)

where K∗ = κ(X, x∗) ∈ R
N×1 and K∗∗ = κ(x∗, x∗) ∈ R

1×1.
In general, evaluating the GP posterior is computationally effi-
cient and serves as the foundation for approximating a surrogate
model to the objective function. The surrogate model aids in
parameter tuning within a huge search space, helping identify
configurations that are likely to result in better performances.

The acquisition function will determine the location of the
next sampling xt+1, where xt+1 = argmaxxaq(x | D1:t). In
BO tuner we employ the expected improvement (EI) func-
tion [25] for aq, which can be described as:

EI(xt+1) = E
[
max

(
f(xt+1)− f

(
x+
t

)
, 0
)]

, (12)

where x+
t is the location of best result in D1:t so far. To balance

the exploitation and exploration, as the GP model is updated,
function E is also adapted based on its mean and variance.

It should be noted that specific constraints can affect the explo-
ration, as shown in Fig. 7. These constraints encompass factors
like divisible relations for tiling and ensuring that tiling sizes
are compatible with the buffer. Moreover, our BO tuner further
incorporates the tiling size limit and (8) of double-buffering into
the constraints, which could significantly improve the efficiency
of the tuning process.

After determining the next samplex∗, the Runtime Evaluation
module configures the GEMM kernel by new parameters and
subsequently measures the average floating-point performance
over five rounds, denoted as y∗. Subsequently, the GP model
will be refined based on the new dataset (x∗, y∗), leading to the
next round of iterations. Based on this framework, we have built
an efficient, lightweight, and reliable tuner for OpenCL-based
generic kernels.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

To demonstrate the effectiveness of our GEMM, all tests
run across various typical OpenCL devices listed in Table II.
Jingjia Microelectronics is an emerging mobile GPU maker, and
the JM9 series is the latest generation of products supporting
OpenCL 2.0. AMD RX550 belongs to the Polaris series and
offers comparable theoretical peak performance to JM9230.
NVIDIA A100 is a powerful accelerator card that can be used
as a representative of NVIDIA’s high-performance GPUs. In
addition to GPUs, our performance evaluations also run on
the Intel CPU and the FPGA Emulation Platform to assess the
impact of each optimization strategy. The benchmarks involve

TABLE II
OVERVIEW OF THE TESTED OPENCL PLATFORMS

a warm-up round for devices, followed by 10 repeated runs to
count the final performance results. First, we primarily focus on
presenting the optimization effects of each strategy on FPGA
in Section V-B. In Section V-C, the optimized GEMM kernel
implementation will be compared against:

1) CLBLAS v2.12 [8]: The first CL-based BLAS library,
capable of auto-generating and enqueuing optimized
OpenCL kernels for three levels of BLAS routines.

2) CLBlast v1.6.1 [9]: A high-performance and parame-
terized OpenCL BLAS library that allows users to tune
parameter configurations for different devices.

3) NVIDIA cuBLAS 11.7 [6]: An integral component of the
CUDA runtime environment, which is widely regarded as
the gold standard on NVIDIA GPUs.

4) Intel MKL 23.2.0 [5]: A highly optimized library for
mathematical computations, designed to maximize per-
formance on the Intel architectures.

B. Ablation Study of Optimization Effect

We use the Intel FPGA Emulation Platform for OpenCL
on Intel Xeon(R) Gold 5120 CPU. Table II shows the the-
oretical single-precision peak performance for these OpenCL
platforms. The benchmark is the latest CLBlast, which cur-
rently offers superior performance across OpenCL devices.
Subsequently, each optimization strategy is activated to as-
sess its influence on the performance for different matrix
sizes.

Fig. 8 illustrates the effectiveness of our double-buffer
pipelining and fine-grained prefetching strategies for the bench-
mark GEMM kernel. Here we compare the best achievable
performance for each kernel to show improvements, with-
out incorporating the auto-tuning component. The adoption of
fine-grained prefetching achieves an average speedup of 6.5%,
whereas a three-level pipeline implementation facilitates an
average speedup of 19.3%. For matrices of size less than 512, the
effectiveness of pipelining is typically reduced, largely because
size constraints hinder the full exploitation of double-buffer
advantages. Significantly, the concurrent implementation of
both optimizations usually results in greater performance gains
(32.89% on average), surpassing the sum of their individual
contributions. This effect is attributed to the fine-grained control
over register units, which facilitates a more rational exploration
of tiling parameters for the double-buffer pipeline, leading to
markedly improved performance.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

1992 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

TABLE III
BEST PARAMETERS TUNED BY BO TUNER AT A FIXED SIZE OF 1024 FOR DIFFERENT PRECISIONS

Fig. 8. The Optimization effect of GEMM kernels on Intel FPGA Emulation
Platform for OpenCL. All kernels are tuned at their best performance.

C. Performance Results and Analysis

1) Performance Portability: To demonstrate the portable
high-performance of our GEMM kernel, we conducted the
performance comparisons of different precisions across four
distinct devices. On each device, our kernel is tuned by BO tuner
at a given size M=N=K=1024, which is the same as the CLBlast
tuning process. Other libraries employ their default fixed-tuning
strategies for configurations. Table III shows the tuning results
of our GEMM kernel across these platforms.

The performance comparisons are shown in Figs. 9, 10, 11 and
12, covering three representative scenarios: (1) matrix sizes are
multiples of 128, (2) matrix sizes are multiples of (128 + 1), and
(3) matrix sizes around 2048. Kernel performance at ideal sizes,
without preprocessing overhead, is demonstrated by multiples
of 128. In contrast, multiples of irregular odd numbers highlight
the performance involving preprocessing. Matrix sizes around
2048 represent a common use case for the GEMM kernel. The
analysis of these results yields several critical conclusions:
� Jingjia Micro 9230: For both precisions, our fine-grained

GEMM kernel shows superior performance over CLBLAS
and CLBlast. CLBLAS exhibits poor performance on
JM9230, primarily due to its AMD-centric targeting.
CLBlast achieves commendable performance yet is sur-
passed by our kernel. On average, our kernel obtains per-
formance improvement of 30.82% and 16.76% in single-
and half-precision, respectively.

� AMD RX550: For single precision, our GEMM kernel
outperforms other libraries, achieving the best performance

overall. In half-precision experiments, CLBLAS shows
an advantage for small-scale matrices but struggles with
irregular matrix sizes. On average, our kernel can achieve
a speedup of 12.39% and 21.93% compared to CLBlast in
single- and half-precision, respectively.

� NVIDIA A100: NVIDIA’s cuBLAS remains superior to all
OpenCL-based libraries in most cases, because of CUDA’s
highly optimized intrinsics control. When matrix sizes
are multiples of 128, cuBLAS significantly outperforms
other libraries, while our kernel achieves the second-best
performance. Compared with CLBlast, our kernel gets a
performance gain of 17.78% and 13.76% in double- and
single-precision. When dealing with sizes around 2048,
our kernel achieves performance comparable to cuBLAS,
reaching 89.93% on average.

� Intel 5120 CPU: Intel oneMKL consistently outperforms
OpenCL-based GEMM implementations on the CPU,
with our kernel achieving up to 64.06% of MKL’s per-
formance in the best-case scenario. Nevertheless, com-
pared to the optimal OpenCL-based library CLBlast,
our GEMM kernel achieves an average speedup of
55.66% and 75.58% in double- and single-precision,
respectively.

2) Performance Analysis: Note that there are performance
fluctuations in all test routines on A100 GPU, we analyzed
it by NVIDIA Nsight. The cuBLAS library employs different
micro-kernels as the matrix size increases during the test, such
as 64× 32, 128× 32, and 128× 64, leading to noticeable per-
formance jumps. In contrast, OpenCL libraries typically rely on
a single parameterized kernel, and high performance can only
be achieved when the matrix exceeds a specific scale. To elim-
inate the impact of compiler optimization between CUDA and
OpenCL, we utilized NVRTC (NVIDIA Runtime Compilation)
to recompile our kernel, ensuring a consistent runtime. As shown
in Fig. 11, the results demonstrate that the runtime environment
and compilation optimizations account for less than 5% of the
performance difference, indicating that compilers are not the
primary cause of the observed performance gap. Therefore, We
attribute the performance disparity to hardware-specific opti-
mizations in cuBLAS, such as PTX-level and assembly-level
tuning. In contrast, OpenCL-based kernels are unable to fully ex-
ploit these hardware properties, which limits their performance
potential.

A similar performance gap is observed on the Intel Xeon 5120,
where MKL leverages highly optimized assembly code tailored
to Intel CPUs, making it difficult for generic OpenCL kernels to
achieve comparable performance. Table IV presents the profiling

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: HIGH PERFORMANCE OPENCL-BASED GEMM KERNEL AUTO-TUNED BY BAYESIAN OPTIMIZATION 1993

Fig. 9. Performance comparison of single- and half-precision GEMM against CLBLAS and CLBlast on Jingjia Micro 9230.

Fig. 10. Performance comparison of single- and half-precision GEMM against CLBLAS and CLBlast on AMD RX550.

Fig. 11. Performance comparison of double- and single-precision GEMM against CLBLAS, CLBlast and cuBLAS on NVIDIA A100.

Fig. 12. Performance comparison of double- and single-precision GEMM against CLBLAS, CLBlast and MKL on Intel Xeon 5120 CPU.

results of CLBlast, cuBLAS, MKL, and our GEMM kernel. On
the NVIDIA A100, the SM throughput calculates the percentage
of cycles where the FMA pipe is active, and our kernel can
reach a peak of 91.81%. Furthermore, the L2 Cache throughput
is 1.83× higher than CLBlast, demonstrating the efficiency of

our double-buffer optimization. On the Intel Xeon 5120, the
improvements are even more pronounced. The core utilization
and IPC reach 1.29× and 4.06× of CLBlast respectively, while
the number of L2 misses is reduced by 79.31%. cuBLAS and
MKL, as the optimal kernels on their respective platforms, both

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

1994 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

Fig. 13. Comparison of tuning processes of different algorithms for SGEMM performance on NVIDIA A100.

TABLE IV
HARDWARE PROFILING RESULTS FOR 4096-SIZED SGEMM KERNELS

achieve nearly 100% of compute unit utilization with minimal
L2 cache misses.

In conclusion, our optimized GEMM kernel demonstrates
high-performance portability, attributed to the effectiveness of
double-buffer pipelining and fine-grained prefetching of pri-
vate memory. These optimizations enhance core and memory
utilization, resulting in substantial performance improvements.
Although it may not match the performance of kernels fine-tuned
for specific hardware, our approach highlights the benefits of
generalization. Overall, our optimized GEMM kernel achieves
average speedups of 1.31×, 1.12×, 1.14×, and 1.76× over
CLBlast SGEMM on these devices, underscoring its portability
and efficiency for heterogeneous platforms.

D. Bayesian Optimization Tuner Study

In this section, we compare our BO tuner against other widely
used auto-tuning methods, including Random search, Particle
Swarm Optimization (PSO) with settings g = 0.4, l = 0, r =
0.4, and Simulated Annealing (SA) with T = 4 in CLTune. For
the matrices, we maintain fixed dimensions of 1024, generated
with identical random seeds for consistency.

Fig. 13 illustrates the search process over four rounds for each
method, highlighting the best results in each round. For clarity,
each round consists of 100 iterations, capturing fluctuations
during searching. In Fig. 13(a), the random search strategy
exhibits erratic behavior, achieving 74.1%, 72.3%, 74.3%, and
92.4% of the best attainable performance. The PSO method’s
performance, as shown in Fig. 13(b), demonstrates substantial
fluctuations but exhibits a trend of gradual convergence to
more favorable positions. The Simulated Annealing achieves

Fig. 14. The violin plot shows the statistical properties of 100 rounds of
different tuning algorithms on A100. The sub-figure on the right shows the
performance distribution across the search space (160, 000+ configurations).

79.5%, 75.3%, 92.8%, and 77.3% of the best performance.
Our BO tuner, as illustrated in Fig. 13(d), shows more stable
and progressive patterns throughout the iterations. It attains
94.8%, 96.5%, 85.4%, and 96.7% of the best-known perfor-
mance in each round.

To minimize the impact of stochastic variables in each
method, we executed each search method 100 times, performing
100 iterations in every round. Additionally, we compared the
neural network tuning strategy, which employs a three-layer
MLP to establish a mapping between parameters and perfor-
mance, and subsequently predicts the results for unexplored
configurations. The optimal performance for each round was
recorded, and their distributions are presented in Fig. 14 by a
violin plot. In Fig. 14, each violin plot comprises three elements:
1) a T-line indicating the standard deviation error bar, 2) a red
point denoting the average searching result, and 3) a rotated
density graph representing the data distribution.

The statistical results reveal unique distribution patterns for
the performance distributions of various tuning methods. The
random search and SA methods display a vase-like shape, with
a majority clustered at the middle or lower performance levels.
Note that due to the randomness of the training set partitioning,
the neural network can be viewed as an optimized strategy for
random search and exhibits a similar vase-like distribution. In

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: HIGH PERFORMANCE OPENCL-BASED GEMM KERNEL AUTO-TUNED BY BAYESIAN OPTIMIZATION 1995

Fig. 15. The problem-specific tuning of our SGEMM compared to a fixed size
(1024) tuning of CLBlast on NVIDIA A100.

contrast, the PSO and BO tuners display a butterfly-shaped
distribution, indicating a higher proportion of rounds attain-
ing better performance. Notably, the results of BO tuner are
more concentrated compared to PSO, with all configurations
surpassing 75% performance after 50 iterations. On average,
the BO tuner attains a performance level of 90.08% on A100,
while the other methods yield performances of 83.21%, 86.75%,
81.19% and 83.85% respectively. Furthermore, the BO tuner
demonstrates superior stability and reliability, evidenced by its
low standard deviation of 4.66%, compared to 5.01%, 6.17%,
6.06% and 4.62% for the other methods. On the Intel 5120 CPU,
running 100 iterations of the BO tuner averages approximately
210 seconds, with a maximum memory overhead of 0.88 GB,
without requiring extra storage. Such tuning overhead is deemed
acceptable for both JM9230 and RX550 devices. In many cases,
BO tuning takes only 30 to 50 iterations to find a near-optimal pa-
rameter configuration. In conclusion, our BO tuner can discover
a configuration with 94.74% of the best-known performance in
fewer iterations, with just a 10.35% time overhead compared to
the default exhaustive or random methods.

E. Scalability and Extensibility

In practice, the BO tuner exhibits notable scalability and
extensibility, evident in two aspects. The first aspect pertains to
matrix size scalability, a crucial factor for deep-learning models,
where kernel sizes are tailored to specific applications. Fig. 15
displays the performance achieved in general tuning (at a fixed
size of 1024) and size-specific tuning compared to cuBLAS. The
BO tuner’s rapid convergence and robust statistical properties
enable precise tuning of GEMM kernels in various sizes, with an
average speedup of 42%. Moreover, the problem-specific tuning
has the potential to extend to other frameworks beyond OpenCL.
The second aspect is the BO tuner’s extensibility. It is readily
adaptable for tuning other arithmetic kernels involving multiple
parameters. The process involves defining an objective function
and establishing some constraints. We have successfully utilized
the BO tuner for GEMV, original GEMM, and double-buffer

GEMM kernels, thereby demonstrating its extensibility and
potential for tuning various critical kernels.

VI. RELATED WORK

As for the OpenCL-based BLAS study, AMD’s CLBLAS [8]
is the first open-source implementation. However, the perfor-
mance of CLBLAS GEMM is not portable for less common
devices, and its kernels are auto-generated, leading to unread-
able and unmaintainable. NVIDIA’s cuBLAS GEMM [6] is
close-sourced and must rely on CUDA, which is not generic
for other devices. CLBlast [9] provides performance portability
and general auto-tuning for kernels. This library and other
works [10], [16], [26] have demonstrated that parameterized
kernels can facilitate the efficiency of large-scale and complex
applications. In both CPU and GPU architectures, double-buffer
pipelining is a latency-hiding technique that is effective [15],
[27], [28], [29], but no OpenCL kernels consider introducing
it. Moreover, balancing instruction-level parallelism and device
occupancy on both AMD and NVIDIA GPUs has demonstrated
acceleration potential in recent studies [19], [20]. Some recent
GEMM implementations [30], [31], [32] consider utilizing FP-
GAs to reconfigure circuits and redesign pipelined architec-
tures for acceleration. Sun [33] finds better HLS directives by
a multi-objective nonlinear optimization algorithm. However,
those hardware-level and directive-level improvements cannot
be utilized in OpenCL. Therefore we integrate double-buffer
pipelining and fine-grained register control techniques into pa-
rameterized GEMM, which is beneficial for exploiting better
performance.

As for auto-tuning, the exhaustive search strategy, while
theoretically comprehensive, suffers from the curse of dimen-
sionality [34], leading to an impractical number of configu-
ration options to explore. To achieve efficient auto-tuning of
parameters, researchers usually employed random search or
heuristic algorithms during their search process [10], [35], [36],
[37], [38]. Recently some machine learning or deep learn-
ing technologies were applied for performance modeling [39],
[40], [41], [42]. Some research [43], [44] has demonstrated
that profiling machine learning models for an HPC application
can be highly resource-intensive. For instance, modeling the
GalaxSee kernel incurs 1521.2% time overhead and demands
5164 KB of storage per round for 357 features. Consequently,
such intricate modeling overhead is often unnecessary and un-
affordable for lightweight OpenCL devices. Some recent tuners
leverage Bayesian Optimization for auto-tuning configurations.
GPTune [45] focuses on tuning parallel tasks in distributed-
memory systems. PrBO [46] augments BO searching with expert
knowledge, but it’s infeasible to find an expert who is well-versed
in all types of OpenCL devices. BLISS[47] sets multiple BO
models to interact with runtime environments and applications,
which is slightly redundant for one single kernel tuning in this
work. Willemsen’s work [48] also used BO to tune various
kernels on GPU, but it neglected some extra constraints on the
parameter space based on the tiling algorithm. In contrast, our
BO tuner is much simpler and more efficient compared with
those “enormous” models, while also being able to discover

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

1996 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

near-optimal parameter configuration without training and ex-
pert knowledge guide.

VII. CONCLUSION & FUTURE WORK

In summary, this study conducted further optimizations of the
GEMM kernel on CLBlast, employing double-buffer pipelining
and fine-grained prefetching strategies. Experimental results
revealed substantial performance improvements across four dif-
ferent OpenCL devices. Furthermore, we introduced a Bayesian
Optimization-based tuner (BO tuner) for automated tuning of
parameter configurations. Compared to state-of-the-art tuning
methods, the BO tuner demonstrates superior performance in
both exploration and exploitation, attaining higher efficiency
without relying on a complex model. The performance jump
points on A100 prompted us to consider designing multiple mi-
crokernel implementations like CUDA in the future. The struc-
tured and efficient search methodology of the BO tuner not only
facilitates future problem-specific tuning but also extends its ap-
plicability to parameterized kernels beyond the OpenCL frame-
work. In addition, the double-buffer technology is expected to
extend to other general mathematical kernels like SpGEMM
and this work has been released to https://github.com/lsl036/CL-
DB-GEMM.

REFERENCES

[1] B. Kågström, P. Ling, and C. Van Loan, “GEMM-based level 3 BLAS:
High-performance model implementations and performance evaluation
benchmark,” ACM Trans. Math. Softw., vol. 24, no. 3, pp. 268–302, 1998.

[2] K. Goto, “Gotoblas,” 2007. [Online]. Available: http://www.tacc.utexas.
edu/resources/software/

[3] F. G. Van Zee and R. A. Van De Geijn, “BLIS: A framework for rapidly
instantiating BLAS functionality,” ACM Trans. Math. Softw., vol. 41, no. 3,
pp. 1–33, 2015.

[4] Q. Wang, X. Zhang, Y. Zhang, and Q. Yi, “AUGEM: Automatically
generate high performance dense linear algebra kernels on x86 cpus,”
in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2013,
pp. 1–12.

[5] E. Wang et al., “Intel math kernel library,” in High-Performance Computing
on the Intel Xeon PhiTM: How to Fully Exploit MIC Architectures. Berlin,
Germany: Springer, 2014, pp. 167–188.

[6] N. Corporation, “cuBLAS: A GPU-accelerated library for linear algebra
operations,” 2023, Accessed: Dec. 25, 2023. [Online]. Available: https:
//developer.nvidia.com/cublas

[7] A. Corporation, “rocBLAS documentation,” 2023, Accessed: Dec.
25, 2023. [Online]. Available: https://rocblas.readthedocs.io/en/rocm-5.
7.1/

[8] clMathLibraries, “clblas repository,” 2017, Accessed: Dec. 25, 2023.
[Online]. Available: https://github.com/clMathLibraries/clBLAS

[9] C. Nugteren, “CLBlast: A tuned OpenCL BLAS library,” in Proc. Int.
Workshop OpenCL, 2018, pp. 1–10.

[10] C. Nugteren and V. Codreanu, “CLTune: A generic auto-tuner for OpenCL
kernels,” in Proc. IEEE 9th Int. Symp. Embedded Multicore/Many-Core
Syst.-On-Chip, 2015, pp. 195–202.

[11] D. R. Kaeli, P. Mistry, D. Schaa, and D. P. Zhang, Heterogeneous Comput-
ing With OpenCL 2.0. San Mateo, CA, USA: Morgan Kaufmann, 2015.

[12] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “SnuCL: An OpenCL
framework for heterogeneous CPU/GPU clusters,” in Proc. 26th ACM Int.
Conf. Supercomputing, 2012, pp. 341–352.

[13] B.-Y. Su and K. Keutzer, “clSpMV: A cross-platform OpenCL SpMV
framework on GPUs,” in Proc. 26th ACM Int. Conf. Supercomputing, 2012,
pp. 353–364.

[14] N. Contini et al., “Enabling reconfigurable HPC through MPI-based inter-
FPGA communication,” in Proc. 37th Int. Conf. Supercomputing, 2023,
pp. 477–487.

[15] J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMM kernels for the
fermi GPU,” IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 11, pp. 2045–
2057, Nov. 2012.

[16] K. Matsumoto, N. Nakasato, and S. G. Sedukhin, “Performance tuning
of matrix multiplication in OpenCL on different GPUs and CPUs,” in
Proc. SC Companion: High Perform. Comput., Netw. Storage Anal., 2012,
pp. 396–405.

[17] Y. Liang, Z. Cui, K. Rupnow, and D. Chen, “Register and thread structure
optimization for GPUs,” in Proc. 18th Asia South Pacific Des. Automat.
Conf., 2013, pp. 461–466.

[18] X. Xie et al., “Enabling coordinated register allocation and thread-level
parallelism optimization for GPUs,” in Proc. 48th Int. Symp. Microarchi-
tecture, 2015, pp. 395–406.

[19] G. Shobaki, A. Kerbow, and S. Mekhanoshin, “Optimizing occupancy and
ILP on the GPU using a combinatorial approach,” in Proc. 18th ACM/IEEE
Int. Symp. Code Gener. Optim., 2020, pp. 133–144.

[20] J. Li, H. Ye, S. Tian, X. Li, and J. Zhang, “A fine-grained prefetching
scheme for DGEMM kernels on GPU with auto-tuning compatibility,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp., 2022, pp. 863–874.

[21] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on Bayesian optimiza-
tion of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning,” 2010, arXiv:1012.2599.

[22] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking
the human out of the loop: A review of Bayesian optimization,” in Proc.
IEEE, vol. 104, no. 1, pp. 148–175, Jan. 2016.

[23] J. Mockus, “Application of Bayesian approach to numerical methods of
global and stochastic optimization,” J. Glob. Optim., vol. 4, pp. 347–365,
1994.

[24] C. E. Rasmussen et al., Gaussian Processes for Machine Learning, vol. 1.
Berlin, Germany: Springer, 2006.

[25] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization
of expensive black-box functions,” J. Glob. Optim., vol. 13, pp. 455–492,
1998.

[26] K. Rupp, P. Tillet, F. Rudolf, J. Weinbub, T. Grasser, and A. Jüngel,
“Performance portability study of linear algebra kernels in OpenCL,” in
Proc. Int. Workshop OpenCL 2013 2014, 2014, pp. 1–11.

[27] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra,
“From CUDA to OpenCL: Towards a performance-portable solution for
multi-platform GPU programming,” Parallel Comput., vol. 38, no. 8,
pp. 391–407, 2012.

[28] X. Li, Y. Liang, S. Yan, L. Jia, and Y. Li, “A coordinated tiling and batching
framework for efficient GEMM on GPUs,” in Proc. 24th Symp. Princ.
Pract. Parallel Program., 2019, pp. 229–241.

[29] H. Wang, W. Yang, R. Hu, R. Ouyang, K. Li, and K. Li, “IAP-SpTV: An
input-aware adaptive pipeline SpTV via GCN on CPU-GPU,” J. Parallel
Distrib. Comput., vol. 181, 2023, Art. no. 104741.

[30] M. Meyer, T. Kenter, and C. Plessl, “Evaluating FPGA accelerator perfor-
mance with a parameterized OpenCL adaptation of selected benchmarks
of the hpcchallenge benchmark suite,” in Proc. IEEE/ACM Int. Workshop
Heterogeneous High- Perform. Reconfigurable Comput., 2020, pp. 10–18.

[31] J. Liu, A.-A. Kafi, X. Shen, and H. Zhou, “MKPipe: A compiler framework
for optimizing multi-kernel workloads in OpenCL for FPGA,” in Proc.
34th ACM Int. Conf. Supercomputing, 2020, pp. 1–12.

[32] P. Colangelo, S. Sengupta, and M. Margala, “Sparse persistent GEMM
accelerator using OpenCL for intel FPGAs,” in Proc. IEEE Int. Symp.
Circuits Syst., 2020, pp. 1–6.

[33] Q. Sun, T. Chen, S. Liu, J. Chen, H. Yu, and B. Yu, “Correlated multi-
objective multi-fidelity optimization for HLS directives design,” ACM
Trans. Des. Automat. Electron. Syst., vol. 27, no. 4, pp. 1–27, 2022.

[34] R. Bellman et al., Dynamic Programming and Modern Control Theory,
vol. 81. Princeton, NJ, USA: Citeseer, 1965.

[35] J. Dongarra and V. Eijkhout, “Self-adapting numerical software and auto-
matic tuning of heuristics,” in Proc. Int. Conf. Comput. Sci., Melbourne,
Australia and St Petersburg, Russia, Springer, 2003, pp. 759–767.

[36] H. H. Hoos, “Automated algorithm configuration and parameter tuning,”
in Autonomous Search. Berlin, Germany: Springer, 2012, pp. 37–71.

[37] J. Ansel et al., “Opentuner: An extensible framework for program auto-
tuning,” in Proc. 23rd Int. Conf. Parallel Architectures Compilation, 2014,
pp. 303–316.

[38] C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter tuning
methods for metaheuristics,” IEEE Trans. Evol. Comput., vol. 24, no. 2,
pp. 201–216, Apr. 2020.

[39] Q. Sun et al., “csTuner: Scalable auto-tuning framework for complex
stencil computation on GPUs,” in Proc. IEEE Int. Conf. Cluster Comput.,
2021, pp. 192–203.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

http://www.tacc.utexas.edu/resources/software/
http://www.tacc.utexas.edu/resources/software/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://rocblas.readthedocs.io/en/rocm-5.7.1/
https://rocblas.readthedocs.io/en/rocm-5.7.1/
https://github.com/clMathLibraries/clBLAS

LIN et al.: HIGH PERFORMANCE OPENCL-BASED GEMM KERNEL AUTO-TUNED BY BAYESIAN OPTIMIZATION 1997

[40] X. Zeng, S. Zhang, C. Ren, and T. Shao, “Physics informed neural networks
for electric field distribution characteristics analysis,” J. Phys. D: Appl.
Phys., vol. 56, no. 16, 2023, Art. no. 165202.

[41] X. He et al., “Enabling energy-efficient DNN training on hybrid GPU-
FPGA accelerators,” in Proc. ACM Int. Conf. Supercomputing, 2021,
pp. 227–241.

[42] D. Boehme, K. Huck, S. Kale, V. Kale, and V. Surjadidjaja, “Sophisticated
tools for performance analysis and auto-tuning of performance portable
parallel programming,”.

[43] J. Sun, G. Sun, S. Zhan, J. Zhang, and Y. Chen, “Automated performance
modeling of HPC applications using machine learning,” IEEE Trans.
Comput., vol. 69, no. 5, pp. 749–763, May 2020.

[44] D. Yokelson, M. R. J. Charest, and Y. W. Li, “HPC application performance
prediction with machine learning on new architectures,” in Proc. Perform.
EngineeRing, Modelling, Anal., VisualizatiOn Strategy, 2023, pp. 1–8.

[45] Y. Liu et al., “GPTune: Multitask learning for autotuning exascale ap-
plications,” in Proc. 26th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., 2021, pp. 234–246.

[46] A. Souza, L. Nardi, L. Oliveira, K. Olukotun, M. Lindauer, and F. Hutter,
“Prior-guided Bayesian optimization,” 2020.

[47] R. B. Roy, T. Patel, V. Gadepally, and D. Tiwari, “Bliss: Auto-tuning
complex applications using a pool of diverse lightweight learning models,”
in Proc. 42nd ACM SIGPLAN Int. Conf. Program. Lang. Des. Implemen-
tation, 2021, pp. 1280–1295.

[48] F.-J. Willemsen, R. van Nieuwpoort, and B. van Werkhoven, “Bayesian
optimization for auto-tuning GPU kernels,” in Proc. Int. Workshop Per-
form. Model., Benchmarking Simul. High Perform. Comput. Syst., 2021,
pp. 106–117.

Shengle Lin received the PhD degree in com-
puter science and technology from the College of
Information Science and Electronic Engineering, Hu-
nan University, Changsha, China, in 2024. From 2023
to 2024, he was a joint PhD student with the Agency
for Science, Technology and Research (A∗STAR),
Singapore. He is currently a Postdoctoral Fellow with
Hunan University. His research interests include high-
performance computing, parallel computing, numer-
ical computation, and artificial intelligence.

Guoqing Xiao (Member, IEEE) received the PhD
degree in computer science and technology from the
College of Computer Science and Electronic Engi-
neering (CSEE), Hunan University (HNU), China,
in 2017. He is currently a Professor with the HNU.
He worked as a Postdoctoral Research Fellow with
the Data Systems Group of the David R. Cheriton
School of Computer Science, University of Waterloo,
Canada, during 2017 to 2019. His main research
interests are on high-performance computing and AI
computing. He has published more than 50 papers

in peer-reviewed international journals and conferences, such as ISCA, DAC,
ICDE, IEEE TRANSACTIONS ON COMPUTERS/IEEE TRANSACTIONS ON PAR-
ALLEL AND DISTRIBUTED SYSTEMS/TKDE/TII, ACM Transactions on Parallel
Computing/ACM Transactions on Recommender Systems/ACM Computing Sur-
veys, etc.

Haotian Wang received the BS degree from the
School of Information Engineering, Nanchang Uni-
versity, China, in 2018, and the PhD degree in com-
puter science from Hunan University, China, in 2023.
He is currently working as a Postdoctoral Fellow with
Hunan University, China. He previously completed a
one-year joint PhD program from Nanyang Techno-
logical University, and he is an ACM member. His
research interests include parallel computing, tensor
compilation, and artificial intelligence.

Wangdong Yang received the PhD degree in com-
puter science from Hunan University, China, and the
MS degree in computer science from Central South
University, China. He is a Professor of computer sci-
ence and technology with Hunan University, China.
His research interests include modeling and program-
ming for heterogeneous computing systems, parallel
and distributed computing, and numerical computa-
tion. He has published more than 60 papers in In-
ternational conferences and journals. He is currently
served on the editorial boards of the IEEE INTERNET

OF THINGS JOURNAL.

Kenli Li (Senior Member, IEEE) received the PhD
degree in computer science from the Huazhong Uni-
versity of Science and Technology, China, in 2003. He
was a Visiting Scholar with the University of Illinois
with Urbana-Champaign (2004–2005). He is cur-
rently a Cheung Kong Professor of computer science
and technology with Hunan University (HNU), the
Vice-President of the HNU, the Dean of the College
of Computer Science and Electronic Engineering of
HNU, and the director with National Supercomput-
ing Center in Changsha. His major research interests

include parallel and distributed processing, high-performance computing, and
Big Data management. He has published more than 350 research papers in
international conferences/journals. He is a fellow of the CCF. He is currently
serving or has served as an associate editor for the IEEE TRANSACTIONS ON

COMPUTERS, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, and IEEE
TRANSACTIONS ON SUSTAINABLE COMPUTING.

Keqin Li (Fellow, IEEE) is a SUNY Distinguished
Professor of computer science with the State Univer-
sity of New York. He is also a National Distinguished
Professor with Hunan University, China. His current
research interests include cloud computing, fog com-
puting and mobile edge computing, energy-efficient
computing and communication, embedded systems
and cyber-physical systems, heterogeneous comput-
ing systems, Big Data computing, high-performance
computing, CPU-GPU hybrid and cooperative com-
puting, computer architectures and systems, com-

puter networking, machine learning, intelligent and soft computing. He has
authored or coauthored more than 1130 journal articles, book chapters, and
refereed conference papers, and has received several best paper awards. Since
2020, he has been among the world’s top few most influential scientists in
parallel and distributed computing regarding single-year impact (ranked #2) and
career-long impact (ranked #4) based on a composite indicator of the Scopus
citation database. He is listed in Scilit Top Cited Scholars (2023–2024) and
is among the top 0.02% out of over 20 million scholars worldwide based on
top-cited publications. He won the IEEE Region 1 Technological Innovation
Award (Academic) in 2023. He was a recipient of the 2022–2023 International
Science and Technology Cooperation Award and the 2023 Xiaoxiang Friendship
Award of Hunan Province, China. He is a Member of the SUNY Distinguished
Academy. He is an AAAS Fellow, an AAIA Fellow, an ACIS Fellow, and an
AIIA Fellow. He is a Member of the European Academy of Sciences and Arts. He
is a Member of Academia Europaea (Academician of the Academy of Europe).

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 20,2025 at 15:29:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

