Computer Science Review 60 (2026) 100887

Contents lists available at ScienceDirect
Computer

& Science
5 quiew

catil

Computer Science Review

¥ N

ELSEVIER journal homepage: www.elsevier.com/locate/cosrev

L))

Check for
updates

Revisiting workflow scheduling with the power of edge computing:
Taxonomy, review, and open challenges

Shenghai Li®" ©, Wentai Wu¢, Haotong Zhang, Yongheng Liu®, Weiwei Lin®"*, Keqin Lif

a School of Future Technology, South China University of Technology, Guangzhou, 510000, China

b pengcheng Laboratory, Shenzhen, 518000, China

¢ Department of Computer Science, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
d School of Software Engineering, South China University of Technology, Guangzhou, 510006, China

¢ School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006, China

f State University of New York, New Paltz, New Paltz, New York, 12561, USA

ARTICLE INFO ABSTRACT

Keywords: Edge computing has emerged as a pivotal paradigm for overcoming the limitations of traditional cloud com-

Edge computing puting, especially in latency-sensitive applications such as autonomous driving and video streaming. As mobile

Workflow scheduling applications grow in complexity, they often consist of interdependent tasks that can be modeled as workflows.

Task dependency Scheduling these workflows over heterogeneous resources at the network edge presents unique challenges due to

Taxonomy the diverse characteristics of workflows and the complex nature of edge environments. Despite recent advances,
a comprehensive overview of the fundamentals and state-of-the-art approaches in this field remains lacking. This
survey systematically reviews workflow scheduling in edge computing by first addressing its motivation, typical
application scenarios, and core challenges. The survey then introduces basic models and performance metrics,
followed by a taxonomy of existing scheduling strategies categorized by research issues, optimization objectives,
and techniques. Finally, we discuss open challenges and propose future research directions, providing a guide for
the development of efficient edge workflow scheduling strategies.

1. Introduction individual edge servers, creating resource bottlenecks and leading to in-

efficient utilization within the heterogeneous and resource-constrained
edge environment [9,10]. Conversely, decomposing them into simple
independent tasks while ignoring their critical interdependencies risks
violating execution constraints and can lead to incorrect results or
outright application failure.

To effectively manage such structured applications, modeling
them as workflows, typically represented as Directed Acyclic Graphs
(DAGs)—becomes essential. This workflow abstraction allows for fine-
grained, dependency-aware scheduling, enabling the optimization of
task placement, data movement, and resource allocation across dis-
tributed edge nodes while respecting execution order constraints.
Consequently, developing specialized workflow scheduling strategies
tailored to the unique challenges and characteristics of edge comput-
ing, distinct from simpler task placement or traditional cloud-based
approaches, is a critical research imperative necessary for unlocking the
performance potential of complex edge applications.

The proliferation of demanding smart applications, such as AR/VR,
autonomous driving, and industrial IoT [1-3], strains the capabilities
of resource-constrained mobile devices [4,5] and challenges traditional
cloud computing models due to high latency and network conges-
tion [6,7]. Edge computing offers a compelling solution by distributing
resources closer to end-users [8], thereby enabling low-latency commu-
nication and efficient local processing which are crucial for meeting the
stringent Quality of Service (QoS) requirements of these applications.

However, beyond latency, the increasing complexity and multi-stage
nature of many smart applications present significant scheduling chal-
lenges, especially in the unique context of the edge. For example,
applications in areas such as real-time video analytics pipelines, multi-
step industrial automation, complex event processing, and distributed
Al inference often consist of interdependent tasks with inherent se-
quential or parallel execution constraints. Scheduling these complex
applications monolithically often overwhelms the limited capacity of

* Corresponding author at: School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
Email addresses: lishh01@pcl.ac.cn (S. Li), wentaiwu@jnu.edu.cn (W. Wu), sezhanght@mail.scut.edu.cn (H. Zhang), liuyhO1@pcl.ac.cn (Y. Liu),
linww@scut.edu.cn (W. Lin), lik@newpaltz.edu (K. Li).

https://doi.org/10.1016/j.cosrev.2025.100887
Received 10 June 2025; Received in revised form 20 November 2025; Accepted 27 December 2025

1574-0137/© 2026 Elsevier Inc. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

http://www.sciencedirect.com/science/journal/1574-0137
https://www.elsevier.com/locate/COSREV

$G = \{V, E\}$

V

E

$V = \{T_1, T_2, \ldots , T_8\}$

$E = \{E_{T_1,T_2}, E_{T_1,T_3}, \ldots , E_{T_5,T_8}\}$

$E_{T_i,T_j} \in E$

T_j

T_i

T_j

T_i

$E_{T_i,T_j} \in E$

T_i

T_j

T_j

T_i

$<T_2,T_5,T_8>$

$<T_2,T_3,T_4>$

$T_i \in V$

$T_i = \{D_i,C_i,R_i,Pred_{T_i},Succ_{T_i}\}$

D_i

T_i

C_i

T_i

R_i

T_i

T_i

$Pred_{T_i}$

T_i

$Succ_{T_i}$

T_i

E_k

$E_k = \{CPU_k, MEM_k, BW_k\}$

CPU_k

MEM_k

BW_k

T_i

E_k

$\text {ST}_i$

N

$Off(T_i)$

T_i

k

A_{T_i}

$A_{T_i} = \{CPU_{T_i}, MEM_{T_i}, BW_{T_i}\}$

CPU_{T_i}

MEM_{T_i}

BW_{T_i}

T_i

k

t

\begin {align*}& \sum _{T_i \in \text {Active}(k, t)} CPU_{T_i} \leq CPU_k \quad \land \quad \sum _{T_i \in \text {Active}(k, t)} MEM_{T_i} \leq MEM_k \\ &\quad \quad \land \quad \sum _{T_i \in \text {Active}(k, t)} BW_{T_i} \leq BW_k\end {align*}

$\text {Active}(k, t)$

k

t

W

T

$T_j \in W$

S_i

$k \in E$

$x_{i,k}$

i

k

\begin {equation}\label {ieq1} x_{i,k} = \begin {cases} 1, & \text {if service}\ i\ \text {is cached at node } k, \\ 0, & \text {otherwise}. \end {cases}\end {equation}

\begin {equation}\label {ieq2} \sum _{i \in S} x_{i,k} \cdot r_{i} \leq C_k, \quad \forall k \in E,\end {equation}

r_{i}

i

C_k

k

T_{entry}

T_{exit}

\begin {equation}\label {ieq3} Makespan(W) = FT(T_{exit}) - ST(T_{entry}).\end {equation}

$FT(T_i)$

T_i

$ST(T_i)$

$ET(T_i)$

$T_j \in Pred(T_i)$

$Time_{trans}^{ji}$

\begin {equation}\label {ieq4} ST(T_i) = \max \!\bigg (Time_{arrival}^i, \max _{T_j \in Pred(T_i)} \Big (FT(T_j) + Time_{trans}^{ji}\Big), Time_{available}^m \!\bigg).\end {equation}

$E(W)$

W

T_i

\begin {equation}\label {ieq5} E(W) = \sum _{T_i \in W} E(T_i).\end {equation}

$E(T_i)$

\begin {equation}\label {ieq6} E(T_i) = E_{\text {local}}(T_i) + E_{\text {edge}}(T_i).\end {equation}

T_i

$Off(T_i)=0$

S_m

$Off(T_i)=m>0$

$E_{\text {execution}}^{\text {local}}(T_i)$

$E_{\text {download}}(T_j, T_i)$

$E_{\text {upload}}(T_i, T_k)$

T_j

T_k

T_i

$E_{\text {upload}}^m(T_i)$

S_m

$Off(T_i) = m > 0$

S_m

\begin {align}& E_{\text {edge}}(T_i) = E_{\text {download}}(T_i) + E_{\text {execution}}^{m}(T_i) + \sum _{T_j \in {\textrm {Pred}}(T_i)} E_{\text {download}}(T_j, T_i) \nonumber \\ & \qquad + \sum _{T_k \in {\textrm {Succ}}(T_i)} E_{\text {upload}}(T_i, T_k). \label {eq:energy_edge}\end {align}

\begin {equation}\label {eq:energy_local} \begin {split} E_{\text {local}}(T_i)&= \begin {cases} E_{\text {execution}}^{\text {local}}(T_i) +\sum _{T_j\in {\textrm {Pred}}(T_i)}E_{\text {download}}(T_j,T_i)\\ \quad {}+\sum _{T_k\in {\textrm {Succ}}(T_i)}E_{\text {upload}}(T_i,T_k),& \text {if } Off(T_i)=0,\\ E_{\text {upload}}^m(T_i),& \text {if } Off(T_i)=m>0~. \end {cases} \end {split}\end {equation}

$E_{\text {system}}(W)$

\begin {equation}\label {eq:energy_system_example_revised} E_{\text {system}}(W) = E(W) + \sum _{k \in \mathcal {D}} P_{\text {idle},k} \times T_{\text {idle},k}\end {equation}

$E(W)$

$\mathcal {D}$

$P_{\text {idle},k}$

$k \in \mathcal {D}$

$T_{\text {idle},k}$

k

$Makespan(W)$

$T_{\text {idle},k}$

k

W

M

$Cost(W)$

\begin {equation}\label {ieq7} Cost(W) = Cost_{comp}(W) + Cost_{energy}(W) + Cost_{comm}(W),\end {equation}

$Cost_{comp}(W)$

$Cost_{energy}(W)$

$Cost_{comm}(W)$

U_i

\begin {equation}\label {ieq9} LB = \sqrt {\left (\sum _{i=1}^N {(U_i - U_{\text {avg}})}^2\right)/N}.\end {equation}

LB

S

\begin {equation}\label {ieq10} S = \left (\sum _{i=1}^{N} \delta _i\right)/N,\end {equation}

N

$\delta _i$

i

$\lambda $

t_i

VM_p

\begin {equation}\label {eq:reliability_exec} R(t_i, VM_p) = e^{-\lambda _{VM(p)} \cdot ET(t_i, VM_p)}\end {equation}

$e(t_j, t_i)$

\begin {equation}\label {eq:reliability_comm} R(e(t_j, t_i)) = e^{-\lambda _{L(p,q)} \cdot TT(t_j, t_i)}\end {equation}

$Rel(t_i)$

$Rel(W)$

\begin {equation}\label {eq:reliability_workflow} Rel(W) = \prod _{t_i \in W} Rel(t_i).\end {equation}

\begin {equation}\label {ieq11} Min/Max\; F(x) = \alpha \times f_{1}(x) + \beta \times f_{2}(x) +\cdots + \gamma \times f_{n}(x),\end {equation}

$f_{n}(x)$

$\alpha $

$\beta $

$\gamma $

\begin {equation}\label {ieq12} Min/Max\; F(x) = \{f_{1}(x), f_{2}(x), \ldots , f_{n}(x)\}\end {equation}

$\diamondsuit \clubsuit $

$\diamondsuit \clubsuit $

$\diamondsuit \clubsuit \heartsuit $

$\diamondsuit $

$\diamondsuit \heartsuit $

$\diamondsuit \heartsuit $

$\diamondsuit $

$\clubsuit $

$\heartsuit $

$\spadesuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit \clubsuit $

$\diamondsuit $

$\spadesuit $

$\diamondsuit $

$\diamondsuit \clubsuit $

$\diamondsuit \spadesuit $

$\diamondsuit \spadesuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\clubsuit $

$\diamondsuit $

$\clubsuit $

$\heartsuit $

$\spadesuit $

$\ddot {\text {T}}$

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\clubsuit $

$\diamondsuit $

$\diamondsuit $

$\spadesuit $

$\spadesuit $

$\clubsuit \spadesuit $

$\spadesuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\clubsuit $

$\heartsuit $

$\spadesuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit \spadesuit $

$\diamondsuit \clubsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\diamondsuit $

$\clubsuit $

$\heartsuit $

$\spadesuit $

$\times $

\begin {equation}\label {eq:offloading_decision_final} Off(T_i)=\left \{ \begin {aligned} & 0, & & \text {task process locally} \\ & m, & & \text {task offloaded to edge server m, }m \in \{1,2,..,N\}. \end {aligned} \right . \quad \text {s.t.} \quad \text {C1, C2}\end {equation}

\begin {equation*}\begin {aligned} & \quad \text {C1 (Uniqueness Constraint):} & & \sum _{m=0}^{N} \mathbb {I}(Off(T_i)=m) = 1 \\ & \quad \text {C2 (Assignment Precedence):} & & \forall T_j \in {\textrm {Pred}}(T_i), \quad Off(T_j) \in \{0, 1, \dots , N\} \end {aligned}\end {equation*}

\begin {equation}\label {ieq8} Profit(W) = Price(W) - Cost(W).\end {equation}

https://orcid.org/0009-0001-9548-9675
mailto:lishh01@pcl.ac.cn
mailto:wentaiwu@jnu.edu.cn
mailto:sezhanght@mail.scut.edu.cn
mailto:liuyh01@pcl.ac.cn
mailto:linww@scut.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.cosrev.2025.100887
https://doi.org/10.1016/j.cosrev.2025.100887
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2025.100887&domain=pdf

S. Li, W. Wu, H. Zhang et al.

1.1. Core challenges

Edge computing offers a promising solution to address the grow-
ing demand for low-latency, energy-efficient, and scalable computing.
However, the unique system characteristics of edge computing, e.g.,
resource constraints, heterogeneity, and dynamic network conditions,
pose significant challenges for the overall performance of edge systems
and greatly impact on workflow scheduling. In this section, we will delve
into these characteristics.

1.1.1. Resource constraints

Edge servers typically have limited computational power, stor-
age, and bandwidth [9], which directly affect workflow scheduling.
Restricted resources prolong task execution and data transmission,
impairing overall performance [10]. Limited capacity also constrains
parallel task execution [11], making it difficult to handle complex work-
flows efficiently. Consequently, workflow scheduling must incorporate
resource management policies that adapt to changing demands and
prevent performance bottlenecks.

1.1.2. Heterogeneity

Edge environments encompass diverse nodes with varying compu-
tational, storage, and energy capabilities. Workflows themselves are
heterogeneous, containing tasks with different resource requirements
and QoS demands. This dual heterogeneity intensifies the complexity of
workflow scheduling: a node well-suited for one task may be ill-equipped
for another. For instance, a high-computation node may lack sufficient
storage for data-intensive tasks, while a storage-rich node may not meet
strict latency requirements. Such multi-dimensional heterogeneity ne-
cessitates scheduling algorithms that judiciously match tasks to nodes,
ensuring that both the edge infrastructure’s diversity and the workflow’s
varying needs are addressed.

1.1.3. Distributed nature

Edge computing’s distributed architecture reduces latency by placing
resources closer to data sources. However, this dispersion complicates
workflow scheduling. Tasks within a workflow often depend on each
other’s outputs and may need to run on different nodes. Ensuring correct
task sequencing across distributed nodes is non-trivial, and cross-node
data transfers introduce additional latency and overhead. Workflow
scheduling in such contexts must manage these spatial dependencies
and communication costs, synchronizing task execution to maintain
end-to-end efficiency.

1.1.4. Dynamic network

Edge computing systems often rely on wireless networks, which can
be subject to interference, channel stochasticity, and signal attenuation
[12], leading to fluctuating bandwidth, intermittent connectivity, and
unpredictable delays. Since workflow tasks frequently exchange data,
unstable networks can disrupt the entire execution chain. Scheduling
decisions must anticipate network variability, balancing task placement
and transmission paths to preserve the workflow’s integrity and time-
liness. Algorithms need to be robust, reacting swiftly to degraded links
and adjusting resource allocations or task migration strategies as needed.

1.1.5. Mobility

User mobility introduces additional complexity to workflow schedul-
ing. As users move between coverage areas of different edge servers,
tasks in the workflow may need to be relocated to maintain connectiv-
ity [13]. This relocation is not a simple reassignment of isolated tasks
since workflows encompass multiple interdependent tasks whose exe-
cution order and data dependencies must be preserved. When a user’s
movement causes the connected edge node for one task to change, it can
trigger a cascade of adjustments throughout the workflow.

Computer Science Review 60 (2026) 100887

1.1.6. Scalability

Since edge infrastructures can scale to thousands of heterogeneous
nodes, maintaining a coherent global view across such a dispersed
network imposes heavy communication and coordination overhead, fre-
quently yielding outdated or incomplete state information. Moreover,
allocating large DAG-structured workflows to an ever-growing pool of
resources is challenging, with the scheduling decision space growing
rapidly as task and node counts increase. Together, these factors erode
scheduler responsiveness and QoS guarantees at scale, making scalabil-
ity an essential challenge for workflow scheduling in production-grade
edge environments. Collectively, these characteristics distinguish edge
computing from traditional cloud environments, rendering cloud-centric
scheduling approaches often inadequate and underscoring the need
for specialized workflow scheduling strategies designed for the unique
constraints and dynamics of the edge.

1.2. Related surveys

Review of edge computing: Hong and Varghese [14] provided a com-
prehensive review of resource management within fog/edge computing,
focusing on the unique challenges of managing distributed resources
characterized by resource constraints, heterogeneity, and system dy-
namics. Covering studies from 2013 to 2018, the article categorizes
architectures, infrastructure, and underlying algorithms. Similarly, Luo
et al. [15] conducted an extensive survey on resource scheduling in
edge computing, emphasizing optimized performance in the evolving
IoT and wireless networks landscape. This survey explores detailed edge
computing architectures, discusses key research issues—computation
offloading, resource allocation, and resource provisioning—and clas-
sifies various scheduling techniques based on operation modes.
Additionally, it summarizes crucial performance metrics and highlights
the importance of resource scheduling through diverse application
scenarios.

Sahni et al. [16] presented a survey on Distributed Resource
Scheduling (DRS) within edge computing, addressing motivations, chal-
lenges, and existing solutions. This survey distinguishes DRS challenges
from those in traditional parallel and distributed systems, emphasizing
the motivations and potential enabled by DRS. It introduces a taxon-
omy of existing literature based on systems, problems, and solution
approaches. Xia et al. [17] investigated resource management in emerg-
ing UAV-enabled Edge Computing (UEC), introducing a conceptual UEC
architecture, discussing collaboration and communication models, and
providing a taxonomy of existing resource management strategies.

Zhang and Debroy [18] offered an in-depth review of resource man-
agement within Mobile Edge Computing (MEC), focusing on the diverse
performance requirements of user applications and the dynamic nature
of MEC environments. The authors categorize existing solutions into
conventional optimization-based approaches and emerging learning-
based methods. Additionally, this study delves into prevalent application
cases in MEC, particularly video analytics, identifying the pipelined
nature of such applications and discussing DAG-based workflow schedul-
ing. However, it lacks a systematic analysis and review of workflow
scheduling.

Review of workflow scheduling: Wu et al. [19] conducted a thorough
survey of workflow scheduling in cloud environments, emphasizing the
challenges and significance of workflow scheduling in the cloud. The
authors provide a taxonomy of workflow scheduling strategies based
on resource information and workflow characteristics and comprehen-
sively discuss ten critical workflow scheduling problems with respective
cloud-based solutions. Similarly, Adhikari et al. [20] reviewed workflow
scheduling in cloud computing, covering workflow model architecture,
classification, and management systems. This survey examines various
scheduling methods, categorizes them by objectives and techniques, and
explores emerging trends in serverless and fog computing. Hosseinzadeh
et al. [21] reviewed multi-objective optimization techniques for inde-
pendent task/workflow scheduling in cloud environments, focusing on

S. Li, W. Wu, H. Zhang et al.

Computer Science Review 60 (2026) 100887

Table 1
Summary of related surveys and our work.

Paper Year Task relations Environment Methodological focus Perspective

[14] 2019 Independent Fog/Edge Resource management Review of resource management, focusing on architecture, infrastructure, and
underlying algorithms.

[15] 2021 Independent Edge Comprehensive scheduling Survey of resource scheduling: architecture, key issues, techniques, metrics,
applications.

[16] 2022 Independent Edge DRS-centric Analysis of DRS, highlighting challenges, motivations, solutions, and future
directions.

[17] 2022 Independent Edge UAV-specific strategies Review of UAV-enabled Edge Computing: architectures, collaboration models,
resource strategies.

[18] 2023 Independent Edge Optimization vs. Learning In-depth MEC review: optimization-based versus learning-based approach for resource
management.

[19] 2015 Workflow Cloud Problem based taxonomy Survey of workflow scheduling in cloud: challenges and ten classic scheduling
problems.

[20] 2019 Workflow Cloud Taxonomy by objectives and Workflow techniques in cloud: definitions, taxonomy, and emerging serverless/fog

techniques trends.

[21] 2020 Both Cloud Multi-objective meta-heuristics Multi-objective optimization for independent tasks/workflows: meta-heuristics and
limits.

[22] 2024 Workflow Cloud-Fog Comprehensive scheduling A clear taxonomy based on techniques, metrics, dependencies, policies, and
evaluation tools.

[23] 2024 Workflow Cloud-Fog Al-based and Heuristic Approach Systematic review focusing specifically on Al (75%) and Heuristic (25%) techniques
for workflow scheduling in cloud-fog environment. Identifies serverless/Faa$ as a key
research gap.

[24] 2024 Workflow Cloud-Edge RL-based Scheduling Taxonomy and review specifically for RL-based scheduling. Proposes an RL-centric
taxonomy (based on agent architecture, RL algorithms, etc.) and discusses RL-specific
open challenges.

Ours 2025 Workflow Cloud-Edge Comprehensive scheduling Comprehensive survey of edge-centric workflow scheduling: motivations, models,

metrics, techniques, future directions.

Acronyms used in this table: Distributed Resource Scheduling(DRS), Reinforcement Learning(RL).

meta-heuristic multi-objective optimization schemes and analyzing their
characteristics and limitations.

More recently, several highly relevant surveys have been presented.
Bouabdallah and Fakhfakh [22] presented a Systematic Literature
Review of workflow scheduling in Cloud-Fog environments, proposing
a comprehensive taxonomy of scheduling techniques, metrics, depen-
dencies, policies, and evaluation tools. Concurrently, other surveys
have adopted a more methodology-specific focus. Khaledian et al. [23]
provided a systematic review specifically for Al-based and heuristic al-
gorithms, also within the Cloud-Fog context, finding that 75% of recent
works use Al or hybrid methods. Similarly, Jayanetti et al. [24] offered
a deep-dive review and taxonomy focused exclusively on reinforcement
learning techniques for Cloud-Edge environments. Their work details
an RL-centric classification covering agent architectures and algorithms,
alongside RL-specific open challenges.

Comparison to our work: As summarized in Table 1, existing sur-
veys have bifurcated their focus, addressing either independent task
scheduling in edge environments or workflow scheduling in traditional
cloud environments. While recent surveys [22-24] have begun to ad-
dress workflow scheduling in hybrid systems, their analyses remain
specialized. These works are limited either in scope, by focusing on
the Cloud-Fog paradigm [22,23], or in methodology, by concentrat-
ing exclusively on a single technique such as Al-based and heuristic
approaches [23] or reinforcement learning [24].

Consequently, a comprehensive survey covering the full spectrum of
scheduling techniques for Edge-centric environments has been absent.
This survey bridges this gap by providing a holistic review of work-
flow scheduling in Edge-centric systems. We synthesize the full range
of methodological approaches—spanning mathematical programming,
heuristic/meta-heuristic and RL-based methods. This work presents a
multi-perspective taxonomy covering system models, research issues,
performance metrics, scheduling pattern simulators, datasets, and op-
timization techniques, culminating in a discussion of open research
challenges.

1.3. Contribution and organization

The main contributions of this article are as follows:

The motivation for workflow scheduling in edge computing is
discussed, and core challenges that highlight research needs are
outlined.

A presentation of typical scenarios demonstrating the application po-
tential of this domain is provided, followed by the formulation of the
basic model of edge workflow scheduling.

A multidimensional taxonomy of existing workflow scheduling
strategies in edge computing is provided, categorized by key research
issues, optimization objectives, scheduling patterns, and optimiza-
tion techniques, as well as the simulation environment and datasets
used for evaluation.

Open challenges and future directions of workflow scheduling within
edge computing are explored, offering insights for further studies in
the field.

The rest of the article is organized as follows: Section 2 details
the systematic methodology used to conduct this review, including the
literature search strategy and screening criteria. Section 3 provides back-
ground information, covering the basic model of workflow scheduling in
edge computing and application scenarios. Sections 4 and 5 collectively
present a comprehensive taxonomy of existing workflow scheduling
strategies in edge computing, categorizing them based on key research
issues, optimization objectives, optimization approaches, along with the
simulation environment and datasets used for evaluation. Section 6 dis-
cusses open challenges and future directions in this field. The conclusion
of this article is presented in Section 7.

2. Methodology
2.1. Literature search strategy and data sources

This review is based on a systematic and reproducible literature
search. The Web of Science (WoS) Core Collection was selected as the
primary data source, chosen for its comprehensive index of high-impact,
peer-reviewed journals and conference proceedings in computer science.

The search strategy targeted the Topic (TS) field—which includes the
title, abstract, and keywords—to ensure comprehensive retrieval. The
query combined key synonyms for the target platforms (e.g., edge, fog,

S. Li, W. Wu, H. Zhang et al.

SLAM

Autonomous Driving

Video Service

Framc Preproces Feature

networks

Computer Science Review 60 (2026) 100887

Industrial Internet of Things

Smart City

Fig. 1. Various application scenarios for workflow scheduling in edge computing.

cloud-edge) and the core problem domain (e.g., workflow, dependent
tasks). The exact query string was:

TS=((''edge computing'' OR ''fog computing'' OR ''cloud-
edge collaboration'' OR ''cloud-fog collaboration'')

AND (''workflow scheduling'' OR ''dependent task
scheduling''))

The search was limited to publications from January 1, 2019, to the
present, yielding an initial corpus of 422 publications. The annual distri-
bution of these articles, depicted in Fig. 2, illustrates the field’s research
momentum. A significant upward trend is revealed, with annual publi-
cations growing steadily from 27 in 2019 to 117 in 2024. This growth
indicates that the domain has recently become a major research focal
point. The 50 publications recorded for 2025, representing a partial
count for the current year, further confirm sustained research interest.

In addition to the temporal trend, Fig. 3 illustrates the distribution
of these publications by their primary research focus. The analysis re-
veals a clear concentration on Edge (283 papers), constituting the vast
majority of the literature at 62.3%. This is followed by Fog/Cloud-Fog
(113 papers), accounting for 26.8% of the corpus, while Cloud-Edge (26
papers) represents a more specific focus on the collaboration between
the cloud and edge tiers, comprising 10.9%. This distribution indicates
that edge-centric solutions are the dominant focus of the research com-
munity. These numerical analyses, showing both a rapid escalation in
volume and a strong focus on edge-centric challenges, underscore the
pressing need for a systematic review to structure and synthesize the
current state-of-the-art. These 422 publications served as the initial doc-
ument pool for screening against the inclusion and exclusion criteria
detailed in Section 2.2, which derived the final set of papers for in-depth
analysis.

2.2. Screening and inclusion criteria

The initial search yielded 422 potentially relevant publications.
To identify the core literature for this review, we employed a multi-
stage screening process designed to assess relevance and methodological
rigor. This process was guided by the following inclusion and exclusion
criteria:

— Inclusion criteria: (i) The paper must propose, evaluate, or ana-
lyze a specific workflow scheduling strategy, algorithm, or frame-
work explicitly for edge/cloud-edge environments; (ii) the paper

Annual Publication Trend (2019-2025)

BN Complete Year
Partial Year (2025 data as of query)

-
S
3

@
3

66

2
3

Number of Publications

N
3

34

204

2019 2020 2021 2022 2023 2024 2025
Year

Fig. 2. The annual publication trend of the retrieved literature (2019-2025).
Data sourced from Web of Science Core Collection. *Note: The 2025 data
represents a partial count for the year.

B Edge
B Fog/Cloud-Fog
Cloud-Edge

Fig. 3. Proportion of literature related to the focus environment.

must address task dependencies (e.g., workflows or DAGs), while
studies focusing solely on independent task offloading were ex-
cluded; (iii) published between January 1, 2019, and the present,
with 2025 data being partial; (iv) published as a peer-reviewed
journal article or conference paper; and (v) written in English.
— Exclusion criteria: (i) Papers focusing solely on cloud/fog com-
puting without an edge component; (ii) non-archival publications,
such as short papers (typically less than 6 pages), posters, ab-
stracts, editorials, and tutorials; (iii) papers where the full text was

S. Li, W. Wu, H. Zhang et al.

not accessible; (iv) duplicate publications of the same study; and
(v) publications that are themselves literature reviews, surveys, or
meta-analyses, as this review focuses on primary studies.

The screening was conducted in multiple stages, beginning with a
review of titles and abstracts, followed by a full-text assessment of the
remaining candidates. Furthermore, this database search was supple-
mented by a snowballing process [25], where the reference lists of all
included papers were manually scanned to identify additional relevant
studies that might have been missed by the initial query.

This combined methodology resulted in a final corpus of 153 core
publications that forms the basis of the taxonomy and review presented
in Sections 4 and 5.

3. Background

This section provides background on edge workflow scheduling. It
begins with illustrative application scenarios, then details the fundamen-
tal models for workflows and edge systems.

3.1. Application scenarios

In this section, we discuss several representative application sce-
narios including IIoT, video services, autonomous driving, and smart
cities, as shown in Fig. 1. These application scenarios exemplify the spe-
cific benefits of workflow scheduling in edge computing, highlighting its
role in enabling efficient, reliable, and scalable solutions across diverse
industries.

3.1.1. Autonomous driving

Autonomous driving, a transformative transportation technology,
is widely regarded as a promising solution to alleviate traffic con-
gestion and enhance travel safety [26]. Autonomous driving systems
involve several key tasks, including environment perception, planning,
decision-making, and execution [27]. These tasks are interdependent,
with planning and decision-making relying on the output of environ-
ment perception, followed by the execution of control instructions.
Exploring deeper, parallel execution within these modules reveals more
intricate dependencies. For example, the environment perception mod-
ule can process data streams from sensors, LiDAR, and GPS in parallel.
Upon completion of these parallel data processing tasks, the results are
integrated to perform simultaneous localization and mapping (SLAM).

Moreover, the tasks involved in autonomous driving are both data-
and computation-intensive. For example, the perception module pro-
cesses massive amounts of data, and precise decision-making relies
heavily on complex deep learning (DL) models [28,29]. While funda-
mental for accuracy, these DL models, e.g., for real-time object detection
and path planning, are notoriously computation-intensive. Furthermore,
training these models requires diverse data from vast fleets of vehicles,
which raises significant data privacy and communication bottleneck
issues. To address these training challenges, federated learning (FL)
is being pervasively applied. FL enables collaborative model training
on vehicles without centralizing sensitive raw data, thus preserving
privacy [30,31]. This introduces a dual challenge: the demand for high-
performance computation for real-time DL inference and the need for
coordinated resource management for distributed FL training. Given
these resource demands, edge computing emerges as an ideal solution,
offering real-time data processing and powerful computational capabili-
ties. Consequently, workflow scheduling in edge computing can greatly
enhance the performance of autonomous driving systems by ensuring
efficient task execution and optimal resource allocation, which has been
explored in recent studies [32,33].

3.1.2. Industrial Internet of Things

The Industrial Internet of Things (IIoT) refers to the integration
of IoT technologies in industrial manufacturing systems. In a typical
IoT scenario, numerous smart devices and sensors are interconnected,

Computer Science Review 60 (2026) 100887

generating vast amounts of data. These data streams are often complex
and require rapid processing to ensure the performance, reliability, and
safety of IloT systems [34]. For example, in a smart factory, real-time
data from manufacturing equipment and assembly lines are continu-
ously generated, with predictive analytics used to forecast equipment
failure or optimize production scheduling. Such real-time data streams
necessitate edge computing for low-latency processing. In IIoT systems,
dependencies between tasks are prevalent. Typical examples involve
anomaly detection and pipeline speed control, where anomaly detec-
tion algorithms depend on the sensor data from equipment in real time,
while pipeline speed control algorithms adjust production rates based
on the system’s current status. Efficient workflow scheduling in edge
computing environments is essential to ensure these tasks are executed
in the correct sequence and within time constraints, thereby optimizing
system performance and enhancing operational efficiency. Several re-
lated researches have made contributions to advancing this application
scenario [35-37].

3.1.3. Video service

As a typical computation-intensive and data-intensive service, video
service requires significant computation and storage resources [38], and
introduces great network pressure since it typically involves streaming
large amounts of video data [39]. Edge computing presents an ideal
paradigm in this context by enabling data processing closer to the source,
which significantly enhances the efficiency of tasks such as transcod-
ing and content caching [40]. This proximity to data sources further
alleviates network congestion, ensuring a seamless, high-quality user ex-
perience. Furthermore, workflow scheduling is crucial in managing task
dependencies within video services, where critical tasks such as video
capturing, encoding, and content delivery are often interdependent. For
example, Xie et al. [41] described a workflow in cloud-edge environ-
ments for video surveillance, where the complete service is achieved
through a series of steps. These steps include capturing video data
through cameras, detecting motion, identifying objects, tracking these
objects, and adjusting camera angles via pan-tilt-zoom (PTZ) controls
as needed. Rong et al. [42] discussed a camera stream workflow ap-
plied in large-scale video analytics within an edge-cloud environment.
A complete camera stream workflow consists of capturing, frame resiz-
ing and sampling, feature mapping, and object tracking and detection.
These tasks exhibit a clear dependency structure, where each task relies
on the output of the preceding task. Additionally, all tasks except cap-
turing can be distributed across different compute nodes to meet specific
latency and accuracy requirements, optimizing resource allocation and
ensuring efficient task execution throughout the workflow.

3.1.4. Smart city

Smart city aims to enhance the quality and efficiency of urban ser-
vices by integrating information and communication technologies [43].
Typical urban services, such as traffic management, environmental mon-
itoring, and public safety, often involve processing vast amounts of data
collected from a wide range of sources, including sensors, cameras, and
intelligent devices. Driven by this data-intensive nature, edge computing
becomes essential for real-time data processing, reducing latency, and
ensuring the responsiveness of various services. In the context of smart
cities, various modern applications comprise complex and independent
tasks. For example, in intelligent traffic flow management, real-time data
from cameras and sensors must be processed to analyze traffic conditions
and predict congestion. This data then informs adaptive traffic signal
control systems that dynamically adjust traffic flow based on the current
situation. Environmental monitoring tasks often involve collecting data
from various sensors (e.g., air quality, temperature, humidity), which
can be processed in parallel to detect patterns or anomalies. This analy-
sis can trigger actions such as adjusting energy consumption or initiating
emergency responses. Thus, a smart city presents a typical and complex
application scenario for workflow scheduling in edge computing.

S. Li, W. Wu, H. Zhang et al.

Fig. 4. An example of a workflow modeled as a DAG.

Edge Server

(SIS

Edge Server .- Edge Server

Data Flow

B %

Workflow Generated by User Device

Workflow Generated by User Device

Fig. 5. An example of task offloading.

3.2. Basic model

A workflow consists of a sequence of interdependent tasks executed
in a specific order, which is commonly modeled as a DAG, G = {V, E}.
Within this model, each vertex in V indicates a task, and each edge in E
represents a dependency between tasks. For example, in Fig. 4, the work-
flow consists of eight tasks, V' = {T}, 7>, ..., Ty}, with dependencies such
as E = {Eq 1, Er, 1y0 -+ » Eqy 1, }- An edge Erqg, €E signifies that 7 is
dependent on T;, where T; cannot be executed before T; has been com-
pleted. With Ey, 1, €E, task 7; is defined as a predecessor of task T; and
task 7 is defined as a successor of task 7;. The relationships of tasks in
workflows can be classified into two categories according to their depen-
dencies: sequential and parallel. Sequential tasks, such as < T,,T5, Ty >
in Fig. 4, exhibit direct or indirect dependencies and must be executed
in a precise sequence. In contrast, parallel tasks, e.g., < T,,T3,T, > in
Fig. 4, have no such dependencies and may be executed in any order.
Additionally, the entry and exit dummy tasks are typically placed at
the start and end of the workflow, marking initiation and termination,
respectively.

Each task T; € V in a workflow can be characterized by several at-
tributes, i.e., T; = {D;,C;, R;, Predy,, Succr, }, where D; stands for the
data size of T}, C; is the computational load of T;(usually measured in
CPU cycles), R; represents the data size of the output produced by T},
which also corresponds to the weight of the edge connecting T, to its
successor task(s), PredTi denotes the set of predecessor tasks of T; and
Succr, represents the set of successor tasks of T;.

An edge computing system is generally a two-tier architecture com-
prised of an edge layer and a user device layer. The user layer is
made up of diverse user devices, ranging from the ubiquitous mobile
phones and tablets to more specialized equipment such as intelligent
sensors deployed in smart factories, devices with high mobility like
Unmanned Aerial Vehicles (UAVs) and vehicles, and other Internet of
Things (IoT) devices. Each device generates requests, performs basic pro-
cessing, and submits complex processing requests to the edge layer. The
edge layer comprises a set of heterogeneous servers that are geographi-
cally distributed and vary in their capabilities and resource availability.
Each edge server E, can be denoted as E, = {CPU,, MEM,, BW,},
where C PU, refers to the computational power (in terms of CPU cycles
per second), M EM, denotes the available memory and BW, indicates

Computer Science Review 60 (2026) 100887

the available network bandwidth. Connected via advanced wireless
technologies, the edge layer supports the simultaneous interconnec-
tion of numerous user devices and efficient data transmission, enabling
real-time processing.

Based on the task and system models defined above, the core
workflow scheduling problem is to find an optimal execution plan—
determining where to execute each task 7; (i.e., on which server E,) and
when to start its execution (ST,).

4. Taxonomy

In this survey, we provide a taxonomy of existing workflow schedul-
ing strategies in edge computing, categorized by research issues, opti-
mization objectives, scheduling patterns, and optimization techniques,
as well as the simulation environments and datasets used for evaluation,
as shown in Fig. 6.

4.1. Research issues

In a typical workflow scheduling scenario at the edge, task offload-
ing, resource allocation, and service caching/placement are three major
research issues.

4.1.1. Task offloading

Task offloading, as shown in Fig. 5, refers to transferring the task
from user devices to edge servers for remote processing. An offloading
strategy determines which tasks to execute locally and which to offload
to edge servers.

The offloading decision hinges on various factors, e.g., task work-
load, the capacity of the user device, network conditions, and the current
load on the edge servers.

Assume that N edge servers are deployed and workflows are gener-
ated by user devices. Tasks in a workflow will then be processed locally
or offloaded to edge servers. Let O f f(T;) denote the offloading decision,
which is expressed as

0, task process locally
Off(T) = st
m, task offloaded to edge server m, m € {1,2,.., N }.

Cl,C2

(€3]

where:

C1 (Uniqueness Constraint):

N
2IOffm)y=m=1
m=0

C2 (Assignment Precedence): VT/. € Pred(T)), Off(Tj) e€{0,1,...,N}

Task dependencies within a workflow restrict the order in which
tasks must be executed, introducing a layer of complexity to task offload-
ing. This dependency constraint can lead to idle time in the execution
queue when a task ready for execution must wait for its dependent tasks
to complete. Thus, it is vital to employ an effective strategy to determine
the best execution order, ensuring that the execution queue meets the
dependency restrictions while minimizing the idle time of the execution
queue. Intuitively, the offloading decision-making process may involve
strategies such as offloading serial tasks to the same server to maintain
execution flow and distributing parallel tasks across multiple servers to
leverage concurrent processing capabilities. Moreover, task dependen-
cies affect the data flow within the workflow, as the output of one task
often serves as the input for successor tasks. Consequently, offloading
decisions must also factor in data transfers; reducing data transfer times
is crucial for optimizing overall workflow execution time. For example,
it is advisable to prioritize offloading tasks with high data volume to
servers with high bandwidth.

As a fundamental and essential component of workflow scheduling,
the vast majority of related studies consider task offloading as their
primary research issue.

S. Li, W. Wu, H. Zhang et al.

Research

/ Issues

Optimization

Objectives
Scheduling
Pattern
Taxonomy of Workflow
Scheduling Strategies in Edge
Computing g 2
Simulation

Environment

Dataset

\ Optimization
Approaches

D N S W (P (s W

Computer Science Review 60 (2026) 100887

Task Offloading
Resource Allocation
Service Caching/Placement

Others

Single Objective

Multiple Objectives < G @ T Zatom
Pareto Optimization

Offline Scheduling

Online Scheduling

Dedicated Simulators
General-Purpose Programming
Real-world Testbed
Synthetic Workflows
Scientific Workflows
Real-World Traces
Mathematical Programming
Heuristic
Meta Heuristic

DRL

Fig. 6. Taxonomy of workflow scheduling strategies in edge computing.

4.1.2. Resource allocation

Following the offloading decision, resource allocation is a pivotal
step in workflow scheduling for edge computing. This process involves
allocating the necessary resources such as CPU and bandwidth, to the
offloaded tasks on edge servers. Numerous studies have been dedi-
cated to the optimization of resource allocation to enhance workflow
performance and efficiency [35,44-47].

Resource allocation aims to optimize the resource utilization at the
edge while ensuring that each task’s requirements are adequately met.
The resource allocation strategy must consider the current availability
of resources on each edge server and the QoS requirements of offloaded
tasks. For instance, a task with a tight deadline should be allocated with
abundant computational resources. For a task 7, that has been offloaded
to server k, the resource allocation decision Ay, can be expressed as A, =
{CPUy,, MEMy,, BWr,}, where CPUy,, MEMy, and BWy, represent
the number of CPU cycles, memory, and network bandwidth allocated
to T}, respectively.

The allocation decision for server k is primarily governed by resource
capacity constraints, which dictate that the total resources consumed
by concurrently executing tasks must not exceed the server’s maximum
capacity. Formally, at any given time #:

CPU;, <CPU, A Y MEMg; < MEM,
T;€Active(k,t) T, €Active(k,r)
A Y BW < BW,
T, €Active(k,r)

Here, Active(k,t) denotes the set of tasks actively executing and con-
suming resources on server k at time ¢. The allocation must also adapt
dynamically to the changes in task demands and server states. For
example, if a server becomes overloaded or a task’s requirements change
due to evolving conditions at the user layer, the allocation strategy
must be able to respond accordingly. Furthermore, in scenarios where
multiple tasks compete for the same resources simultaneously, the allo-
cation strategy must prioritize tasks based on criteria such as urgency,
importance, or the predicted time required for task completion.

The allocation must also adapt dynamically to the changes in task
demands and server states. For example, if a server becomes over-
loaded or a task’s requirements change due to evolving conditions at
the user layer, the allocation strategy must be able to respond accord-
ingly. Furthermore, in scenarios where multiple tasks compete for the

same resources simultaneously, the allocation strategy must prioritize
tasks based on criteria such as urgency, importance, or the predicted
time required for task completion.

In the context of workflow scheduling, managing workflow depen-
dencies is critical to ensure that resources are optimally allocated. By
analyzing the dependency graph of tasks in a workflow, the strategy
identifies tasks on the critical path and ensures that these tasks receive
priority in resource allocation. This approach reduces delays in work-
flow completion by minimizing the risk of critical tasks that directly
affect the makespan of the entire workflow being hindered by resource
scarcity. By prioritizing tasks based on their importance and position
in the workflow, the resource allocation strategy improves available
resource utilization and facilitates the efficient execution of workflows.

4.1.3. Service caching/placement

In edge computing, service caching/placement plays a pivotal role
in the efficient scheduling of workflows, as they directly affect task
execution latency and overall system performance, which has been ex-
tensively investigated in several studies [48-50]. Workflow scheduling
often involves a series of interdependent tasks that may require frequent
access to shared data or services. By strategically placing services and
caching data at edge nodes, the data retrieval time between workflow
tasks can be minimized, thereby improving the execution time of the
entire workflow. However, due to the constrained and heterogeneous
nature of resources at the edge, determining optimal service placement
remains a complex challenge.

Consider a workflow W composed of T tasks, where each task T; €
W may need access to a specific service S; that can be cached at an edge
node k € E. The binary decision variable x; , indicates whether service
i is cached at node k:

(2)

1, if service i is cached at node k,
Xik = .
' 0, otherwise.

An optimal service caching/placement decision can effectively re-
duce response latency and improve user experience. However, service
caching/placement is subject to strict resource constraints:

Z X1 <Cp, VkEE, &)
i€S

where r; denotes the resource requirement for caching service i, and C;
is the total resource capacity of node k.

S. Li, W. Wu, H. Zhang et al.

Beyond task offloading, resource allocation, and service
caching/placement, there are several other research issues, such
as fault tolerance in unreliable environments and network routing path
selection for data transmission.

4.2. Optimization objectives

Optimization objectives in existing workflow scheduling strategies
can be broadly categorized into three types: single-objective optimiza-
tion, joint optimization, and Pareto optimization. Single-objective opti-
mization focuses on a single performance metric, while joint optimiza-
tion and Pareto optimization address multiple metrics simultaneously.

4.2.1. Single-objective optimization

Single-objective optimization strategies aim to enhance a specific
performance metric, such as reducing latency, minimizing energy con-
sumption, or lowering costs, while adhering to specific system con-
straints.

Makespan. Makespan is the most widely adopted metric, as it directly
impacts user QoE by determining how quickly results are delivered. A
vast body of research focuses on its minimization [11,51-65]. It is for-
mally defined as the time elapsed from the start of the entry task T,
to the completion of the exit task 7,

ntry

xit:
Makespan(W) = FT(T,y;,) — ST(T,)- (€))

The finish time FT(T}) of any task 7; is the sum of its start time ST(T})
and execution time ET(T;). The start time itself is constrained by the
task’s arrival time, resource availability, and the data dependencies
on its predecessor tasks 7; € Pred(T}), including transmission times

i
(Timey,,,):

trans

ST(T;) = max <Timei .

. i s M
! vival® Tjerpgﬁm) (FT(Tj) +Time) T’meauauabze) :

)]

Researchers have applied this model in various contexts. For instance,
Liu et al. [53] optimized the average makespan across multiple work-
flows, while Kanemitsu et al. [51] focused on minimizing makespan
under strict energy constraints for mobile clients.

Energy. Energy optimization is critical for prolonging device longevity
and enhancing system-wide energy efficiency [66-68]. A common ap-
proach defines the total execution energy consumption E(W') consumed
by a workflow W as the sum of the energy consumed by its individual
tasks T;:

EW)= Y ET). ©®)

T,ew

Each task’s energy consumption E(7}) can be broken down into compo-
nents associated with local device processing and edge server processing:

E(Tl) = Elncal(T[) + Eedge(Ti)' (7)

The local energy consumption depends on whether the task 7; is exe-
cuted locally (Of f(T;) = 0) or offloaded to an edge server S,, (O f f(T;) =
m > 0):

local
E ecution T + 27; epred(T) Edowntoad (T T7)

BrocaT) =9+ X esucecryy Euptoad T Te)> if Of F(T) =0,
Eftoad T fOff(T)=m>0.
(8)
Here, EX . (T;) is the energy for local execution. Egoynion(T;,T;) and

E pioad(T;» Ty) represent the energy consumed for receiving data from

Computer Science Review 60 (2026) 100887

predecessor T; and sending data to successor T}, respectively. If T; is
offloaded, E;’;M 4(Ty) is the energy used to transmit its input data to edge
server S,,.

Similarly, if the task is offloaded (Of f(T;) = m > 0), the energy
consumed by the edge server S,, includes receiving the task’s input data,
executing the task, and managing data transfers with predecessors and
successors located elsewhere:

Eedge(Ti) = Edownload (Tl) +E

execution
>

Ty €Succ(T;)

(Tl) + z Edownl()ad(Tj’ Tl)

T; €Pred(T;)

Eupload(T}’ Tk)' (9)

While Egs. (8)-(9) effectively model the dynamic energy consump-
tion, a comprehensive system-level assessment, crucial for edge and fog
environments, must also account for the energy consumed during in-
active periods. Specifically, idle energy consumption, the power drawn
by devices including edge servers and user terminals while powered on
but not actively processing or transmitting data for this workflow, can
constitute a significant portion of the total energy budget [69].

Therefore, a more holistic system-level energy model, Egysem(W), in-
tegrates both dynamic and idle components. A simplified representation
can be expressed as:

Esyslem(W) = E(W) + 2 Pidle,k X Tidle,k (10)
keD

where E(W) represents the total dynamic energy associated with task
execution and data transmission, derived from Egs. (8)-(9). The second
term estimates the total idle energy consumed system-wide. Within this
term, D denotes the set of all devices participating in the workflow’s
execution, P, is the average idle power consumption specific to de-
vice k € D, and T,y represents the estimated total idle duration for
device k during the workflow’s makespan M akespan(W). This idle du-
ration Ty, is calculated by subtracting the total time device k spends
actively executing tasks and communicating data related to workflow
W from the overall makespan M.

Several studies have focused on optimizing the energy consumption
of the entire system. For instance, Chakraborty and Mazumdar [67]
focused on energy-efficient task offloading in sensor-based MEC environ-
ments. Few works have concentrated on the energy usage of specific key
components. Hu et al. [66], for example, explored adaptive scheduling
in vehicular edge environments, specifically minimizing the energy us-
age by roadside units. To make the optimization problem more aligned
with practical service requirements, more recent studies also incorpo-
rate makespan constraints, balancing energy savings with task deadlines
[68].

Cost. Cost optimization, aimed at reducing user expenses while main-
taining QoS, is another primary objective [46,70-74]. The total cost
Cost(W) is typically defined as the sum of computation, energy, and
communication costs:

Cost(W) = Cost o, (W) + C08t 1014, (W) + COSI gy (W), 11

where:

Cost y,(W): Computation cost, calculated by multiplying execution
time by resource unit costs.

Cost 00, (W): Energy cost, derived from total energy consumption
multiplied by unit energy cost.

Cost omm(W): Communication cost, based on data transmission vol-
ume multiplied by unit transmission cost.

Specific implementations of this model vary. Lin et al. [71] developed
a scheme to minimize total execution cost under deadline constraints.
Tang et al. [72] notably included financial penalties for SLA violations
in their cost model. Zhang et al. [46] examined dynamic scheduling in
collaborative edge-cloud environments, incorporating the cost of task
migration.

S. Li, W. Wu, H. Zhang et al.

Profit. From the service provider’s perspective, profit optimization is
the main goal [75]. Profit is typically modeled as the total price charged
to the user minus the provider’s operational cost:

Profit(W) = Price(W) — Cost(W). (12)
Load balance. Closely related to utilization, Load Balance (LB) assesses
the fairness and efficiency of workload distribution, which is crucial for

preventing resource bottlenecks and improving responsiveness [76]. It
is often measured as the standard deviation of load (U;) across resources:

N
LB = \J <z U, - Uavg)2> /N. 13)

i=1

A lower LB value indicates a more balanced and desirable workload
distribution.

Success rate. The Success Rate is a key Quality of Service (QoS) metric
measuring end-to-end performance by the proportion of workflows that
meet their deadlines [77-81]. This metric, .S, is formulated as:

N
S = (Zé,-)/N, 14

i=1

where N is the total number of workflows and §; is a binary indicator
of whether workflow i completed on time.

Reliability. Reliability modeling in scheduling focuses on quantifying
and mitigating the impact of component failures. This is critical in
distributed systems where both computing nodes and network links
are prone to faults [82,83]. A key challenge is to quantify this failure
proneness and incorporate it into the optimization process.

A common strategy is to model reliability based on the historical
failure rates (1) of individual components, with a representative example
of this approach provided by Asghari Alaie et al. [82]. In their work,
reliability is modeled using an exponential decay function based on the
component’s failure rate and its active time. The reliability of executing
atask #; on a V' M, is defined as:

R(Tl-, VMp) — e—AVMW)-ET(T,.VMp) (15)

Similarly, the reliability of a communication link used for data transfer
e(t;.t) is defined as:

Ree(t, 1) = e~ T (16)

The total reliability for a single task Rel(t;) is the product of its execution
reliability and the reliability of all its prerequisite data links.

This task-level reliability model is then aggregated to represent the
entire workflow. A common formulation defines the total workflow re-
liability, Rel(W), as the product of the reliability of all its constituent
tasks [84]:

RelW) = [] Rel(z,). @7)

LEW

Following this model, several studies have addressed workflow schedul-
ing in unreliable environments with a focus on execution reliability, for-
mulating problems that maximize reliability under constraints including
deadlines and energy consumption [85,86].

Security. Security is a critical non-functional requirement focusing
on the Confidentiality, Integrity, and Availability (CIA) triad [87]. In
scheduling models, security is typically addressed using two primary
strategies: as a hard scheduling constraint or as a quantifiable risk to be

Computer Science Review 60 (2026) 100887

optimized. The constraint-based approach defines binary rules, such as
constraining confidential tasks to private nodes [88,89]. A more flexible
strategy models security as a quantifiable financial risk. A representative
example is the Advanced Mean Failure Cost (AMFC) model [90], which
aggregates threat probabilities to calculate an expected annual financial
loss.

4.2.2. Joint optimization

Joint optimization generally considers and balances the effect of mul-
tiple performance metrics on the overall performance by employing a
weighted sum of them. The objective function in joint optimization can
typically be formulated as:

Min/Max F(x) = a X fi(x)+ X fo(x)+ - +7 X f,(x), (18)

where f,(x) represents a distinct performance metric, and a, B, ...,
and y are the weight coefficients for different performance metrics,
respectively. This weighted sum method effectively reflects and bal-
ances the importance of multiple performance indicators. Moreover,
these weights can be adaptively adjusted to adapt to the dynamic
environment, ensuring that the optimization process remains aligned
with real-time demands. There have been many researches focusing
on the joint optimization for workflow scheduling in edge computing
[36,41,76,91-101].

Several studies have concentrated on optimizing makespan and en-
ergy consumption. For instance, Yan et al. [96] examined dependent task
scheduling in MEC, jointly reducing makespan and energy consumption
of user devices. Similarly, Fang et al. [98] explored this problem with a
time-varying wireless fading channel. System-wide energy optimization
is another focus. Xiao et al. [97] aimed to minimize both latency and en-
ergy consumption across the edge system. In urban vehicular networks,
Zhao et al. [101] worked on optimizing average task delay and energy
use for vehicles and RSUs.

Cost considerations have also been integrated into joint optimization.
Xie et al. [41] focused on optimizing makespan and cost in cloud-
edge environments, while Xie et al. [36] targeted minimizing makespan,
energy consumption, and cost within IIoT-based edge computing.

Lu et al. [76] discussed the importance of load balancing to effec-
tively utilize resources and improve the overall efficiency of the MEC
system. Subsequently, they focused on jointly optimizing the energy
consumption, cost, and load balance in the task scheduling process.
Considering the transmission failure probability during dependent task
scheduling in MEC, Al-Habob et al. [94] investigated the optimization
problem of jointly minimizing makespan and failure probability.

4.2.3. Pareto optimization

Pareto optimization represents another critical field in multi-
objective optimization, typically formulated with an objective function
presented as follows:

Min/Max F(x) = {f1(x), f2(), ..., [o(x)} 19

Unlike single-objective or joint optimization, Pareto optimization
seeks a set of solutions rather than a single numerical optimum. A so-
lution is considered Pareto optimal if it is not dominated by any other
solution, i.e. being superior on at least one objective and at least equal to
it on other objectives. The goal of Pareto optimization is to find the set
of all Pareto optimal solutions, which is called the Pareto front [102].

This method is particularly suitable for problems with conflicting
performance metrics, such as balancing makespan and cost in workflow
scheduling. Edge servers with more powerful resources typically reduce
makespan but incur higher costs. Pareto optimization provides a set of
solutions that simultaneously optimize key performance metrics [35,47,
66,103-109].

Several studies have applied Pareto optimization to edge workflow
scheduling. Hu et al. [66] and Cui et al. [105] addressed dependent

S. Li, W. Wu, H. Zhang et al.

task scheduling in MEC, optimizing makespan and user device en-
ergy consumption. Xu et al. [107] explored multi-objective workflow
scheduling in SDN-based edge systems to optimize both makespan and
system energy consumption. Peng et al. [103] and Song et al. [108]
formulated a workflow offloading problem in MEC, simultaneously op-
timizing the makespan, cost, and energy consumption of the user device.
For collaborative cloud-edge environments, Li et al. [104] proposed
containerized workflow scheduling to minimize the makespan, load im-
balance, and energy consumption. Considering the tradeoff between QoS
and system efficiency, Kuang et al. [47] focused on reducing makespan,
deadline violations, and the number of applied virtual machines (VMs)
simultaneously.

4.3. Scheduling pattern

Based on when scheduling decisions are made, workflow scheduling
approaches are broadly categorized into two patterns: offline and online.

4.3.1. Offline scheduling

In the offline scheduling pattern, all information about the workflow,
including the DAG structure, task execution times, data dependencies,
and resource availability, is assumed to be known in advance [35]. The
goal of the scheduler is to compute a complete and static mapping of
all tasks to resources before the first task begins execution. This ap-
proach is well-suited for repetitive, predictable applications where the
environment is stable. It allows for the use of complex, time-intensive op-
timization algorithms (e.g., metaheuristic) to find a globally optimal or
near-optimal solution. However, its static nature makes it unsuitable for
highly dynamic edge environments where task arrivals are unpredictable
or resource availability fluctuates.

4.3.2. Online scheduling

In the online scheduling pattern, decisions are made at runtime as
new workflows or tasks arrive, or as the state of the edge environment
changes [76,110]. Typically, this scheduling pattern has incomplete in-
formation about the future and must make decisions quickly based on
the current state of the system, which is essential for the dynamic and
unpredictable nature of edge computing. This requirement for rapid,
real-time decision-making places a high demand on the response speed
and low computational complexity of the scheduling algorithm.

4.4. Simulation environment

The validation of scheduling algorithms is predominantly conducted
through simulation, as building and managing large-scale, reproducible
real-world edge testbeds is complex and costly.

4.4.1. Dedicated simulators

A significant number of studies leverage established simulation
toolkits. CloudSim [111] is a foundational, event-driven simulator
widely used for modeling IaaS cloud environments, resource provision-
ing, and VM allocation. To better support workflow-specific research,
WorkflowSim [112] was developed as an extension of CloudSim. It
introduces a workflow engine, a failure model, and support for DAG-
based dependencies, making it highly suitable for scientific workflow
experiments. For environments with a fog or edge hierarchy, IFogSim
[113], also based on CloudSim, is frequently used. It allows researchers
to model the multi-layer IoT-Edge-Cloud architecture, assess network
latency between layers, and evaluate energy consumption.

4.4.2. General-purpose programming

For highly novel or customized scheduling models that do not fit ex-
isting simulators, many researchers build their own discrete-event simu-
lators using general-purpose languages. Languages such as Python, Java,
and MATLAB are commonly used due to their extensive libraries for data
structures, mathematical operations, and plotting. This approach offers
maximum flexibility but requires significant implementation effort.

10

Computer Science Review 60 (2026) 100887

4.4.3. Real-world testbeds

A smaller number of studies validate their algorithms on real-
world testbeds to provide the most accurate performance evaluation
[114,115]. These testbeds often consist of heterogeneous single-board
computers (e.g., Raspberry Pi) to emulate edge nodes, combined with
commercial cloud VMs (e.g., Amazon EC2) to represent the cloud
layer. While providing high fidelity, these results are often difficult to
reproduce at scale.

4.5. Dataset

The choice of workload is critical for evaluating the performance and
scalability of a scheduling algorithm. The datasets used in the literature
can generally be divided into three categories.

4.5.1. Synthetic workflows

Synthetic workflows are algorithmically generated DAGs.
Researchers typically define parameters such as the total number
of tasks, the dependency structure, and the Communication-to-
Computation Ratio (CCR), etc. The main advantage of synthetic data
is the ability to conduct controlled experiments, allowing researchers
to test the algorithm’s performance under a wide variety of conditions
and scales that may not be available in real-world traces.

4.5.2. Scientific workflows

This category includes standardized DAGs derived from real-world
scientific applications. These are widely used because they represent
complex, realistic and reproducible task dependencies. Prominent ex-
amples, many of which are utilized within the Pegasus workflow man-
agement system [116], include Montage (astronomy), LIGO (physics),
Epigenomics (biology), and CyberShake (seismology). These datasets
provide a common baseline for comparing the performance of a work-
flow scheduler.

4.5.3. Real-world traces

To evaluate schedulers in realistic, dynamic online scenarios, re-
searchers often use traces from large-scale production data centers. The
most commonly used traces are the Google Cluster Trace [117] and the
Alibaba Cluster Trace [118]. These traces provide real-world data on
task arrivals, execution times, resource demands, and dependencies over
long periods, offering the highest fidelity for evaluating how an online
scheduler performs under a real-world workload.

4.6. Approach

The approaches for solving edge workflow scheduling problems can
be classified into four primary categories based on their underlying
optimization techniques.

Mathematical Programming: Formulates the scheduling problem
as a formal optimization model, such as Integer Linear Programming
(ILP) or Mixed-Integer Nonlinear Programming (MINLP), to find
provably optimal or near-optimal solutions, though often at a high
computational cost.

Heuristic Approaches: Employ low-complexity, rule-based strate-
gies, such as list scheduling and greedy algorithms, to find good,
feasible solutions quickly, making them suitable for dynamic envi-
ronments.

Meta-heuristic Approaches: Utilize high-level, iterative strategies
inspired by natural phenomena, including Genetic Algorithms (GA)
and Particle Swarm Optimization (PSO), to effectively explore large
and complex solution spaces.

Deep Reinforcement Learning (DRL) Approaches: Leverage
learning-based agents, such as Deep Q-Networks (DQN) and Actor-
Critic methods, that train on environmental feedback to develop
adaptive policies capable of making rapid, intelligent decisions in
dynamic and unpredictable systems.

S. Li, W. Wu, H. Zhang et al.

Table 2

Review of mathematical programming-based works in edge workflow scheduling.

Computer Science Review 60 (2026) 100887

Paper Year Issue Opt.ob- Sched. Simulation Dataset Approach Highlights & limitations
jective pattern environment
[44] 2020 o8 ms & ¢ Off CloudSim Syn Gradient Descent Effective offline scheduling for a single workflow; lacking
Search support for concurrent workflows adaptation.
[45] 2020 o& ms & ec Off - Syn ILP-based Decoupled continuous-variable resource allocation
Optimization and ILP offloading formulation; substantial complexity
reduction.
[49] 2020 ©#0 ms&ec Off Matlab Syn ILP-based Independent ILP formulations for caching and offload-
Optimization ing then alternatively optimizes caching and offloading
decisions.s
[119] 2020 ¢ ec Off - Syn Convex Optimization Requirement of full knowledge of task dependencies and
system parameters, being impractical for continuous and
dynamic environments.
[50] 2020 o0 ms Off - Real-world Convex Optimization A convex programming algorithm for general settings and
Applications [120] a successor-based scheme tailored to homogeneous edge
+ Google Trace [117] nodes with a competitive ratio of O(1).
[48] 2021 o9 ms Off - Real-world Convex Optimization Fully static caching assumption; limited applicability to

Applications [120]
+ Google Trace [117]

dynamic environments.

Acronyms used in this table: Makespan(ms), Energy Consumption (ec), Cost(c), Offline(Off), Online(On). The use of “&” in Optimization Objective indicates joint
optimization, while “;” denotes Pareto optimization. ¢ denotes Task Offloading, & denotes Resource Allocation, © denotes Service Caching, # denotes Others.

A detailed review and in-depth analysis of the state-of-the-art stud-
ies corresponding to each of these four techniques are presented in
Section 5.

5. Classification and review of workflow scheduling approaches

In this section, we grouped and reviewed existing studies in four cat-
egories: mathematical programming approaches, heuristic approaches,
meta-heuristic approaches, and Deep Reinforcement Learning (DRL) ap-
proaches, as shown in Fig. 6. This classification is structured to navigate
the readers through different technical roadmaps and to revisit the key
elements of mainstream algorithm design.

5.1. Mathematical programming

Mathematical programming is a widely used tool for solving opti-
mization problems, involving techniques such as linear programming,
integer programming, nonlinear programming, and convex optimiza-
tion. Mathematical programming not only defines NP-hard problems for
edge workflow scheduling but also provides an effective solution for
static, offline scheduling. It offers the key advantage of delivering prov-
able performance guarantees at a controllable cost, which is crucial for
practical application scenarios. In recent years, these methods have been
extensively applied in the field of edge workflow scheduling.

Alsurdeh et al. [44] proposed a single workflow scheduling frame-
work for edge cloud computing. Their two-stage approach first applies
a Gradient Descent-based resource estimation algorithm to group tasks
and determine the optimal number of cores. Then, a cluster-based
scheduling algorithm allocates tasks across provisioned edge and cloud
cores. However, there is no discussion of how to merge, interleave, or
jointly optimize multiple independent workflows, limiting its applica-
bility in dynamic, large-scale environments.

Yan et al. [45] jointly investigated task offloading and resource allo-
cation in MEC systems with inter-user task dependencies, where a task’s
output on one user may serve as the input for a dependent task on
another user. The authors formulated the problem as a mixed-integer
nonlinear programming (MINLP) model, deriving closed-form solutions
for the resource allocation problem, which is the only sub-problem in-
volving continuous variables, via bisection search. They then translated
the offloading problem into a linear programming (ILP) problem and
proposed a Gibbs sampling-based method for solving it. Building on this
work, Bi et al. [49] expanded the scope to include service caching along-
side task offloading and resource allocation, optimizing for makespan

11

and energy under broader constraints. The optimization problem is ini-
tially formulated as a MINLP model. Similarly, the authors first derive
a closed-form solution for the resource allocation sub-problem, simpli-
fying the original MINLP into a 0-1 ILP problem. To further reduce
complexity, task offloading and service caching are divided into individ-
ual ILP problems, and an iterative alternating minimization approach is
proposed to solve them efficiently.

Convex optimization is another widely used mathematical program-
ming approach. In Mehrabi et al. [119], the authors formulated an
energy-efficient offloading problem of dependent tasks in a three-node
MEC system as a MINLP. They then recast this MINLP as a quadratic-
constrained quadratic program and applied semidefinite relaxation to
derive a convex semidefinite programming problem. Finally, feasible
binary offloading decisions can be obtained through a randomized
rounding procedure. Recognizing that tasks cannot be executed arbi-
trarily unless their required services are already cached, Zhao et al.
[48] and their earlier work [50] defined a dependency-aware offloading
problem with service caching, which is NP-hard. To address this, they
proposed a convex programming-based algorithm for general scenarios
and a favorite successor-based algorithm for cases with homogeneous
edge nodes.

Despite their effectiveness, these works generally assume static
knowledge of environmental information, e.g., channel conditions
and task attributes, which limits their applicability in dynamic,
unpredictable scenarios. For ease of understanding and comparison,
Table 2 summarizes the information of the mathematical programming-
based works introduced.

5.2. Heuristic approaches

Given the NP-hard nature of workflow scheduling within edge com-
puting environments [36], it is typically infeasible to obtain optimal
solutions in polynomial time. Heuristic algorithms are thus widely
adopted, as they strike a practical balance between optimality and com-
putational efficiency. This balance is crucial in edge computing, where
resources are constrained compared to traditional cloud environments.
Heuristics can provide near-optimal solutions in short periods, mak-
ing them well suited for the dynamic and delay sensitive requirements
of workflow scheduling in edge computing. Common heuristic meth-
ods, such as Greedy Algorithms, Auction Algorithms, and Local Search
Algorithms, have been extensively applied in this context.

Many heuristic approaches for workflow scheduling are based on the
list scheduling framework [19,82,91,121]. This well-established tech-
nique operates in two main phases: task prioritization and resource

S. Li, W. Wu, H. Zhang et al.

selection. In the first phase, all tasks in the workflow (DAG) are ranked
according to specific criteria and placed in an ordered list. Classic sched-
ulers like HEFT-based schedulers use a static upward rank [91]. More
recent methods introduce advanced, resource-aware ranking metrics
to generate more efficient task orders. For instance, Noorian Talouki
et al. [121] proposed metrics based on Optimistic Cost Tables. Similarly,
Asghari Alaie et al. [82] developed a new downward ranking policy that
incorporates factors including in-degree total communication cost and
the standard deviation of task execution times. The second phase, re-
source selection, involves iteratively mapping tasks from the ordered
list to resources according to specific optimization techniques such as
the greedy algorithm, auction algorithm, etc.

5.2.1. Greedy algorithm

Greedy algorithm is a low-complexity, well-adopted method that op-
erates by seeking local optima at each step. It selects actions based on
specific criteria, e.g., the shortest makespan or the lowest cost, to achieve
immediate benefits.

Kanemitsu et al. [51] proposed a list scheduling-based algorithm,
PCTSO, to address the dependent task offloading problem in a single-
node edge computing environment. PCTSO first prioritizes tasks based
on their remaining time to completion, ensuring that each task’s priority
exceeds that of its successors, thereby satisfying dependency constraints.
For each task in the scheduling queue, PCTSO greedily decides whether
to offload the task to the edge based on the expected makespan. Building
on this work, Cai et al. [55] extended the approach to a multi-node edge
environment, developing a similar greedy algorithm to minimize the
makespan. To enhance resilience to potential edge server failures, the
authors proposed a dependency-aware mechanism that quickly identi-
fies and reschedules tasks impacted by server failures. In the context of
a cloud-edge collaborative environment, Sahni et al. [57] proposed a
heuristic algorithm for multi-hop offloading and network flow schedul-
ing. This method treats each DAG as a set of co-subtask stages, assigning
priorities and using a rank-based subtask list within each stage to
make offloading and data transfer scheduling decisions. The heavy com-
munication costs between remote clouds and edge servers are often
underestimated, which limits the performance of the above work. DCDS,
introduced by Lou et al. [74], tackles dependent task offloading in MEC-
cloud environments with a dual-stage approach that separates edge and
cloud scheduling. In the edge scheduling stage, tasks are assigned to edge
servers using a greedy method to minimize cost while respecting the lat-
est start time constraints of descendant tasks. If no edge server meets
the constraints, cloud scheduling is activated. Specifically, an one-climb
cloud strategy ensures that unschedulable tasks and their successors are
fully offloaded to the cloud, avoiding frequent transmissions between
the edge and cloud.

Previous research has primarily focused on offline scheduling ap-
proaches, which are less suitable for real-world scenarios characterized
by frequent service requests and dynamic environmental conditions. In
contrast, online workflow scheduling methods offer the flexibility to
swiftly adapt to unforeseen tasks and environmental changes, enabling
continuous adjustments to make optimal real-time decision-making. Liu
et al. [58] developed an online offloading framework called COFE,
which can monitor the context of the MEC-Cloud system in real-time to
adaptively assign the dependent tasks to candidate computing devices.
Based on COFE, a heuristic ranking-based algorithm was then proposed
to assign tasks according to their bottom levels [122]. However, prior
studies have often overlooked the runtime environment preparation
required before task execution. Li et al. [78] addressed this gap by
investigating dependent task offloading with on-demand function con-
figuration in MEC environments to align tasks with suitable function
environments. The authors initially developed an algorithm for single
requests, later extending it to handle multiple randomly arriving re-
quests named OnDoc. OnDoc prioritizes and constructs a scheduling
queue across multiple workflows, then greedily selects an offloading
server for each task to achieve the earliest finish time. Similarly, Lou

12

Computer Science Review 60 (2026) 100887

et al. [59] introduced SDTS, which considers the startup latency of
runtime environment preparation and employs a greedy strategy to se-
lect the edge server that minimizes task completion time. Uniquely,
SDTS implements a cloud cloning mechanism, running a cloud-based
replica alongside the edge task and retaining only the first completed
instance, thereby enhancing resource efficiency and scheduling perfor-
mance. In contrast to the above methods, which primarily apply greedy
strategies for initial placement, Karami et al. [123] employed a greedy
approach for fault tolerance and load balancing within their KCES on-
line scheduling scheme. When a task fails due to insufficient resource
allocation, horizontal roaming and vertical offloading are triggered,
which greedily select the node with the largest residual resources for
migration.

5.2.2. Auction algorithm

The Auction Algorithm is a distributed optimization technique where
scheduling decisions are obtained through bidding processes. In this
approach, participants bid on desired resources, and the algorithm itera-
tively adjusts resource prices based on demand, eventually achieving an
equilibrium where each resource block is assigned to the highest bidder.
Auction algorithms have been applied in edge computing scheduling,
especially in scenarios where multiple users compete for limited edge
resources.

To address resource competition among users, Liu et al. [75] pro-
posed an auction-based offloading approach with a truthful bidding
mechanism, encouraging participants to bid their true valuations to
ensure fair selection. For each winning bidder, a heuristic offloading
algorithm is applied. Additionally, the authors incorporated a Partial
Critical Path(PCP) approach [124], which partitions the task graph into
sequences, assigning each sequence to an individual edge device to
reduce transfer time. Similarly, Hu et al. [66] introduced an auction-
based scheme for online dependent task offloading in vehicular edge
computing, where applications act as auctioneers and multiple RSUs as
bidders. The RSU with the minimum energy consumption wins the bid.
Additionally, they developed a server power management mechanism
to further reduce the energy consumption of the overall system.

In addition to auction algorithms, there are also a few works, e.g.,
[125,126], on workflow scheduling in edge computing using other dis-
tributed techniques such as game theory and distributed consensus
algorithms.

5.2.3. Local search algorithm

The Local Search Algorithm is an optimization method that itera-
tively explores neighboring solutions to improve the objective function.
Starting with an initial solution, it moves to a neighboring solution if it
offers improvement, repeating this process until no further gains can be
made or a termination criterion is met.

Wang et al. [11] studied scheduling for mobile augmented reality
applications with dependent tasks in a collaborative edge-cloud environ-
ment. The authors proposed Mutas, a scheduling algorithm that jointly
addresses task offloading and resource allocation using a block coor-
dinate descent approach, a typical local search technique. Specifically,
Mutas can optimize task offloading or resource allocation decisions al-
ternately while keeping the other term fixed; this process iteratively
continues until either reaching a predefined maximum number of itera-
tions or observing no significant improvement in the objective function.
The last step in the Mutas algorithm is binary recovery where simulated
annealing is incorporated to further improve the solution obtained from
the block coordinate descent process.

For ease of understanding and comparison, Table 3 lists summary
information about the introduced works based on heuristic approaches.

5.3. Meta heuristic approaches

While heuristic methods provide effective solutions for workflow
scheduling within edge computing, their optimization performance is

S. Li, W. Wu, H. Zhang et al.

Table 3
Review of heuristic-based works in edge workflow scheduling.

Computer Science Review 60 (2026) 100887

Paper Year Issue Opt. Sched. Simulation Dataset Approach Highlights & limitations
objective pattern environment
[51] 2019 ¢ ms Off CloudSim + Syn + Sci Greedy Typical sequential greedy scheduling framework; susceptibility to
WorkflowSim suboptimal decisions under complex dependencies.

[52] 2020 ¢ ms Off Java Syn + Sci Greedy Overlapping social-subnet modeling; enhanced environment
representation of owner-based social communication patterns.

[85] 2020 ¢ rel Off - Syn Greedy Dependency-based constraint decomposition; reduced scheduling
complexity.

[53] 2020 ¢ ms Off - Syn Greedy Strict reliance on idealized mobility and resource assumptions,
being impractical for complex urban scenarios.

[11] 2020 ¢& ms On - Syn Block Descending Online block-descending optimization; risk of slow convergence.

Algorithm

[55] 2021 ¢ & ms Off Python Syn Greedy Failure-resilient DAG rescheduling; improved robustness under
server failures and inherent resource bottlenecks.

[77] 2022 ¢ st On - Syn Greedy Quantitative priority sorting across concurrent workflows;
suitability for concurrent multi-workflow scheduling.

[56] 2021 o0& ms Off - Syn Greedy DVFS-integrated offloading; flexible resource scaling on heteroge-
neous MEC servers

[57] 2021 ¢& ms Off - Syn Greedy Multi-hop offloading with network flow scheduling; better
consideration of frequent communication overhead

[66] 2023 o4 ec On - Syn Auction Dynamic power management via server sleep states; great energy
efficiency without deadline violations.

[78] 2023 ¢ sr On - Alibaba Trace [118] Greedy Priority sorting across workflows in on-demand environment
configuration; suitability for serverless context.

[58] 2021 ¢ ms On CloudSim Syn Greedy Real-time context monitoring and online task assignment.

[59] 2023 ¢ ms On Python Alibaba Trace [118] Greedy Cloud-cloning mechanism for makespan optimization; tradeoff with
higher scheduling complexity.

[75] 2022 ¢ profit On EdgeCloudSim + Sci Auction Truthful auction offloading; fairness-guaranteed resource allocation

ElasticSim

[74] 2023 ¢ c On Python Sci Greedy Consecutive task co-location; reduced frequent edge—cloud
communication overhead.

[115] 2024 ¢ & resource On Real-world testbed Syn Greedy The proposed scheme, built upon a designed cloud-edge workflow

utilization engine, was validated using a real-world KubeEdge physical testbed.

Acronyms used in this table: makespan(ms), energy consumption (ec), cost(c), success rate(sr), reliability(rel), Offline(Off), Online(On), Synthetic Workflows(Syn),
Scientific Workflows(Sci). The use of “&” in Optimization Objective indicates joint optimization, while “;” denotes Pareto optimization. ¢ denotes Task Offloading,

& denotes Resource Allocation, © denotes Service Caching, # denotes Others.

often limited by their tendency toward local gains. In contrast, meta-
heuristic approaches emphasize a balance between exploration (global
search) and exploitation (local search), enabling better searches in the
solution space. Driven by this core benefit, meta-heuristic methods have
been extensively used in the field of workflow scheduling [86,123,127].
Here we categorize and examine these works based on their use of
meta-heuristic approaches, specifically Swarm Intelligence and Genetic
Algorithms.

5.3.1. Swarm intelligence

Swarm Intelligence algorithms [128] are inspired by the collective
behavior of decentralized, self-organized systems, such as flocks of birds,
colonies of ants, or particle swarms. These algorithms leverage the prin-
ciples of social interaction and cooperation to explore the solution space.
The primary advantages of Swarm Intelligence include flexibility and the
ability to approach near-optimal solutions through parallel processing
and decentralized exploration. However, challenges such as premature
convergence to sub-optimal solutions and the need for careful parameter
tuning to balance exploration and exploitation effectively remain.

Xie et al. [41] proposed an enhanced Particle Swarm Optimization
(PSO) algorithm to address the challenge of dependent task offloading in
collaborative edge-cloud environments. In this model, each particle rep-
resents a potential solution, with each dimension corresponding to the
offloading decision for individual workflow tasks. Following this system
model, Zivkovic et al. [92] and Bacanin et al. [93] successively proposed
two improved approaches. Zivkovic et al. [92] introduced an enhanced
Harris Hawks Optimization algorithm, augmented with an opposition-
based learning method. This approach generates opposite solutions for
each hawk in every iteration, selecting the top half based on fitness
values to form the new population, which improves solution diversity
and prevents premature convergence, a common issue observed in the

13

PSO algorithm used in Ref. [41]. Bacanin et al. [93] further improved
the Firefly Algorithm (FA) by incorporating genetic operators, a quasi-
reflection-based learning mechanism, and a dynamic noise parameter.
These modifications strengthened the search capabilities of the original
FA, facilitating a better balance between exploitation and exploration,
and addressing the local optima problem in PSO.

Previous works often face challenges stemming from the large search
space inherent in edge workflow scheduling problems, which increases
computational complexity and hinders convergence for meta-heuristic
algorithms. To address this, Kaur et al. [60] proposed a Bacterial
Foraging Optimization Algorithm (BFOA)-based scheme that reduces
the search space through a graph partitioning method. By clustering
dependent tasks and treating them as single units during scheduling,
the approach minimizes inter-task transmission delays and accelerates
convergence. Additionally, a heuristic method is employed to improve
the quality of the initial population, enhancing the BFOA’s efficiency
in cloud-edge environments. The goal of this work is to minimize the
makespan.

Recognizing the uncertainties of edge environments, e.g., bandwidth
variability, node failures, and workload fluctuations, various studies
have proposed tailored workflow scheduling strategies. Peng et al. [86]
introduced a novel reliability model in the MEC environment, which
evaluates the connecting reliability of direct and multi-hop resource
paths between nodes. They then proposed a Krill Herd-based algorithm
to address the challenge of reliability-optimized workflow scheduling.
Shao et al. [70] considered the scenario where workflows need to access
multiple datasets in edge-cloud collaborative computing environments.
The authors tackled data unavailability with a dynamic data replication
framework across distributed datasets and an ITO algorithm-based data
replica scheduling approach. Works [70,86] model reliability with prob-
ability estimation, while Lin et al. [71] considered workflow execution

S. Li, W. Wu, H. Zhang et al.

as a fuzzy process and utilized triangular fuzzy numbers to model the
lower and upper bound task execution and data transfer times. They
then proposed an adaptive discrete PSO algorithm to seek offloading
decisions with cost minimization. Considering workload fluctuations,
Kuang et al. [47] integrated an artificial neural network to predict future
workloads, enabling the MEC system to proactively allocate VMs for an-
ticipated demand. They further proposed an enhanced Marine Predator
Algorithm with opposition-based learning to minimize the workflow
makespan, deadline violations, and the number of applied VMs.

5.3.2. Genetic Algorithms

Genetic Algorithms (GA) are a class of meta-heuristic algorithms in-
spired by the principles of natural selection, including operators such as
selection, crossover, and mutation. Starting with a randomly generated
population of potential solutions, GAs iteratively refine this population
by prioritizing individuals with superior fitness, merging their attributes
to produce offspring, and introducing mutations to maintain diversity
within the solution space. Their primary strength lies in their robust
global exploration capability, reducing the risk of local optima en-
trapment and improving the likelihood of identifying globally optimal
solutions. However, the performance of GAs heavily depends on care-
ful parameter design (e.g., population size, crossover, and mutation
rates) and may require extensive iterations, posing challenges in delay
sensitive scenarios.

In addressing task offloading for multiple DAG applications, Guo
et al. [62] applied a GA-based algorithm to ultra-dense MEC systems
for multi-workflow scheduling, having initially developed a heuristic
algorithm for single-user scenarios. While these two studies primar-
ily focus on single-objective optimization for makespan minimization,
Pan et al. [106] proposed a Multi-objective Clustering Evolutionary
Algorithm (MCEA) to address multi-workflow offloading within MEC en-
vironments. The algorithm aims to minimize both the cost and energy
consumption of user devices while respecting hard deadline constraints.
MCEA proactively filters out solutions that violate workflow deadlines
during both population initialization and subsequent iterations and dy-
namically adjusts the probability of crossover and mutation to balance
exploration and exploitation.

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is a
widely used method to address the multi-objective optimization prob-
lem [133]. It offers a robust framework for achieving optimal solutions
across various objectives. Peng et al. [103] employed NSGA-II to address
the multi-objective workflow offloading problem in MEC, optimizing
the makespan, cost, and energy consumption of user devices simul-
taneously. For resource allocation in robotic workflows within smart
factories, Afrin et al. [35] proposed an improved NSGA-II algorithm,
introducing a novel chromosome structure tailored to the resource allo-
cation problem. Zhang et al. [46] focused on online workflow scheduling
for scenarios such as anomaly detection and intelligent transportation,
introducing a predictive NSGA-II algorithm. This algorithm leverages a
Sequence-to-Sequence (Seq2Seq) model to generate high-quality initial
solutions from historical data, significantly accelerating optimization
and enabling online scheduling.

Building on the framework of NSGA-II, NSGA-III employs a refer-
ence point strategy to replace crowding distance, enhancing population
diversity and reducing the risk of local optima [134]. Xu et al. [107]
applied NSGA-III to dynamic resource provisioning within SDN-based
edge computing frameworks, accounting for uncertainties in workflow
execution. Their goal was to minimize both the makespan and energy
consumption of the edge system simultaneously.

In summary, meta-heuristic approaches, including Swarm
Intelligence and Genetic Algorithms, exhibit strong optimization
capabilities and adaptability in addressing the complexities of edge
workflow scheduling. However, challenges such as the need for precise
parameter tuning, the risk of premature convergence, and slow conver-
gence remain significant. Future research could explore the integration
of advanced techniques, such as artificial intelligence, to enhance the

14

Computer Science Review 60 (2026) 100887

efficiency of meta-heuristic methods, striving for faster convergence and
improved optimization performance in complex scheduling scenarios.
For ease of understanding and comparison, Table 4 lists summary
information on introduced works based on meta-heuristic approaches.

5.4. Deep reinforcement learning approaches

Heuristic methods often provide suboptimal solutions, and meta-
heuristic approaches can be computationally expensive, limiting their
effectiveness in the dynamic, time-sensitive context of edge computing.
DRL, which combines deep neural networks with reinforcement learn-
ing, offers a promising solution for rapid and effective scheduling in
dynamic complex environments. This approach has gained significant
attention for workflow scheduling in edge computing. To apply DRL ef-
fectively, it is essential to model the scheduling process as a Markov
Decision Process (MDP), where decisions depend only on the current
state, rather than past events. The MDP framework consists of several
key components:

« State: This encapsulates the current conditions of the system, includ-
ing the status of workflow tasks, the availability and load of edge
resources, and the prevailing network conditions.

Action: Represents potential scheduling decisions, such as task
assignment choices, resource allocation strategies, or service place-
ment.

Reward: Measures the effectiveness of chosen actions according
to key performance metrics such as workflow makespan, energy
consumption, costs, etc.

DRL methods provide a robust framework for solving MDP. In a typi-
cal DRL framework, the agent interacts with the environment iteratively:
observing the current state, selecting an action according to its pol-
icy, receiving a reward, and transitioning to a new state. The policy,
represented by a neural network, is updated using either value-based
methods, which estimate the expected rewards of state-action pairs, or
policy-gradient methods, which optimize the action selection strategy
directly.

This section reviews existing DRL-based workflow scheduling algo-
rithms in the context of edge computing. Based on the characteristics
of the DRL methods employed, related studies can be categorized into
three main groups: value-based DRL methods, actor-critic DRL methods,
and DRL methods incorporating graph neural networks.

5.4.1. Value-based DRL

Value-based DRL methods aim to estimate the expected return of
actions in a given state, guiding the selection of optimal decisions [135].
A well-known example of this approach is the Deep Q-Network (DQN)
and its variants, which represent a classic framework within value-based
DRL.

Lu et al. [76] integrated an LSTM layer into the DQN framework to
capture temporal dependencies in system states and mitigate overesti-
mation issues. Similarly, Gao and Liu [79] proposed a Time-Improved
DQN (TIDQN) that uses an LSTM layer to predict dynamic edge server
load levels, enhancing adaptability to real-time changes. By adopting
the Dueling DQN architecture, which separately estimates value and ad-
vantage functions, TIDQN improves training stability. The goal of this
paper is to minimize deadline violations in workflows.

Several studies have investigated uncertainty in edge computing
environments. Liu et al. [80] tackled the fluctuating performance of
edge resources by incorporating probability mass functions derived
from historical data for dynamic adaptation. They ultimately proposed
a DQN-based algorithm to handle the offloading of dependent tasks
with the goal of maximizing the probability that workflows meet the
makespan constraints. Focusing on fault tolerance, Long et al. [63]
addressed collaborative workflow scheduling in unreliable edge IoT en-
vironments. Specifically, considering hardware failures, they introduced
a proactive fault tolerance mechanism using a Primary-Backup method

S. Li, W. Wu, H. Zhang et al.

Table 4
Review of meta-heuristic-based works in edge workflow scheduling.

Computer Science Review 60 (2026) 100887

Paper Year Issue Opt.ob- Sched. Simulation Dataset Approach Highlights & limitations

jective pattern environment

[41] 2019 ¢ ms&c Off WorkflowSim Sci PSO A classical framework that represents each candidate workflow
schedule as an individual.

[92] 2021 ¢ ms&c Off WorkflowSim Sci Harris Hawks Opposition-based diversity enhancement; increased algorithmic
complexity.

[93] 2022 ¢ ms&c Off WorkflowSim Sci Firefly Noise-augmented firefly exploration; potential slow convergence

[60] 2022 ¢ ms Off - Syn BFOA This Graph-partitioning scheme and heuristic-based cluster
initialization greatly reduce search-space.

[106] 2023 ¢ ec; ¢ Off Fog- Syn GA Proactive filtering of the deadline-violating individuals which

WorkflowSim accelerates convergence.

[103] 2019 ¢ ms; ec; ¢ Off Java Syn NSGA-II Employment of classic NSGA-II framework, achieving multi-
objective workflow scheduling.

[35] 2019 & ms; ec; ¢ Off Matlab Syn NSGA-II Novel chromosome structure tailored to the resource allocation
problem.

[62] 2024 ¢ ms Off - Syn GA Extension to ultra dense edge network.

[86] 2019 ¢ rel Off - Sci + Real-world Trace Krill Herd Particular investigation of the connecting reliability between nodes

[129] which are always overlooked.

[70] 2019 & c On Java Sci ITO Dataset-centric optimization via dynamically replicating and
scheduling distributed data, which could benefit ML-driven
workflows.

[107] 2022 & ms; ec Off - Syn NSGA-IIT NSGA-III for multi-objective workflow scheduling, trading higher
complexity for improved solution performance.

[46] 2022 && c On WorkflowSim Sci NSGA-II Neural network for predictive population initialization; reliance on
historical data and prediction accuracy.

[47] 2022 & ms; st On IFogSim Syn + Real-world Marine Predator Workload-predictive VM provisioning, also being sensitive to

Applications [130-132] prediction accuracy.

[67]1 2022 ¢ ec Off Matlab Syn GA VM scaling based on neural networks; performance limited by
prediction performance.

[71]1 2021 ¢ c Off Python Sci PSO Fuzzy-bounds uncertainty modeling; improved scheduling

robustness.

Acronyms used in this table: makespan(ms), energy consumption (ec), cost(c), success rate(sr), reliability(rel), Offline(Off), Online(On), Synthetic Workflows(Syn),
Scientific Workflows(Sci). The use of “&” in Optimization Objective indicates joint optimization, while “;” denotes Pareto optimization. ¢ denotes Task Offloading,

& denotes Resource Allocation, © denotes Service Caching, # denotes Others.

and further developed a DQN-based algorithm to obtain offloading
decisions, aimed at minimizing the makespan.

Previous works primarily focus on single-objective or joint optimiza-
tion, as these approaches yield a single optimization value compatible
with the reward calculation in the DQN framework. In contrast, Song
et al. [108] tackled the multi-objective dependent task offloading prob-
lem in edge computing. The authors novelly formulated the problem
as a multi-objective MDP with a vector-valued reward, where each el-
ement corresponds to an individual objective. To address this, they
proposed a DQN-based algorithm designed to learn a Q-value vector
rather than a scalar, enabling multi-objective optimization to simulta-
neously minimize the makespan, energy consumption of user devices,
and cost.

5.4.2. Actor-critic-based DRL

Value-based DRL methods are effective for problems with discrete ac-
tion spaces, but become impractical for scenarios requiring continuous
action spaces, such as resource allocation in edge computing. Actor-
critic-based DRL addresses this limitation by combining value estimation
with policy optimization. This approach typically consists of an actor
network that directly determines optimal actions through policy opti-
mization, including continuous decisions like resource allocation, and a
critic network that evaluates the effectiveness of these actions, providing
feedback to refine the policy [142].

Yan et al. [96] addressed dependent task offloading and resource
allocation in edge computing with an actor—critic framework. Their ac-
tor network combines an ordered retained action generation mechanism
with Gaussian noise injection to promote exploration and accelerate pol-
icy learning, while their low-complexity critic network delivers rapid
action evaluation. Considering the context of a partially observable edge
environment, centralized optimization may be inefficient. Zhu et al.
[64] thus proposed a distributed multi-agent actor-critic framework,
employing decentralized actor networks and a centralized critic network

15

to efficiently manage server allocation among multiple users, aimed at
minimizing workflow makespan.

Several advanced DRL methods based on the actor-critic framework
have been extensively used in this field, such as Deep Deterministic
Policy Gradient (DDPG) and Proximal Policy Optimization (PPO). Liu
et al. [81] studied workflow scheduling in a multi-slot system where
applications arrive randomly, aiming to reduce deadline violations. The
authors introduced a method to combine all active workflows into a
unified DAG for each time slot. To achieve the optimal task execution
sequence in the DAG, they designed a migration-enabled multi-priority
task sequencing algorithm. Finally, a DDPG-based algorithm was pre-
sented to learn the optimal offloading policy. Zhao et al. [101] explored
a dependent task offloading model in urban vehicular edge comput-
ing(VEC) and proposed a DDPG-based algorithm to train the offloading
strategy. This approach integrates a mobility detection algorithm to im-
prove training efficiency and a task priority scheme to enhance system
stability.

Proximal Policy Optimization (PPO) is an advanced actor-critic DRL
framework that improves training stability and efficiency by utilizing
a clipped surrogate objective, which prevents excessively large pol-
icy updates, a common issue in traditional policy gradient methods.
Li et al. [99] proposed a PPO-based algorithm for dependent task of-
floading, which simultaneously optimizes the makespan and energy
consumption of user devices. This approach converts DAG-structured
tasks into sequences using a novel graph sequence algorithm and em-
ploys a parameter-shared PPO network for efficient training. Expanding
on multi-objective optimization, Tang et al. [109] applied a PPO-
based algorithm in collaborative cloud-edge environments, focusing on
Pareto optimization of makespan and energy consumption. They intro-
duced an action mask mechanism into the PPO network to address the
unavailability of offloading actions when IoT devices are outside the
coverage of edge servers. Jayanetti et al. [68] further extended PPO for
online workflow scheduling in cloud-edge environments, with a focus

S. Li, W. Wu, H. Zhang et al.

Computer Science Review 60 (2026) 100887

Action Decision

Computing
Nodes
State
Representation

User Requests

1
1
1

Workflow
é) ‘S Graphs

State
Embedding .

DNN

Environment

Reward Feedback

Fig. 7. GNN-enabled DRL architecture.

on system-wide energy minimization under workflow deadlines. Their
MDP formulation introduces a hierarchical action space that explicitly
separates edge-node and cloud-node decisions. The resulting actor-critic
algorithm employs multiple actor networks alongside a single critic
network, enabling efficient adaptation across heterogeneous execution
layers.

5.4.3. GNN-enabled DRL

Traditional state representations in Deep Reinforcement Learning
(DRL), particularly flattened vectors, are ill-equipped for workflow
scheduling. Their primary limitation is the failure to perceive the com-
plex, non-Euclidean structure of workflow DAGs. Consequently, they
cannot leverage latent structural information and topological dependen-
cies, treating them merely as constraints rather than as a rich source of
information for optimal scheduling.

Graph Neural Networks (GNNs) directly address this representational
deficiency. Through an aggregation process, GNNs excel at jointly cap-
turing two critical components: the structural state, by encoding the
complex non-Euclidean dependencies of the workflow DAG, and the en-
vironmental state, by modeling dynamic MEC resource characteristics,
e.g., resource availability and node locality. This information is then for-
mulated for the DRL agent, typically by either generating rich multi-level
embeddings or fusing the workflow structural features and environmen-
tal features into a unified state representation. As illustrated in Fig. 7,
the resulting representation provides a comprehensive topological un-
derstanding essential for formulating optimal policies. This approach
has seen growing adoption, as the following literature demonstrates.

Tang et al. [72] introduced a graph convolutional network (GCN)-
assisted DQN framework that improves dependency-aware task offload-
ing by capturing complex task dependencies through GCNs which en-
hance state representations in DQN. Huang et al. [140] developed a GCN
model to extract three types of embeddings including node embedding,
workflow embedding, and global embedding. These multi-level embed-
dings provide a richer representation of task dependencies, individual
workflow states, and global workflow loads respectively. Similarly, Ref.
[110] proposed a GCN-based PPO framework with an intrinsic reward
to guide agent training by estimating intermediate states during task dis-
patching. Despite this improvement, the framework primarily focuses on
task dependencies without considering the dynamic nature of the MEC
environment, limiting its effectiveness in real-time decision-making.

To address this, Mo et al. [138] introduced an approach that
integrates MEC environment features into the state representation.
Specifically, a GCN extracts task dependencies from the DAG, while a
multilayer perceptron captures MEC-specific characteristics such as re-
source availability and device states. This unified state representation
enables more comprehensive real-time decision-making for depen-
dent task offloading, optimizing both workflow makespan and energy
consumption. Similarly, Qin et al. [114] developed a GCN-based model

16

to capture the features of the DAG and Kubernetes cluster environments
respectively, followed by a DDQN-based algorithm to learn a schedul-
ing policy that minimizes task completion time and balances resource
utilization.

Cao et al. [139] utilized an advanced Graph Attention Network
(GAT) for structural feature extraction among dependent tasks. Unlike
prior works, this work pre-trained the GAT model in the cloud layer
to handle the substantial computational requirements, subsequently
utilizing the pre-trained model in the edge layer for real-time decision-
making. This decoupling of training and execution significantly en-
hances the efficiency of the scheduling process, reducing computational
overhead at the edge.

For ease of understanding and comparison, Table 5 summarizes the
information on introduced DRL-based works.

5.5. Critical synthesis and analysis

To provide a critical synthesis beyond descriptive summaries, this
section contrasts the primary algorithmic families along several cross-
cutting dimensions. Table 6 presents this comparative analysis, which is
then interpreted to distill trade-offs and actionable insights.

Interpreting this comparison reveals clear trade-offs. Mathematical
programming methods, such as ILP, offer optimal or near-optimal solu-
tions but suffer from severe scalability issues, making them impractical
for large-scale, dynamic edge environments.

Heuristic methods are straightforward, efficient, and highly scal-
able, offering the fastest response times. However, they are typically
static, perform poorly in dynamic environments, and often focus on local
benefits, failing to find global optima.

Meta-heuristic methods, e.g., PSO, GA, NSGA-II, can search for the
global optimum through iteration and generally achieve high-quality
solutions for complex, multi-objective problems. However, this comes at
the cost of low reproducibility (due to their stochastic nature) and high
computational time, as they struggle with slow convergence. This makes
them suitable for offline planning but ill-suited for online scheduling
where quick responses are needed.

DRL methods are specifically characterized by strong adaptability
and rapid decision-making, making them particularly suitable for the
complex, dynamic environments found at the edge. However, this adapt-
ability is earned through complex, data-hungry, and computationally
expensive training phases. Furthermore, their real-world applicability
and the overhead in resource-constrained edge environments require
further validation.

This synthesis provides actionable insights for researchers and prac-
titioners.

« For static, well-defined workflows where optimality is paramount
and decisions can be made offline, meta-heuristic algorithms (e.g.,
GA, NSGA-II) typically offer the best performance.

S. Li, W. Wu, H. Zhang et al.

Table 5
Review of DRL-based works in edge workflow scheduling.

Computer Science Review 60 (2026) 100887

Paper Year Issue Opt. Sched. Simulation Dataset Approach Highlights & limitations

objective pattern environment

[76] 2020 ¢ ec&c&lb On iFogSim Syn DON Temporal-dependency modeling via LSTM; overestimation
mitigation

[108] 2022 ¢ ms; ec; ¢ On Python Syn DQN Novel vector-reward MDP formulation to support Pareto
optimization.

[79]1 2022 ¢ sr On Python Syn D3QN LSTM-based load prediction, enhanced adaptability to real-
time changes.

[36] 2023 ¢ ms&ec&c On - Syn D3QN Formal serverless-edge model with fully static service
configuration, limited adaptability.

[80] 2020 ¢ rel On - Sci + Node position DON Probability-based reliability modeling; real-time adaptation

dataset [136] to resource fluctuations.

[63] 2022 o4 ms On - Syn + Sci + Node DON Proactive fault tolerance via primary-backup, improved

position dataset [136] reliability at the cost of overhead.

[96] 2020 ¢& ms&ec On Python Syn Actor-Critic Low-complexity critic with Gaussian noise, which enhances
exploration and fast evaluation.

[64] 2023 ¢ ms On Python Face Recognition MA Actor-Critic Distributed actors with a central critic enable local decisions

Workflow [137] for each agent without inter-agent communication.

[109] 2023 ¢ ms; ec On Python Syn PPO Introduction of action-mask, which filters unavailable
offloading choices.

[68] 2022 ¢ ec On CloudSim Syn PPO Hierarchical action space separates edge/cloud decisions for
tailored policies among heterogeneous resource layers.

[99] 2022 ¢ ms & ec On - Real-world Applications ~ PPO Cost-based priority scoring, with inter-workflow priority

[120] relations omitted.

[100] 2022 ¢ ms & ec On - Syn PPO Seq2Seq-augmented state encoding, enriched representation
with added overhead.

[81] 2023 ¢ sr On Python Syn DDPG Deadline-aware multi-priority sequencing, promoting
deadline adherence under random arrivals.

[101] 2023 ¢ ms & ec On Python Syn DDPG Combination of mobility detection and task priority, con-
tributed to policy training in the context vehicular edge
computing.

[72] 2020 ¢ c On - Alibaba Trace [118] GCN + DQN GCN-based dependency embedding for better state
representation; limited to single-workflow embedding.

[138] 2023 ¢ ms & ec On - Syn GCN + DQN MEC environment feature extraction via GCN and MLP,
offering richer state at higher cost.

[139] 2024 ¢ ms On Python Syn GAT + PPO Pre-training of GAT in cloud, reduced edge overhead.

[140] 2024 ¢ ms On Python Alibaba Trace [118] GCN + PG Multi-level embedding extraction, stronger state modeling

[114] 2024 ¢ ms On Real-world testbed Sci GCN + DDQN GCN-based environment embedding, real Kubernetes cluster
to simulate edge computing environment.

[110] 2024 ¢ ms & ec On COSCO framework Syn + Sci GCN + PPO An intrinsic reward to guide agent training by estimating

[141]

intermediate states during task dispatching.

Acronyms used: makespan (ms), energy consumption (ec), cost (c), load balance (Ib), reliability (rel), success rate (sr), Offline(Off), Online(On), Deep Q-Network
(DQN), Double Dueling DQN (DDQN), Double Dueling DQN (D3QN), Proximal Policy Optimization (PPO), Deep Deterministic Policy Gradient (DDPG), Graph
Convolutional Network (GCN), Graph Attention Network (GAT), Synthetic Workflows(Syn), Scientific Workflows(Sci). The use of “&” indicates joint optimization of
multiple objectives, while “;” denotes Pareto optimization. ¢ denotes Task Offloading, & denotes Resource Allocation, ¥ denotes Service Caching, & denotes Others.

Table 6
Critical comparison of workflow scheduling approach families.

Dimension Mathematical Prog. Heuristics

Meta-heuristics DRL (Deep Reinforcement Learning)

Solution Optimality High (Optimal/Approx.)

Scalability Low High
Adaptability (to Variability) Low (Static) Low (Static)
Response Time High Low
Reproducibility High High
Implementation Complexity Low Low

Moderate (Local Optima)

High (Near-Global Optima)
Moderate

Low (Must be re-run)

High (Slow convergence)

Low (Stochastic)

High (Multiple iterations are needed)

High(Learned Policy)

High (Inference)/Low (Training)
High

Low (Fast inference)

Medium (Depends on training seed)
High (High training overhead)

« For highly dynamic environments with unpredictable arrivals and
changing resources, DRL-based approaches are preferable due to
their high adaptability, assuming the significant training cost is
feasible.

» For resource-constrained or real-time systems demanding imme-
diate, low-overhead decisions, simple heuristics remain the most
practical, despite their sub-optimal results.

6. Open challenges and future directions

This section aims to discuss some open challenges and outline po-
tential future research directions in workflow scheduling within edge
computing.

17

6.1. Fairness of workflow scheduling

As discussed in Section 5 on heuristic approaches, priority-based list
scheduling is a widely adopted and computationally efficient framework
for workflow management. However, a critical and still-open challenge,
particularly in the dynamic and multi-tenant edge environment, is the in-
herent risk of task starvation. Starvation occurs when low-priority tasks
are indefinitely postponed by a continuous influx of high-priority tasks,
leading to unbounded waiting times and severe unfairness.

Therefore, a key future direction is the design of novel fairness-aware
scheduling algorithms specifically for edge workflows. This research
must go beyond simple starvation avoidance techniques, such as the
aging mechanism [143], where a task’s priority dynamically increases,

S. Li, W. Wu, H. Zhang et al.

and instead explore how to define and enforce different models of
fairness (e.g., proportional fairness, max-min fairness) across intra/inter
workflow and competing users. The central challenge lies in balancing
this fairness with the stringent, low-latency demands of heterogeneous-
priority edge applications.

6.2. Hierarchical data privacy and security in workflow scheduling

Data privacy and security are paramount concerns in edge comput-
ing, particularly within the context of workflow scheduling. Workflow
scheduling inherently involves the distribution and execution of mul-
tiple interconnected tasks across diverse edge nodes, which often ne-
cessitates the sharing and processing of sensitive data. This distribution
increases the risk of privacy breaches and data leaks, as private infor-
mation generated on user devices may traverse various servers with
differing security postures. Moreover, existing data privacy solutions
in related work typically address isolated tasks without accounting
for the complex dependencies and varying sensitivity levels inherent
in workflow-based applications. For instance, in a smart healthcare
workflow, patient identification data processed in one sub-task requires
stringent privacy protections, whereas aggregated diagnostic data in
another sub-task may permit more relaxed security measures. This
disparity underscores the need for privacy mechanisms that can dy-
namically adapt to the discrete privacy requirements of each task of
the workflow. Future research should focus on developing granular pri-
vacy protection strategies that align with the specific characteristics of
workflow tasks. One promising approach involves hierarchical encryp-
tion techniques. By classifying data based on sensitivity at the source
and applying appropriate encryption levels, it is possible to ensure that
highly sensitive data is robustly protected without incurring unneces-
sary computational overhead for less sensitive information. Research in
this field will facilitate the design of trustworthy and efficient work-
flow scheduling systems in edge computing, thereby fostering greater
efficiency and trust in edge-based solutions for sensitive applications.

6.3. Topology-aware fault tolerance mechanism

In edge computing environments, potential task failures caused by
hardware malfunctions, software errors, or network disruptions pose
significant challenges to workflow scheduling. Furthermore, inherent
dependencies within workflows mean that the failure of a single task can
trigger a cascade of disruptions across multiple nodes, altering overall
workflow execution and severely impacting workflows with hard dead-
lines [144,145], making the fault-tolerance mechanism an important
research need.

Redundancy is a widely adopted fault-tolerance mechanism. Existing
studies often employ either an application-centric approach, which de-
ploys backups for entire workflow applications [63], or a task-centric
approach, which introduces task redundancy based on individual task
reliability requirements and failure probabilities [84]. However, these
methods neglect the varying impacts of tasks on the global workflow.
For example, the failure of tasks on the critical path can have severe
consequences, whereas failures of tasks on non-critical paths may have
relatively minor impacts. Consequently, these two approaches can intro-
duce excessive redundancy for non-critical tasks, leading to unnecessary
resource overhead. Addressing these challenges requires a shift towards
more holistic fault-tolerance strategies that account for the complex de-
pendencies and varying criticality of tasks within workflows. Future
research should explore mechanisms that not only detect and mitigate
individual task failures but also understand and manage their broader
impact on the entire workflow.

6.4. Function-aware workflow scheduling in serverless computing

The serverless computing paradigm, particularly Function-as-a-
Service (FaaS), is increasingly recognized as a key enabler for flexible
and scalable application deployment at the network edge [146]. This

18

Computer Science Review 60 (2026) 100887

paradigm shifts focus from managing hardware resources (CPU, mem-
ory) towards managing ephemeral function instances and their execu-
tion environments. Applications are decomposed into fine-grained, often
stateless functions, requiring the underlying runtime to be available or
instantiated on demand [59,78]. Consequently, tasks offloaded to edge
servers can only execute once their required function environment is
configured, introducing bottlenecks not typically considered in tradi-
tional, hardware-centric workflow scheduling. For example, invoking
an image processing function necessitates the presence and readiness of
the specific model and libraries on the target node.

Several studies [59,78] have started exploring function-aware
scheduling, primarily treating function availability as an additional
constraint. However, the ephemeral and dynamic nature of serverless
execution necessitates deeper considerations, particularly concerning:

« Cold Start Latency: FaaS platforms often exhibit significant cold
start delays due to the need for runtime initialization upon first in-
vocation after inactivity. Within workflows, where functions execute
interdependently, cumulative cold starts along the critical path can
severely impact end-to-end latency. Mitigating these delays requires
sophisticated strategies like predictive pre-warming, snapshotting, or
intelligent placement anticipating spatio-temporal demand fluctua-
tions, alongside proactive caching informed by function popularity
across diverse workflows.

Function Chaining and Composition: Serverless workflows fre-
quently manifest as chains or DAGs of interconnected functions.
Efficient scheduling must optimize not only individual function
placement but also the inter-function data passing mechanisms (e.g.,
via edge storage or messaging queues) to minimize overhead and
latency across the entire chain.

Resource Granularity and Management: FaaS introduces a
much finer resource granularity compared to VMs or containers.
Scheduling involves managing numerous short-lived function in-
stances across heterogeneous edge nodes, demanding lightweight
isolation techniques and efficient resource multiplexing to ensure
performance predictability and efficient utilization at scale.
Cost-Performance Trade-offs: Serverless pricing models (e.g.,
pay-per-invocation) introduce new cost-performance trade-offs.
Scheduling decisions must navigate the balance between reduc-
ing latency, potentially by over-provisioning or reducing reuse,
and minimizing execution costs, often under user-defined budget
constraints.

Furthermore, beyond these specific runtime challenges, the under-
lying deployment of functions onto the edge-fog-cloud infrastructure
is inherently a critical optimization problem. This requires consider-
ing broader Quality-of-Service (QoS) metrics, such as energy models
for sustainability and reliability models for resilience, which are criti-
cal for many IoT workflows. However, these objectives often conflict.
As discussed in Ref. [147], optimizing for user-centric QoS goals, such
as low latency, often creates a conflict between stakeholders. For in-
stance, end-user objectives may clash with the resource providers’ goal
of minimizing operational costs. This conflict has been largely neglected
in schedulers that focus purely on FaaS runtime optimization.

Addressing both the runtime-specific challenges, such as cold starts,
and the strategic conflicts in deployment necessitates a shift towards
co-designing workflow scheduling algorithms with function lifecycle
management, intelligent caching, and network-aware data orchestration
tailored specifically for the serverless edge environment.

6.5. Workflow scheduling over heterogeneous edge Al infrastructure

While substantial research on edge computing scheduling has tra-
ditionally focused on general CPU-centric resource models, modern
Al-driven applications increasingly demand heterogeneous computing
resources, including GPUs, NPUs, and specialized accelerators. These
requirements stem from the widespread adoption of computationally

S. Li, W. Wu, H. Zhang et al.

intensive applications, including machine learning model training and
complex data inference, which cannot be effectively supported by
CPUs alone. However, current edge scheduling strategies typically treat
computing resources as uniform CPU units, neglecting the unique per-
formance profiles and constraints of diverse accelerators, resulting in
the underutilization of valuable hardware resources. As edge computing
scales to handle more intricate and data-intensive AI workflows, over-
looking heterogeneous resource demands severely limits its potential
benefits and practical applicability in real-world deployments.

In the context of workflow scheduling for Edge Al infrastructure, het-
erogeneous resource demands introduce additional complexity. A single
workflow may encompass multiple stages, each with distinct perfor-
mance requirements and hardware affinities. Consider a video analytics
workflow designed for intelligent transportation systems. In its early
stage, the workflow may involve sampling and basic frame-level pre-
processing of incoming video streams, which can efficiently run on
general-purpose CPUs. Subsequent tasks may involve computationally
heavy operations, such as periodic model training and object tracking,
which can greatly benefit from GPU or NPU accelerators with their high-
throughput parallel architectures. Since the workflow can be distributed
across a geographically scattered set of edge nodes, identifying nodes
that host the appropriate accelerators and allocating the correct mix
of hardware to each task segment are critical to optimizing the overall
workflow performance.

Consequently, future research should incorporate heterogeneous
resource modeling on edge Al infrastructure into the core of edge work-
flow scheduling strategies. This involves accurately characterizing the
performance profiles of various Al infrastructures, developing bench-
marks that reflect hardware capabilities within edge environments, and
incorporating these insights into scheduling algorithms.

6.6. Integrating edge computing with workflow-level scheduling in LLM
services

Large language models (LLMs) have garnered widespread attention
and adoption owing to their exceptional capabilities in natural language
understanding and generation. Current work has shown that harness-
ing the intrinsic parallelism of LLM services represents a promising
avenue for further latency benefit. For instance, LLMCompiler [148]
demonstrates how an incoming user query can be automatically bro-
ken down into a small directed graph of function-calling subtasks,
which are then dispatched and executed in parallel, rather than one
by one, yielding up to a several-fold reduction in end-to-end response
time compared to purely sequential methods. Meanwhile, modeling LLM
workflows at the level of individual primitives offers a distinct approach
to workflow decomposition and scheduling. In Teola [149], queries are
transformed into fine-grained workflows where each node represents
a task primitives—such as token embedding, partial model prefill, or
output decoding—and edges capture precise data dependencies. The
scheduler then optimizes this primitive graph by eliminating redundant
paths, segmenting heavy operations into pipeline stages, and applying
cross-primitive batching to maximize concurrency. Compared to coarser
orchestration, this primitive-aware strategy delivers up to a 2.09x re-
duction in end-to-end latency on real inference workloads. Notably,
even simple heuristic schedulers, e.g., greedy dispatch in LLMCompiler
and the depth-aware batching in Teola, yield multi-fold end-to-end
latency reductions, underscoring the high potential of workflow-level
scheduling for LLM workloads.

However, these methods generally remain tied to centralized envi-
ronemnt and do not address the network latency and privacy limita-
tions of cloud-centric architectures. Offloading LLM workflows to fully
distributed edge nodes can dramatically shorten round-trip times, mit-
igate backbone congestion, and keep sensitive data local. Moreover,
the edge’s inherently dispersed fabric naturally complements workflow
decomposition—enabling fine-grained task placement, cross-node par-
allelism, and locality-aware scheduling that centralized systems cannot

19

Computer Science Review 60 (2026) 100887

match. Despite these clear benefits, the fusion of edge computing and
workflow-level LLM scheduling is still in its infancy and deserves deeper
exploration.

7. Conclusion and future directions

In conclusion, this survey systematically reviews workflow schedul-
ing in edge computing with an in-depth exposition of the challenges
unique to this evolving field. First, we present the motivation fol-
lowed by a discussion of core challenges, thus elaborating on two
critical questions that why edge workflow scheduling is necessary and
why numerous cloud-based workflow scheduling strategies are not di-
rectly applicable to edge computing. Then we introduce the background
knowledge of this field including the representative application sce-
narios and formalized basic model. An important contribution of this
survey is the multidimensional taxonomy of existing workflow schedul-
ing strategies categorized by research issues, optimization objectives,
scheduling patterns, and optimization approaches, as well as the sim-
ulation environments and datasets used for evaluation. Moreover, the
survey discusses open challenges and potential future research direc-
tions that cover hierarchical data privacy and security, topology-aware
fault tolerance, function-aware workflow scheduling in serverless com-
puting, and the exploration of heterogeneous computing resources in
edge workflow scheduling and workflow-level scheduling for emerging
LLM services. We acknowledge that this review, while comprehensive,
is inherently limited by the established search scope and the rapid
publication velocity within this domain. Nevertheless, through an com-
prehensive investigation of the current state of the art and the discussion
of research gaps and future directions, we believe this survey can offer
researchers a holistic and insightful viewpoint, and contribute to more
effective and robust workflow scheduling strategies within the rapidly
evolving edge computing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work is supported by National Natural Science Foundation
of China (62402198), Fundamental Research Funds for the Central
Universities (21624348), Guangdong Provincial Natural Science
Foundation Project (2025A1515010113), Shandong Provincial Natural
Science Foundation Project (ZR2024LZH012), and the Major Key Project
of PCL, China under Grant PCL2025A08 and PCL2025A11.

Data availability

No data was used for the research described in the article.

References

[1] S. Sukhmani, M. Sadeghi, M. Erol-Kantarci, A. El Saddik, Edge caching and com-
puting in 5G for mobile AR/VR and tactile internet, IEEE MultiMed. 26 (1) (2019)
21-30, https://doi.org/10.1109/MMUL.2018.2879591

K. Zheng, L. Hou, H. Meng, Q. Zheng, N. Lu, L. Lei, Soft-defined heterogeneous
vehicular network: architecture and challenges, IEEE Netw. 30 (4) (2016) 72-80,
https://doi.org/10.1109/MNET.2016.7513867

M. Pouryazdan, B. Kantarci, T. Soyata, H. Song, Anchor-assisted and vote-based
trustworthiness assurance in smart city crowdsensing, IEEE Access 4 (2016)
529-541, https://doi.org/10.1109/ACCESS.2016.2519820

Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge com-
puting: the communication perspective, IEEE Commun. Surv. & Tutorials 19 (4)
(2017) 2322-2358, https://doi.org/10.1109/COMST.2017.2745201

J. Li, W. Liang, W. Xu, Z. Xu, X. Jia, A.Y. Zomaya, S. Guo, Budget-aware user
satisfaction maximization on service provisioning in mobile edge computing, IEEE
Trans. Mob. Comput. 22 (12) (2023) 7057-7069, https://doi.org/10.1109/TMC.
2022.3205427

J. Ren, G. Yu, Y. He, G.Y. Li, Collaborative cloud and edge computing for latency
minimization, IEEE Trans. Veh. Technol. 68 (5) (2019) 5031-5044, https://doi.
0rg/10.1109/TVT.2019.2904244

[2]

[3]

[4]

[5]

[6]

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100012226
https://doi.org/10.13039/501100012226
https://doi.org/10.13039/501100003453
https://doi.org/10.13039/501100003453
https://doi.org/10.13039/501100007129
https://doi.org/10.13039/501100007129
https://doi.org/10.13039/100018919
https://doi.org/10.13039/100018919
https://doi.org/10.1109/MMUL.2018.2879591
https://doi.org/10.1109/MNET.2016.7513867
https://doi.org/10.1109/ACCESS.2016.2519820
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/TMC.2022.3205427
https://doi.org/10.1109/TMC.2022.3205427
https://doi.org/10.1109/TVT.2019.2904244
https://doi.org/10.1109/TVT.2019.2904244

S. Li, W. Wu, H. Zhang et al.

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

H. Lin, S. Zeadally, Z. Chen, H. Labiod, L. Wang, A survey on computation
offloading modeling for edge computing, J. Netw. Comput. Appl. 169 (2020)
102781.

W. Shi, S. Dustdar, The promise of edge computing, Computer 49 (5) (2016) 78-81,
https://doi.org/10.1109/MC.2016.145

X. Ma, A. Zhou, S. Zhang, S. Wang, Cooperative service caching and workload
scheduling in mobile edge computing, in: IEEE INFOCOM 2020-IEEE Conference
on Computer Communications, IEEE, 2020, pp. 2076-2085, https://doi.org/10.
1109/INFOCOM41043.2020.9155455

H. Chen, H. Qin, W. Chen, N. Li, T. Wang, J. He, G. Yang, Y. Peng,
BMS: bandwidth-aware multi-interface scheduling for energy-efficient and delay-
constrained gateway-to-device communications in IOT, Comput. Netw. 225 (2023)
109645. ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2023.109645, https:
//www.sciencedirect.com/science/article/pii/S1389128623000907.

C. Wang, S. Zhang, Z. Qian, M. Xiao, J. Wu, B. Ye, S. Lu, Joint server assignment
and resource management for edge-based MAR system, IEEE/ACM Trans. Netw.
28 (5) (2020) 2378-2391, https://doi.org/10.1109/TNET.2020.3012410

M.S. Elbamby, C. Perfecto, C.-F. Liu, J. Park, S. Samarakoon, X. Chen, M. Bennis,
Wireless edge computing with latency and reliability guarantees, Proc. IEEE 107
(8) (2019) 1717-1737, https://doi.org/10.1109/JPROC.2019.2917084

E. Bozkaya, Digital twin-assisted and mobility-aware service migration in mo-
bile edge computing, Comput. Netw. 231 (2023) 109798. ISSN 1389-1286,
https://doi.org/10.1016/j.comnet.2023.109798, https://www.sciencedirect.com/
science/article/pii/S1389128623002438.

C.-H. Hong, B. Varghese, Resource management in fog/edge computing: a survey
on architectures, infrastructure, and algorithms, ACM Comput. Surv. 52 (5) (Sep
2019). ISSN 0360-0300, https://doi.org/10.1145/3326066

Q. Luo, S. Hu, C. Li, G. Li, W. Shi, Resource scheduling in edge computing: a survey,
IEEE Commun. Surv. Tutor. 23 (4) (2021) 2131-2165, https://doi.org/10.1109/
COMST.2021.3106401

Y. Sahni, J. Cao, L. Yang, S. Wang, Distributed resource scheduling in edge comput-
ing: problems, solutions, and opportunities, Comput. Netw. 219 (2022) 109430.
ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2022.109430, https://www.
sciencedirect.com/science/article/pii/S1389128622004649.

X. Xia, S.M.M. Fattah, M.A. Babar, A survey on UAV-enabled edge computing:
resource management perspective, ACM Comput. Surv. 56 (3) (Oct 2023). ISSN
0360-0300, https://doi.org/10.1145/3626566

X. Zhang, S. Debroy, Resource management in mobile edge computing: a com-
prehensive survey, ACM Comput. Surv. 55 (13s) (Jul 2023). ISSN 0360-0300,
https://doi.org/10.1145/3589639

F. Wu, Q. Wu, Y. Tan, Workflow scheduling in cloud: a survey, J. Supercomput.
71 (9) (May 2015) 3373-3418. ISSN 1573-0484, https://doi.org/10.1007/s11227-
015-1438-4, http://dx.doi.org/10.1007/511227-015-1438-4.

M. Adhikari, T. Amgoth, S.N. Srirama, A survey on scheduling strategies for work-
flows in cloud environment and emerging trends, ACM Comput. Surv. 52 (4) (Aug
2019). ISSN 0360-0300, https://doi.org/10.1145/3325097

M. Hosseinzadeh, M.Y. Ghafour, H.K. Hama, B. Vo, A. Khoshnevis, Multi-objective
task and workflow scheduling approaches in cloud computing: a comprehensive
review, J. Grid Comput. 18 (3) (Sep 2020) 327-356. ISSN 1572-9184, https:
//doi.org/10.1007/s10723-020-09533-z, http://dx.doi.org/10.1007/510723-020-
09533-z.

R. Bouabdallah, F. Fakhfakh, Workflow scheduling in cloud—fog computing envi-
ronments: a systematic literature review, Concurr. Comput. Pract. Exp. 36 (28)
(2024) e8304.

N. Khaledian, M. Voelp, S. Azizi, M.H. Shirvani, Al-based & heuristic workflow
scheduling in cloud and fog computing: a systematic review, Clust. Comput. 27 (8)
(2024) 10265-10298.

A. Jayanetti, S. Halgamuge, R. Buyya, Reinforcement learning based workflow
scheduling in cloud and edge computing environments: A taxonomy, review and
future directions, arXiv preprint arXiv:2408.02938, 2024.

C. Wohlin, Guidelines for snowballing in systematic literature studies and a replica-
tion in software engineering, in: Proceedings of the 18th International Conference
on Evaluation and Assessment in Software Engineering, 2014, pp. 1-10.

A. Nunes, K.W. Axhausen, Road safety, health inequity and the imminence of
autonomous vehicles, Nat. Mach. Intell. 3 (8) (2021) 654-655.

J. Zhao, W. Zhao, B. Deng, Z. Wang, F. Zhang, W. Zheng, W. Cao, J. Nan, Y.
Lian, A.F. Burke, Autonomous driving system: a comprehensive survey, Expert Syst.
Appl. (2023) 122836.

B. Badjie, J. Cecilio, A. Casimiro, Adversarial attacks and countermeasures on im-
age classification-based deep learning models in autonomous driving systems: a
systematic review, ACM Comput. Surv. 57 (1) (2024) 1-52.

D.-H. Lee, J.-L. Liu, End-to-end deep learning of lane detection and path predic-
tion for real-time autonomous driving, Signal Image Video Process. 17 (1) (2023)
199-205.

Y. Fu, C. Li, F.R. Yu, T.H. Luan, P. Zhao, An incentive mechanism of incorporating
supervision game for federated learning in autonomous driving, IEEE Trans. Intell.
Transp. Syst. 24 (12) (2023) 14800-14812.

W.-B. Kou, Q. Lin, M. Tang, S. Xu, R. Ye, Y. Leng, S. Wang, G. Li, Z. Chen, G.
Zhu, et al., pFedLVM: a large vision model (LVM)-driven and latent feature-based
personalized federated learning framework in autonomous driving, IEEE Trans.
Intell. Transp. Syst. 26 (10) (2025) 15915-15931.

K. Lin, B. Lin, X. Chen, Y. Lu, Z. Huang, Y. Mo, A time-driven workflow scheduling
strategy for reasoning tasks of autonomous driving in edge environment, in: 2019
IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data &
Cloud Computing, Sustainable Computing & Communications, Social Computing

20

[33]

[34]

[35]

[36]

371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[571

Computer Science Review 60 (2026) 100887

& Networking (ISPA/BDCloud/SocialCom/SustainCom), 2019, pp. 124-131, https:
//doi.org/10.1109/ISPA-BDCloud-SustainCom-Social Com48970.2019.00028

Y. Li, C. Yang, X. Chen, Y. Liu, Mobility and dependency-aware task offloading for
intelligent assisted driving in vehicular edge computing networks, Vehic. Commun.
45 (2024) 100720.

M. Aazam, S. Zeadally, K.A. Harras, Deploying fog computing in industrial internet
of things and industry 4.0, IEEE Trans. Ind. Inf. 14 (10) (2018) 4674-4682.

M. Afrin, J. Jin, A. Rahman, Y.-C. Tian, A. Kulkarni, Multi-objective resource al-
location for edge cloud based robotic workflow in smart factory, Futur. Gener.
Comput. Syst. 97 (2019) 119-130.

R. Xie, D. Gu, Q. Tang, T. Huang, F.R. Yu, Workflow scheduling in serverless edge
computing for the industrial internet of things: a learning approach, IEEE Trans.
Ind. Inf. 19 (7) (2023) 8242-8252, https://doi.org/10.1109/TI1.2022.3217477
B.-S. Sun, H. Huang, Z.-Y. Chai, Y.-J. Zhao, H.-S. Kang, Multi-objective optimiza-
tion algorithm for multi-workflow computation offloading in resource-limited IIoT,
Swarm Evol. Comput. 89 (2024) 101646.

X. Jiang, F.R. Yu, T. Song, V.C.M. Leung, A survey on multi-access edge computing
applied to video streaming: some research issues and challenges, IEEE Commun.
Surv. & Tutorials 23 (2) (2021) 871-903, https://doi.org/10.1109/COMST.2021.
3065237

W. Shi, Q. Li, Q. Yu, F. Wang, G. Shen, Y. Jiang, Y. Xu, L. Ma, G.-M. Muntean, A sur-
vey on intelligent solutions for increased video delivery quality in cloud-edge-end
networks, IEEE Commun. Surv. Tutor. (2024) 1, https://doi.org/10.1109/COMST.
2024.3427360

M.A. Khan, E. Baccour, Z. Chkirbene, A. Erbad, R. Hamila, M. Hamdi, M. Gabbouj,
A survey on mobile edge computing for video streaming: opportunities and chal-
lenges, IEEE Access 10 (2022) 120514-120550, https://doi.org/10.1109/ACCESS.
2022.3220694

Y. Xie, Y. Zhu, Y. Wang, Y. Cheng, R. Xu, A.S. Sani, D. Yuan, Y. Yang, A novel di-
rectional and non-local-convergent particle swarm optimization based workflow
scheduling in cloud-edge environment, Futur. Gener. Comput. Syst. 97 (2019)
361-378.

C. Rong, J.H. Wang, J. Liu, J. Wang, F. Li, X. Huang, Scheduling massive camera
streams to optimize large-scale live video analytics, IEEE/ACM Trans. Netw. 30 (2)
(2022) 867-880, https://doi.org/10.1109/TNET.2021.3125359

J. Jin, J. Gubbi, S. Marusic, M. Palaniswami, An information framework for cre-
ating a smart city through internet of things, IEEE Internet Things J. 1 (2) (2014)
112-121, https://doi.org/10.1109/JI0T.2013.2296516

R. Alsurdeh, R.N. Calheiros, K.M. Matawie, B. Javadi, Hybrid workflow provi-
sioning and scheduling on edge cloud computing using a gradient descent search
approach, in: 2020 19th International Symposium on Parallel and Distributed
Computing (ISPDC), 2020, pp. 68-75, https://doi.org/10.1109/1SPDC51135.
2020.00019

J. Yan, S. Bi, Y.J. Zhang, M. Tao, Optimal task offloading and resource allocation
in mobile-edge computing with inter-user task dependency, IEEE Trans. Wireless
Commun. 19 (1) (2020) 235-250, https://doi.org/10.1109/TWC.2019.2943563
M. Zhang, Z. Yang, J. Yan, S. Ali, W. Ding, G. Wang, Task-load aware and
predictive-based workflow scheduling in cloud-edge collaborative environment, J.
Rel. Intell. Environ. 8 (1) (2022) 35-47.

F. Kuang, Z. Xu, M. Masdari, Multi-workflow scheduling and resource provision-
ing in mobile edge computing using opposition-based marine-predator algorithm,
Pervasive Mob. Comput. 87 (2022) 101715.

G. Zhao, H. Xu, Y. Zhao, C. Qiao, L. Huang, Offloading tasks with dependency and
service caching in mobile edge computing, IEEE Trans. Parallel Distrib. Syst. 32
(11) (2021) 2777-2792, https://doi.org/10.1109/TPDS.2021.3076687

S. Bi, L. Huang, Y.-J.A. Zhang, Joint optimization of service caching place-
ment and computation offloading in mobile edge computing systems, IEEE Trans.
Wireless Commun. 19 (7) (2020) 4947-4963, https://doi.org/10.1109/TWC.2020.
2988386

G. Zhao, H. Xu, Y. Zhao, C. Qiao, L. Huang, Offloading dependent tasks in mobile
edge computing with service caching, in: IEEE INFOCOM 2020-IEEE Conference
on Computer Communications, 2020, pp. 1997-2006, https://doi.org/10.1109/
INFOCOM41043.2020.9155396

H. Kanemitsu, M. Hanada, H. Nakazato, Multiple Workflow Scheduling with
Offloading Tasks to Edge Cloud, Springer, 2019, pp. 38-52. ISBN 9783030235024,
https://doi.org/10.1007/978-3-030-23502-4_4.

J. Sun, L. Yin, M. Zou, Y. Zhang, T. Zhang, J. Zhou, Makespan-minimization
workflow scheduling for complex networks with social groups in edge comput-
ing, J. Syst. Archit. 108 (2020) 101799 ISSN 1383-7621, https://doi.org/10.
1016/j.sysarc.2020.101799, https://www.sciencedirect.com/science/article/pii/
$1383762120300928.

Y. Liu, S. Wang, Q. Zhao, S. Du, A. Zhou, X. Ma, F. Yang, Dependency-aware
task scheduling in vehicular edge computing, IEEE Internet Things J. 7 (6) (2020)
4961-4971, https://doi.org/10.1109/JI0T.2020.2972041

J. Lee, H. Ko, J. Kim, S. Pack, Data: dependency-aware task allocation scheme in
distributed edge clouds, IEEE Trans. Ind. Inf. 16 (12) (2020) 7782-7790, https:
//doi.org/10.1109/TI1.2020.2990674

L. Cai, X. Wei, C. Xing, X. Zou, G. Zhang, X. Wang, Failure-resilient DAG task
scheduling in edge computing, Comput. Netw. 198 (2021) 108361.

J. Liang, K. Li, C. Liu, K. Li, Joint offloading and scheduling decisions for DAG
applications in mobile edge computing, Neurocomputing 424 (2021) 160-171.

Y. Sahni, J. Cao, L. Yang, Y. Ji, Multihop offloading of multiple DAG tasks in
collaborative edge computing, IEEE Internet Things J. 8 (6) (2021) 4893-4905,
https://doi.org/10.1109/J10T.2020.3030926

http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0035
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0035
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0035
https://doi.org/10.1109/MC.2016.145
https://doi.org/10.1109/INFOCOM41043.2020.9155455
https://doi.org/10.1109/INFOCOM41043.2020.9155455
https://doi.org/10.1016/j.comnet.2023.109645
https://www.sciencedirect.com/science/article/pii/S1389128623000907
https://www.sciencedirect.com/science/article/pii/S1389128623000907
https://doi.org/10.1109/TNET.2020.3012410
https://doi.org/10.1109/JPROC.2019.2917084
https://doi.org/10.1016/j.comnet.2023.109798
https://www.sciencedirect.com/science/article/pii/S1389128623002438
https://www.sciencedirect.com/science/article/pii/S1389128623002438
https://doi.org/10.1145/3326066
https://doi.org/10.1109/COMST.2021.3106401
https://doi.org/10.1109/COMST.2021.3106401
https://doi.org/10.1016/j.comnet.2022.109430
https://www.sciencedirect.com/science/article/pii/S1389128622004649
https://www.sciencedirect.com/science/article/pii/S1389128622004649
https://doi.org/10.1145/3626566
https://doi.org/10.1145/3589639
https://doi.org/10.1007/s11227-015-1438-4
https://doi.org/10.1007/s11227-015-1438-4
http://dx.doi.org/10.1007/s11227-015-1438-4
https://doi.org/10.1145/3325097
https://doi.org/10.1007/s10723-020-09533-z
https://doi.org/10.1007/s10723-020-09533-z
http://dx.doi.org/10.1007/s10723-020-09533-z
http://dx.doi.org/10.1007/s10723-020-09533-z
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0110
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0110
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0110
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0115
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0115
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0115
http://arxiv.org/abs/2408.02938
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0125
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0125
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0125
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0130
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0130
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0135
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0135
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0135
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0140
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0140
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0140
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0145
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0145
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0145
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0150
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0150
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0150
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0155
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0155
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0155
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0155
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00028
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00028
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0165
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0165
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0165
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0170
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0170
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0175
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0175
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0175
https://doi.org/10.1109/TII.2022.3217477
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0185
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0185
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0185
https://doi.org/10.1109/COMST.2021.3065237
https://doi.org/10.1109/COMST.2021.3065237
https://doi.org/10.1109/COMST.2024.3427360
https://doi.org/10.1109/COMST.2024.3427360
https://doi.org/10.1109/ACCESS.2022.3220694
https://doi.org/10.1109/ACCESS.2022.3220694
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0205
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0205
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0205
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0205
https://doi.org/10.1109/TNET.2021.3125359
https://doi.org/10.1109/JIOT.2013.2296516
https://doi.org/10.1109/ISPDC51135.2020.00019
https://doi.org/10.1109/ISPDC51135.2020.00019
https://doi.org/10.1109/TWC.2019.2943563
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0230
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0230
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0230
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0235
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0235
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0235
https://doi.org/10.1109/TPDS.2021.3076687
https://doi.org/10.1109/TWC.2020.2988386
https://doi.org/10.1109/TWC.2020.2988386
https://doi.org/10.1109/INFOCOM41043.2020.9155396
https://doi.org/10.1109/INFOCOM41043.2020.9155396
https://doi.org/10.1007/978-3-030-23502-4_4
https://doi.org/10.1016/j.sysarc.2020.101799
https://doi.org/10.1016/j.sysarc.2020.101799
https://www.sciencedirect.com/science/article/pii/S1383762120300928
https://www.sciencedirect.com/science/article/pii/S1383762120300928
https://doi.org/10.1109/JIOT.2020.2972041
https://doi.org/10.1109/TII.2020.2990674
https://doi.org/10.1109/TII.2020.2990674
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0275
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0275
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0280
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0280
https://doi.org/10.1109/JIOT.2020.3030926

S. Li, W. Wu, H. Zhang et al.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

J. Liu, J. Ren, Y. Zhang, X. Peng, Y. Zhang, Y. Yang, Efficient dependent task of-
floading for multiple applications in MEC-cloud system, IEEE Trans. Mob. Comput.
(2021).

J. Lou, Z. Tang, W. Jia, W. Zhao, J. Li, Startup-aware dependent task scheduling
with bandwidth constraints in edge computing, IEEE Trans. Mob. Comput. (2023).
M. Kaur, S. Kadam, N. Hannoon, Multi-level parallel scheduling of dependent-tasks
using graph-partitioning and hybrid approaches over edge-cloud, Soft Comput. 26
(11) (2022) 5347-5362.

Q. Li, B. Peng, Q. Li, M. Lin, C. Chen, S. Peng, A latency-optimal task offload-
ing scheme using genetic algorithm for DAG applications in edge computing, in:
2023 8th International Conference on Cloud Computing and Big Data Analytics
(ICCCBDA), 2023, pp. 344-348, https://doi.org/10.1109/ICCCBDA56900.2023.
10154698

M. Guo, X. Hu, Y. Chen, Y. Yang, L. Zhang, L. Chen, Joint scheduling and offloading
schemes for multiple interdependent computation tasks in mobile edge computing,
IEEE Internet Things J. 11 (4) (2024) 5718-5730, https://doi.org/10.1109/JI0T.
2023.3307769

T. Long, Y. Ma, L. Wu, Y. Xia, N. Jiang, J. Li, X. Fu, X. You, B. Zhang, A novel
fault-tolerant scheduling approach for collaborative workflows in an edge-IOT
environment, Digit. Commun. Netw. 8 (6) (2022) 911-922.

K. Zhu, Z. Zhang, F. Sun, Toward intelligent cooperation at the edge: improving
the QOS of workflow scheduling with the competitive cooperation of edge servers,
Wireless Netw. (2023) 1-13.

K. Zhu, Z. Zhang, F. Sun, B. Shen, Workflow makespan minimization for par-
tially connected edge network: a deep reinforcement learning-based approach,
IEEE Open J. Commun. Soc. 3 (2022) 518-529, https://doi.org/10.1109/0JCOMS.
2022.3158417

B. Hu, Y. Shi, Z. Cao, Adaptive energy-minimized scheduling of real-time applica-
tions in vehicular edge computing, IEEE Trans. Ind. Inf. 19 (5) (2023) 6895-6906,
https://doi.org/10.1109/TI1.2022.3207754.

S. Chakraborty, K. Mazumdar, Sustainable task offloading decision using genetic
algorithm in sensor mobile edge computing, J. King Saud Univ. Comput. Inf. Sci.
34 (4) (2022) 1552-1568.

A. Jayanetti, S. Halgamuge, R. Buyya, Deep reinforcement learning for energy
and time optimized scheduling of precedence-constrained tasks in edge-cloud
computing environments, Futur. Gener. Comput. Syst. 137 (2022) 14-30.

R. Salimi, S. Azizi, J. Abawajy, A greedy randomized adaptive search proce-
dure for scheduling IOT tasks in virtualized fog—cloud computing, Trans. Emerg.
Telecommun. Technol. 35 (5) (2024) e4980.

Y. Shao, C. Li, Z. Fu, L. Jia, Y. Luo, Cost-effective replication management and
scheduling in edge computing, J. Netw. Comput. Appl. 129 (2019) 46-61.

B. Lin, C. Lin, X. Chen, A cost-driven fuzzy scheduling strategy for intelligent work-
flow decision making systems in uncertain edge-cloud environments, arXiv preprint
arXiv:2107.01405, 2021.

Z. Tang, J. Lou, F. Zhang, W. Jia, Dependent task offloading for multiple
jobs in edge computing, in: 2020 29th International Conference on Computer
Communications and Networks (ICCCN), 2020, pp. 1-9, https://doi.org/10.1109/
ICCCN49398.2020.9209593

J. Chen, Y. Yang, C. Wang, H. Zhang, C. Qiu, X. Wang, Multitask offloading strategy
optimization based on directed acyclic graphs for edge computing, IEEE Internet
Things J. 9 (12) (2021) 9367-9378.

J. Lou, Z. Tang, S. Zhang, W. Jia, W. Zhao, J. Li, Cost-effective scheduling for
dependent tasks with tight deadline constraints in mobile edge computing, IEEE
Trans. Mob. Comput. (2022).

J. Liu, Y. Zhang, J. Ren, Y. Zhang, Auction-based dependent task offloading for IOT
users in edge clouds, IEEE Internet Things J. 10 (6) (2022) 4907-4921.

H. Lu, C. Gu, F. Luo, W. Ding, X. Liu, Optimization of lightweight task offloading
strategy for mobile edge computing based on deep reinforcement learning, Futur.
Gener. Comput. Syst. 102 (2020) 847-861.

H. Liao, X. Li, D. Guo, W. Kang, J. Li, Dependency-aware application assigning and
scheduling in edge computing, IEEE Internet Things J. 9 (6) (2022) 4451-4463,
https://doi.org/10.1109/J10T.2021.3104015

G. Li, H. Tan, L. Liu, H. Zhou, S.H.-C. Jiang, Z. Han, X.-Y. Li, G. Chen, DAG schedul-
ing in mobile edge computing, ACM Trans. Sen. Netw. 20 (1) (Oct 2023). ISSN
1550-4859, https://doi.org/10.1145/3616374

Y. Gao, W. Liu, Multiple workflows offloading based on improved deep Q-network
in mobile edge computing, in: 2022 IEEE 25th International Conference on
Computer Supported Cooperative Work in Design (CSCWD), 2022, pp. 1281-1286,
https://doi.org/10.1109/CSCWD54268.2022.9776251

H. Liu, Y. Ma, P. Chen, Y. Xia, Y. Ma, W. Zheng, X. Li, Scheduling multi-
workflows over edge computing resources with time-varying performance, a novel
probability-mass function and DQN-based approach, in: Web Services—ICWS 2020:
27th International Conference, Held as Part of the Services Conference Federation,
SCF 2020, Honolulu, HI, USA, September 18-20, 2020, Proceedings 27, Springer,
2020, pp. 197-209.

S. Liu, Y. Yu, X. Lian, Y. Feng, C. She, P.L. Yeoh, L. Guo, B. Vucetic, Y. Li, Dependent
task scheduling and offloading for minimizing deadline violation ratio in mobile
edge computing networks, IEEE J. Sel. Areas Commun. 41 (2) (2023) 538-554,
https://doi.org/10.1109/JSAC.2022.3233532

Y. Asghari Alaie, M. Hosseini Shirvani, A.M. Rahmani, A hybrid bi-objective
scheduling algorithm for execution of scientific workflows on cloud platforms
with execution time and reliability approach, J. Supercomput. 79 (2) (2023)
1451-1503.

K. Li, Integrated analysis of reliability, power, and performance for IOT devices
and servers, J. Syst. Archit. 154 (2024) 103216.

21

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Computer Science Review 60 (2026) 100887

R. Liu, W. Wu, X. Guo, G. Zeng, K. Li, Replica fault-tolerant scheduling with time
guarantee under energy constraint in fog computing, Futur. Gener. Comput. Syst.
159 (2024) 567-579.

Y. Shang, J. Li, X. Wu, DAG-based task scheduling in mobile edge computing, in:
2020 7th International Conference on Information Science and Control Engineering
(ICISCE), IEEE, 2020, pp. 426-431, https://doi.org/10.1109/ICISCE50968.2020.
00095

Q. Peng, H. Jiang, M. Chen, J. Liang, Y. Xia, Reliability-aware and deadline-
constrained workflow scheduling in mobile edge computing, in: 2019 IEEE 16th
International Conference on Networking, Sensing and Control (ICNSC), 2019, pp.
236-241, https://doi.org/10.1109/ICNSC.2019.8743291

N. Subramanian, A. Jeyaraj, Recent security challenges in cloud computing,
Comput. Electr. Eng. 71 (2018) 28-42.

L. Li, C. Zhou, P. Cong, Y. Shen, J. Zhou, T. Wei, Makespan and security-aware
workflow scheduling for cloud service cost minimization, IEEE Trans. Cloud
Comput. 12 (2) (2024) 609-624.

A. Taghinezhad-Niar, J. Taheri, Security, reliability, cost, and energy-aware
scheduling of real-time workflows in compute-continuum environments, IEEE
Trans. Cloud Comput. 12 (3) (2024) 954-965.

M. Hosseini Shirvani, A.M. Rahmani, A. Sahafi, An iterative mathematical decision
model for cloud migration: a cost and security risk approach, Softw.: Pract. Exper.
48 (3) (2018) 449-485.

Y. Han, Z. Zhao, J. Mo, C. Shu, G. Min, Efficient task offloading with de-
pendency guarantees in ultra-dense edge networks, in: 2019 IEEE Global
Communications Conference (GLOBECOM), IEEE, 2019, pp. 1-6, https://doi.org/
10.1109/GLOBECOM38437.2019.9013142

M. Zivkovic, T. Bezdan, I. Strumberger, N. Bacanin, K. Venkatachalam, Improved
Harris Hawks optimization algorithm for workflow scheduling challenge in cloud-
edge environment, in: Computer Networks, Big Data and IoT: Proceedings of ICCBI
2020, Springer, 2021, pp. 87-102.

N. Bacanin, M. Zivkovic, T. Bezdan, K. Venkatachalam, M. Abouhawwash, Modified
firefly algorithm for workflow scheduling in cloud-edge environment, Neural
Comput. Appl. 34 (11) (2022) 9043-9068.

A.A. Al-Habob, O.A. Dobre, A.G. Armada, S. Muhaidat, Task scheduling for mo-
bile edge computing using genetic algorithm and conflict graphs, IEEE Trans. Veh.
Technol. 69 (8) (2020) 8805-8819, https://doi.org/10.1109/TVT.2020.2995146

J. Yuan, H. Xiao, Z. Shen, T. Zhang, J. Jin, Elect: energy-efficient intelligent edge—
cloud collaboration for remote IOT services, Futur. Gener. Comput. Syst. 147
(2023) 179-194.

J. Yan, S. Bi, Y.J.A. Zhang, Offloading and resource allocation with general task
graph in mobile edge computing: a deep reinforcement learning approach, IEEE
Trans. Wireless Commun. 19 (8) (2020) 5404-5419, https://doi.org/10.1109/
TWC.2020.2993071

H. Xiao, C. Xu, Y. Ma, S. Yang, L. Zhong, G.-M. Muntean, Edge intelligence: a
computational task offloading scheme for dependent IOT application, IEEE Trans.
Wireless Commun. 21 (9) (2022) 7222-7237, https://doi.org/10.1109/TWC.2022.
3156905

J. Fang, D. Qu, H. Chen, Y. Liu, Dependency-aware dynamic task offloading based
on deep reinforcement learning in mobile edge computing, IEEE Trans. Netw. Serv.
Manag. (2023) 1, https://doi.org/10.1109/TNSM.2023.3319294

M. Li, N. Mao, X. Zheng, T.R. Gadekallu, Computation offloading in edge computing
based on deep reinforcement learning, in: Proceedings of International Conference
on Computing and Communication Networks: ICCCN 2021, Springer, 2022, pp.
339-353.

J. Wang, J. Hu, G. Min, W. Zhan, A.Y. Zomaya, N. Georgalas, Dependent task of-
floading for edge computing based on deep reinforcement learning, IEEE Trans.
Comput. 71 (10) (2022) 2449-2461, https://doi.org/10.1109/TC.2021.3131040

L. Zhao, E. Zhang, S. Wan, A. Hawbani, A.Y. Al-Dubai, G. Min, A.Y. Zomaya,
MESON: a mobility-aware dependent task offloading scheme for urban vehicular
edge computing, IEEE Trans. Mob. Comput. 23 (5) (2023) 4259-4272.

D.A. Van Veldhuizen, G.B. Lamont, et al., Evolutionary computation and conver-
gence to a pareto front, in: Late Breaking Papers at the Genetic Programming 1998
Conference, Citeseer, 1998, pp. 221-228.

K. Peng, M. Zhu, Y. Zhang, L. Liu, J. Zhang, V.C.M. Leung, L. Zheng, An energy-and
cost-aware computation offloading method for workflow applications in mobile
edge computing, Eur. J. Wirel. Commun. Netw. 2019 (2019) 1-15.

F. Li, W.J. Tan, W. Cai, A wholistic optimization of containerized workflow schedul-
ing and deployment in the cloud-edge environment, Simul. Model. Pract. Theory
118 (2022) 102521.

Y.-Y. Cui, D.-G. Zhang, T. Zhang, J. Zhang, M. Piao, A novel offloading scheduling
method for mobile application in mobile edge computing, Wireless Netw. 28 (6)
(2022) 2345-2363.

L. Pan, X. Liu, Z. Jia, J. Xu, X. Li, A multi-objective clustering evolutionary algo-
rithm for multi-workflow computation offloading in mobile edge computing, IEEE
Trans. Cloud Comput. 11 (2) (2023) 1334-1351, https://doi.org/10.1109/TCC.
2021.3132175

X. Xu, H. Cao, Q. Geng, X. Liu, F. Dai, C. Wang, Dynamic resource provisioning for
workflow scheduling under uncertainty in edge computing environment, Concurr.
Comput. Pract. Exp. 34 (14) (2022) e5674.

F. Song, H. Xing, X. Wang, S. Luo, P. Dai, K. Li, Offloading dependent tasks in
multi-access edge computing: a multi-objective reinforcement learning approach,
Futur. Gener. Comput. Syst. 128 (2022) 333-348.

T. Tang, C. Li, F. Liu, Collaborative cloud-edge-end task offloading with task de-
pendency based on deep reinforcement learning, Comput. Commun. 209 (2023)
78-90.

http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0290
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0290
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0290
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0295
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0295
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0300
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0300
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0300
https://doi.org/10.1109/ICCCBDA56900.2023.10154698
https://doi.org/10.1109/ICCCBDA56900.2023.10154698
https://doi.org/10.1109/JIOT.2023.3307769
https://doi.org/10.1109/JIOT.2023.3307769
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0315
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0315
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0315
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0320
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0320
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0320
https://doi.org/10.1109/OJCOMS.2022.3158417
https://doi.org/10.1109/OJCOMS.2022.3158417
https://doi.org/10.1109/TII.2022.3207754
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0335
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0335
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0335
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0340
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0340
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0340
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0345
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0345
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0345
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0350
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0350
http://arxiv.org/abs/2107.01405
https://doi.org/10.1109/ICCCN49398.2020.9209593
https://doi.org/10.1109/ICCCN49398.2020.9209593
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0365
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0365
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0365
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0370
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0370
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0370
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0375
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0375
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0380
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0380
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0380
https://doi.org/10.1109/JIOT.2021.3104015
https://doi.org/10.1145/3616374
https://doi.org/10.1109/CSCWD54268.2022.9776251
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0400
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0400
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0400
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0400
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0400
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0400
https://doi.org/10.1109/JSAC.2022.3233532
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0410
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0410
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0410
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0410
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0415
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0415
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0420
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0420
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0420
https://doi.org/10.1109/ICISCE50968.2020.00095
https://doi.org/10.1109/ICISCE50968.2020.00095
https://doi.org/10.1109/ICNSC.2019.8743291
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0435
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0435
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0440
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0440
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0440
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0445
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0445
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0445
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0450
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0450
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0450
https://doi.org/10.1109/GLOBECOM38437.2019.9013142
https://doi.org/10.1109/GLOBECOM38437.2019.9013142
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0460
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0460
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0460
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0460
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0465
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0465
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0465
https://doi.org/10.1109/TVT.2020.2995146
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0475
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0475
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0475
https://doi.org/10.1109/TWC.2020.2993071
https://doi.org/10.1109/TWC.2020.2993071
https://doi.org/10.1109/TWC.2022.3156905
https://doi.org/10.1109/TWC.2022.3156905
https://doi.org/10.1109/TNSM.2023.3319294
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0495
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0495
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0495
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0495
https://doi.org/10.1109/TC.2021.3131040
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0505
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0505
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0505
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0510
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0510
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0510
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0515
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0515
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0515
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0520
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0520
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0520
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0525
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0525
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0525
https://doi.org/10.1109/TCC.2021.3132175
https://doi.org/10.1109/TCC.2021.3132175
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0535
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0535
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0535
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0540
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0540
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0540
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0545
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0545
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0545

S. Li, W. Wu, H. Zhang et al.

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

K. Zhu, Z. Zhang, S. Zeadally, F. Sun, Learning to optimize workflow scheduling for
an edge-cloud computing environment, IEEE Trans. Cloud Comput. 12 (3) (2024)
897-912.

R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, R. Buyya, CloudSim: a
toolkit for modeling and simulation of cloud computing environments and eval-
uation of resource provisioning algorithms, Softw.: Pract. Exper. 41 (1) (2011)
23-50.

W. Chen, E. Deelman, WorkflowSim: a toolkit for simulating scientific workflows in
distributed environments, in: 2012 IEEE 8th International Conference on E-Science,
IEEE, 2012, pp. 1-8.

H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, R. Buyya, iFogSim: a toolkit for modeling
and simulation of resource management techniques in the internet of things, edge
and fog computing environments, Softw.: Pract. Exper. 47 (9) (2017) 1275-1296.
B. Qin, Q. Lei, X. Wang, DGCQN: a RL and GCN combined method for DAG
scheduling in edge computing, J. Supercomput. (2024) 1-28.

C. Shan, R. Gao, Q. Han, T. Liu, Z. Yang, J. Zhang, Y. Xia, KCES: a workflow con-
tainerization scheduling scheme under cloud-edge collaboration framework, IEEE
Internet Things J. 12 (2) (2024) 2026-2042.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P.J. Maechling, R. Mayani,
W. Chen, R.F. Da Silva, M. Livny, et al., Pegasus, a workflow management system
for science automation, Futur. Gener. Comput. Syst. 46 (2015) 17-35.

C. Reiss, A. Tumanov, G.R. Ganger, R.H. Katz, M.A. Kozuch, Heterogeneity and
dynamicity of clouds at scale: Google trace analysis, in: Proceedings of the Third
ACM Symposium on Cloud Computing, 2012, pp. 1-13.

Alibaba, Alibaba cluster data. https://github.com/alibaba/clusterdata (Accessed:
29 October 2025).

M. Mehrabi, S. Shen, V. Latzko, Y. Wang, F.H.P. Fitzek, Energy-aware coop-
erative offloading framework for inter-dependent and delay-sensitive tasks, in:
GLOBECOM 2020-2020 IEEE Global Communications Conference, 2020, pp. 1-6,
https://doi.org/10.1109/GLOBECOM42002.2020.9348078

H. Arabnejad, J.G. Barbosa, List scheduling algorithm for heterogeneous systems by
an optimistic cost table, IEEE Trans. Parallel Distrib. Syst. 25 (3) (2013) 682-694.
R. NoorianTalouki, M. Hosseini Shirvani, H. Motameni, A heuristic-based task
scheduling algorithm for scientific workflows in heterogeneous cloud computing
platforms, J. King Saud Univ. Comput. Inf. Sci. 34 (8, Part A) (2022) 4902-4913.
ISSN 1319-1578, https://doi.org/10.1016/j.jksuci.2021.05.011

Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating directed task
graphs to multiprocessors, ACM Comput. Surv. 31 (4) (Dec 1999) 406-471. ISSN
0360-0300, https://doi.org/10.1145/344588.344618

S. Karami, S. Azizi, F. Ahmadizar, A bi-objective workflow scheduling in virtual-
ized fog-cloud computing using NSGA-II with semi-greedy initialization, Appl. Soft
Comput. 151 (2024) 111142.

S. Abrishami, M. Naghibzadeh, D.H.J. Epema, Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds, Futur. Gener. Comput.
Syst. 29 (1) (2013) 158-169.

C. Shu, Z. Zhao, Y. Han, G. Min, Dependency-aware and latency-optimal computa-
tion offloading for multi-user edge computing networks, in: 2019 16th Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON),
2019, pp. 1-9, https://doi.org/10.1109/SAHCN.2019.8824941

C. Shu, Z. Zhao, Y. Han, G. Min, H. Duan, Multi-user offloading for edge computing
networks: a dependency-aware and latency-optimal approach, IEEE Internet Things
J. 7 (3) (2020) 1678-1689, https://doi.org/10.1109/JI0T.2019.2943373

N. Khaledian, K. Khamforoosh, S. Azizi, V. Maihami, IKH-EFT: an improved
method of workflow scheduling using the krill herd algorithm in the fog-cloud
environment, Sustain. Comput. Inform. Syst. 37 (2023) 100834.

Z. Zhang, K. Long, J. Wang, F. Dressler, On swarm intelligence inspired self-
organized networking: its bionic mechanisms, designing principles and optimiza-
tion approaches, IEEE Commun. Surv. & Tutorials 16 (1) (2014) 513-537, https:
//doi.org/10.1109/SURV.2013.062613.00014

N. Eagle, A. Pentland, Reality mining: sensing complex social systems, Pers.
Ubiquitous Comput. 10 (4) (2006) 255-268.

22

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

Computer Science Review 60 (2026) 100887

M.-Y. Wu, D.D. Gajski, et al., Hypertool: a programming aid for message-passing
systems, IEEE Trans. Parallel Distrib. Syst. 1 (3) (1990) 330-343.

Y.-C. Chung, et al., Applications and performance analysis of a compile-time
optimization approach for list scheduling algorithms on distributed memory
multiprocessors, in: SC Conference, IEEE Computer Society, 1992, pp. 512-521.
S.J. Kim, A general approach to mapping of parallel computations upon multipro-
cessor architectures, in: Proc. International Conference on Parallel Processing, vol.
3, IEEE Computer Society, 1988.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic
algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182-197, https://doi.
org/10.1109/4235.996017

Y. Yuan, H. Xu, B. Wang, An improved NSGA-III procedure for evolutionary many-
objective optimization, in: Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, 2014, pp. 661-668.

K. Arulkumaran, M.P. Deisenroth, M. Brundage, A.A. Bharath, Deep reinforcement
learning: a brief survey, IEEE Signal Process. Mag. 34 (6) (2017) 26-38, https:
//doi.org/10.1109/MSP.2017.2743240

P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, Y. Yang, Optimal
edge user allocation in edge computing with variable sized vector bin packing,
in: International Conference on Service-Oriented Computing, Springer, 2018, pp.
230-245.

H. Wu, W. Knottenbelt, K. Wolter, Y. Sun, An optimal offloading partitioning al-
gorithm in mobile cloud computing, in: International Conference on Quantitative
Evaluation of Systems, Springer, 2016, pp. 311-328.

C.-T. Mo, J.-H. Chen, W. Liao, Graph convolutional network augmented deep re-
inforcement learning for dependent task offloading in mobile edge computing, in:
2023 [EEE Wireless Communications and Networking Conference (WCNC), IEEE,
2023, pp. 1-6.

Z. Cao, X. Deng, S. Yue, P. Jiang, J. Ren, J. Gui, Dependent task offloading in edge
computing using GNN and deep reinforcement learning, IEEE Internet Things J. 11
(12) (2024) 21632-21646.

B. Huang, L. Wang, X. Liu, Z. Huang, Y. Yin, F. Zhu, S. Wang, S. Deng,
Reinforcement learning-based online scheduling of multiple workflows in edge
environment, IEEE Trans. Netw. Serv. Manag. 21 (5) (2024) 5691-5706, https:
//doi.org/10.1109/TNSM.2024.3428496

S. Tuli, S.R. Poojara, S.N. Srirama, G. Casale, N.R. Jennings, COSCO: container or-
chestration using co-simulation and gradient based optimization for fog computing
environments, IEEE Trans. Parallel Distrib. Syst. 33 (1) (2021) 101-116.

X. Tang, F. Liu, B. Wang, D. Xu, J. Jiang, Q. Wu, C.L.P. Chen, Workflow
scheduling based on asynchronous advantage actor—critic algorithm in multi-cloud
environment, Expert Syst. Appl. 258 (2024) 125245.

H.D. Karatza, G.L. Stavrinides, Resource allocation and aging priority-based
scheduling of linear workflow applications with transient failures and selective
imprecise computations, Cluster Comput. 27 (4) (2024) 5473-5488.

H. Sun, H. Yu, G. Fan, L. Chen, QoS-aware task placement with fault-tolerance in
the edge-cloud, IEEE Access 8 (2020) 77987-78003.

S. Meng, Q. Li, T. Wu, W. Huang, J. Zhang, W. Li, A fault-tolerant dynamic schedul-
ing method on hierarchical mobile edge cloud computing, Comput. Intell. 35 (3)
(2019) 577-598.

R. Xie, Q. Tang, S. Qiao, H. Zhu, F.R. Yu, T. Huang, When serverless comput-
ing meets edge computing: architecture, challenges, and open issues, IEEE Wirel.
Commun. 28 (5) (2021) 126-133.

M. Hosseini Shirvani, Y. Ramzanpoor, Multi-objective qos-aware optimization for
deployment of 10T applications on cloud and fog computing infrastructure, Neural
Comput. Appl. 35 (26) (2023) 19581-19626.

S. Kim, S. Moon, R. Tabrizi, N. Lee, M.W. Mahoney, K. Keutzer, A. Gholami, An
LLM compiler for parallel function calling, in: Forty-First International Conference
on Machine Learning, 2024.

X. Tan, Y. Jiang, Y. Yang, H. Xu, Teola: Towards end-to-end optimization of LLM-
based applications, arXiv preprint arXiv:2407.00326, 2024.

http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0550
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0550
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0550
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0555
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0555
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0555
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0555
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0560
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0560
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0560
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0565
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0565
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0565
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0570
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0570
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0575
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0575
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0575
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0580
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0580
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0580
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0585
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0585
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0585
https://github.com/alibaba/clusterdata
https://doi.org/10.1109/GLOBECOM42002.2020.9348078
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0600
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0600
https://doi.org/10.1016/j.jksuci.2021.05.011
https://doi.org/10.1145/344588.344618
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0615
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0615
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0615
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0620
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0620
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0620
https://doi.org/10.1109/SAHCN.2019.8824941
https://doi.org/10.1109/JIOT.2019.2943373
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0635
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0635
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0635
https://doi.org/10.1109/SURV.2013.062613.00014
https://doi.org/10.1109/SURV.2013.062613.00014
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0645
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0645
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0650
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0650
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0655
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0655
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0655
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0660
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0660
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0660
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0670
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0670
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0670
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1109/MSP.2017.2743240
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0680
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0680
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0680
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0680
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0685
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0685
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0685
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0690
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0690
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0690
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0690
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0695
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0695
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0695
https://doi.org/10.1109/TNSM.2024.3428496
https://doi.org/10.1109/TNSM.2024.3428496
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0705
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0705
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0705
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0710
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0710
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0710
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0715
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0715
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0715
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0720
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0720
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0725
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0725
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0725
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0730
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0730
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0730
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0735
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0735
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0735
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0740
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0740
http://refhub.elsevier.com/S1574-0137(25)00163-7/sbr0740
http://arxiv.org/abs/2407.00326

	Revisiting workflow scheduling with the power of edge computing: Taxonomy, review, and open challenges
	1 Introduction
	1.1 Core challenges
	1.1.1 Resource constraints
	1.1.2 Heterogeneity
	1.1.3 Distributed nature
	1.1.4 Dynamic network
	1.1.5 Mobility
	1.1.6 Scalability

	1.2 Related surveys
	1.3 Contribution and organization

	2 Methodology
	2.1 Literature search strategy and data sources
	2.2 Screening and inclusion criteria

	3 Background
	3.1 Application scenarios
	3.1.1 Autonomous driving
	3.1.2 Industrial Internet of Things
	3.1.3 Video service
	3.1.4 Smart city

	3.2 Basic model

	4 Taxonomy
	4.1 Research issues
	4.1.1 Task offloading
	4.1.2 Resource allocation
	4.1.3 Service caching/placement

	4.2 Optimization objectives
	4.2.1 Single-objective optimization
	Makespan
	Energy
	Cost
	Profit
	Load balance
	Success rate
	Reliability
	Security

	4.2.2 Joint optimization
	4.2.3 Pareto optimization

	4.3 Scheduling pattern
	4.3.1 Offline scheduling
	4.3.2 Online scheduling

	4.4 Simulation environment
	4.4.1 Dedicated simulators
	4.4.2 General-purpose programming
	4.4.3 Real-world testbeds

	4.5 Dataset
	4.5.1 Synthetic workflows
	4.5.2 Scientific workflows
	4.5.3 Real-world traces

	4.6 Approach

	5 Classification and review of workflow scheduling approaches
	5.1 Mathematical programming
	5.2 Heuristic approaches
	5.2.1 Greedy algorithm
	5.2.2 Auction algorithm
	5.2.3 Local search algorithm

	5.3 Meta heuristic approaches
	5.3.1 Swarm intelligence
	5.3.2 Genetic Algorithms

	5.4 Deep reinforcement learning approaches
	5.4.1 Value-based DRL
	5.4.2 Actor-critic-based DRL
	5.4.3 GNN-enabled DRL

	5.5 Critical synthesis and analysis

	6 Open challenges and future directions
	6.1 Fairness of workflow scheduling
	6.2 Hierarchical data privacy and security in workflow scheduling
	6.3 Topology-aware fault tolerance mechanism
	6.4 Function-aware workflow scheduling in serverless computing
	6.5 Workflow scheduling over heterogeneous edge AI infrastructure
	6.6 Integrating edge computing with workflow-level scheduling in LLM services

	7 Conclusion and future directions
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

