
Future Generation Computer Systems 144 (2023) 105–116

a

b

c

d

e

T
a
I
d
a
f
m
g
h
a
c

s

S

l
y

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A package-aware scheduling strategy for edge serverless functions
based onmulti-stage optimization
Senjiong Zheng a, Bo Liu a,∗, Weiwei Lin b,c,∗∗, Xiaoying Ye d, Keqin Li e
School of Computer Science, South China Normal University, GuangZhou, 510631, China
School of Computer Science and Engineering, South China University of Technology, GuangZhou, 510006, China
Peng Cheng Laboratory, Shenzhen, 518066, China
Guangdong Neusoft Institute, Foshan, 528225, China
Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o

Article history:
Received 24 November 2022
Accepted 16 February 2023
Available online 2 March 2023

Keywords:
Serverless function offloading
Dependency package awareness
Package caching strategy

a b s t r a c t

Serverless computing offers a promising deployment model for edge IoT applications. However, server-
less functions that rely on large libraries suffer from severe library loading latency when containerized,
which is unfriendly to edge latency-sensitive applications. Most function offload strategies in edge
environments ignore the impact of this latency. We also found that the measures taken by serverless
platforms to reduce loading latency may not work in edge environments. To remedy that, this
paper proposes a function offloading strategy to minimize loading latency, a new way to deeply
integrate placement optimization with cache optimization. In this way, we first design a package
caching policy suitable for edge environments based on the consistency of execution topology. Then a
Double Layers Dynamic Programming algorithm (DLDP) is proposed to solve the problem of function
offloading considering the dependent packages using a multi-stage progressive optimization approach.
The caching policy is embedded in the scheduling algorithm through a phased optimization approach
to achieve joint optimization. Extensive experiments on the cluster trace from Alibaba show that
DLDP reduces the loading latency of packages by more than 97.84% and significantly outperforms
four baselines in the application completion time by more than 55.67%.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

As the intelligent society grows, a huge number of Internet of
hings (IoT) endpoints are coming into use [1]. These IoT devices
nd edge gateways are becoming a vital part of the Cloud-Edge-
oT computing continuum [2], and the data generated by these
evices is escalating and is more sensitive to processing latency
nd privacy [3,4]. The traditional cloud computing model suffers
rom high latency, poor security, and poor privacy [5], which
akes it challenging to meet the diverse needs of today’s intelli-
ent society for data processing. Edge computing technology [6]
as emerged as a computing paradigm that performs computing
t the network’s edge, with the core idea of bringing computing
loser to the data source.
Serverless computing is a promising paradigm with features

uch as function-as-a-service, event-triggered and fine-grained

∗ Corresponding author.
∗∗ Corresponding author at: School of Computer Science and Engineering,
outh China University of Technology, GuangZhou, 510006, China.

E-mail addresses: 2021023258@m.scnu.edu.cn (S. Zheng),
iugubin@scnu.edu.cn (B. Liu), linww@scut.edu.cn (W. Lin),
exiaoying@nuit.edu.cn (X. Ye), lik@newpaltz.edu (K. Li).
ttps://doi.org/10.1016/j.future.2023.02.013
167-739X/© 2023 Elsevier B.V. All rights reserved.
scaling that meet the needs of IoT applications [7–9], thus driving
the trend towards extending serverless functions in edge com-
puting. A serverless function is a set of code that implements a
logical part of an application [10], which will be executed when
an event is triggered. This event-driven nature [11,12] is suitable
for handling bursty and unpredictable workloads at IoT end-
points [13] and is ideal as an execution model for IoT event and
data processing [2]. Also, serverless computing has a more fine-
grained resource expansion model [7] with on-demand allocation,
which is friendly for resource-constrained edge devices.

Extending serverless functions in edge computing would be a
very promising computing paradigm, and a lot of work [13–15]
has done research in this area. Although the serverless paradigm
presents opportunities, it also suffers from problems such as
function cold start latency and underutilization of resources [16].
Functions that rely on large libraries suffer from severe cold start
latency when containerized. Cold starts can take hundreds of
milliseconds to seconds [17] and accumulate with the function
chain [10], eventually leading to performance degradation. Load-
ing large dependency libraries is a significant cause of cold start
latency, and caching these packages in advance can effectively
reduce the latency [8,18,19].

https://doi.org/10.1016/j.future.2023.02.013
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.02.013&domain=pdf
mailto:2021023258@m.scnu.edu.cn
mailto:liugubin@scnu.edu.cn
mailto:linww@scut.edu.cn
mailto:yexiaoying@nuit.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.future.2023.02.013

S. Zheng, B. Liu, W. Lin et al. Future Generation Computer Systems 144 (2023) 105–116

c
g
W
t
c
a
e
t
l
t
t
t
t
p
o
a
t
o
e
c
m
c

r
t
m
e
i
m
p
m
a
i
s
a
p
i
t
o
d
t
o
a
t
s

Edge applications consist of more simple functions or mi-
roservices [10]. As the number of parts composing an application
rows, the connections between functions become more complex.
e usually use a directed acyclic graph [20] to represent the

opology of an application. The task offloading strategies in edge
omputing have been studied for many years. Many studies are
lso devoted to offloading optimization of serverless functions in
dge computing to reduce the application completion time. Still,
hey ignore the severe latency caused by loading dependency
ibraries during container instantiation. However, edge applica-
ions are more sensitive to latency, and it is essential to mitigate
he latency caused by loading dependency packages when op-
imizing function offloading. At the same time, we found that
he optimization measures taken by serverless platforms for de-
endency packages may not work in edge environments. Simply
ffloading the function to a node with high dependency package
ffinity will be ineffective due to the lack of consideration of
he complex topology of the application. It is also not enough to
nly consider function placement optimization because it cannot
ffectively reduce the latency caused by loading packages. It is
lear that there is a conflict between optimizing function place-
ent and reducing loading delay when optimizing application
ompletion time.
The difficulty of scheduling serverless functions in edge envi-

onments is that we need to add consideration of node affinity
o the general service placement problem (SPP) while imple-
enting an effective package caching policy suitable for edge
nvironments. It is a complex scheduling model with multiple
mpact factors. In this paper, the general function offloading
odel and the offloading model considering the dependency
ackage are modeled, respectively. We analyze the two system
odels’ common potential structure and trait factors, then adopt
multi-stage progressive optimization method to solve the multi-
nfluence factor problem. Specifically, we analyze the optimal
ubstructure hidden in the task scheduling problem and propose
n adjustable dynamic programming algorithm (ADP), which can
erform planning based on different optimization scenarios. ADP
s suitable for optimizing multiple models with progressive rela-
ions, and the execution topology generated based on different
ptimization scenarios is consistent. Through superposition, we
esign a Double Layers Dynamic Programming algorithm to solve
he optimal scheduling problem of the final model (the function
ffloading model considering the dependency packets) in stages,
nd the second layer of dynamic programming further considers
he package awareness. The major contributions of this work are
ummarized as follows:

• Unlike the objective optimization model, we model the
function offloading problem as a complex multi-factor model
and adopt a multi-stage optimization approach to opti-
mize function offloading. This phased approach weakens the
optimization conflicts between factors.

• We design a package caching policy (DPWP) based on the
consistency of execution topology, which is suitable for ex-
ecution scenarios in edge environments. Then a Double Lay-
ers Dynamic Programming algorithm is proposed to solve
the function offloading problem. DLDP embeds the caching
strategy into the scheduling algorithm to reduce the loading
latency of packages and considers package awareness when
scheduling functions, creating a joint optimization effect.

• Guided by the maximum flow augmenting path, we de-
signed a data multiplexing method to speed up the data
transmission.

• Extensive simulations demonstrate the feasibility of our pro-
posed caching policy and the superiority of our proposed
offloading strategy.
106
2. Related work

The service placement problem [21] is an important research
topic in edge computing, focusing on offloading tasks to edge
servers. There are many factors involved in offloading tasks. The
complex topology of IoT applications, data dependencies between
functions, and function-dependent libraries determine that we
cannot arbitrarily offload functions to an edge node. Most studies
model task scheduling in edge environments as a single-objective
or multi-objective optimization model. The optimization objec-
tives include application completion time (Makespan), energy
consumption, deadlines, QoS violation rate, scheduling cost, re-
source utilization, etc. Task offloading strategies also vary for
different demand scenarios. The list scheduling algorithm [22] is
the more classical priority-based scheduling strategy, which sorts
the tasks according to the defined priorities and then schedules
the task with the highest priority. Some mathematical optimiza-
tion methods, like integer programming [12,23], and constrained
optimization [24,25], formulate the problem as a mathematical
optimization model with constraints and then solve the problem
mathematically for an optimal solution. Traditional heuristic and
meta-heuristic methods aim to find a feasible solution to the
problem within a reasonable time, and classical algorithms in-
clude genetic algorithms [26], particle swarm algorithms [27], etc.
Some hyperheuristics algorithms combine multiple methods [28].
Recent articles have proposed new references like the Markov
decision [29] and joint optimization methods [30] etc.

Cold start delay is a crucial factor affecting the completion
time of scheduling in serverless platforms. Microservices that rely
on large libraries start slowly and affect platform resilience [18]
due to the time required to load these dependencies. Current
research focuses on reducing loading latency by pre-caching
dependency packages [31–33], package-aware scheduling [18],
and reuse [8,34]. Jeon et al. [31] proposed a deep reinforcement
learning-based dependency package caching strategy, which is
learned from historical experience. The algorithm considers global
incentives for cache hits and QoS violations and performs re-
inforcement learning on the caching agents of each edge node,
driving them to cooperate to cache critical dependency packages
at the hierarchical edge cloud. Aumala et al. [18] consider the
dependency package affinity of edge nodes and schedule cloud
functions to nodes with higher affinity to reuse execution envi-
ronments with preloaded packages. Fuerst and Sharma [34] treat
hot function containers as cache objects and reuse the container
resources by managing the object cache to reduce the cold start
time. The algorithm automatically scales the container resources
based on the workload characteristics.

There has been a lot of research in the serverless computing
domain dedicated to reducing the latency caused by loading func-
tion libraries. However, these measures may not work in the edge
serverless environment due to the conflict between optimizing
function placement and optimizing dependency package loading
time. We differ by considering both the complex topology of the
application and the caching of function dependency packages,
exploring new ways to integrate function placement optimization
with function packet-aware scheduling deeply.

3. Problem formulation

This section formulates a complete offloading model for the
problem to be solved. Scheduling serverless functions in an edge
environment involve numerous influencing factors and potential
optimization conflicts. To sort out the connection of multiple
independent variables, we decompose the problem into two mod-
els: a general offloading model and an offloading model consid-
ering dependent packages, which are two models with recursive

relationships.

S. Zheng, B. Liu, W. Lin et al. Future Generation Computer Systems 144 (2023) 105–116

[

a
t
t
m
T
c
t
t
e

3

t
c
m
a
e
i
m
d

c
h
r
T
c
f
e
i
f

s

t

t

e

f
f
t
f
a

T

t
c

T

T

3
a

a
f
d
p
a
s
j
s
(
d

C

f
t
s
d
e
b

t

b
e
S
s

Fig. 1. Example1. a simple example of the model in Section 3.3: fj ≡ {pkg =

p1, p2, p3] , pre = [fa, fb, fc]}.

The application and data submitted by the user will be put into
set of heterogeneous edge servers for execution. In addition,

here is a remote cloud data center that holds all the packages
hat the application may use. Dependency packages that are
issing when executing functions will be downloaded from here.
he edge servers adopt a non-preemptive execution strategy. Two
onditions are required for function execution: all precursor tasks
ransfer data to the server where the function deployed, and
he server has all the dependency packages needed for function
xecution.

.1. Edge servers and workloads

Here ES = {es1, es2, . . . , esm} denotes m edge servers. Since
he servers are heterogeneous, each server has a different pro-
essing capacity, and the processing capacity of server esy is Py
easured in tflop/s. The servers communicate with each other in
full duplex. If there is a communication link between servers
sx and esy, it means they can transfer data to each other directly.
f not, they need to transfer data through other servers. The
aximum transmission capacity between servers esx and esy is
enoted as transx,y, measured in GB/s.
The applications submitted by the user are usually a function

hain composed of multiple functions (tasks) [10], which may
ave multiple entry or exit functions. We typically describe this
elationship by an undirected connection graph: G = {Func, E}.
he vertex set Func = {f1, f2, . . . , fn} denotes the n functions
omposing the application, and pf (j) indicates the number of
loating point operations required by the function fj. The edge
ij ∈ E describes the priority relationship among tasks, and d(eij)
ndicates the size of the data that function fi need to transfer to
unction fj.

Thus, the time taken to process the function fj (deployed on
erver esy) is

COST CPU
j,y =

pf (j)
Py

y = Loc(fj)
(1)

The time taken by function fi (deployed on server esx) to
ransfer data to function fj (deployed on server esy) is

(i, j) =
d(eij)
σx,y

sx = Loc (fi) , esy = Loc(fj)
(2)

Data is transferred by multiplexing, σx,y is the equivalent max-
imum bandwidth between servers esx and esy using multiplexing,
we will introduce σ in Section 4.3.
x,y t

107
3.2. General function offloading model

In this model, we consider the general function (task) of-
floading problem and ignore the dependency package. The entry
function fentry can be deployed directly to the appropriate server
for processing, so the earliest start time and earliest completion
time of fentry (deployed on server esy) can be defined as

T est
y

(
fentry

)
= Ry (3)

T fin
y

(
fentry

)
= Ry + COST CPU

entry,y (4)

Since the server adopts a non-preemptive execution policy,
the server needs to finish processing all deployed tasks before
starting a new task. Ry indicates the time when the server esy
inishes processing the last deployed task. For the non-entry
unction fj, the function also needs to wait for its precursors to
ransfer data to the server where fj is located before it is eligible
or execution, and the earliest time when all the precursor data
rrives is
pre (fj) = max

fi∈pre(j)

(
T fin (fj)+ t (i, j)

)
(5)

Thus, the earliest start time and earliest completion time of
he non-entry function fj (deployed on the server esy) can be
omputed from Eqs. (6) and (7) as follows:
est
y

(
fj
)

= max
(
T pre (fj) , Ry

)
(6)

fin
y

(
fj
)

= T est
y

(
fj
)
+ COST CPU

j,y (7)

.3. Function offloading model with considering dependency pack-
ges

When considering the impact of function dependency pack-
ges on scheduling, the model becomes more complex, and more
actors need to be weighed. In our model, precursor data and
ependency packages can be transferred synchronously to com-
ress the delay caused by downloading dependency packages. If
dependent package requested by function fj exists on another
erver, it will be transferred to the server where fj is deployed,
ust like the data. Those packages that are lacking in the edge
erver cluster will be downloaded from the remote data center
e.g., Fig. 1. Example1 : cloud → esy). The time cost of remote
ownload is

OST pkg
=

sizepkg_lack
rl

(8)

Where sizepkg_lack is the size of the packages to be downloaded
rom the remote data center, and rl is the download rate. When
he server esx where function fi deployed transfers data to the
erver esy where function fj deployed, it may also transfer the
ependent packages required by function fj (e.g., Fig. 1. Example1 :

s3 → esy , es1 → esy). The time spent on transferring data
ecomes

′

x (i, j) =
d
(
eij
)
+ pkg_sizejx,y
σx,y

esx = Loc (fi) , esy = Loc(fj)
(9)

Where pkg_sizejx,y denotes the size of the packages required
y function fj to be transferred from server esx to server esy. If
sx does not need to transfer data to esy, then pkg_sizejx,y = 0.
ometimes the packages required by function fj are located on
ome servers, but these servers do not need to transfer data to
he server es (e.g., Fig. 1. Example1 : es → es). Let the number
y 2 y

S. Zheng, B. Liu, W. Lin et al. Future Generation Computer Systems 144 (2023) 105–116

o
t

t

t

T

e
t
p
o
i

T

T

e

T

3

p
e
t
i
M
(
o

P

4

t
s
n
n
o
i
A
a
w
c
f
a
a
c

4

e
c
f
d
c
t
n
t

f
o
d
M

f
i
t
f
b
c
a
o

4

p
e
t
f
t

w
c
f

f these servers be Z = {z1, z2, . . .} and the time spent by eszα to
ransfer the packages is

′

zα (i, j) =
0 + pkg_sizejzα ,y

σzα ,y
(10)

For all packages that are transferred individually, the latest
ime they reach the server esy can be expressed as
pkg (fj) = max

z∈Z

(
Rz + t ′z (i, j)

)
(11)

In the model that considers packages, a function is ready for
xecution once all the precursor data reaches the server where
he function is deployed, and the server has all the dependency
ackages required for execution. Therefore, the earliest start time
f the entry function fentry, and the non-entry function fj (deployed
n esy) becomes
est
y

(
fentry

)
= max (T pkg (fentry) , Ry + COST pkg) (12)

est
y

(
fj
)

= max (T pre (fj) , T pkg (fj) , Ry + COST pkg) (13)

Thus, the earliest completion time of a function (deployed on
sy) can be defined as
fin
y (f) = T est

y (f)+ COST CPU
_,y (14)

.4. Optimization objective formulation

Function scheduling aims to optimize the application com-
letion time (Makespan), which is the maximum of the earli-
st completion times of all exiting functions (Fexit). We design
he Dependency Package Window Policy to minimize the load-
ng latency (δ) caused by dependency packages and minimize
akespan by finding the current optimal deployment location

Deploy ≡ {opt (f) | ∀f ∈ Func}) for each function. Thus, the
ptimization problem is formulated as

: Minimizeby DPWP,DeployMax{T fin (f) |∀f ∈ Fexit} (15)

. Algorithm design

Scheduling of functions is a multi-stage decision process. In
his section, we analyze the optimal substructure hidden in the
cheduling of tasks with dependencies, and then design a dy-
amic programming algorithm with adjustable optimization sce-
arios. The execution topology generated by the algorithm based
n different optimization scenarios is consistent. We adopt the
dea of multi-stage optimization and overlay two layers of the
DP algorithm for handling the scheduling models in Sections 3.2
nd 3.3, respectively. Meanwhile, in the middle of the layers,
e design the dependency package caching policy based on the
onsistency of ADP , which enhances the affinity of nodes for
unctions and provides support for the second layer of package-
ware scheduling. The optimization scenarios of the two layers
re also a recursive relationship, and the second layer further
onsiders the dependent packet problem.

.1. Multi-factor model

We model the serverless function scheduling problem in edge
nvironments through the previous analysis as a multi-factor
omplex model. Among the many factors, application topology,
unction execution topology, dependency package, data depen-
encies, and edge environment configuration are the principal
omponent factors. The scheduling of functions needs to satisfy
he data dependencies between tasks. The choice of deployment
odes directly affects the data-transferring cost of the precursor
asks, and different edge nodes have different affinities for the
108
unctions. In most cases, node selection can only be optimal for
ne factor at a time. Therefore, data dependencies and depen-
ency packages are a pair of conflicting factors when optimizing
akespan.
We decomposed the models to find the connection among the

actors, as shown in Sections 3.2 and 3.3. The dependency package
s the trait factor that distinguishes the two models. Application
opology and function execution topology are common potential
actors that act very similarly in both models, and they are the
reakthroughs for our phased optimization. The data-transferring
ost of precursor and the loading cost of dependency packages
re two critical components of Makespan and are also the key to
ptimization.

.2. Adjustable dynamic programming

An application’s execution topology can affect the scheduling
erformance [35]. Function chains often have multiple entry or
xit functions, and there is no strict execution sequence between
he parallel tasks. This results in an application with many dif-
erent execution topologies, and the performance of different
opologies varies greatly.

We design an adjustable dynamic programming algorithm
ith adjustable optimization scenarios. ADP considers different
ombinations of impact factors and performs to optimize the
unction’s earliest completion time. Running ADP will get the
optimal deployment scheme for different scenarios, including
functions’ execution topology and the server location where each
function is deployed.

4.2.1. Design of adjustable dynamic programming

Algorithm 1: Adjustable Dynamic Programming (ADP)
Input: The topological sequence Func of function chains,

ES
Output: Optimal execution topology and opt (f)

1 for all fj ∈ Func do
2 if fj is an entry function then
3 continue
4 Get all precursors Prefunc of fj
5 for esy ∈ ES do
6 Assume that fj is deployed in esy
7 for fi ∈ Prefunc do
8 Calculate opt (fi) by Eq. (16), so that fj starts at

the earliest time, this determines which server
fi should be deployed on

9 Deployment of Prefunc
10 Update T fin (

fj
)
of fj on each es ∈ ES

4.2.2. Why choose dynamic programming
We choose dynamic programming for two main reasons.

(1) Dynamic programming can plan based on different recur-
sive equations, which is suitable for our model decompo-
sition. It has the advantage of optimal performance and
simple execution.

(2) The dynamic programming algorithm we designed is ad-
justable for optimization scenarios. Different deployment
schemes arise when considering different scenarios, but
the execution topology of those schemes is consistent.

The second reason is crucial: the execution topology of the
functions is invariant when stacking multiple layers of such al-
gorithm. According to this consistency, we can cache the depen-
dency packages required by the unexecuted function in advance
to reduce the loading latency when they are executed.

S. Zheng, B. Liu, W. Lin et al. Future Generation Computer Systems 144 (2023) 105–116

4

T
t
q
d
C

t

b
p
d

T
d

P
o
r
p

r

i

s
t
T

4

m
a
t
u

4

s
i
c

D

s
t
c
e
u

D

W
w
d
a
T

R

e

T

b
t

.2.3. Optimal deployment location for functions
Deployment of an application is a multi-stage decision process.

he deployment of a function directly affects the completion
ime of that function, and also affects the deployment of subse-
uent functions. Each function needs to make the current optimal
eployment decision to get the process’s optimal substructure.
onsidering the function pair fi → fj with precedence relation,

we get the earliest completion time T fin
x (fi) of fi on each server

esx ∈ ES in line 10 of the code. If we want fi to have the earliest
completion time, then its deployment location is

opt ′ (fi) =

{
esx| min

esx∈ES
T fin
x (fi)

}
In fact, opt ′ (fi) is not the optimal deployment location because

he deployment choice of fi affects the deployment of fj. opt (fi)
should make fj have the earliest completion time. Thus, the better
deployment option should be

opt (fi) =

{
esx| min

esx∈ES
T fin (fj)}

T fin (fj) = T fin
x (fi)+ t (i, j)+ COST CPU

j,_

(16)

opt (fi) is exactly the optimal substructure of the process stage
{funtions that had deployed, fi, . . . , fj, . . .}. When fj is about to
e deployed, we can determine the optimal deployment of its
recursor fi. lines 5–9 of the code use this idea to determine the
eployment of the precursor of fj.

heorem 1. The execution topology generated by ADP based on
ifferent optimization scenarios is consistent.

roof.
{
f1, . . . , fj, . . . , fn

}
is an arbitrary topological sequence

f the given function chain, assume that the function fj is cur-
ently being processed and F = {fa, fb, fc, . . .} → fj is the
recursor of the function fj. Algorithm 1 determines the optimal

deployment position of {fa, fb, fc, . . .} one by one according to the
ecursive equations so that fj has the earliest start time. The order

{a, b, c, . . .} is constant in this process. This is true for fj, and
t is also true for functions after fj. By induction, we can prove
that given the sequence

{
f1, . . . , fj, . . . , fn

}
, the ADP generates the

ame execution topology When the recursive equation (optimiza-
ion scenario) changes. Experiments also verify the correctness of
heorem 1.

.2.4. Foreseen sequence
We superimpose two layers of the ADP algorithm to opti-

ize the offloading problem considering dependent packages in
phased manner. Since the execution topology of ADP is consis-
ent, the execution topology generated by the first layer can be
sed as a foreseen sequence for the second layer.

.3. Dependency package window cache policy

We design the Dependency Package Windowing Policy to
olve the package caching problem based on the foresight of ADP ,
ncluding warm-up and cache removal policies. The following two
oncepts are introduced first.

efinition 1. Server Dependency Package Window

We assume each server maintains a fixed-size package cache
pace, which is the server’s dependency package window. Due to
he large variety of dependent packages, the edge server cannot
ache unlimited packages. When the size of the cached package
xceeds the server’s window capacity, packages that may not be

sed in the future will be deleted.

109
Fig. 2. Free gaps when executing function fj .

efinition 2. Function Dependency Package Window

When executing the current task, we select 2 ∗ w functions
that will be executed one by one soon in the future, and the
dependency packages they need form the three-level function
dependency package window. The 1st-level window is packages
required by the next function to be executed, and caching this
window has the highest priority. The 2nd-level window consists
of the packages required by the first w functions, which contains
the packages that will be used soon. The 3rd-level window con-
sists of the packages required by the first 2 ∗w functions, adding
to the 2nd-level window the packages that may be used later.

4.3.1. Dependency package warm-up strategy
In the offloading model considering dependency packages, if

the dependency package required by a function exists in another
server, it can be transferred to the server where the function is
deployed synchronously when transferring the data to compress
the loading latency (as shown in Fig. 1. Example 1). During the
second layer of dynamic programming, we know the dependency
packages required by the next function to be executed based on
the foreseen sequence. Caching these dependency packages in
advance to the edge server cluster can reduce the loading latency
during function execution.

When the server is waiting for the predecessor of a function
to transfer data, there may be a free gap. We use this free gap to
warm up the packages for the next function to be executed, as
shown in Fig. 2.

Proof. Feasibility Analysis of free gap

Suppose the current execution function is fi (deployed in esx).
hen the package required by the fi is not in edge servers, it
ill be downloaded from the remote cloud data center. Let the
ownload time be COST pkg

i . The server esx finishes the last task
t Rx, the data transfer completion time of fi precursor tasks is
pre (fi), if

x + COST pkg
i < T pre (fi)

Then there is a free gap during the execution of fi by the server
sx, the size is
gap
i = T pre (fi)− Rx − COST pkg

i (17)

We take advantage of the free gap when executing functions
ut with preconditions. Sufficient conditions for the execution of
he warm-up policy are as follows:

(a) No impact on the normal execution speed of the edge
server.

(b) Sufficient free gap to download the entire package.

S. Zheng, B. Liu, W. Lin et al. Future Generation Computer Systems 144 (2023) 105–116

4

s
a

i
a

D

s
d

γ

b
o
a

ω

{

b

.3.2. Dependency package removal strategy
The lower-priority packages will be removed if there is no

pace left to cache new packages in the server dependency pack-
ge window. The removal strategy is shown as follows.

(1) Check the packages one by one, and if the package is not
in the 3rd-level Function Package Window, delete it until
the server window can cache all new packages or traverse
all packages.

(2) If there are still new packages not cached, do the same as
(1) for the 2nd-level Function Package Window.

(3) If there are still new packages not cached, do the same as
(1) for the 1st-level Function Package Window.

Algorithm 2: The Dependency Package Window Policy
(DPWP)

Input: Foreseen Sequence FS , the currently executing
function fi (deployed on esx)

1 Generate the three-level FP_Win according to FS
2 Get the next two functions (fi+1 and fi+2) to be deployed
3 if esx has free time gap when executing fi then
4 Download the packages required by f i+1 or f i+2 and

add to EP_Win of esx virtually
5 for all p ∈ EP_Win do
6 if EP_Win is not enough and p /∈ 3rd_FP_Win then
7 Delete p

8 If EP_Win is still not enough, Executing lines 5-7 of code
for 2nd_FP_Win, 1st_FP_Win in turn

9 Download the warm-up packages during the free gap

Definition 3. Dependency package loading latency

Dependency packages required by a function missing from the
ES will be downloaded from the remote data center when the
function is executed. The download time of these packages is part
of the cold start latency, as the packages’ download affects the
processing schedule. Therefore, the dependency package loading
latency of an application is defined as

δ =
SUM({ρ | ρ ∈ FuncWin and ρ not in ES})

rl
(18)

Where rl is the remote data center download rate, FuncWin
ndicates the packages required by the functions included in the
pplication.

efinition 4. Dependency package hit rate

The dependency package required by functions is considered
to be warmed up successfully if it is in the edge server cluster
ES during scheduling. In this case, the dependency packages and
the precursor data can be transferred synchronously. Thus, the hit
rate is defined as

ψ =
SUM({ρ | ρ ∈ FuncWin and ρ in ES})

SUM({ρ | ρ ∈ FuncWin})
(19)

4.4. Multiplexed data transmission

The bandwidth of communication links in edge environments
is usually limited. We considered dividing the data for multi-
plexing and then stitching them when all the data reaches the
destination server. The existing study [25] finds all the simple
paths between the source server and the destination server and
then divide the data for multiplexing. However, this method has
shortcomings. In most cases, the maximum transmission capac-
ity between two points is less than the simple overlay of the
 w

110
Fig. 3. Maximum transmission capacity.

transmission capacity of all shortest paths between two points. As
shown in Fig. 3, the maximum transmission capacity of the link
{es1, es2, es3, es4} is 5, and the maximum transmission capacity
of the link {es1, es3, es4} is 6, but the maximum transmission
capacity between es1 and es4 is not 5 + 6 = 11, This is because
the two paths share the bandwidth of the link {es3, es4}.

Data multiplexing requires consideration of the maximum
transmission capacity between two points and traffic balancing.
We refer to the idea of the maximum flow augmentation path
to solve data multiplexing. First, we find all the simple paths
between the source server and the destination server, sort them
by path length and remove the paths whose path length is larger
than the shortest path length by more than ρ . This excludes paths
that pass through multiple intermediate servers so that the traffic
is concentrated around the shortest and maximum transmission
capacity paths. Secondly, we sort the remaining paths according
to the transmission time index of paths, with the smaller ones
going forward.

Definition 5. Transmission time index

Suppose a simple path Path = {es1, es2, . . . , ess} consists of
edge servers and the transmission time index of this path is
efined as

=

s−1∑
i=1

1
transi,i+1

(20)

The time required to transfer α GB of data on this path can be
calculated by

t = αγ (21)

Eq. (21) shows that the smaller the transmission time index
γ of a path is, the less time it takes to transfer the same data.
Ranking the paths with small γ forward is to rank the paths with
large transmission capacity forward and also move the paths with
small path length forward. Since the path length is smaller, the γ
value will be relatively smaller.

A. Data multiplexing based on augmented path
To maximize the overall transmission capacity between two

points, we check each path in turn of the path table ranked
according to the transmission time index. For a simple path
Path = {es1, es2, . . . , ess}, if all links {esi, esi+1} have remaining
andwidth, it can act as an augmented path to increase the
verall transmission capacity. The contributing bandwidth of this
ugmented path is

= min
(esi,esi+1)∈Path

{
BW left (i, i + 1)

}
(22)

BW left (i, i + 1) is the remaining bandwidth of the link
esi, esi+1}. The sum of the contributing bandwidth contributed
y all the augmentation paths is the equivalent maximum band-

idth between two points. Next, we need to divide the data so

S. Zheng, B. Liu, W. Lin et al. Future Generation Computer Systems 144 (2023) 105–116

t
s
t
t
i

C

L

t

W

s
d
v

D

η

t
d
t

4

t
l

m

o

T

hat the data on different augmentation paths can reach the target
erver at the same time. Suppose the source server esx needs to
ransfer η GB data to the target server esy. There are β augmenta-
ion paths between the servers esx and esy, and let the contribut-
ng bandwidth and length of these augmentation paths be

BW = [bw1, bw2, . . . , bwβ]T

= [l1, l2, . . . , lβ]T

Therefore, the weight vector of the transmission time index of
he augmented paths can be expressed as

= diag(
l1

bw1
,

l2
bw2

, . . . ,
lβ

bwβ
)

Where diag (. . .) is the diagonal matrix, lθ
bwθ

is the transmis-
ion time index of augmentation path Pathθ . Let the amount of
ata allocated on the augmented path Pathθ be dθ , and the data
ector of the augmented paths is

= [d1, d2, . . . , dβ]T

By definition, there is the following relationship

= SUM
([
d1, d2, . . . , dβ

])
(23)

WD =
[
t1, t2, . . . , tβ

]T (24)

Where tθ is the time when the data transferred through the
augmented path Pathθ reaches the target server. To make the
overall arrival time the shortest, t1 = t2 = · · · = tβ (*). Solving
the system of Eqs. (23) (24) (∗) yields

σx,y = SUM

(
β∑

c=1

bwc

)
(25)

D =
η

σx,y

[
bw1, bw2, . . . , bwβ

] T (26)

t = tθ = dθ
lθ

bwθ
=

η

σx,y
(27)

Where σx,y is the equivalent maximum bandwidth between
he server esx and esy, t is the time required to transfer η GB of
ata from esx to esy, and tθ = dθ

lθ
bwθ

is the arrival time of data on
he augmented path Pathθ , which is calculated by Eq. (21)

.5. Package-aware scheduling with embedded caching policy

We design a Double Layers Dynamic Programming algorithm
o optimize function offloading by superimposing ADP . The two
ayers of ADP consider different optimization scenarios. DLDP em-
beds the caching policy into the scheduling algorithm by means of
phased optimization to weaken the conflict between placement
optimization and dependency package optimization.

The first layer of dynamic programming is devoted to opti-
mizing the general function offload model without considering
the latency in loading dependency packages. This layer considers
the application topology and the edge environment configuration
to find an optimal deployment solution for the current system
model, then provides guidance for the optimization of common
potential factors for both models. The optimal deployment loca-
tion of the function for the general unloading model is shown
in Eq. (16).

The second layer of dynamic programming solves the opti-
mization problem of function offloading models considering the
dependency package. This layer considers package awareness
and package affinity of edge servers to schedule functions, tak-
ing full advantage of the foresight sequence to improve node
affinity. The consistency of execution topology of dynamic pro-
gramming provides guidance for package caching, which in turn
111
increases the affinity of the edge nodes and supports the second
layer of package-aware scheduling. This is a mutually reinforcing
relationship.

With the dependency package window policy, most packages
are already cached before function execution. When performing
the second layer of dynamic programming, we can exclude edge
servers with poor affinity and integrate all factors to find the
optimal deployment of the function offloading model considering
the dependency package.

Considering the same example fi → fj, the optimal deploy-
ent position of the function fi becomes

pt (fi) =

{
esx| min

esx∈ES
T fin′ (

fj
)}

(28)

fin′ (
fj
)

= T fin
x (fi)+ t ′x (i, j)+ COST pkg

j + COST CPU
j,_

Algorithm 3: Double Level Dynamic Programming (DLDP)
Input: The topological sequence Func of function chains,

ES
1 Run ADP to solve the optimal offloading of the

application without considering packages and output the
Execution Sequence

2 for all fj ∈ Func do
3 if fj is an entry function then
4 continue
5 Get all precursors Prefunc of fj
6 for esy ∈ ES do
7 Assume that fj is deployed in esy
8 for fi ∈ Prefunc do
9 Deploy fi virtually by Considering all factors,

including the affinity of edge nodes, so that fj
starts at the earliest time

10 for f ∈ Prefunc do
11 Deploy function f
12 Executing the caching policy DPWP

13 Update T fin (
fj
)
of fj on each es ∈ ES

14 Calculate the minimum Makespan of Func

5. Experimental validation

In this section, we conducted extensive experiments to evalu-
ate the effectiveness and performance of the DLDP algorithm. The
main evaluation metrics include application completion time, the
loading latency and cache hit ratio of the dependency package.
We also analyze the impact of different system configurations,
workload types, and dependency scenarios on different schedul-
ing strategies. Overall, when the number of edge servers exceeds
11, DLDP reduces the loading latency of the dependency package
by more than 97.84%, and the package hit rate is over 99%.
Within this context, DLDP achieves excellent performance and
significantly outperforms four baselines in the application com-
pletion time by more than 55.67%. For diverse workloads and
edge environments, DLDP continues to perform consistently.

5.1. Experiment setup

The experiments were implemented in Python 3.7 on a Win-
dows 10 computer with an Intel Core i5-9400F CPU and 16.00 GB
RAM.

S. Zheng, B. Liu, W. Lin et al. Future Generation Computer Systems 144 (2023) 105–116

5

f
2
s
m
e
t
w

5

u
v
t
c
p
t
s

5

i
m
c
i
i
a
a
d
o
e
o
i

L
l

.1.1. Workload
The simulation is conducted based on the real cluster trace

rom Alibaba [36], which contains information from more than
0,000 different DAGs. We performed preliminary processing to
elect more than 3000 applications (DAGs) to test the perfor-
ance of different algorithms. Also, 100 applications (DAGs),
ach containing a different number of functions, were selected
o test the ability of the algorithms to handle different types of
orkloads.

.1.2. Parameter configuration
Numerous factors affect application completion time, and we

se the control variable method to analyze the impact of different
ariables on the performance of each algorithm. The impact fac-
ors tested include the number of edge servers, workload type,
apacity of server cache window, type and size of dependency
ackage, servers’ performance, and link bandwidth. When testing
he impact of workload type and specific configurations of edge
ervers, the number of edge servers is fixed at 12.

.1.3. Baseline algorithm
The research in this paper, ‘‘Reducing the latency of load-

ng the dependency packages while optimizing function place-
ent’’ is essentially a task (function) offloading study for edge
omputing. We have selected four relatively advanced offload-
ng algorithms for comparison, which show good performance
n handling tasks with priority order. The function offloading
lgorithms in edge computing lack consideration of loading pack-
ges, and we improved the four baseline algorithms to consider
ependency packages. We aim to evaluate the adaptability of
ur package caching strategy in the edge environment and the
ffectiveness achieved by DLDP in handling serverless function
ffloading and reducing loading latency. The baseline algorithm
s as follows.

(1) PASS [30]: PASS is a priority-based allocation and selec-
tion algorithm dedicated to solving the problem of placing
serverless functions with dependencies in edge computing.
The algorithm considers the complex topology of the ap-
plication and the priority order of the parallel-executable
functions to priority ranking. It also selects the appropriate
data transaction method (direct transmission or remote
transmission) for functions with different fan-out degrees
during the allocation process to reduce the time cost of
transmitting data

(2) Fixdoc [20]: Fixdoc models the application as a DAG, then
considers various constraints on task offloading and the
configuration of functions on the server for optimal plan-
ning. Depending on the edge configuration, the algorithm
aims to find the optimal placement for each function, to
minimize the application completion time.

(3) HEFT [22]: Heterogeneous Earliest Completion Time (HEFT)
is a high-performance, low-complexity task scheduling al-
gorithm for heterogeneous environments. HEFT first de-
fines the priority of the task and then selects the task with
the highest priority for processing at each step to minimize
the earliest completion time. Tasks adopt an insertion-
based allocation approach in the scheduling process.

(4) Greedy [18,37]: For each task, the Greedy algorithm always
schedules the task to the synthetically optimal server for
processing. Existing offloading studies [18] on serverless
platforms consider dependency package awareness and
scheduling tasks to nodes with high affinity. We improve
the Greed algorithm by evaluating the package affinity of
edge nodes in scheduling.

The server windows of PASS, Fixdoc , HEFT and Greedy use the
east Recently Used (LRU) cache removal strategy and take the
oading latency of dependency packages into account.
112
Fig. 4. Performance of DLDP and the improvement (%) of DLDP over four
baseline algorithms.

5.2. Experimental results

We show the experimental results of each algorithm on the
cluster track from Alibaba and analyze the main reasons for the
improvement of the DLDP algorithm.

5.2.1. Overall performance
Fig. 4 shows the performance of processing all DAGs with

a cluster containing a different number of edge servers. Left-
vertical coordinates indicate the time. Right-vertical coordinates
indicate the improvement (%) of DLDP over other baseline algo-
rithms regarding the average completion time (Makespan) of all
applications and the loading latency of packages (δ).

As the number of servers increases, the dependency package
hit rate (ψ) gradually increases, and the loading latency (δ)
rapidly decreases. Hence, the average completion time (Makespan)
of DLDP keeps falling. Thanks to this, the performance improve-
ment (%) of DLDP over the baseline algorithm rises steadily. Two
reasons for the reduction in Makespan are given. One is more
servers are available for processing tasks, and the other is that
the loading latency is reduced due to more dependency packages
being cached in advance. The DLDP algorithm performs well in
caching dependency packages, with a hit rate of over 99% and
a reduction in loading latency of over 97.84% when the number
of servers exceeds 11. This shows that our package caching
strategy works well and is suitable for scheduling scenarios in
edge environments. Due to the excellent caching performance,
the application completion time is reduced by more than 55.67%
over the four baselines (PASS 55.67%, Fixdoc 65.78%, HEFT 68.61%,
and Greed 74.34%), which is the result of the joint optimization
with the package-aware scheduling and the caching strategy.

5.2.2. Sensitivity analysis
Figs. 6–12. shows the performance of each algorithm with

different system configurations when the number of edge servers
is 12. The Left-vertical coordinate indicates the average applica-
tion completion time, and the Right-vertical coordinate indicates
the performance improvement (%) of DLDP over the other four
baseline algorithms.

A. Workload type
Complex large applications (containing more functions) take

more time to schedule. The more complex the application topol-
ogy is, the more time it should take. Figs. 5–6 shows that the
average Makespan rises faster when the number of functions in

S. Zheng, B. Liu, W. Lin et al. Future Generation Computer Systems 144 (2023) 105–116
Fig. 5. Average completion time under different number of functions (8 servers).

Fig. 6. Average completion time under different number of functions (12
servers).

Fig. 7. Average completion time under different size of dependent package.

the application is 0 to 40 and rises slowly when the number is 40
to 100. Sporadic small workloads also take up a lot of server time.
A single function’s average processing time decreases instead
when large workloads are arranged reasonably, illustrating that
113
Fig. 8. Average completion time under different number of packages used by
functions.

Fig. 9. Average completion time under different number of package types.

Fig. 10. Average completion time under different link bandwidth.

a suitable scheduling strategy is critical. When handling applica-
tions containing different numbers of functions, DLDP has a great
improvement over other algorithms, especially when the number
is from 10 to 60, 100 or more. This shows that DLDP adapts to
different types of workloads. When resources are limited, the

S. Zheng, B. Liu, W. Lin et al. Future Generation Computer Systems 144 (2023) 105–116

p
o
s
u
s
D
i
I

Fig. 11. Average completion time under different processing power of edge
server.

Fig. 12. Average completion time under different capacity of server’s package
window.

Greed strategy performs poorly and is unsuitable for handling
large workloads.

B. Function dependency package
Figs. 7–8 shows that the application completion time increases

significantly when the average size of the dependency packages
required by the function becomes larger. It takes more time to
load large dependency packages. Also, DLDP’s hit rate of de-
pendency packages tends to decrease, which shows that it is
more challenging to cache large dependency packages, and this is
one of the reasons why large dependency packages cause severe
latency. The average number of dependencies of functions can
also lead to higher latency. With the same edge environment
configuration and application topology, functions that depend
on more packages are more likely to download packages from
remote data centers and take more time to load packages. DLDP
erforms well in these two aspects, with a steady improvement
ver the other algorithms, indicating that the caching strategy is
uccessful and adapts to diverse dependency scenarios. In partic-
lar, the application completion time of DLDP remains almost the
ame when the average number of dependencies increases since
LDP keeps the cache hit ratio at a high level. Therefore, there
s no need to spend extra time loading dependency packages.
n terms of the types of dependency packages, all algorithms
114
perform better. The average scheduling time of each algorithm
fluctuates but has no rising trend when the total number of the
kinds of packages increases, as shown in Fig. 9.

C. Edge server configuration
The performance of 8 and 12 servers handling different work-

loads (as shown in Figs. 5–6) shows that in resource-constrained
edge environments, the performance gap between different
scheduling strategies becomes more apparent, and the time re-
quired to schedule workloads with different sizes varies more. It
means that resource-constrained environments are more
stringent for scheduling. With limited resources in the edge en-
vironment, the scheduling strategy should consider the resource-
constrained situation more. Figs. 10–11 shows the effects of
communication link bandwidth and server processing capacity
on scheduling performance. The processing capacity affects the
task processing speed, and the communication capacity involves
the data transmission. Both significantly impact the scheduling
completion time, especially the link communication capacity.
Generally speaking, DLDP performs steadily and has outstand-
ing performance under the limited processing capability and
link bandwidth. Under limited communication capacity, DLDP
and PASS perform outstandingly, with only slight variation in
application completion time due to the optimization of both
algorithms for the data transfer method. The greedy strategy
only considers the optimal placement in the current situation
and lacks reasonable planning in the resource-constrained case.
Fig. 12 shows the impact of different server window sizes on the
application completion time, and we can see that the cache space
constraint does not significantly affect our caching strategy.

6. Conclusion

In this paper, we discuss the great potential of the server-
less edge computing paradigm, which has inspired research on
scheduling serverless functions in edge computing. Functions that
rely on large packages suffer from severe loading latency when
containerized. Considering package caching is essential for edge
latency-sensitive tasks. Our proposed Double Layers Dynamic
Programming algorithm can effectively plan the deployment loca-
tion of functions. Combined with the Dependency Package Win-
dowing Policy, most of the required dependency packages are
cached before function execution. The loading latency is reduced
by 97.87% compared to other strategies. In the future, we will
continue to focus on scheduling optimization and data transfer
optimization in serverless edge computing and propose more
approaches with practical value.

CRediT authorship contribution statement

Senjiong Zheng: Methodology, Software, Writing – original
draft. Bo Liu: Methodology, Writing – review & editing. Weiwei
Lin: Methodology, Writing – review & editing, Funding acqui-
sition. Xiaoying Ye: Investigation, Writing – review & editing.
Keqin Li: Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability
No data was used for the research described in the article.

S. Zheng, B. Liu, W. Lin et al. Future Generation Computer Systems 144 (2023) 105–116

A

o
N
d
(
G
(
a

R

cknowledgments

This work is supported by Key-Area Research and Devel-
pment Program of Guangdong Province (2021B0101420002),
ational Natural Science Foundation of China (62072187), Guang-
ong Major Project of Basic and Applied Basic Research
2019B030302002), the Major Key Project of PCL (PCL2021A09),
uangdong Marine Economic Development Special Fund Project
GDNRC[2022]17) and Guangzhou Development Zone Science
nd Technology Project (2021GH10, 2020GH10).

eferences

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges,
IEEE Internet Things J. 3 (2016) 637–646.

[2] N. Ferry, R. Dautov, H. Song, Towards a model-based serverless platform
for the cloud-edge-IoT continuum, in: 2022 22nd IEEE International Sym-
posium on Cluster, Cloud and Internet Computing, CCGrid, IEEE, 2022, pp.
851–858.

[3] A.M. Alwakeel, An overview of fog computing and edge computing security
and privacy issues, Sensors 21 (24) (2021) 8226.

[4] A. Rasheed, P.H.J. Chong, I.W.H. Ho, X.J. Li, W. Liu, An overview of
mobile edge computing: Architecture, technology and direction, KSII Trans.
Internet Inf. Syst. 13 (2019) 4849–4864.

[5] L.A. Haibeh, M.C. Yagoub, A. Jarray, A survey on mobile edge computing in-
frastructure: Design, resource management, and optimization approaches,
IEEE Access 10 (2022) 27591–27610.

[6] K. Cao, Y. Liu, G. Meng, Q. Sun, An overview on edge computing research,
IEEE Access 8 (2020) 85714–85728.

[7] M.S. Aslanpour, A.N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski, D. Taibi,
M. Assuncao, S.S. Gill, R. Gaire, S. Dustdar, Serverless edge computing:
Vision and challenges, in: 2021 Australasian Computer Science Week
Multiconference, 2021, pp. 1–10.

[8] G.R. Russo, A. Milani, S. Iannucci, V. Cardellini, Towards QoS-Aware
function composition scheduling in Apache OpenWhisk, in: 2022 IEEE
International Conference on Pervasive Computing and Communications
Workshops and Other Affiliated Events, PerCom Workshops, IEEE, 2022,
pp. 693–698.

[9] G.A.S. Cassel, V.F. Rodrigues, R. da Rosa Righi, M.R. Bez, A.C. Nepomuceno,
C.A. da Costa, Serverless computing for Internet of Things: A systematic
literature review, Future Gener. Comput. Syst. 128 (2022) 299–316.

[10] S. Lee, D. Yoon, S. Yeo, S. Oh, Mitigating cold start problem in serverless
computing with function fusion, Sensors 21 (24) (2021) 8416.

[11] M. Kiener, M. Chadha, M. Gerndt, Towards demystifying intra-function
parallelism in serverless computing, in: Proceedings of the Seventh
International Workshop on Serverless Computing, WoSC7 2021, 2021
pp. 42–49.

[12] L. Pan, L. Wang, S. Chen, F. Liu, Retention-aware container caching for
serverless edge computing, in: IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications, 2022, pp. 1069–1078.

[13] P. Gackstatter, P.A. Frangoudis, S. Dustdar, Pushing serverless to the edge
with WebAssembly runtimes, in: 2022 22nd IEEE International Symposium
on Cluster, Cloud and Internet Computing, CCGrid, IEEE, 2022, pp. 140–149.

[14] V. Kjorveziroski, S. Filiposka, V. Trajkovik, Serverless platforms performance
evaluation at the network edge, in: International Conference on ICT
Innovations, Springer, 2022, pp. 160–172.

[15] S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska, M. Kostoska,
B. Jakimovski, S. Ristov, R. Prodan, A serverless real-time data analytics
platform for edge computing, IEEE Internet Comput. 21 (2017) 64–71.

[16] L. Wang, M. Li, Y. Zhang, T. Ristenpart, M.M. Swift, Peeking behind the
curtains of serverless platforms, in: USENIX Annual Technical Conference,
2018, pp. 133–146.

[17] P. Silva, D. Fireman, T.E. Pereira, Prebaking functions to warm the server-
less cold start, in: Proceedings of the 21st International Middleware
Conference, 2020, pp. 1–13.

[18] G. Aumala, E.F. Boza, L. Ortiz-Avilés, G. Totoy, C.L. Abad, Beyond load
balancing: Package-aware scheduling for serverless platforms, in: 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGRID, 2019, pp. 282–291.

[19] J. Manner, M. Endreß, T. Heckel, G. Wirtz, Cold start influencing factors
in function as a service, in: 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion, UCC Companion, 2018
pp. 181–188.
115
[20] L. Liu, H. Tan, S.H.-C. Jiang, Z. Han, X. Li, H. Huang, Dependent task
placement and scheduling with function configuration in edge computing,
in: 2019 IEEE/ACM 27th International Symposium on Quality of Service,
IWQoS, 2019, pp. 1–10.

[21] F.A. Salaht, F. Desprez, A. Lèbre, An overview of service placement problem
in fog and edge computing, ACM Comput. Surv. 53 (2020) 1–35.

[22] H.R. Topcuoglu, S. Hariri, M. Wu, Performance-effective and low-
complexity task scheduling for heterogeneous computing, IEEE Trans.
Parallel Distributed Syst. 13 (2002) 260–274.

[23] S. Hu, G. Li, Dynamic request scheduling optimization in mobile edge
computing for IoT applications, IEEE Internet Things J. 7 (2020) 1426–1437.

[24] A. Brogi, S. Forti, QoS-aware deployment of IoT applications through the
fog, IEEE Internet Things J. 4 (2017) 1185–1192.

[25] S. Deng, H. Zhao, Z. Xiang, C. Zhang, R. Jiang, Y. Li, J. Yin, S. Dustdar, A.Y.
Zomaya, Dependent function embedding for distributed serverless edge
computing, IEEE Trans. Parallel Distrib. Syst. 33 (10) (2021) 2346–2357.

[26] A.A. Al-Habob, O.A. Dobre, A. garcía Armada, Sequential task scheduling for
mobile edge computing using genetic algorithm, in: 2019 IEEE Globecom
Workshops, GC Wkshps, 2019, pp. 1–6.

[27] S. Ma, S. Song, L. Yang, J. Zhao, F. Yang, L. Zhai, Dependent tasks offloading
based on particle swarm optimization algorithm in multi-access edge
computing, Appl. Soft Comput. 112 (2021) 107790.

[28] R. Xie, D.-S. Gu, Q. Tang, T. Huang, F. Yu, Workflow scheduling using hybrid
PSO-GA algorithm in serverless edge computing for the Internet of Things,
in: 2022 IEEE 95th Vehicular Technology Conference, VTC2022-Spring,
2022, pp. 1–7.

[29] S. Wang, R. Urgaonkar, M. Zafer, T. He, K.S. Chan, K.K. Leung, Dynamic
service migration in mobile edge computing based on Markov decision
process, IEEE/ACM Trans. Netw. 27 (2019) 1272–1288.

[30] Y. Li, D. Zeng, L. Gu, K. Wang, S. Guo, On the joint optimization of
function assignment and communication scheduling toward performance
efficient serverless edge computing, in: 2022 IEEE/ACM 30th International
Symposium on Quality of Service, IWQoS, 2022, pp. 1–9.

[31] H. Jeon, S. Shin, C. Cho, S. Yoon, Deep reinforcement learning for QoS-
aware package caching in serverless edge computing, in: 2021 IEEE Global
Communications Conference, GLOBECOM, 2021, pp. 1–6.

[32] P. Vahidinia, B.J. Farahani, F.S. Aliee, Cold start in serverless computing:
Current trends and mitigation strategies, in: 2020 International Conference
on Omni-Layer Intelligent Systems, COINS, 2020, pp. 1–7.

[33] E. Oakes, L. Yang, K. Houck, T. Harter, A.C. Arpaci-Dusseau, R.H. Arpaci-
Dusseau, Pipsqueak: Lean Lambdas with large libraries, in: 2017 IEEE 37th
International Conference on Distributed Computing Systems Workshops,
ICDCSW, 2017, pp. 395–400.

[34] A. Fuerst, P. Sharma, FaasCache: Keeping serverless computing alive with
greedy-dual caching, in: Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating
Systems, 2021, pp. 386–400.

[35] G. De Palma, S. Giallorenzo, J. Mauro, M. Trentin, G. Zavattaro, Topology-
aware serverless function-execution scheduling, 2022, arXiv preprint arXiv:
2205.10176.

[36] Alibaba cluster trace program, 2022, https://github.com/alibaba/
clusterdata, Online.

[37] L. Ma, Y. Lu, F. Zhang, S. Sun, Dynamic task scheduling in cloud computing
based on greedy strategy, in: ISCTCS, 2012.

Senjiong Zheng received the B.S. degree in 2020 from
the School of Computer Science, South China Normal
University, Guangzhou, China, where he is currently
working toward the M.S. degree in software engineer-
ing. His research interests include edge computing and
serverless computing.

Bo Liu is currently a professor in the School of Com-
puter Science at South China Normal University. His
research interests include cloud storage technology,
cloud computing and big data technology.

http://refhub.elsevier.com/S0167-739X(23)00054-7/sb1
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb1
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb1
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb2
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb2
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb2
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb2
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb2
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb2
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb2
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb3
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb3
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb3
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb4
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb4
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb4
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb4
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb4
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb5
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb5
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb5
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb5
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb5
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb6
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb6
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb6
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb7
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb7
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb7
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb7
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb7
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb7
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb7
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb8
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb8
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb8
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb8
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb8
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb8
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb8
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb8
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb8
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb9
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb9
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb9
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb9
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb9
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb10
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb10
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb10
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb11
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb11
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb11
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb11
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb11
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb11
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb11
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb12
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb12
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb12
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb12
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb12
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb13
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb13
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb13
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb13
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb13
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb14
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb14
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb14
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb14
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb14
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb15
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb15
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb15
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb15
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb15
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb16
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb16
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb16
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb16
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb16
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb17
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb17
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb17
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb17
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb17
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb18
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb18
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb18
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb18
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb18
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb18
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb18
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb19
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb19
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb19
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb19
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb19
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb19
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb19
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb20
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb20
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb20
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb20
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb20
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb20
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb20
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb21
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb21
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb21
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb22
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb22
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb22
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb22
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb22
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb23
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb23
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb23
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb24
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb24
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb24
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb25
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb25
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb25
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb25
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb25
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb26
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb26
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb26
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb26
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb26
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb27
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb27
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb27
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb27
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb27
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb28
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb28
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb28
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb28
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb28
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb28
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb28
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb29
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb29
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb29
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb29
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb29
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb30
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb30
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb30
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb30
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb30
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb30
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb30
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb31
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb31
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb31
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb31
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb31
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb32
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb32
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb32
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb32
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb32
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb33
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb33
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb33
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb33
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb33
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb33
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb33
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb34
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb34
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb34
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb34
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb34
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb34
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb34
http://arxiv.org/abs/2205.10176
http://arxiv.org/abs/2205.10176
http://arxiv.org/abs/2205.10176
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb37
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb37
http://refhub.elsevier.com/S0167-739X(23)00054-7/sb37

S. Zheng, B. Liu, W. Lin et al. Future Generation Computer Systems 144 (2023) 105–116

a
j
C

Weiwei Lin received his B.S. and M.S. degrees from
Nanchang University in 2001 and 2004, respectively,
and the Ph.D. degree in Computer Application from
South China University of Technology in 2007. He has
been serving as visiting scholar at Clemson University
from 2016 to 2017. Currently, he is a professor in
the School of Computer Science and Engineering, South
China University of Technology. His research interests
include distributed systems, cloud computing, big data
computing and AI application technologies. He has
published more than 100 papers in refereed journals

nd conference proceedings. He has been the reviewers for many international
ournals, including TC, TCYB, TSC, TCC, Information Sciences, Future Generation
omputer Systems, etc. He is a senior member of CCF and a member of the IEEE.

Xiaoying Ye received her Bachelor degree in Computer
Science from University of Electronic Science and Tech-
nology of China in 2006 and Master degree in Business
Administration from Guilin University of Technology in
2014. Her research interests mainly include big data
and software engineering.
116
Keqin Li is a SUNY Distinguished Professor of Com-
puter Science with the State University of New York. He
is also a National Distinguished Professor with Hunan
University, China. His current research interests include
cloud computing, fog computing and mobile edge com-
puting, energy-efficient computing and communication,
embedded systems and cyber–physical systems, het-
erogeneous computing systems, big data computing,
high performance computing, CPU–GPU hybrid and
cooperative computing, computer architectures and
systems, computer networking, machine learning, in-

telligent and soft computing. He has authored or coauthored over 870 journal
articles, book chapters, and refereed conference papers, and has received several
best paper awards. He holds nearly 70 patents announced or authorized by the
Chinese National Intellectual Property Administration. He is among the world’s
top 5 most influential scientists in parallel and distributed computing in terms of
both single-year impact and career-long impact based on a composite indicator
of Scopus citation database. He has chaired many international conferences. He
is currently an associate editor of the ACM Computing Surveys and the CCF
Transactions on High Performance Computing. He has served on the editorial
boards of the IEEE Transactions on Parallel and Distributed Systems, the IEEE
Transactions on Computers, the IEEE Transactions on Cloud Computing, the IEEE
Transactions on Services Computing, and the IEEE Transactions on Sustainable
Computing. He is an IEEE Fellow and an AAIA Fellow. He is also a Member of
Academia Europaea (Academician of the Academy of Europe).

	A package-aware scheduling strategy for edge serverless functions based on multi-stage optimization
	Introduction
	Related work
	Problem formulation
	Edge servers and workloads
	General function offloading model
	Function offloading model with considering dependency packages
	Optimization objective formulation

	Algorithm design
	Multi-factor model
	Adjustable Dynamic Programming
	Design of Adjustable Dynamic Programming
	Why choose dynamic programming
	Optimal deployment location for functions
	Foreseen Sequence

	Dependency package window cache policy
	Dependency package warm-up strategy
	Dependency package removal strategy

	Multiplexed data transmission
	A. Data multiplexing based on augmented path

	Package-aware scheduling with embedded caching policy

	Experimental validation
	Experiment setup
	Workload
	Parameter configuration
	Baseline algorithm

	Experimental results
	Overall performance
	Sensitivity analysis
	A. Workload type
	B. Function dependency package
	C. Edge server configuration

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

