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Abstract—In recent years, the heterogeneous distributed platform integrating with FPGAs to accelerate computation tasks has been

widely studied to deal with the deluge of data. However, most of current works suffer from poor universality and low resource utilization

that run specific algorithms with the highly customized structure. Moreover, there are still many challenges, such as data curation, task

scheduling, and resource management, which further limit the scalability of a CPU-FPGA distributed platform. In this paper, we present

HeteroYARN, an FPGA-accelerated heterogeneous architecture based on YARN platform, which provides resource management and

programming support for computing-intensive applications using FPGAs. In particular, the HeteroYARN abstracts FPGA accelerators

as general resources and provides programming APIs to utilize those accelerators easily. Our HeteroYARN simplifies the request and

usage of FPGA resources to enhance the efficiency of the heterogeneous framework while maintaining previous workflow unchanged.

Experimental results using two representative algorithms, K-means and Naive Bayes classifier, which are accelerated by FPGAs,

demonstrate the usability of the HeteroYARN framework and show performance speedup improvement by 7.5x (K-means) and 2.3x

(Naive Bayes) respectively compared to conventional CPU-only applications provided by Mahout.

Index Terms—Heterogeneous system, heterogeneous FPGA architecture, FPGA-accelerated computing, data-intensive computing, YARN
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1 INTRODUCTION

THE massive data processing demand in the big data era is
accompanied by the increasing amount of training data

and computation complexity, which has brought enormous
pressure to the traditional CPU-based data processing plat-
form [1]. With the emergence of “dark silicon” [2], limitations
that prevent powering up all processors are encountered,
evenwhen usingmulti-core design. For effective analysis and
interpretation of the big data, scalablemachine learningmeth-
ods are required to overcome the space and time bottlenecks
[3]. As the CPU-only architecture can no longer meet the
growing computational performance requirements, research-
ers are seeking better solutions to satisfy the continually
increasing computation demands. Thus, the rapid improve-
ments in processing that we have expected in the Moore’s
law era must now come through innovations in computer
architecture. One path left to continue the improvements in
performance of processors is developing domain-specific pro-
cessors [4]. With the excellent characteristics of low power,
high efficiency, and reprogrammability to customize high-
performance computing, integrating field-programmable

gate array (FPGA) accelerators into computing systems has
become a better choice among various solutions. Examples
of FPGAs in data centers, such asMicrosoft’s Catapult [5] and
Intel’s HARP [6], have already emerged, improving the com-
puting capability of the cluster with less energy consumption.
Integrating FPGAs into a distributed cluster is considered as
one of themost promising approaches to sustain the computa-
tion demand growth.

In contrast to the serial instruction executions used by
the general-purpose processor, internal computation com-
ponents enable FPGAs to achieve device-level parallelism.
As a semi-custom circuit chip in the field of Application
Specific Integrated Circuit (ASIC), its on-chip logic gates are
rich in resources, and the way of connection can be changed
by programming. FPGAs can be customized to accelerate
various applications’ computation-intensive tasks according
to their reprogramming ability. These features make it a
formidable component for datacenters [7], achieving higher
computational performance at lower clock speeds and
power consumption. Hence, it is feasible to enhance the
computation power of the distributed cluster while reduc-
ing power consumption, through integrating FPGA acceler-
ators into a cluster to deal with computationally intensive
tasks [5].

Many kinds of parallel computing platforms have been
proposed, including graphics processing unit (GPU) clus-
ters [8], FPGA clusters [9] and GPGPU/FPGA [10] mixed
clusters, to improve the performance of data processing
for different aspects of computing tasks. However, there are
still several key issues needed to be solved along with the
emerging trend of FPGA-enabled computing cluster.

� High development difficulty. The structure of a hetero-
geneous cluster is not transparent to developers, and
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the development cost with FPGAs is substantial that
advanced hardware and Register Transfer Language
(RTL) programming knowledge are required, and
lead to long development cycles and high cost.

� Low utilization. Current heterogeneous architectures
are highly customized for specific algorithms, which
undermine the homogeneity and reduce overall flexi-
bility with low resource utilization. Hadoop1.0 based
framework shield underlying details to reduce devel-
opment costs. Nevertheless, a whole cluster can only
employ highly customized FPGAs, limited by the
homogeneous cluster assumptions.

� Poor generality and flexibility. Because of the constrains
of the platform in resource management and job
scheduling coupling,Hadoop based research ismostly
applied to accelerate the implementation of MapRe-
duce framework algorithm, and its cluster architecture
cannot support other popular computing frameworks.

The FPGAs enable the implementation of custom comput-
ing tasks by standard software languages, but a specialized
large scale deployment without flexibility would not be a
good choice [11]. Hence, it is needed to propose a generic
approach that provides easy access to FPGA resources for
developers, reducing programming difficulties whilemanag-
ing the heterogeneous cluster transparently with good scal-
ability and flexibility.

To address these issues, we create a heterogeneous CPU-
FPGA distributed platform, which leverages the capabilities
of the Yet Another Resource Negotiator (YARN) framework
[12], and combine it with the power of FPGAs to achieve a
high-performance, low-power and efficient computing plat-
form for accelerating computation-intensive algorithms,
namely HeteroYARN. Based on the YARN framework, we
design new resource management strategies and scheduling
mechanisms to suit for the heterogeneous CPU-FPGA cluster
by modifying the related modules, including ResourceMan-
ager (RM) and NodeManager (NM), and provide deve-
lopment interfaces for easy usage of FPGAs as well.
Furthermore, we deploy a heterogeneous cluster using Xilinx
FPGAboards to demonstrate the validity and practicability of
our HeteroYARN framework, which provides the resource
abstraction and programming support for easy and efficient
FPGA usage. Our goal in building HeteroYARN is to find a
better way to manage FPGA resources in heterogeneous
environments, and try to achieve significant performance
improvements in computing-intensive algorithms.

However, FPGA is specialized as a special computing
acceleration hardware, which is quite different from the way
CPU and GPUwork. CPU and GPU have instruction sets that
can load different sequences to execute different programs,
while excessive programming efforts are needed to repro-
gram an FPGA into a different functional accelerator to exe-
cute different programs. Moreover, it will take several hours
to compile an FPGA program. Therefore, it would be better to
pre-equip FPGA accelerators in advance to diminish the over-
head. From the view of cluster resource management, these
FPGAs with different algorithms cannot be regarded as one
kind of computing resources, even though they have the
same hardware structure. A generic system to support vari-
ous applicationsmust deal with all kinds of resources, includ-
ing diverse FPGAs programmed for different tasks. In order

to ensure resource utilization, resourcemanagement platform
should have the ability to recognize and schedule different
kinds of accelerator resources, which will bring huge FPGA
deployment and maintenance burden. Therefore, in this
paper, we propose a unified FPGA communication interface
and device virtualization functions to coordinate the FPGA
communication and multi-process FPGA accelerator sharing,
greatly enhancing the efficiency of application development.

To this end, we build up an integrated platform for the
accelerated applications using FPGAs to shorten the comput-
ing time, by extending resource manager and task scheduler
of the YARN platform. The heterogeneous cluster hardware
architecture details are hidden to the users, yielding a signifi-
cant improvement in programmability. Besides, the algorithm
implementations on HeteroYARN can take the advantage of
FPGA accelerator resources by modifying the computing
dataflow that offloads computation-intensive tasks to FPGAs.
As an application scenario, we can adopt the CPU-FPGA het-
erogeneous cluster architecture to accelerate the machine
learning algorithms.

In summary, the paper presents a heterogeneous
CPU-FPGA system on YARN and makes the following
contributions.

1) We propose a heterogeneous cluster resource man-
agement framework called HeteroYARN, including a
new resource representation scheme that manages
logical FPGA accelerator functionality for better
scheduling decision making, the profile interfaces for
users to adjust resource capacity easily in computing
nodes, and the HeteroScheduler algorithm for global
multi-kind resource management to alleviate the
scheduling overhead. Also, we propose a two-way
link to communicate and transfer data between the
CPU and FPGAs in the heterogeneous cluster.

2) An implementation ofMapReduce framework is desig-
ned based on HeteroYARN to enable computation-
intensive applications to perform data processing tasks
on FPGA accelerators and maintain the original com-
putingmodel unchanged, which is capable of combing
MapReduce workflow and FPGA computation power,
and provides necessary programming APIs to support
the usage of FPGA accelerators.

3) We implement some computing-intensive algorithms
on the HeteroYARN framework. We modify the data
processing flow, offloading the computationally
intensive tasks to the FPGA accelerators, to achieve
the purpose of improving performance while avoid-
ing rising the development costs.

4) We evaluate our architecture by the experimental
results of K-means andNaive Bayes implementations,
and verify the effectiveness of resource management
and multi-job scheduling with more supplementary
experiments.We further analyze the performance bot-
tlenecks of our FPGA-accelerated environments based
on the experimental results.

The rest of the paper is organized as follows. Section 2
introduces the background knowledge and the related
works. Section 3 presents the overall system design of the
HeteroYARN. Section 4 provides a detailed description
about the heterogeneous MapReduce implementations on
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HeteroYARN platform. Section 5 shows the experimental
results obtained and evaluates the performance of the system.
Finally, Section 6 concludes this paper and highlights our
futureworks.

2 RELATED WORK

Considering the excellent performance of FPGA chips on
improving computing performance, the academic commu-
nity has done a substantial amount of previous studies In
this section, we first introduce the Hadoop YARN, which is
the architecture we extend for management and utilization
of FPGA resources in the heterogeneous environment.
Then, we describe the characteristics and advantages of
FPGA accelerators, existing technical obstacles and existing
heterogeneous systems especially designed for FPGAs.

2.1 Distributed Resource Management on YARN

Yet Another Resource Negotiator [12] is a widely used cluster
resource management layer in the Hadoop system that allo-
cates resources, such as CPU and memory, to multiple big
data applications (or jobs). Compared to the previous
Hadoop version, YARN decouples the cluster resource man-
agement and task scheduling to achieve the cluster sharing,
scalability and reliability. The fundamental idea of YARN is
to split up the functionalities of resource management and
job scheduling/monitoring into separate daemons, as shown
in Fig. 1, central RM and several per-node NMs. Each NM
typically manages resources available on a single node, and
periodically reports to the RM, which arbitrates all the avail-
able cluster resources, and thus helps manage the distributed
applications running on the YARN system. Periodic reports
also serve as the basis for monitoring the health of the entire
cluster so that RM can notify related applications when the
failure occurs. From Fig. 1, we can see the ApplicationMaster
(AM) instance, which is responsible for negotiating resources
from RM and working with the NMs to start the allocated
containers, and executing the MapReduce jobs on YARN
architecture.

Considering the resource utilization, maintenance cost and
data sharing, developers tend to deploy multiple computing
framework to a common cluster, and different resource
requests (CPU, memory, I/O and so on) make it hard to
avoid interfering with each other. In order to reduce the

inefficiencies caused by request competition, YARN is posi-
tioned as a data operating system, providing better resource
management and scheduling for all types of applications in
different framework such as MapReduce [13] and Spark [14].
YARN evolved from MapReduce, which plays an important
role in big data processing, but cannot be regarded as a uni-
versal resource management system now. Meanwhile, there
are several resource managers that are similar to YARN such
as Mesos [15], Omega [16] and Borg [17]. However, none of
them can directly support themanagement of FPGA accelera-
tor resources.

To manage heterogeneous computing resources for differ-
ent workloads and organizations, YARN recently introduces
a mechanism called label-based scheduling [18]. Label-based
scheduling provides job placement control on a multi-tenant
hadoop cluster [19]. An administrator can specify labels for
node and then composes task queue or job labels based on
the node labels, to control exactly which nodes are chosen to
run jobs with specified label. We have adopted a similar
resource management strategy, but have a completely inde-
pendent design and implementation. Specifically, both
scheduling mechanisms consider to mitigate the scheduling
overhead. TheHeteroScheduler algorithm ismainly based on
the resource dimension extension and accelerator resource
annotation. Hence, finer-grained scheduling decisions can be
made to optimize the system throughput in global. In other
words, the HeteroScheduler can be regarded as the extension
and implementation of label-based scheduling for the hetero-
geneous FPGA cluster. More details are given in Section 3.2.

Furthermore, there are already many works focusing on
integrating GPUs at cluster scale, mainly in combination of
GPU cluster and different existing computing platforms, such
as Hadoop [20], [21], [22], [23], Spark [24], Flink [25]. How-
ever, compared to GPUs, there is no instruction system in
FPGAs and only few ready-made libraries available. There-
fore, these GPU management techniques cannot be used to
manage FPGA systems directly. Hence, we design the mes-
sage format and a interaction system carefully to improve the
efficiency of the entire system in ourwork.

2.2 Distributed FPGA Cluster System

A FPGA accelerator is a reconfigurable integrated circuit with
much lower power consumption compared to CPUs and
GPUs. Since an FPGA is essentially customizable hardware, it
can achieve significant performance speedup at low clock fre-
quency. Owing to FPGAs’ energy efficiency, it has been
widely adopted for accelerating the computation intensive
kernels in standalone applications [26], [27]. Most FPGA-
based studies leverage FPGAs to implement specific applica-
tions [28] by integrating FPGAs into the data processing and
taking the accelerators as the co-processor to achieve promis-
ing performance improvement. Applications related to data
center also gradually focus on the heterogeneous architec-
tures [29], which is similar to the framework for creating net-
work FPGA clusters in a heterogeneous cloud data
center [30], and a hybrid CPU-FPGA databases for accelerat-
ing relational engine [31].

An FPGA implementation design is usually based on
hardware description languages (HDLs), such as Verilog and
VHDL, and requires a comprehensive knowledge about
hardware. High Level Synthesis (HLS) techniques have been

Fig. 1. Example of submitting MapReduce jobs to the resource manager
of YARN platform.
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developed aiming at (semi-)automatically generating hard-
ware implementations of specifications written in high level
languages [32]. However, the learning-curve for FPGA pro-
gramming is still very steep for software programmers, since
optimizing implementation requires a significant amount of
FPGA-specific knowledge.

Some studies [6], [33] assume that all nodes in the cluster
are equipped with the same functional FPGA accelerators, so
that the computing logic for accelerator can be embedded in
the subtasks during the programming phase. They do not
consider the heterogeneous resource management, and
ignore the task scheduling. FPMR [34] and Melia [35] are
examples of the remarkable works. FPMR [34] develops a
MapReduce framework on FPGA to eliminate the data com-
munication. Although FPMR provides programming abstrac-
tion, hardware architecture, and basic building blocks to
developers, users still have to write customized map/reduce
functions.Melia [35] utilizes the OpenCL programming fram-
ework, the general-purpose accelerator language, to abstract
FPGAs behind the MapReduce interfaces in C. However, the
performance evaluation of multi-node clusters only depends
on simulation results instead of practical implementations.

Besides heterogeneous MapReduce framework, some stud-
ies have integrated Peripheral Component Interconnect
Express (PCIE) based high-performance FPGA accelerators
into Spark running on commodity clusters. SparkCL [36] gen-
erates an OpenCL kernel for Altera FPGAs automatically and
executes FPGA accelerators on Spark. However, the program-
ming model of SparkCL discloses low-level OpenCL APIs,
such as thread ID, to users and only supports primitive data
types. Chen et al. [37] take genome sequence alignment as case
study to deploy FPGA accelerators onto Spark. Blaze [38]
abstracts FPGA accelerator as a service (FaaS), and provides a
set of clean programming APIs for applications to access the
FPGA accelerators easily that run on top of Apache Spark
and Hadoop YARN. In comparison, our architecture can get
better computational efficiency through finer-grained and
customized support for the computing architecture, speedup
improvement by 7.5x (ours) comparing to 4.3x (Blaze) in K-
means. Although both HeteroYARN and Blaze are deployed
to manage the FPGA accelerators in a heterogeneous cluster,
accelerators in Blaze only accelerate the specific computation
kernels, local sum of center distance calculation in K-means for
example, while HeteroYARN adopts a finer-grained task-level
mechanism in which FPGAs would participate more calcula-
tion processes to further reduce the computation overhead.

3 HETEROGENEOUS ARCHITECTURE OVERVIEW

We extend the native YARN platform for easily accessing
FPGA accelerators on the CPU-FPGA cluster. Here, we first
briefly describe the architecture of HeteroYARN framework,
followed by our design of the extended resource manage-
ment and task scheduler. Finally we introduce the mecha-
nism of data sharing betweenCPU and FPGAs.

3.1 Overall Architecture

As shown in Fig. 2, a heterogeneous cluster deployed onHeter-
oYARN framework is composed of a cluster management
node and several computing nodes integrated with FPGA
accelerators.Nodes in the cluster communicatewith each other

through the Ethernet network. Computing nodes connect with
FPGA devices through a medium driver. This driver provides
a bi-directional data transfer and communication link between
host and FPGA accelerators, and data is transferred in the
form of data packets.

The distributed structure is utilized to create a heteroge-
neous environment, where the YARN framework constitutes
the resource management infrastructure across the cluster.
Computational tasks will be packed and assigned to FPGAs
in the format they can recognize, so that most computational
loads run on the FPGA accelerators. HeteroYARN employs
the Direct Memory Access (DMA) engine to control the data
transfer betweenCPU and hardware accelerators.

At present, the native Hadoop 2.0 platform only supports
resource management of memory and CPU, so do the
resource allocation and task scheduling. Thus, no interface
for applications to use for access to hardware resources in the
heterogeneous environment. In order to provide a generic
system for usage of hardware resources, wemodify resource-
related modules in YARN, mainly involves RM and NM.We
summarize the keymodifications in the following sections.

As different kinds of applications run on heterogeneous
clusters, more requirements also emerge.We extend the com-
puting framework in YARN to provide interfaces for apply-
ing for and utilizing FPGAs andmodify the subtask template
for easy access to the hardware physical pathwhen customiz-
ing the usage of accelerators for applications. In particular,
we provide interfaces to set resource requirements for sub-
tasks and specify the node label expression by the job client.
Users are allowed to set the number and type of accelerator
resources when they submit an application. The AM is
extended to parse resource requests of the submitted job,
which is obtained from the job configuration file. AM also
needs to report the job label when registering this job to RM,
and specify the number of CPU, memory and FPGA resour-
ces simultaneously for containers allocated during task run-
ning. The node, on which the subtask is located to facilitate
accelerating tasks, obtains the physical path of allocated
accelerator device by theNodeManager (NM).

3.2 Cluster Resource Management Extension

3.2.1 Resource Dimension Extension

YARN platform uses multi-dimensional vectors to represent
different resources in the cluster. We expand the resource
description dimension in account of integrated FPGA resour-
ces. Taking MapReduce framework for example, which con-
tains two computing phases, Map and Reduce phases, we
can extend the cluster resource representation to < CPU;
memory;MapAcc;ReduceAcc > when we need to deploy an
acceleratedMapReduce framework in the cluster. The dimen-
sion of the representation vector is related to the kind of com-
puting framework and the number of processing steps
involved, regardless of the specific algorithms running on
the cluster.

3.2.2 Accelerator Resource Annotation

In order to differentiate FPGA accelerators that perform
different computations, we mark nodes with the logical
functionality of accelerators. For nodes containing FPGAaccel-
erators, label annotates the kind of job and the computation
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phase that it can run. In otherwords, instead of labelling accel-
erators just as “Accelerator”, we propose to use representation
like “KMeansMapAcc; 2”, “BayesRedAcc; 1”, where the num-
ber represents the amount of accelerators they have. This
annotation way is useful to reduce the global placement over-
heads of an accelerated application. RM can group nodes with
the same label together and separate the cluster into several
partitions. Hence, the applications submitted with the specific
label can only be scheduled to run on nodes that have the
same label.

3.2.3 Multi-Dimensional Resource Scheduling

We propose HeteroScheduler, a resource scheduling algo-
rithm for the heterogeneous cluster with FPGAs. This
scheduler combines multi-dimensional Dominant Resource
Fairness (DRF) algorithm and FIFO algorithm, to achieve
better management and scheduling for multiple resources,
like CPU, memory and FPGA accelerators (such as MapAcc
and ReduceAcc). HeteroScheduler uses a hierarchical queue
to organize resource requests, and utilizes a tree structure to
represent the cluster resources, where leaf nodes can be
regarded as container requests. HeteroScheduler first selects
the sub queue by DRF algorithm, and then determines the
leaf queue for container requests using standard FIFO algo-
rithm. Hierarchical structure is adopted to ensure the fair-
ness of resource sharing in multi-tenant environments and
mitigate the overhead of scheduling multiple jobs.

There are different groups of pending tasks in the Heter-
oScheduler. Tasks that request the same functional accelera-
tors will be put together in one group. Resource allocation
in the same group using FIFO strategy, which schedules
tasks in accordance with the submitted order. In the differ-
ent group, the scheduler uses the multi-dimensional DRF
algorithm, which is an extension of the traditional DRF algo-
rithm by incorporating the accelerator as dominated resour-
ces. It is also flexible to apply a priority scheduling as users
can set the priority level of applications manually.

In brief, HeteroScheduler does not only ensure schedul-
ing fairness and utilization of multiple resources, but also
provides convenience for integration of other kinds of hard-
ware accelerators in the future work.

3.3 Node Resource Manager Extension

We also extend the NM, which is responsible for resource
virtualization, allocation and recovery of local containers.

NM maintains the mapping of virtual accelerators to the
physical file path of device. We provide a profile interface
for users to adjust the number of virtual accelerators, CPU
kernel amount, and the memory size. NM instance needs to
report these information to RM at each startup. Nodes with
Mapper and Reducer accelerators should report in the for-
mat < CPU;MEM;MapAcc; ReduceAcc > , and RM will
configure these labels into YARN.

When receiving a request from AM to start the container
with accelerators, NM will map the virtual accelerators to the
physical location and register the container ID. Then, the cor-
responding host needs to select one of FPGA accelerators
attached to this node for computing process. As shown in
Fig. 3, computational data needs to be handled by the virtual
device, queued up in the input buffer, and waits for being
processed when the physical device is idle. The results will be
returned to each process according to the unique process ID
through output buffer. Then, NM reports the container status
to RMvia heartbeatswhile the cluster is in service. After a task
is finished, NM will recycle resources occupied by the task,
and report the idle resource margin to RM for scheduling. At
present, the number of virtual devices needs to be adjusted
experimentally according to the processing capability of the
node. We will further study this open question on adaptive
cluster configuration, which is similar to dynamic resource
allocation by leveraging theworkload information [39].

Correspondingly, the resource requests and container
runtime interfaces provided by RM are also expanded to
support the application that runs with accelerator cards.
Considering the compatibility of the extended platform,
native resource management interfaces are still retained in
NM and RM, so that existing computing frameworks, such
as native MapReduce, can run directly on the HeteroYARN
platform without modification.

3.4 Bi-Directional Link Design

In our design, FPGA accelerator is mapped to a device file in
the Linux system, and communicates with host applications
using the file system call interface. The device driver can
buffer the data transmitted between applications and accel-
erators, and coordinate the concurrent data transfer process.
Applications use file system calls, read and write, to interact
with the driver by blocking I/O.

In particular, the data buffers in the device driver include
input buffer and output buffer, designed as a cyclic queue.
Storage space of the buffer is a series circular address made
up of contiguous memory in the system kernel. Each buffer
block only stores one kind of data during one interactive

Fig. 3. Node accelerator manager design.

Fig. 2. Overview of HeteroYARN framework.
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process, input data or computation results. The buffer block
can be reused only when the data transfer is complete. Since
DMA mode is used for communication control, hosts should
send packet header and data separately to FPGAs, using a
producer-consumer model. In the first stage, host relays the
address of packet header and length of the packet to the accel-
erator and starts DMA process. In the second stage, the accel-
erator first pulls header message from the PC memory
initiative and extracts the information about memory address
of data and file format. Then the accelerator pulls the input
data of the tasks to produce corresponding results and stores
the results in the specified address which can be obtained
from the message header. Finally, the accelerator informs the
PC that the results have been generated through the interrup-
tion. During the transfer process, the previous stage of com-
munication is initiated by the PC, the latter stage is processed
by FPGAs, PC-side only needs to deal with the interrupt after
task is completed. The Java Native Interface (JNI) approach is
used to support this bi-directional data transfer link.

3.5 Dataflow of Accelerated Tasks

An accelerated task can be divided into two parts: the stub pro-
gram in host side and the computation process in FPGA accel-
erators. Equally, the corresponding applications consist of
software and hardware parts. In the software part, stub pro-
gram in PC-side performs the subtask of data preprocessing
and transfer. Stub program first converts input data into the
format that FPGAs can process, and then send the data to allo-
cated nodes with accelerators. Subsequently, FPGA accelera-
tors start to execute the computation using parallel circuit. At
the same time, the stub program monitors the computational
status in FPGA, and fetches the de-serialization results imme-
diately when computation is completed. Considering the dif-
ferent characters between accelerated algorithms and the
range of total input amount for the whole task, there may be
multiple times of data transfers between PC side and FPGAs
during a single computing stage. For example, a Map phase
may transmitmore data than the Reduce phase (note: Combine
stage is included inMapphase). The dataflowof an accelerated
task in execution is given in Fig. 4. As shown in the figure, the
input and output data of accelerated tasks need to be serialized
and de-serialized respectively before they are transferred fur-
ther. Thus, we provide related interfaces for developers to
implement corresponding (de)serializingmethods.

As the data processing flow changes, the AM, another
module in Hadoop2.0, needs new interfaces to apply for
FPGA resources when starting containers allocated with
accelerators. The extended platform also provides functional
interfaces for the job client to set FPGA resources required in
the computing stages.

3.6 Compatibility of HeteroYARN

Computing frameworks, such as MapReduce, rely on the
resource management interfaces provided by the platform
to apply for and use the resources in the cluster. To handle
the additional management requirements for FPGA resour-
ces, the corresponding management interfaces also should
be added, which brings a problem of whether the extended
platform continues to be compatible with the native frame-
work. Therefore, we propose a compatible method at the
protocol level after careful analysis of the communication

protocol in native YARN and retain the native management
interfaces so that the existing computing frameworks still
can run on the HeteroYARN platform.

We propose a backward compatible serialization scheme
to ensure the compatibility between HeteroYARN and the
native framework. The underlying Remote Procedure Call
(RPC) protocol for communication in the native YARN archi-
tecture utilizes the Google’s Protocal Buffer (Protobuf) seriali-
zation framework to carry out message serialization. Protobuf
provides a backwards compatible setting so that the version
of both communication sides could be out of uniform, that the
previous deserializer will directly ignore the newly added
field. By setting the newly added attributes to be default
value, using 000 for example, resource requests from native
computing framework can be expanded to more dimensions
smoothly by the underlying serialization framework.

4 HETEROGENEOUS COMPUTING FRAMEWORK

This section illustrates the effectiveness of the HeteroYARN.
Contents include the workflow of HeteroYARN framework,
the design of base interfaces to support programming applica-
tionswith accelerators, andMapReduce implementations of K-
Means andNaive Bayes classifier onHeteroYARN framework.

4.1 HeteroYARN Workflow

Applications running on a heterogeneous cluster can be cate-
gorized into two groups: ordinary applications and acceler-
ated applications.When a user submits a job to HeteroYARN,
the framework will first determine whether it chooses to
accelerate the job using FPGAs or not. If so, computational
tasks of FPGA portion will be ported to accelerators via the
driver device.

TheMapReduce implementation using FPGAs is an exten-
sion of the original MapReduce on HeteroYARN platform,
inheriting the data processing flow.We refer readers to a tuto-
rial [40] for more details. The differences lie in the Map and
Reduce phases. Most computations are actually completed
on accelerators in the extended framework. Data processing
inside FPGAs is shown in Fig. 5. The MapAccelerator is
designed to assign the data objects to the closest CLUSTER,
and ReduceAcelerator tries to recount the intra-cluster cen-
troid of each CLUSTER.1 In order to decrease the size of inter-
mediate data and further ease the pressure of data

Fig. 4. Dataflow between PC and FPGAs during the life cycle of acceler-
ated task.

1. To distinguish from computer clusters, we use ”CLUSTER” to
represent the clustering group in K-means.
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transmission, we also perform the Combine phase on FPGAs,
which is another data-intensive task to accumulate vectors of
documents that contains the same centroid.

To build a generic system that supports MapReduce appli-
cations incorporated hardware FPGA resources, we divide
the functionality of the hardware design into two parts:
MapAccelerator module and ReduceAccelerator module.
Fig. 5 presents the block-diagram of the overall design struc-
ture. As previously mentioned, the DMA controller is pro-
grammed to control data transfer via PCIE bus, namely
DataReceiver and DataSender respectively. Data first get
cached in Double Data Rate (DDR) to prevent the time loss
caused by different data processing speed of computing ker-
nels. The Bar Register provides interfaces to realize the read-
write logical function of the internal register. If controlmodule
notices any map core is idle, the Bar Register would give a
read command to theDDR, thendata is fetched and calculated
while the transmission of PCIE data is not blocked. Directed
line segments in the diagram have shown the work flow in
detail, and shaded boxes represent the user-specific hardware
kernels. Depending on the underlying infrastructure, we can
implement various applications not limited toMapReduce.

4.2 Interface Design

We also design and implement a wide range of interfaces for
easy programming on the HeteroYARN framework, to make
it easier to program applications using FPGAs. Our inter-
faces hide details about FPGA accelerator initialization and

hardware programming by providing a set of development
interfaces in JAVA. For example, the input and output data
can be obtained by simply calling the AcceleratorReader and
AcceleratorWriter. No explicitly technical OpenCL buffer
manipulation or hardware programming operation is neces-
sary for application programmers.

Developers can process arbitrary data types they want by
overriding the medium driver and implementing serializa-
tion and de-serializationmethods.We also provide the devel-
opers with setting interface to customize the map and reduce
accelerated processing conveniently.

There are also interfaces for users to set the job label and
resource demand when submit it, and users are allowed
to specify the PC-side stub program to coordinate with
FPGAs. HeteroYARN framework provides base classes,
AcceleratedMapper and AcceleratedReducer, to ensure the
key/value pairs in MapReduce can be utilized on FPGA
accelerators directly. Developers should overwrite these
requisite functions when they program to process data with
the accelerator interfaces. Table 1 lists significant program-
ming interfaces and their brief descriptions.

4.3 Computing-Intensive Algorithm Acceleration

On the HeteroYARN framework, we offload CPU-intensive
tasks to the accelerators, and take K-means as the repre-
sentative of iterative algorithms, Naive Bayes as the non-
iterative one.

4.3.1 Data Format in Transmission

According to characteristics of the FPGA hardware process-
ing, we intend to arrange data into a fixed message format
that accelerators can process directly. The data exchange
process can be described as follows: host splits the input
data into a number of fixed-size data packets, then sends
the data splits to accelerators for further calculation, finally
obtains the computing results corresponding to each packet
and merges them together.

As to packet format design, each message contains a com-
plete input unit for computing and no semantic association
between each other. The self-described message format is
used so that FPGA accelerators can complete the computation
without any other dependency information. Accelerator does

Fig. 5. Overall block-diagram of the datapath architecture.

TABLE 1
Programming Interfaces

Interface Brief Description

setJobTag set the label for the job
isMapperAccelerated whether accelerate Map task
setAcceleratedMapper set accelerated Map task
setMapAcceleratorNums MapAcc number for Map task
isReducerAccelerated whether accelerate Recuce task
setAcceleratedReducer Set accelerated Reduce task
setReduceAccelaratorNums ReduceAcc number for the Reduce

task
setMapSerializer Map task data serialization class
setMapDeserializer Map task data deserialization class
...... ......
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not need to care about which stub program of the computa-
tionmessage comes from, nor does it need to save the interme-
diate state on the accelerator. All stub programs that run the
same type of computing task can share the same accelerators.
Thanks to the high performance of FPGA hardware, accelera-
tors may bewaiting for input datamost of the time during the
sub-task execution. To alleviate this situation, we adoptmulti-
ple threads to process the communications between FPGAs
and PC stub programs, a parallel way of sending and receiv-
ing data. Thus, data preprocessing tasks in host will not be
suspended for receiving results from FPGA accelerators,
which will reduce the time of waiting for data transmission
between host and accelerators, so that host does not need to
take up the accelerator in the data preprocessing phase.

For example, the input packets for K-means algorithm con-
sist of header and data, as shown in Fig. 6. The data part con-
tains K CLUSTER centroids and key-value pair inputs ofMap
tasks. The number of key-value pairs is determined by the
size of the entire input packet and the size of each key-value
pair. The packet header is a description of the computing
tasks, including the type of each data field, the physical mem-
ory address for input data and result storage, and so on. In
detail, the headermainly includes the start address and length
of packet data in memory, the first address of results, the
number of CLUSTER centroids and data offset, the number of
key-value pairs and data offsets, the dimension of the CLUS-
TER feature vector and the size of the space occupied by each
dimension in the vector. The output is also organized in the
formof a packet, except that the file header is nomore needed.

The driver detects whether the accelerator can accept input
data using a polling technique. Once the state register is set
ready, the host starts the DMAmode for data transfer. Accel-
erators notify the device driver by the interruption when
transmission is complete or results arrive. If it is the comple-
tion of packet sending, the corresponding buffer block will be
released. Or result arriving, the result buffer will be marked
as ready and begin to wait for the running task to read or
wake the blocked thread which waits for calculation results.
In other words, the data packets are transferred by pulling
between accelerators and host while handling message is
transferredwith the interrupt.

4.3.2 K-Means Algorithm Implementation

TheK-means algorithm spendsmost execution time on calcu-
lating the distance between objects and updating centroids.
Execution process involves a large number of floating-point
multiplications and additions, causing computationally
expensive on the CPUs. It is independent to compute
the distance between each document with each centroid in
the K-means algorithm, which means the process is easy to
be paralleled. Hence, the K-means algorithm is a good candi-
date to be accelerated on FPGAs. Using the programming

interfaces provided by HeteroYARN framework, we can
program K-means algorithm implementation below. Part of
the pseudo codes are shown in the Listing 1.

Listing 1. K-Means Map Phase (Pseudo Code in Java)

public class KMeansAcceleratedMapper extends

AcceleratedMapper <...> {

// capturing mapTask, serializing the input to FPGA
class KMeansMapAcceleratorWriter {...}

// deserializing the result package from FPGA
class KMeansMapAcceleratorReader {...}

// centroid vector normalization
void setup(Context context){

...

while (reader.next(key, value)) {

// vector normalization, ByteArrayWritable to
FloatArrayWritable
float model = 0;

float[] array = new float[vector_dime];

array = value.getFloatVector().getfloa-

tArray();

for(int i=0;i<vector_dime;i++){

model += array[i]*array[i] ;

}

for(int i=0;i<vector_dime;i++){

array[i] = Float.parseFloat(df.-

format(array[i]/Math.sqrt(model)));

}

System.arraycopy(serialize(new Float-

ArrayWritable(array)),...);

}

reader.close();

super.setup(context);

}

// receiving data, serialization and deserialization
void process(Context context){

...

// send Thread, data to Driver
sendTask=new Callable<String>(){

...

writeFPGA(getCurrentKey(),CurrentValue

());

}

// receive Thread, object to YARN
receiveTask=new Callable<String>(){

...

ByteArrayWritable key=new ByteArray-

Writable();

KmeansMapOutByteArrayWritable value=new

KmeansMapOutByteArrayWritable();

finalContext.write(key,value);

}

service.submit(sendTask);

service.submit(receiveTask);

}

...

}

The Map phase completes two main tasks, first calculat-
ing the distance between each document vector and each
CLUSTER center, and then classifying the document into

Fig. 6. Data format of accelerated K-means algorithm.
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the category, to which the nearest center belongs. The dis-
tance metric is euclidean distance, defined as follows:

x2
ðd;cÞ ¼

Xn

i¼1

jdi � cij2; (1)

where d ¼ ðd1; d2; . . . ; dnÞ and c ¼ ðc1; c2; . . . ; cnÞ are docu-
ment vector and center presentation respectively. Both tasks
are time-consuming processes and offloaded to Map accel-
erators. Moreover, we load the Combine process into Map
accelerators to merge the intermediate key-values locally,
aiming to reduce the amount of data transmission between
FPGA accelerators and host. Combine process starts imme-
diately when Map process completes. This process counts
the number of documents and accumulates the document
vectors in each CLUSTER. Then merged data are trans-
ferred back to host for further processing by Reducer.

The Reduce phase can be divided into two stages. First, it
accumulates the global intermediate document vectors and
the document number that assigned the same centroid. Sec-
ond, it calculates the new centroid vector by dividing accu-
mulated vector with the number of documents. Both the
numerator and denominator are computed in the first stage.
The first stage is executed on Reducer accelerators for parallel
execution. The second stage is completed in CPU, as this task
belongs to serial computing with little computational effort,
only including k times vector decomposition during one iter-
ative process.

4.3.3 Naive Bayes Classifier Implementation

As toNaive Bayes classifier implementation, we first train the
raw data based on eigenvalue, in which two probabilities are
computed: the prior probability P ðcÞ for each category c, and
the conditional probabilityP ðtjcÞ for eachword t in each cate-
gory c. Then these values are sent to FPGAs in packets and
persisted in the corresponding on-chipRAM.When the docu-
ment data-points come, FPGA accelerators will first count the
word frequency and the number of words of each document.
Statistical results will be saved in the register. Finally, we
obtain the probabilityP cjdð Þ through the formula below:

P cjdð Þ ¼ P cð Þ
Y

1�k�nd

p tkjcð Þ; (2)

where P tkjcð Þ is the probability of term tk in category c, nd is
the length of the document d. Category with the maximum
probability is the “best” category, to which document d
belongs.

It is also worth noticing that map process is totally
enough to find out the category for each document, which

means that only the Map accelerator is needed for Naive
Bayes classifier. The specific code implementation is similar
to that of K-means.

5 PERFORMANCE EVALUATION

In this section, we first describe the hardware and software
settings in the experiment. Then we evaluate the perfor-
mance of computing-intensive tasks on HeteroYARN with
different settings. We also analyze the experimental results
to explore factors leading to performance bottleneck.

5.1 Experimental Settings

The experimental platform is a heterogeneous cluster consist-
ing of 3 nodes, one manager, and two computing nodes. The
computing node is integrated with FPGA cards using PCIE
slots, and FPGA card contains a Xilinx XC7K410TFFG900-2
chip and 3.5 GB of on-board RAM. The data transfer between
the host and accelerator cards is carried out through the PCIE
bus using DMAmode, while the data description and control
commands are transferred in PIOmode.

The HeteroYARN platform and MapReduce implementa-
tion are developed on the stable version of Hadoop 2.6.0,
which first adopts label based scheduling. All nodes in the
cluster have a 64 bit CentOS 6.5 operating system installed,
and JDK1.7 is installed to support the operation of the Java
application. The server configuration of the cluster is given in
Table 2.

In the experiments, we take two representative computing-
intensive algorithms, K-means and Naive Bayes, as the
examples. The hardware portion of computation logic was
programmed by hand inVerilog.Weutilize the Vivado devel-
opment tools to synthesize program into .Bit files, and then
convert into corresponding .Mcs files, finally burn them into
FLASHon FPGAs.

The training data for experiments are randomly generated,
represented as a 128-dimensional vector for one document
in text format, where each dimension is a single precision
floating-point number, so that we can increase the size of
dataset easily to hundreds of GB or even more.2 The cosine
distance is used tomeasure the vector similarity, and all input
data are uploaded to theHDFS in advance.

Note that there are some related studies on heterogeneous
cluster using FPGAs. We do not compare HeteroYARN with
them because: (1) their codes are not available; or (2) the
issueswe are concerning are not exactly the same.

5.2 Accelerating Performance

We first set the number of CLUSTERs to 16 to evaluate the
acceleration performance with different data sizes. By taking
the average of multiple experimental results to eliminate ran-
dom errors, the final comparison of execution time is given
in Fig. 7.

We can observe that the speedup ratio of accelerated appli-
cations in the heterogeneous cluster is closely related with
data scales. As the trend in Fig. 7b shows, the speedup ratio is
on the rise when data scales increase. To analyze the results,
we monitor the job running in real-time and find that

TABLE 2
Server Configuration Details

Node CPU Memory I/O Functional
Accelerator

master E5-2620V2 128G 2.4TB PERC
H71 RAID5

none

slave1 E5-2650 128G 8T SAS RAID5
750EVO SSD

MapAcc
ReduceAcc

slave2 E5-2650 128G 8T SAS RAID5
750EVO SSD

MapAcc
ReduceAcc

2. We have uploaded part of the data to IEEE DataPort. Available:
http://dx.doi.org/10.21227/fbpn-s032.
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preparation process from job submission to startup takes up a
certain amount of execution time. The proportion of the time
spent on calculation phases rises with the data size increas-
ing. Hence, the advantage of FPGA accelerators in calculation
becomes more andmore obvious. The implementations of K-
means and Naive Bayes using FPGA accelerators achieve
7.5x and 2.3x speedup respectively, which demonstrates
the effectiveness of HeteroYARN framework to accelerate
computing-intensive algorithms.

We further analyze the reasons for different performances
between K-means and Naive Bayes acceleration implementa-
tions. Experimental results indicate that the K-means algo-
rithm performs better and achieves higher speedup ratio. In
K-means instance, the operations offloaded to FPGAs include
distance calculation andCLUSTERassignments inMapphase
and centroids updates in Reduce phase. InNaive Bayes classi-
fier, FPGAs accelerate the process of word frequency statistics
and conditional probability product of each document. Obvi-
ously, the accelerators participate in more calculation pro-
cesses in K-means implementation. On the other hand, the
processes in K-means are more computing-intensive opera-
tions, such as floating-pointmultiplications. Thus, the acceler-
ation effect is more obvious in the K-means implementation.
On other words, the higher acceleration ratio an application
has, the better efficiencywill be achieved.

5.3 Multi-Job Comparison Analysis

To evaluate the effectiveness with different number of con-
current tasks, we modify the cluster configuration to adjust

the maximum number limit of concurrent tasks in each node
(we set the limit as a fixed value 20 in other comparison
experiments). Each concurrent task is an independent Map
task or Reduce task to process a single data split. This setting
is used to limit the amount of tasks initiated simultaneously
on one node. Taking K-means algorithm implementation as
an example, the experimental results are shown in Fig. 8. It is
easy to find that the end-to-end job execution time has signifi-
cantly shortened when the maximum number of concurrent
tasks approaching around 20. Hence, the number of concur-
rent tasks should be set according to the configuration of com-
puting nodes to get a better performance.

We also conduct experiments by adjusting the number of
CLUSTER centers to 32 while other settings remain unch-
anged. In the K-means algorithm, the time complexity is
O m � n � kð Þ in one iteration, where m is the dataset size, n is
the vector dimension, and k is the center number, so that
computational complexity will increase exponentially when
the number of CLUSTER centers increases by two times. The
experimental results with different time complexity are
shown in Fig. 9a.

As shown in Fig. 9a, the job execution time is almost
unchanged when increasing the number of the CLUSTER
from 16 to 32 in the accelerated applications, while time
increases obviously in non-accelerated ones. This is because
computational components in FPGA logic will increase with
the number of CLUSTER centers, remaining the computation
time unchanged. However, the internal structure of CPUs are
fixed, so the calculation time prolongs with calculation
instructions increase. It can be concluded that the higher
computational complexity of the job, the more obvious effect
of FPGA accelerations. The speedup ratio curves upwith data
size increasing, shown in Fig. 9b, where K is the number of
CLUSTER centers. It is interesting to find out thatmore CLUS-
TERs will lead to an increase in speedup ratio, since the com-
plexity has greater impact on general processors.

5.4 Performance Evaluation of Resource
Scheduling

In a heterogeneous cluster deployed on HeteroYARN frame-
work, the computing nodes can be divided into two types
according to whether FPGA accelerators are integrated into
the node. For accelerated applications, the resource schedul-
ing will only be really triggered when the RM receives the
heartbeat of the nodes integrated accelerators, which means,
the periodic communications between NM and RM. As a

Fig. 7. Accelerating performance.

Fig. 8. The execution time with different concurrent tasks.
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result, it might increase the waiting time of an accelerated
application for scheduling. Since it is difficult to count the
scheduling time, we adopt the end-to-end execution time for
performance comparison in the heterogeneous cluster, to
reflect the scheduling capability indirectly. The size of the
input data should be greater than 64 MB, the default block
size, and the data copies are stored uniformly on nodes.
Fig. 10 shows the resultswith different data sizes.

No matter the scheduling process of an application on a
homogeneous or heterogeneous cluster, it includes job sub-
mission, first Container assignment, task start-up, task
resource request, scheduling and task execution, along with
disk IO overhead. Thus, it is not easy to compare the

resource scheduling performance directly. We have to com-
pare the end-to-end execution time for performance
comparison. As shown in Fig. 10, the extended-YARN het-
erogeneous cluster performs better with less execution time,
and the gap is increasing with the increment of data size. It
is obvious that the heterogeneous resource scheduling has
more advantages at larger scale data in the current experi-
mental environments.

5.5 Performance Bottleneck Analysis

In order to find the key factor that affects the performance of
accelerated jobs, we experimentally analyze the computa-
tional throughput of each concurrent module. Actually, tak-
ing the K-means algorithm as an example, the Map phase
consumes more time than the Reduce phase, no matter with
FPGA acceleration or not. Hence, our bottleneck analysis
will mainly focus on the Map phase.

We analyze the data throughput of each concurrent mod-
ule further in the Map task: acquiring input data, assem-
bling key/value pairs into packets, sending data to
accelerator and fetching results. As shown in Fig. 11, these
three phases are designed as independent modules running
in a serial manner. “Acquisition” module reads raw data
from HDFS and parses them as key/value pairs; then
Assembling module assembles the key/value pairs as pack-
ets; finally the packets are sent to the FPGA devices via
“Transmission”. On the setting that cluster number is 16
and data size is 102.4 GB, the data throughputs of each mod-
ule in the accelerated Map task is shown in Table 3. There is
a large gap of processing speed between different modules.
Hence, we can conclude that the acquisition process of the
input data is the bottleneck that restricts the performance.

Moreover, the acquisition process of the input data consists
of two stages: reading the input data fromHDFS, and de-seri-
alizing the input data to generate key/value pairs. In order to
analyze the different effects of the two stages, we experimen-
tally evaluate the data throughputs of reading data blocks

Fig. 9. Performance of different job.

Fig. 10. Scheduling performance comparison with different data sizes.

Fig. 11. Datapaths inside the accelerated task.

TABLE 3
Data Throughputs of Each Module

Module name input
acquisition

packets
assembling

data transmission
& result receiving

Throughput 89.6 MB/s 2660 MB/s 1000 MB/s

2978 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020



from HDFS and generating the key/value pairs. In the case
that the number of concurrent processes is 20, the average
throughput of reading HDFS data blocks is 250 MB/s,
while the throughput of generating key/value pairs is only
89.6 MB/s. There is about 3 times gap between these two
stages. That is, the key/value pairs parsing process greatly
limits the processing speed of data acquisition, and further
slows down the overall performance of theMap phase.

6 CONCLUSION

In this paper, we propose a heterogeneous FPGA architecture
HeteroYARN for unified marking, managing and scheduling
FPGAs resources in a heterogeneous cluster, and present the
design ofMapReduce using FPGAs, a hybrid implementation
that integrates accelerators based on HeteroYARN frame-
work. We explore how to program accelerated applications
on the HeteroYARN framework, and evaluate it with the per-
formance of K-means and Bayesian algorithm implementa-
tions. Our work has the following conclusions. (1) Our
HeteroYARN is an efficient general-purpose runtime system
to support the resource management and task scheduling
with higher utilization in the heterogeneous cluster. (2) Heter-
oYARN framework abstracts the programmingmodel to pro-
vide unified interfaces of applying for and utilizing FPGAs
for users when developing applications. (3) The heteroge-
neous FPGA cluster can significantly accelerate computing-
intensive datamining applications (speedup to 7.5x and 2.3x),
represented by the K-means clustering and Naive Bayes
classification respectively, and the processing pattern of the
original framework has been inherited. All aboveworks dem-
onstrate an effective architecture that supports a generic
heterogeneous FPGA clustermanagement based on YARN.

In the future work, we will provide more interfaces that
support the easy and efficient access of FPGA accelerators, as
well as other kinds of accelerators like GPU, for applications
on Apache Spark and other programming models based on
our heterogeneous cluster management framework. We will
also evaluate performance of the latest SSD storage, to find
the effective ways to alleviate performance limitations caused
by I/O bottleneck in the heterogeneous cluster.

ACKNOWLEDGMENTS

The authors are grateful to three anonymous reviewers for
their comments and suggestions. This work is supported by
the National Key Research and Development Program of
China under grants 2016YFB0800402 and 2016QY01W0202,
National Natural Science Foundation of China under grants
U1836204, 61572221, 61433006, U1401258, 61572222 and
61502185, Major Projects of the National Social Science
Foundation under grant 16ZDA092, and Guangxi High level
innovation Team inHigher Education Institutions Innovation
Team of ASEAN Digital Cloud Big Data Security and Mining
Technology.

REFERENCES

[1] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Netw.
Appl., vol. 19, pp. 171–209, 2014.

[2] H. Esmaeilzadeh, E. R. Blem, R. S. Amant, et al., “Dark silicon
and the end of multicore scaling,” in Proc. 38th Annu. Int. Symp.
Comput. Archit., 2011, pp. 365–376.

[3] N. Bharill, A. Tiwari, and A. Malviya, “Fuzzy based clustering
algorithms to handle big data with implementation on apache
spark,” in Proc. IEEE 2nd Int. Conf. Big Data Comput. Service Appl.,
2016, pp. 95–104.

[4] I. Stoica, D. X. Song, R. A. Popa, et al., “A Berkeley View of Sys-
tems Challenges for {AI},” CoRR, vol. abs/1712.05855, 2017,
http://arxiv.org/abs/1712.05855

[5] A. Putnam, A. M. Caulfield, E. S. Chung, et al., “A reconfigurable
fabric for accelerating large-scale datacenter services,” in Proc.
ACM/IEEE 41st Int. Symp. Comput. Archit., 2014, pp. 13–24.

[6] A. Alhamali, N. Salha, R. Morcel, et al., “FPGA-Accelerated
hadoop cluster for deep learning computations,” in Proc. IEEE Int.
Conf. Data Mining Workshop, 2015, pp. 565–574.

[7] B. Falsafi, B. Dally, D. Singh, D. Chiou, et al.,“FPGAs versus
GPUs in data centers,” IEEE Micro, vol. 37, no. 1, pp. 60–72, Jan./
Feb. 2017.

[8] V. V. Kindratenko, J. Enos, G. Shi, M. T. Showerman, G. W. Arnold,
J. E. Stone, J. C. Phillips, and W. W. Hwu, “GPU clusters for high-
performance computing,” in Proc. IEEE Int. Conf. Cluster Comput.,
2009, pp. 1–8.

[9] K. Neshatpour, M. Malik, M. A. Ghodrat, A. Sasan, and
H. Homayoun, “Energy-efficient acceleration of big data analytics
applications using FPGAs,” in Proc. IEEE Int. Conf. Big Data, 2015,
pp. 115–123.

[10] K. H. Tsoi and W. Luk, “Axel: A heterogeneous cluster with
FPGAs and GPUs,” in Proc. 18th Annu. ACM/SIGDA Int. Symp.
Field Programmable Gate Arrays, 2010, pp. 115–124.

[11] A. M. Caulfield, E. S. Chung, A. Putnam, et al., “A cloud-scale
acceleration architecture,” in Proc. 49th Annu. IEEE/ACM Int.
Symp. Microarchit., 2016, pp. 1–13.

[12] V. K. Vavilapalli, A. C. Murthy, C. Douglas, et al., “Apache
hadoop YARN: Yet another resource negotiator,” in Proc. 4th
Annu. Symp. Cloud Comput., 2013, pp. 1–16.

[13] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, pp. 107–113, 2004.

[14] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. USENIX
Conf. Hot Topics Cloud Comput., 2010, pp. 10–10.

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, et al., “Mesos:
A platform for fine-grained resource sharing in the data center,”
in Proc. 8th USENIX Conf. Netw. Syst. Des. Implementation, 2011,
pp. 295–308.

[16] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,”
in Proc. Eur. Conf. Comput. Syst., 2013, pp. 351–364.

[17] A. Verma, L. Pedrosa, M. Korupolu, et al., “Large-scale cluster
management at Google with Borg,” in Proc. Eur. Conf. Comput.
Syst., 2015, pp. 1–17.

[18] Apache Hadoop, “The Apache Software Foundation” 2018. [Online].
Available: http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/

[19] A. Leeper, “MapR 5.0 Documentation : Label-based Scheduling
for YARN Applications,” 2015. [Online]. Available: http://doc.
mapr.com/display/MapR/Label-based+Scheduling+for+YARN
+Applications

[20] P. Cnudde, “Large scale distributed deep learning on hadoop
clusters.” 2015. [Online]. Available: http://yahoohadoop.tumblr.
com/post/129872361846/large-scale-distributed-deep-learning-
on-hadoop

[21] J. Zhu, J. Li, E. Hardesty, H. Jiang, and K.-C. Li, “GPU-in-
Hadoop: Enabling MapReduce across distributed heterogeneous
platforms,” in Proc. IEEE/ACIS 13th Int. Conf. Comput. Inf. Sci.,
2014, pp. 321–326.

[22] S. Niu, G. Yang, N. Sarma, et al., “Combining hadoop and GPU to
preprocess large affymetrix microarray data,” in Proc. IEEE Int.
Conf. Big Data, 2014, pp. 692–700.

[23] A. Sabne, P. Sakdhnagool, and R. Eigenmann, “HeteroDoop: A
MapReduce programming system for accelerator clusters,” in
Proc. 24th Int. Symp. High-Perform. Parallel Distrib. Comput., 2015,
pp. 235–246.

[24] M. Grossman and V. Sarkar, “SWAT: A programmable, in-memory,
distributed, high-performance computing platform,” in Proc. 25th
ACM Int. Symp. High-Perform. Parallel Distrib. Comput., 2016,
pp. 81–92.

[25] C. Chen, K. Li, A. Ouyang, Z. Zeng, and K. Li, “GFlink: An in-
memory computing architecture on heterogeneous CPU-GPU
clusters for big data,” IEEE Trans. Parallel Distrib. Syst., vol. 29,
no. 6, pp. 1275–1288, Jun. 2018.

LI ET AL.: HETEROYARN: A HETEROGENEOUS FPGA-ACCELERATED ARCHITECTURE BASED ON YARN 2979

http://arxiv.org/abs/1712.05855
http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/
http://doc.mapr.com/display/MapR/Label-based+Scheduling+for+YARN+Applications
http://doc.mapr.com/display/MapR/Label-based+Scheduling+for+YARN+Applications
http://doc.mapr.com/display/MapR/Label-based+Scheduling+for+YARN+Applications
http://yahoohadoop.tumblr.com/post/129872361846/large-scale-distributed-deep-learning-on-hadoop
http://yahoohadoop.tumblr.com/post/129872361846/large-scale-distributed-deep-learning-on-hadoop
http://yahoohadoop.tumblr.com/post/129872361846/large-scale-distributed-deep-learning-on-hadoop


[26] Y. K. Choi and J. Cong, “Acceleration of EM-based 3D CT recon-
struction using FPGA,” IEEE Trans. Biomed. Circuits Syst., vol. 10,
no. 3, pp. 754–767, Jun. 2016.

[27] C. Zhang, P. Li, G. Sun, Y. Guan, et al., “Optimizing FPGA-based
accelerator design for deep convolutional neural networks,” in
Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2015,
pp. 161–170.

[28] Z. Wang, B. He, and W. Zhang, “A study of data partitioning on
OpenCL-based FPGAs,” in Proc. 25th Int. Conf. Field Programmable
Logic Appl., 2015, pp. 1–8.

[29] J. Cong, M. Huang, D. Wu, and C. H. Yu, “Invited - heterogeneous
datacenters: Options and opportunities,” in Proc. 53rd Annu. Des.
Autom. Conf., 2016, pp. 16:1–16:6.

[30] N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh, A. Leon-Garcia,
and P. Chow, “Enabling flexible network FPGA clusters in a het-
erogeneous cloud data center,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, 2017, pp. 237–246.

[31] M. Owaida, D. Sidler, K. Kara, and G. Alonso, “Centaur: A frame-
work for hybrid CPU-FPGA databases,” in Proc. 25th IEEE Annu.
Int. Symp. Field-Programmable Custom Comput. Mach., 2017,
pp. 211–218.

[32] M. Lattuada, F. Ferrandi, and M. Perrotin, “Data transfers analysis
in computer assisted design flow of FPGA accelerators for aero-
space systems,” IEEE Trans. Multi-Scale Comput. Syst., vol. 4, no. 1,
pp. 3–16, Jan.–Mar. 2018.

[33] K.Neshatpour,M.Malik, andH.Homayoun, “Acceleratingmachine
learning kernel in hadoopusing FPGAs,” inProc. 15th IEEE/ACM Int.
Symp. Cluster Cloud Grid Comput., 2015, pp. 1151–1154.

[34] Y. Shan, B. Wang, J. Yan, Y. Wang, N.-Y. Xu, and H. Yang, “FPMR:
Mapreduce framework on FPGA,” in Proc. 18th Annu. ACM/
SIGDA Int. Symp. Field Programmable Gate Arrays, 2010, pp. 93–102.

[35] Z. Wang, S. Zhang, B. He, and W. Zhang, “Melia: A MapReduce
framework on OpenCL-based FPGAs,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 27, no. 12, pp. 3547–3560, Dec. 2016.

[36] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and M. Margala,
“SparkCL: A unified programming framework for accelerators on
heterogeneous clusters,” CoRR, vol. abs/1505.01120, 2015, http://
arxiv.org/abs/1505.01120

[37] C. YuTing, C. Jason, F. Zhenman, L. Jie, and W. Peng, “When
spark meets FPGAs: A case study for next-generation DNA
sequencing acceleration,” in Proc. IEEE 24th Annu. Int. Symp.
Field-Programmable Custom Comput. Mach., 2016, pp. 64–70.

[38] M. Huang, D. Wu, C. H. Yu, Z. Fang, et al., “Programming and
runtime support to blaze FPGA accelerator deployment at data-
center scale,” in Proc. 7th ACM Symp. Cloud Comput., 2016,
pp. 456–469.

[39] Y. Yao, J. Wang, B. Sheng, C. C. Tan, and N. Mi, “Self-adjusting
slot configurations for homogeneous and heterogeneous hadoop
clusters,” IEEE Trans. Cloud Comput., vol. 5, no. 2, pp. 344–357,
Apr.–Jun. 2017.

[40] K. Kambatla, W. Y. Poon, and V. Srivastava, “Apache hadoop
YARN workflow.” 2014. [Online]. Available: http://blog.cloudera.
com/blog/2014/05/how-apache-hadoop-yarn-ha-works/

Ruixuan Li received the BS, MS, and PhD
degrees in computer science from the Huazhong
University of Science and Technology, China, in
1997, 2000, and 2004, respectively. He is a pro-
fessor with the School of Computer Science and
Technology, Huazhong University of Science and
Technology. He was a visiting researcher with
the Department of Electrical and Computer
Engineering, University of Toronto from 2009 to
2010. His research interests include cloud and
edge computing, big data management, and
distributed system security. He is a member of
the IEEE and ACM.

Qi Yang received the BS degree from the School
of Computer Science and Technology, Huazhong
University of Science and Technology, in 2014.
He is working toward the PhD degree in the
School of Computer Science and Technology,
Huazhong University of Science and Technology.
His research interests include big data analytic
and data mining.

Yuhua Li received the PhD degree in computer
science from the Huazhong University of Science
and Technology, China, in 2006. She is an asso-
ciate professor with the School of Computer Sci-
ence and Technology, Huazhong University of
Science and Technology. Her research interests
include data mining, machine learning, and big
data analysis. She is a senior member of the
China Computer Federation (CCF).

Xiwu Gu received the PhD degree in computer
science from the Huazhong University of Science
and Technology, in 2007. He is an associate pro-
fessor of the School of Computer Science and
Technology, Huazhong University of Science and
Technology. His research interests include dis-
tributed system, big data, and middleware.

Weijun Xiao received the BS and MS degrees in
computer science from the Huazhong University
of Science and Technology, China, in 1995 and
1998, respectively, and the PhD degree in com-
puter engineering from the University of Rhode
Island, in 2009. He is an associate professor with
the Department of Electrical and Computer Engi-
neering. His research interests include computer
architecture, networked storage system, embed-
ded system, and performance evaluation. He is a
senior member of the IEEE and the IEEE Com-
puter Society.

Keqin Li is aSUNYdistinguishedprofessor of com-
puter sciencewith theState University of NewYork.
He is also a distinguished professor with Hunan
University, China. His current research intere-
sts include cloud computing, fog computing and
mobile edge computing, energy-efficient compu-
ting and communication, embedded systems and
cyberphysical systems, heterogeneous computing
systems, big data computing, high-performance
computing, CPU-GPUhybrid and cooperative com-
puting, computer architectures and systems, com-

puter networking, machine learning, intelligent and soft computing. He has
published more than 630 journal articles, book chapters, and refereed con-
ference papers, and has received several best paper awards. He currently
serves or has served on the editorial boards of the IEEE Transactions on
Parallel and Distributed Systems, the IEEE Transactions on Computers,
the IEEE Transactions on Cloud Computing, the IEEE Transactions on
Services Computing, and the IEEE Transactions on Sustainable Comput-
ing. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2980 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

http://arxiv.org/abs/1505.01120
http://arxiv.org/abs/1505.01120
http://blog.cloudera.com/blog/2014/05/how-apache-hadoop-yarn-ha-works/
http://blog.cloudera.com/blog/2014/05/how-apache-hadoop-yarn-ha-works/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


