Y8 [IBRARIES

University at Buffalo The State University of New York

1L L #169785637

NOTICE
This material may be protected
by copyright law (Title 17 U.S. Code).

Please contact us if you require a resend.

University at Buffalo Libraries ¢ InterLibrary Loan, Lending
234 Lockwood Library ¢ Buffalo, NY 14260
(716) 645-2812 ¢ buflend@buffalo.edu

jbachert
Typewritten Text

jbachert
Typewritten Text

jbachert
Typewritten Text

jbachert
Typewritten Text

jbachert
Typewritten Text

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3436

SPECIAL ISSUE PAPER

Divide-and-conquer approach for solving singular value
decomposition based on MapReduce

Lx,

Shuoyi Zhao!, Ruixuan Lil* T, Wenlong Tian?, Weijun Xia03, Xinhua Dongl,
Dongjie Liao!, Samee U. Khan* and Keqin Li’

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei
430074, China
2School of Software Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
3Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
4Department of Electrical and Computer Engineering, North Dakota State University, Fargo, ND 58108, USA
5 Department of Computer Science, State University of New York—-New Paltz, New Paliz, New York, NY 12561, USA

SUMMARY

Singular value decomposition (SVD) shows strong vitality in the area of information analysis and has
significant application value in most of the scientific big data fields. However, with the rapid development
of Internet, the information online reveals fast growing trend. For a large-scale matrix, applying SVD com-
putation directly is both time consuming and memory demanding. There are many works available to speed
up the computation of SVD based on the message passing interface model. However, to deal with large-
scale data processing, a MapReduce model has many advantages over a message passing interface model,
such as fault tolerance, load balancing and simplicity. For a MapReduce environment, existing approaches
only focus on low rank SVD approximation and tall-and-skinny matrix SVD computation, and there are no
implementations of full rank SVD computation. In this paper, we propose a MapReduce-based implemen-
tation for solving divide-and-conquer SVD algorithm. To achieve high performance, we design a two-stage
task scheduling strategy based on the mathematical characteristics of divide-and-conquer SVD algorithm.
To further strengthen the performance, we propose a row-index-based divide algorithm, a pipelined task
scheduling method, and revised block matrix multiplication in MapReduce framework. Experimental result
shows the efficiency of our algorithm. Our implementation can accommodate full rank SVD computation of
large-scale matrix very efficiently. Copyright © 2014 John Wiley & Sons, Ltd.

Received 14 June 2014; Revised 7 October 2014; Accepted 29 October 2014

KEY WORDS: distributed computation; divide-and-conquer; MapReduce; singular value decomposition

1. INTRODUCTION

Singular value decomposition (SVD) [1] is widely used in scientific big data and engineering fields,
including signal and image processing, system distinguishing, social network analysis, and recom-
mender systems. SVD plays an important role in complex information processing. However, the
amount of information generated from the World Wide Web is big and has been growing very
rapidly. The cost of a large-scale SVD computation is stupendous, so that it is infeasible for an
individual machine to meet the storage and SVD computation needs of large-scale matrix.
MapReduce [2], first introduced by Google, has been a very attractive way of processing massive
datasets. Apache Hadoop project is the most popular implementation of MapReduce programming

*Correspondence to: Ruixuan Li, School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan, Hubei 430074, China.

TE-mail: rxli@hust.edu.cn

Copyright © 2014 John Wiley & Sons, Ltd.

S.ZHAO ET AL.

model. Hadoop relies on a distributed file system to share large-scale dataset among clusters.
MapReduce procedure includes a shuffle phase where intermediate result is written on disk. Thus,
we do not expect algorithms running in MapReduce framework to be faster than algorithms
deployed in a state-of-the-art in-memory message passing interface(MPI) cluster. However, MapRe-
duce model has many advantages over MPI model, which makes it attractive to process large-scale
dataset. MapReduce model is designed to be fault tolerant while MPI model is not. Moreover,
MapReduce model offers mechanisms to automatically deal with load balancing issues as well as
input and output operations in a distributed environment, which greatly simplifies the programming.
In today’s information technology industry, many companies have employed Hadoop-distributed
systems to deal with their daily business data.

There are already implementations of SVD computation in MapReduce available. However,
these implementations only focus on two aspects. The first one is low rank SVD approximation
of matrices [3-5]. These research works are designed for those applications such as large-scale
recommender systems in which only small fraction of singular values are needed. Nevertheless, for
applications, such as matrix pseudo-inverse calculations that are widely used in large-scale medical
and astronomy image processing field nowadays [6] and full rank principal component analysis in
face recognition [7], performing a full rank SVD computation is required. Obviously, current imple-
mentations of SVD computation in MapReduce framework can hardly deal with them. The second
aspect is tall-and-skinny matrix SVD computation. However, these methods only make sense for
special matrices [8, 9].

Among all the approaches that are intended for full rank SVD computation, the most commonly
used SVD algorithm is based on quick response QR iteration [10]. However, this algorithm has one
major drawback when deployed in distributed computing systems. QR iteration-based SVD algo-
rithm requires huge amount of iterations to produce the final result. While, on the other hand, for
one iteration of a MapReduce job, Hadoop has to read the input data from a distributed file sys-
tem and write the result back. This repeated read and write input/output (I/O) operations become
the bottleneck of the algorithm. From this respective, QR iteration-based SVD algorithm is not
suitable in MapReduce framework. Another approach for full rank SVD computation is Jacobi
method. Nonetheless, this method also requires large number of iterations to produce the final
result [11].

In comparison with the QR iteration-based SVD algorithm, divide-and-conquer approach is
another efficient way for solving full rank SVD problem. The key point of this algorithm is to split
the original problem into many sub-problems using a division strategy and merge the result of the
sub-problems to produce the final result. Therefore, this algorithm has satisfactory parallelization
and scalability when applied into distributed systems. Also, the recursive fashion of this algorithm
demonstrates that it is optimal in terms of number of iterations among different types of full rank
SVD algorithms. We believe that this algorithm is well suited to MapReduce framework.

In this paper, we propose a parallelized divide-and-conquer SVD algorithm using MapReduce
programming model. We have three main contributions in our work. First, each merge task of SVD
algorithm is organized as a node in a binary tree. We propose a two-stage task scheduling strategy to
dynamically parallelize the computation of merging tasks in a level of tree according to their matrix
size. Second, we design an efficient way to fully split the input matrix into leaf problems accord-
ing to the division strategy of the algorithm using MapReduce. Third, matrix multiplication is the
most expensive step of the whole divide-and-conquer SVD algorithm. We improve the basic block
matrix multiplication for divide-and-conquer SVD algorithm by avoiding zero elements transfer and
computation in the cluster.

The rest of this paper is organized as follows. Section 2 provides an overview of related work. The
detailed implementation of SVD is given in Section 3. Our overall architecture of SVD algorithm in
MapReduce framework is presented in Section 4, and Section 5 describes the whole process of SVD
parallelization in MapReduce framework. Section 6 presents the experiment and analysis. Finally,
we draw a conclusion in Section 7.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SINGULAR VALUE DECOMPOSITION BASED ON MAPREDUCE

2. RELATED WORK

Full rank SVD algorithms can be generally divided into three categories. The first one is QR itera-
tion approach, which is most widely used. This approach has high accuracy and numerical stability
[10]. To obtain higher performance, Cuppen first proposed a divide-and-conquer approach to solve
eigenproblems [12], and it was improved by many other researchers. Gu and Eisenstat [13] pro-
posed a divide-and-conquer SVD algorithm, which is regarded as the fastest algorithm among all
SVD methods. This algorithm can be used to solve least square problems much faster than QR
iteration algorithm [14]. The third one is Jacobi method. In terms of numeric calculation speed,
Jacobi method is the slowest, but it has higher precision than any other methods [11].

Lots of research work has been devoted to improve SVD calculation efficiency. Graphics pro-
cessing unit, which has strong computational efficiency, was used to improve computation speed
of SVD [15-17]. However, their work focus on how to speed up SVD computation in stand-alone
context and cannot deal with SVD of large-scale matrices.

Mahout [3], an open source toolkit, includes SVD algorithm based on MapReduce that employs
Lanczos method to do SVD computation. In each iteration, one singular value and corresponding
singular vectors are calculated. However, for full rank SVD applications, a large number of itera-
tions are required. As mentioned earlier, this drawback produces severely adverse effects upon the
performance of algorithm and makes the computation intractable when the dimension of matrix is
large. In addition, Mahout SVD is only designed for sparse matrix.

Liu et al. [18] proposed a novel MapReduce-based distributed latent semantic indexing. However,
this work did not include the approach to obtain the original documents-term matrix in distributed
environment. Yeh et al. [19] proposed an iterative divide-and-conquer-based estimator for solving
large-scale Least Square Estimation (LSE) problems. Iteratively, LSE problem to be solved is trans-
formed to equivalent but smaller LSE problems. Actually, this method did not aim to solve SVD
problem.

In other related works, Constantine et al. [8, 20] presented a method to compute QR factorization
in MapReduce. They design an efficient way to get the result of R matrix whose dimension is
small and then directly compute the SVD of small matrix. Their work is improved by Benson et al.
[9] to obtain a stable tall-and-skinny QR factorization method based on MapReduce architecture.
However, their methods are only designed for tall and skinny matrices. To solve the SVD of tall and
fat matrices, Bayramli [4] proposed a solution based on MapReduce framework. It adopts a random
projection method to transform the original large-scale matrix to a small matrix and then compute
the SVD of small matrix. Obviously, their work mainly deals with rank k& approximation of SVD.
When £ is large, their implementation will not work. Ding et al. [21] introduced a solution, which
used PARPACK toolkit in MapReduce framework to obtain the singular values and singular vectors
of the large-scale matrix. Nevertheless, it still aims to deal with low rank SVD computation and
numerous of iterations are required to obtain a full rank SVD.

To the best of our knowledge, there is no effective implementation about full rank SVD
computation in MapReduce framework.

3. DIVIDE-AND-CONQUER SVD ALGORITHM

In this section, we give an overview of the process of the divide-and-conquer SVD algorithm. More
detailed information about this algorithm can be found in [13].
Generally, given a matrix A € R™*"(m > n), we can always find an equation

. >, 0 T
A=U (0 O) |4 (D)
where U = [uy,uz,...,upm] € R™™ and V = [v1,v2,...,0,] € R™" are both orthogonal
matrices, (X(J)r 0) is a m x n matrix and X, with nonzero diagonal entries satisfying w; = w, =

... w, > 0. Equation (1) is what we call SVD. Normally, the input matrix of an SVD algorithm

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S.ZHAO ET AL.

is bi-diagonal matrix. If not, we should first convert it into bi-diagonal matrix by a Householder
transformation. Here and in this paper, we assume to have a (N + 1) x N lower bi-diagonal matrix
B as the input of our SVD algorithm. Divide-and-conquer algorithm first recursively divides matrix

B into the following form:
B ager 0O
B = 2
(0 Brer B> @

where By and B; are also K X (K —1) and (N — K +1) x (N — K) bi-diagonal matrices, respectively,
and K = |K/2]. The algorithm will solve the SVD of B; and B, recursively. Assume that the

. D;
SVD of B; is (Qi qi)(Ol

) WiT. We obtain, then, we permute the right hand of Equation (2) to
the following form:

B=0MWT
ro 0 0
oOw; O
_ (coqr Q1 0 soqu axly D1 0 1 01 0 3)
soq2 0 Q2 coq2 B fa 0 Dy 00 W

0 0 O

where rg = /(ax21)? + (Bk$2)? and variables /1, £, are last row and first row of Q; and Q»,
respectively, A1 and ¢, are last component and first component of ¢; and ¢», respectively. The next
step is to solve the singular values of middle matrix

21
22 dy
Zn dn
where 0 = d; < d, < < < d,. The singular values of this matrix are the roots of the secular
2
equation f(w) =1+ Z d2 = 0 and also satisfy the property 0 = dy < w; < dp < ... <

=
dn < wp < dn + |2]2.

After solving all the singular values, we calculate the singular vectors of matrix M using the
following equation:

(> - ! —1, P22, s !
dl_w,' AR dn_w[’ dz—w» v diy—ws?
up = > Vi = : =)2’ “4)
n 2k 14+ Zn kZk
[P— | = 3
V2=t oy \/ =2 (@7-w?)

However, in all cases, for a specific singular value w;, we can only calculate an approximation w;
using whatever approaches to solve the secular equation. In reality, even if the variable w; is very

. . d
close to w;, algebraic expression —= 2 and o LEL 57 are also very different from the true numeric

2
di

values n As aresult, the accuracy and orthogonahty of all singular vectors are not ensured.

To solve this problem, Gu and Eisenstat [13] presented an efficient way that after solving all the
singular values w;, all the elements Z; in the first column of matrix M are recalculated using the

following equation:

tlA dznl

| 2l = (uinz—d,?)]"[— H 7 —d2 5)

+1

This leads to a high accuracy of left and right singular values of matrix M. After the SVD of matrix
M is computed as the product UXVT | we obtain the SVD of matrix B as (QUq)S(WV)T =

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SINGULAR VALUE DECOMPOSITION BASED ON MAPREDUCE

XZYT through two matrix multiplications.
We summarize the divide-and-conquer SVD algorithm as Algorithm 1.

Algorithm 1 Divide-and-conquer SVD algorithm

. Input: bi-diagonal matrix B
: Output: the SVD result of bi-diagonal matrix B.
Define the minimal size of the sub-problem, divide the bi-diagonal matrix B recursively to obtain a binary tree.
: For all the leaf sub-problems in the binary tree, use QR iteration-based SVD algorithm to solve them.
for each non-leaf problems in the tree do
Permute the SVD results of its two sub-problems to construct the middle matrix M .
Solve the secular equation to get all singular values and then revise the z vector.
Calculate the singular vectors of matrix M .
Calculate the singular vectors of original matrix B by matrix multiplications.
: end for

QYR IINERD

—_

4. ARCHITECTURE

4.1. Two-stage merge task scheduling

After we split the original bi-diagonal matrix recursively using the specific division strategy, the
SVD solving process of the original problem can be organized as a binary tree, as shown in Figure 1.
In the binary tree, leaf nodes denote minimal sub-problems, and non-leaf nodes denote merge tasks
to merge SVD result of two smaller sub-problems. The most direct way of solving this problem is
based on a post-order traversal fashion. That is to say, we divide the original problem recursively
until we reach one leaf problem, solve the leaf problem using QR iteration-based SVD approach and
then, merge the SVD results of two sibling nodes to form the result of their parent node according
to the recursion branches generated by the program. However, in a distributed running environment,
we need to record the global information of the whole binary tree, which is significantly memory
demanding. To overcome this problem, given a fixed size of matrix, we first fully split the original
matrix to a set of leaf sub-problems using a specific division algorithm. Second, we solve all the leaf
nodes and then, execute the merge tasks level by level.

In Hadoop runtime environment, a straightforward way of parallelization is to let one MapReduce
job execute one level of merge tasks, and each merge task of one level is assigned to one map
or reduce task in this job as shown in Figure 1. However, there is one main drawback about this
implementation. When the merging stage of SVD moves toward upper level of the binary tree, the
number of map or reduce tasks will doubly reduce level by level. As a result, at the root level, there
will be only one task to execute the merging task, while the amount of computation for each task

|]
: Job4 (: Task :
I |
|]

e e

| Job1 &0 ITask”._'l'.uk-|-ITuk"l'aﬂc |[Task

dbdtdbabb i

Figure 1. Level by level iteration.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S.ZHAO ET AL.

will doubly increase as the size of matrix for each task increase level by level. This trend will lead

to a considerable load imbalance problem.

To address this problem, another way of parallelization is to let one or more MapReduce jobs
execute one merge task of the whole tree as illustrated in Figure 2. In this way, Hadoop framework
will dynamically distribute the computation work to all nodes in distributed systems. However, there
are still limitations in this approach. Consider one situation, where we define a very small size of
matrix as the minimal sub-problem for a very big size of original problem, which will generate many
small size leaf-problems. Therefore, there will be too many MapReduce jobs to be launched for the

terationd ——= | Jobs Jobs

. == _(; N_:-ﬁ = __T;._ﬁ”\%_l. __
"' AN AN A

Threads {::l 100 101

7 AN

1000 1001 1010 1011

b4 11

Threadl Thread2 Thread3 Thread4

Figure 4. Pipelined task scheduling.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

DOI: 10.1002/cpe

SINGULAR VALUE DECOMPOSITION BASED ON MAPREDUCE

bottom level of the tree, while the size of input data for these jobs is very small. For a matrix whose
size is small, using the memory of a single node to deal with the computation is quite enough. If
we parallelize small size matrix in a distributed manner, additional cost of I/O and network transfer
during the algorithm execution will be a significant bottleneck.

Weighing the merits and demerits of each approach, in this paper, we propose a two-stage task
scheduling algorithm. Namely, at the bottom level of the tree, if the size of matrix is less than a
specific threshold 51, we use the first way of parallelization. We call it the first stage. As the program
moves to a specific level when the size of matrix is equal or larger than s, we begin to use the second
way of parallelization. We call it the second stage. Thus, we take advantage of both approaches
to significantly improve the performance of the algorithm running in distributed environment. The
architecture is shown in Figure 3.

4.2. Pipelined task scheduling

During the process of the second stage, each merge task of one level in the tree is composed of
several steps and each step will be assigned to one MapReduce job. Different steps of one same
merge task should be executed one by one serially according to the algorithm logic. Meanwhile,
different merge tasks belonging to the same or different levels can be executed independently. We
use one thread to control the scheduling of jobs for each step in each merge task. To speed up the
execution of the algorithm, we propose a pipelined task scheduling strategy.

Figure 4 shows the procedure of how pipelined task scheduling works. Assuming at time #1, there
are four threads scheduling task 1000,1001,1010, and 1011. And then at time #,, both merge tasks
1000 and 1001 are finished, the thread for task 100 will start immediately without the necessity to
wait for task 1010 and 1011 to complete. On the contrary, if we adopt level by level scheduling
strategy in the same way as the first stage when all the tasks in a level should be finished before
its upper level of merge tasks start scheduling, there will be two extreme situations occurring in the
second stage. There must be a time when there is only one MapReduce job belonging to the last
merge task in a level running in the cluster, which may only occupy several computation nodes in
the cluster while other nodes are idle. On the other hand, there also must be a time when all the
merge tasks belonging to one level start being scheduled at the same time so that they have to madly
compete for the relatively limited computation resource in the cluster. Therefore, by adopting the
pipelined task scheduling strategy, at any time, we can make full use of the computation resources
in distributed environment.

on
B oa:
Bidiagonal Marrix B = T ,
A1 oo
& |)
How L= T0040 N
Cal 1-999
Riw: 1 =449 Row: 50011400

Cal:1-408 Clal:200-1HR

Hawae:]-.2489
Cal:1-248

Row:250-499 //
Ul 250-495 /.: ! l
Rewititax L2 dL

|E|E|E| E]E” Leaf Nodes

Figure 5. Divide algorithm in MapReduce.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S.ZHAO ET AL.

4.3. Divide algorithm

In a distributed runtime environment, for a large-scale lower bi-diagonal matrix, even if we only
store its non-zero elements, it is impossible for a single node to store all its elements in memory.
Therefore, traditional recursive division approach is no longer applicable. As a result, the first prob-
lem that the divide-and-conquer SVD algorithm should deal with is how to efficiently extract all
leaf problems from the original matrix, which exists in distributed file system. In this paper, we
design a row-index-based approach for quick matrix division. Figure 5 shows the whole procedure
of our approach. Given the dimensionality of a matrix and the specific division method, we can
use an in-memory program to generate a binary tree with each node recording the positions of all
sub-problems in the original matrix. Consequently, we can get the whole mappings from each row
of the matrix to a specific sub-problem. We call this kind of information row-index. On the other
hand, the original bi-diagonal matrix is stored in a distributed file system row by row, and each
row of the matrix is stored as a key-value pair. Thus, we launch a MapReduce job, for each row
read from Hadoop distributed file system (HDES) in map task, look up its corresponding row-index
information in memory to find which sub-problem it belongs to. For an example, when map task
read the second row of matrix in Figure 5, it will emit the key-value pair < 10, (100,2, 81, a2) >
to reduce task. This means that leaf nodes that share the same parent node will be received as one
key-value list pair by reduce task, and we can resemble all the data belonging to one leaf node very
easily in reduce task. Then, we can solve all the leaf nodes using QR iteration SVD algorithm and
put the SVD result of sibling nodes in one key-value pair. In this way, we get preparation for the
subsequent iterations.

5. PARALLELIZATION IMPLEMENTATION IN MAPREDUCE

5.1. Level by level merge implementation

If the size of leaf problems is small, we will merge the sub-problems level by level. All the merge
tasks in a level are controlled by one MapReduce job. The output of division algorithm will be
the input of the first stage. As shown in Figure 6, all the merge tasks in a level are executed in
map tasks. For example, when the sub-problems 1000 and 1001 are merged in a map task and
produce the SVD result of 100, the map task will emit a key-value pair < 10, [100, SVD(100)] >
to reduce task. Thus, in one reduce task, sibling sub-problems 100 and 101, which share the same
parent node 10, will be received. A reduce task merges the SVD results of the sibling nodes as
one key-value pair and outputs it to HDFS. This output will be the input of next MapReduce
job, which performs the same operation until the size of sub-problems in current level reaches a
specific threshold.

[P E—
: 7 I
map | Conquer 10001001 |) reduce [peceive<io, [ro0.101> E]
» Cbminlon Bt + H-
r» Emit<10, 100> (0, o |
|] I
| | |
o oo] 4! I
méip | Coaquen 1010, vedin et) (1AL T
i Obtain 101 4 '.’.l CE€ | Receive IrI.I_IIIII_HI; N __:
¥ Emit<i0, 100> I E 1 - m |
| 17 |
| [|
: | (i |
I L] |
| =
Comquer 1THTITT I |
myp
T» Obwinlll aa :
@ ¥ Emt<iL 1> (I |
|) |
| [— |
|

lteration Level By Level

Figure 6. Level by level merge implementation.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SINGULAR VALUE DECOMPOSITION BASED ON MAPREDUCE

5.2. Multi-job-based pipelined task scheduling

When the matrix grows to a big size, it is incapable for a single node to accommodate a whole matrix
in memory. Therefore, it is time to seek ways to parallelize the merge procedure using MapReduce
to make it possible for large-scale matrix processing in a distributed environment.

When the algorithm enters the second stage, the layout of matrix in HDFS is a critical point.
A reasonable layout of matrix is conducive to the subsequent steps of a merge task. We can see
from Algorithm 1 that the whole merge procedure of SVD algorithm is mainly composed of four
steps. Because of the mathematical complexity of SVD algorithm, we use separate files to store
different parts of matrix involved in the merge procedure of SVD algorithm. For example, we use
four different files to store four different parts of the matrix Q, namely Q1, 02, (coq1.5092)",
and (—soql,coqz)T. Also, we use five files to store five different parts of matrix M, namely
ro.®kl1, Bx f2. D1, and D, and two files to store matrix W. Different parts of different matrices
will be the input of different steps of merge procedure that we will describe later on. In addi-
tion, we apply a row major or column major storage for all matrices in this paper depending on
different situations.

5.2.1. Middle matrix M permutation. Observing three matrices generated in middle matrix per-
mutation step, we discover that six matrices Q1, Q», D1, D, Wi, and W, can be obtained
from the result of two sub-problems through simple transformation, and this operation
fits well in MapReduce, while we need additional consideration for the computation
of (coq1.5092)T . (—soq1.coq2)T . ro,axly, and Py f>. First, we focus on how to obtain
(coq1.5092)T, (—=s0q1,cog2)T, and ro. According to divide-and-conquer algorithm, computation of
these three parts only relies on variables ¢1, g2, ok, and ;. Hence, we only need to read ¢1, g2, o,
and B from HDFS to calculate them. This step has small amount of computations. Thus, putting
this step in the driver module of MapReduce program is quite suitable. Six files that are used to store
matrices Q1, Q», Wi, W,, D1, and D, will be the input of one MapReduce job. This MapReduce
job will convert the format of the matrix and output the six matrices Q1, Q2, Wy, W, D1, and D,
to separate files organized line by line. At the same time, when map tasks read the last row of matrix
Q1 or the first row of matrix Q,, they will output «x/; and B f> directly to HDFS. This process is
shown in Figure 7.

5.2.2. Secular equation solving and 7 vector revising. This step is to solve the singular values
of middle matrix M. The singular values of matrix M satisfy secular equation. There are vari-
ous approaches available to solve this equation including Newton method, Middle Way method,
and bisection method. No matter which method is adopted, if a root is not found in one itera-
tion, another iteration is required to find the next approximate point. Among all these approaches,
Newton method and Middle Way method take less iterations than bisection method to get the
final result [5, 22, 23]. However, for these methods, doing one numerical iteration is much more

o lpl] m ‘ wi o el o w2

1 L
N, S s A Y ;
— - i :—*lcog, sogr)
Driver |Computing 7o = (m.’,;)‘-[ﬂaw;]‘f>=&—_=i=£§—|—b|—;;q—;, crg)
L_,_,____, e _?' e b '
Launch MapReduce Job
|:ll1il@
Q- DI- Wi- Q- D ‘ we | ah fif

Figure 7. Middle matrix permutation.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S.ZHAO ET AL.

Z vector D vector l

d

(Distributed Cache (

/,:! :\.-‘ "'-...__‘
A A Bt S
lreeeime WRWS.. EBER e
map | Selve Wi~w using B_lstctiun -—p\.\ Pl :rcduce - Emit
di~d = Lo (W =d) — — Z1~7Zr >
Computing] [———==12---n e ~ 21~ 2
s (d —=d) 4 | "
T - - s
5 / Emit I | R
D : = Wr=1~Ww2r | i
map | Solvew-1~wrusing Hisection > 2] :-J'educe Emit
dr-1~dr » rpricd) —— £~ Z .~ Iy >
Conlputmgll_—[_(d_ 3 =12 2 N
. ‘r | | 7
j Emit : | \'\
YT, Wir-1~ W I .
: — map Solve - -1 _lrt. Efln*_.f_lilsectmu I | reduce Emit
drr-1~dsr M Computing TT%=%) to12..n N A St ST £ NS
Computing UG =t : |
ol

Figure 8. Secular equation solving and z vector revising.

expensive than bisection method. What’s more, Newton method and Middle Way method actu-
ally do not ensure numerical convergence [17]. Compared with Newton method, bisection method
has the slowest arithmetic speed [24]. However, this method is quite simple for every numerical
iteration. That is to say, only one floating point operation is needed to find the middle point of
upper and lower bounds. Besides, bisection method guarantees numerical convergence perfectly
and is easier for parallelization. Therefore, we use bisection method to solve secular equation in
distributed environment.

Note that we require all elements of z vector and d vector before we solve one root of secu-
lar equation. In this paper, we assume every single node of distributed environment is capable to
store two vectors of matrix M in memory. Thus, we can directly import z vector and d vector into
memory to make the computation of different singular values work in parallel in distributed environ-
ment. We see that the solving process of different singular values can be done independently. Thus,
interval segments of singular values are the input of a MapReduce job. The z vector and d vector
are added to distributed cache before a MapReduce job is launched. We solve the singular values in
map tasks and emit segments of singular values directly into HDFS.

At the same time, we observe Equation (5) and find that the computation of Z; relies on d vector
and all singular values {w;}?_,. Besides, the computation of Z; is the multiplication of multiple
factors with the same form and extract a square root at last. Therefore, in map task, after solving

. . . T ?-d?
a segmentation of singular values w; ~ w,, we can calculate a continued product [] 7
k=1 k7%

as partial result of Z;. And then, we send all partial results belonging to Z; to one reduce task
during shuffle phase. Reduce tasks will multiply all these partial results and perform a square root
extraction. At last, reduce tasks emit the final result of Z; into HDFS. The process is shown in
Figure 8.

5.2.3. UV vector computation. The next step is to compute all the singular vectors of matrix M
using Equation (4). As shown in Figure 9, the computations of vector u; and v; rely on d vector,
revised Z; vector and their corresponding singular value w;. d vector and revised Z; vector are
shared by the program globally, and the computations of #; and v; can be performed independently.
As a result, we import the d vector and revised Z; vector into Hadoop distributed cache. All seg-
ments of singular values output by previous step will be the input of this step. In map task, as one
singular value wj; is read from input data, we calculate its corresponding u; and v; vectors using

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SINGULAR VALUE DECOMPOSITION BASED ON MAPREDUCE

Z- vector D vector

Distributed Cache

K

Y
map ey | LM
W~Wr ——y{ Computing e
1~ Vr
by
_ omap | g~y EME
Wr+1~ Wl ——p Computing Vrelm~ 1 —»
1
1 .
mp . U2 e1~] P
Wir+1~ Wir——pf Computing —
VI +1~Vir

Figure 9. UV vector computation.

Equation (4). The computation result of map task is output into HDFS directly with a format of
column major storage.

5.2.4. Matrix multiplication. The final step of merge procedure is matrix multiplication to obtain
the singular matrices of matrix B. There are many researches available concerning how to per-
form large-scale matrix multiplication in MapReduce framework. The most frequently used method
is to perform dot production between one row of first matrix and one column of second matrix
[25-27]. This method is simple and intuitive when employed in MapReduce framework, while, on
the other hand, this method can cause severe network traffic during the shuffle phase [26]. To address
this problem, block matrix multiplication is presented [28]. In distributed running environment, to
achieve high parallelization, we have to distribute different parts of calculations of result matrix to
different nodes, so all the elements of operational matrices need replicated multiple times, which
causes additional cost of I/O and network transfer. For general dense matrices, block matrix mul-
tiplication requires the least times of matrix element replication of all the available approaches. In
this paper, we will adopt a block matrix multiplication approach.

The principal of block matrix multiplication is illustrated as Figure 10. Assume that there is a
matrix multiplication as the Equation (6)

AxB=C (6)

where matrix A is divided into NIB row blocks and NJB column blocks, matrix B is divided into
NJB row blocks and NKB column blocks. Figure 10 shows the computation process of first row
and first column block of result matrix C, where each block in first row block of matrix A has
to be multiplied by another block in first column block of matrix B. However, we discover that
there are large amount of continuous position zero elements in matrix Q and matrix W as shown
in Equation (3), which occupy approximately half of the total elements in these matrices. Based
on the basic block matrix multiplication, there will be a lot of ineffective block replications and
block computations.

To avoid this problem, we use a matrix block mapping mechanism. We take the case of matrix
QO multiplying matrix U as an example. Recall that we use three separate files to store three parts

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S.ZHAO ET AL.

A] Az | o [A B |fBia | ++ [Biswn
A | A | o | Aaws 21 || B | e+ | Benim
| Avnis = | Banka
Asmny | Anma | Ay | Asmpus Brary | {Bumz | Brono B_\-JBN;“I

T I

:CII = Z{Ai,r' X‘Bnl):

| n=l |

Figure 10. Basic block matrix multiplication.

-0

=~ |

u‘;;a
|
'_I
i
I
i

—_—— e — — —

L

U

z f%u.‘
—
| |

|
¢ |
C
—

T
I
I
|

-

| 1 mompse
[! I !
| 1 I
f 1 I
| I
= |
| g B
|]
I 1
I I
I | I 4
f I 1
S| !_ St |
First Row Block Third Row Block

First Column Block First Column Block

Figure 11. Revised block matrix multiplication.

of matrix Q, namely (coqi,s0q2)7. Q1 and Q,. Thus, we use these three files instead of the
whole matrix Q as input of matrix multiplication algorithm in this paper. Given a specific matrix
partitioning strategy, as we read input data from matrix Q row by row, we can obtain the row and
column offset of the first element of each row in the original matrix and then map all the elements
in a row to a specific block belonging to the matrix. After replication, different parts of operating
matrices are distributed to different nodes in the network.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SINGULAR VALUE DECOMPOSITION BASED ON MAPREDUCE

Now, we consider the case of matrix U. According to block matrix multiplication algorithm, we
know that each column block of matrix U requires NIB times of replication and the i th copy of the
block has to be multiplied by the i th row block of matrix Q. However, we find that there exist zero
blocks in each row block of matrix Q, which causes such situations where a lot of blocks in matrix
U are multiplied by zero blocks in matrix Q. To avoid ineffective block replication and transfer of
matrix U as well, we only select partial blocks in each column block of matrix U to be replicated as
we perform the ith copy of the whole column block. For example, assume that matrix Q is divided
into NIB row blocks and NJB column blocks where NIB > 2 and NJB > 2, respectively. Obviously,
Ui B 1s a zero block, as we perform the first copy of each column block in matrix U, the last row
block will not get replicated. This process is shown in Figure 11.

Therefore, we can improve the performance of matrix multiplication in distributed environment
by approximately 50% in theory. The pseudo code of revised block matrix multiplication in MapRe-
duce framework is shown as Algorithm 2. Let / x J matrix and J x K matrix be one block of
matrices Q and U, respectively, and we assume that matrices Q and U are divided into NIB x NJB
and NJB x NKB blocks for each row and column, respectively.

Algorithm 2 QU matrix multiplication in MapReduce

- Map Input: Matrix file: (coq1,5092)7 , Q1, 0>, U
: Iy <= number of Row Blocks of QI
1> < number of Row Blocks of Q2
J1 < number of Column Blocks of (coq1, Q1)
Jo < number of Column Blocks of Q>
. if from file U then
fori < 0to I do
Output the first J1 Row Blocks of Value Row.
end for
10: fori <— 0to I> do
11: Output the first element and the last J> Row Blocks of Value Row.
12: end for
13: else
14: for each element v in Value do
15: Calculate its Block Location in Matrix Q;
16: Output the element with the block location.
17: end for
18: end if
19: Reduce Input: Row Blocks of Matrix Q and Column Blocks of Matrix U
20: Multiply each block of one Row Blocks in Matrix Q by corresponding block of one Column Blocks in Matrix U,
Obtain one result Block Matrix.
21: Output result Block Matrix.

VRN R DN

6. EXPERIMENT

In this section, we demonstrate the effectiveness of our proposed divide-and-conquer SVD algorithm
based on MapReduce. We conduct all our experiments in a cluster that contains 32 physical nodes.
Each node has two 8-core processors (2.60GHz) and 64GB of random access memory. We use JAVA
1.7 as the programming language and deploy distributed computation framework Hadoop1.0.3 on
this cluster with each node configured to run eight map tasks and eight reduce tasks simultaneously.
We set the block size of HDFS to 192MB. Notice in this section again, when we mention the size
of matrix is N, we mean to have a N x (N — 1) matrix in our experiment.

6.1. Overall performance

Figure 12 shows the overall performance of MapReduce-based divide-and-conquer SVD algorithm.
The settings of mappers and reducers for different steps in this experiment are shown in Table I,
in which ‘Div’, ‘Iter’, ‘Per’, ‘Sec’, ‘UV’, and ‘Matr’ denote the step of divide, first stage iteration,
matrix permutation, secular equation solving, z vector revising, uv vector computation, and matrix
multiplication, respectively. The threshold s; when the first stage transmits to the second stage is

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S.ZHAO ET AL.

Tine Cost{nin)

1

1

8 16000

20008

40000

50008

Matrix Size

Figure 12. Overall performance.

Table I. Settings of number of map-
pers and reducers for each step.

Step Mapper Reducer
Div 20 10
Iter 20 10
Per — 10
Sec 20 10
uv 20 —
Matr — 70

set to 2500, and leaf matrix size is set to 300 for all matrix size. We can see from Figure 12 that
as the size of matrix increases, the computation time of our algorithm increases gracefully. How-
ever, compared with O(N ?) time complexity of SVD algorithm, our implementation in MapReduce
framework only shows approximately linear growing trend in computation time, which proves that
when dealing with large-scale SVD matrix processing, our algorithm can successfully distribute the
workload to more machines and take advantage of parallelism. Another important reason, which
contributes to this growing trend, is that given a fixed leaf matrix size as the threshold for our divide
algorithm, the larger matrix size produces higher binary tree. Hence, the advantage of pipelined
multi-job-based task scheduling for the second stage is more enhanced.

Figure 13 shows the execution time of different steps in SVD algorithm compared with the total
execution time. It is clear that the merging procedure of SVD algorithm dominates the total exe-
cution time. This percentage is 99% when the matrix size reaches 50,000. This phenomenon is
mainly due to the fact that when the merging procedure moves toward the upper level of the binary
tree, the dimension of matrix doubles, which results in four times increase of memory space for
matrix storage and eight times increase of computation time, respectively. Even though the number
of merge tasks is halved at the upper level of the binary tree, the computation time of larger matrix
significantly increases compared with smaller matrix in the binary tree. Therefore, when the matrix
grows to a large size, the height of the binary tree is high, and more computation time for merging
tasks is required. Another obvious trend we notice from this figure is the computation time for
matrix multiplication step. When the matrix size is 5000, the matrix multiplication operation takes
only slightly more than 20% of the total time. However, when the matrix size grows to 50,000, this

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

DOI: 10.1002/cpe

SINGULAR VALUE DECOMPOSITION BASED ON MAPREDUCE

18

03001
ESR95T

\Z
|
I
|

EA
I
]

N
AN
i
|
|
]

W 1
NG N NN N
e

Ratio of Time Cost
o3 8585838 88

8 85 1 1,5 2 2,5 3 3,5 4 45 5
Hatrix Size X1074

Figure 13. Ratio of time cost for each step.

Table II. Comparison on performance, in seconds, of different types of
operations according to different number of mappers (m) and reducers (r).

Matrix Size

Step 10,000 20,000 30,000 40,000 50,000 m r

Div 34 37 39 45 53 10 10
34 37 40 42 48 20 10
35 35 41 43 46 30 10
Iter 37 38 38 40 40 10 10
39 38 38 40 39 20 10
38 34 37 41 34 30 10
Per 54 56 87 125 143 — 10
58 59 70 96 131 — 20
51 51 59 82 115 — 30
Sec 44 45 55 70 85 10 10
44 44 50 56 68 20 10
38 39 45 51 58 30 10
uv 37 73 141 231 354 10 10
40 72 130 214 316 20 10
40 76 126 188 198 30 10

fraction is 60%. This trend mainly results from the highest time complexity O(N?) of matrix mul-
tiplication operation among all steps. In addition, the characteristics of block matrix multiplication
in MapReduce framework determine that large numbers of block matrix replications are required
when the matrix size is large enough given a fixed block matrix dimension, which causes large
amount of native I/O and network transformation. Other steps including first stage iteration, matrix
permutation, secular equation solving, z vector revising, and uv vector computation all achieve high
performance, which occupy only small fraction of total execution time.

Table II shows the comparison result on execution time of all steps except matrix multiplication
for different settings of mappers or reducers, in which ‘m’ and ‘r’ denote the numbers of mappers
or reducers we set to run these steps in MapReduce. The input of matrix permutation step is SVD
result of two sub-problems, so the size of input file for this step is much larger than any other steps.
Consequently, the number of mappers in this step is basically determined by the size of input file

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S.ZHAO ET AL.

based on the running mechanism of MapReduce framework. Therefore, we measure how different
settings of reducers affect the performance for this step. For other steps, because the size of input
file is much smaller and most of computation work is done in map tasks, we only measure how
different setting of mappers affect the performance of these steps. The number of reducers is set to
10 for these steps. From this table, we can clearly see that most steps achieve satisfactory perfor-
mance. It takes less than 6 min to finish all these steps. Also, we discover that adding more mappers
or reducers for these steps does not contribute to the improvement of performance significantly.
For matrix size 30,000, the computation time of divide step is quite stable for all settings of map-
pers, and it does not take much less time for uv vector step by adding more mappers. It is because
the computation of each task for these steps is quick and adding more map tasks or reduce tasks
does not provide more effective computation power. In addition, launching more tasks causes addi-
tional overhead including task startup cost and network transfer of intermediate data during the
shuffle phase.

6.2. Adaptability analysis

In this section, we analyze two important parameters related to our MapReduce-based divide-
and-conquer SVD algorithm. First, we measure how different settings of s; affect the overall
performance of divide-and-conquer SVD algorithm. In this experiment, the setting of mappers and
reducers for each step is the same with the setting in Section 6.1. The minimal size of leaf problem
is set to 50. Figure 14 shows the results of performances for matrix ranging from 10,000 to 30,000.
For all cases, the performances first improve to a considerable extent when s; increases and then
decline dramatically as s; grows to a large size. Given a fixed large matrix size and a small leaf
matrix size, when s; is small, the number of iterations for first stage is also small, which leads to
a situation where a large number of MapReduce jobs are launched to merge small sub-problems
when the second stage just begins. When SVD results of small sub-problems are taken as input for a
MapReduce job in the second stage, all map tasks and reduce tasks execute very quickly, so the costs
of task startup and I/O operation during the job execution dominate the overall performance for one
particular job. Thus, these accumulative overhead slow down the performance of overall algorithm.
When s, is large, the last iteration of first stage parallelization has to deal with the merge task of
large sub-problems. Obviously, running the merge process for large sub-problems in a single task
of a MapReduce job leads to extremely low parallelization of overall algorithm, which definitely
harms the overall performance. Finding the best s; for each matrix size is difficult, because the over-
all performance is influenced by many other parameters, such as number of mappers and reducers.
From the experimental results, well balance can be achieved when s; is between 1000 and 3000.

138 T Ll L} 1 T
—+— 18008 .
-| —— 20080 P
*— 3000 Ve
8a Vi .
-~ B ;-/ T
S ‘
£ 60 - .
: -
g :
[x] *_ - -
- Mg _.-—'_-' _’_r'-(.- -
E 48 y W A
pa 2 ~ + i
- -Q —H ~ /"/-f
20 r -_.f______:;//’ b
1 L 1 1 1

a L 1
6 1606 2000 366 4600 5660 6000 7608 BOBB
sl

Figure 14. Performance result of different settings of s1.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SINGULAR VALUE DECOMPOSITION BASED ON MAPREDUCE

Ba T T T T T T T
—+— 188008
—— 208088 W)
5@ % — 368088 f__,-—” 4
5 __,_.—-"-r 4
~ T K
c 48 i, el -~ 1
.E ':L*L"i—— YT -]
36 - 4
-}
U R &»..—""J —~ * 4
o _ —~
£ }(_“‘__‘._ o o
P B= N e — o 1
| ol w_ﬂ" -
16 .
e 1 1 1 1 1 1 ! 1 1 1
8 1800 2008 Joee 4688 5608

Leaf Hatrix Size

Figure 15. Experiment result of different settings of leaf matrix size.

Figure 15 shows how different settings of leaf matrix size affect the performance of overall divide-
and-conquer SVD algorithm. We set 51 to 2500, and the matrix size we measure here ranges from
10,000 to 30,000. For a fixed size of matrix, different settings of leaf matrix size directly determine
the height of the binary tree and, more precisely, the number of levels for the first stage iteration.
For matrix size 30,000, the number of iterations required for the first stage is five and one when
we set the leaf matrix size to 58 and 938, respectively. We can see from this figure that in different
cases, when the leaf matrix size is less than 1000, the gap of performances for these settings is quite
small. It is because when the matrix size is below 1000, one merge task for two sub-problems runs
quite fast in the first stage. It generally takes less than 1 min for each iteration in the first stage.
Even though more iterations consumes slightly more running time compared with total time cost of
overall algorithm, the execution time of level by level iterations only occupies a small portion, and
the overall performance is not sensitive to the settings of leaf matrix size. However, as the leaf matrix
size grows greater than 1500 when all the parallelization work is done in second stage, we notice
a sharp increase of total execution time for all matrix size. This phenomenon can be explained by
several reasons. First, if leaf matrix is set to a large size, the number of sub-problems in the binary
tree is small, leading to a low parallelization of overall algorithm. Second, the computation time of
QR iteration is quite sensitive to the size of the matrix. Obviously, when the leaf matrix is large, the
computation of QR iteration for leaf matrix becomes the bottleneck of overall algorithm.

6.3. Matrix multiplication performance

In this section, we evaluate the efficiency of our proposed revised block matrix multiplication in
MapReduce framework. We first look into how the number of reducers and block size affect the
performance of block matrix multiplication in MapReduce framework. Then, we compare the per-
formance of our revised block matrix multiplication with basic block matrix multiplication. Notice
that we have to perform two matrix multiplications for the last step of divide-and-conquer SVD
algorithm. Therefore, we run two jobs of matrix multiplication simultaneously to measure actual
performance of matrix multiplication step of divide-and-conquer SVD algorithm. Figure 16 shows
the relationship between the performance and different settings of number of reducers for different
size of matrices. The block size is set to 1200. The number of mappers is controlled by MapReduce
framework automatically according to the size of input file. The computation time first decreases
greatly as the number of reducers increases, because we can achieve more parallelism when we
increase the number of reducers. However, as the number of reducers grows bigger, the overall com-
putation time no longer decreases or even increases at certain points. For example, when the number
of reducers is set to 100, 200 map tasks will be launched in our environment. Large amount of

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

S.ZHAO ET AL.

1Em T T T T T T 1mn
A —5— 20908
1468 i ‘*‘h\ % 30000
1280 | X |
" [-.\'\ 1
2 1080 % 1
N Vi
I I *. / T
3 868 | N / -
‘: I e K 1
5 660 - * -
’_ N3 -
489 - —H.:-«'.--_____K____ ._/,'».]
i TR e 7
200 ; ' ; .
L — A 4
1 L 1 L 1 1 1 1

[!]
286 38 48 L] 68 7a il 98 108 118
Nunber of Reducers

Figure 16. Performance comparison between basic block matrix multiplication and revised block
matrix multiplication.

Ezw Ll T 1 1 1 T T
I —— 10608}-
2000 —s— 206081
1900 | —%— 30000/
S ¥
1668 | oy VA
~ | ™ _/-r :
G AR
M 3 ~
% 1200 o -
B » \\ ‘,F*_s_—'_ o -
, 1000 | . e .
T K N |
o seer e]
660 oy .
488+ T :
- —e IR
260 i ~—* -
L 1 1 1 L L L

B 1 1
300 600 966 1200 1560 1300 2100 2460 2700 3000
Block Size

Figure 17. Experiment result for different settings of reducers of revised block matrix multiplication.

reducers being launched means less work assigned to each reducer task but still with fixed startup
cost for each reduce task. In addition, large number of reducers running simultaneously causes more
network traffic during the shuffle phase and more native I/O competition when the reduce tasks run-
ning on the same physical node read their intermediate results from native physical nodes. Figure 17
shows the effect of various size of block matrix on the performance of matrices of different size.
The number of reducers is set to 70 for matrices in this experiment. We can see from this figure
that the overall computation time decreases first when the block size grows bigger. According to
Figure 10, when the block matrix size is relatively small, the number of replication for each block
is relatively big. Then, map tasks have to do very heavy replication work for each block and then
send the intermediate results to reducers. Hence, native I/O in the physical nodes running map tasks
and network transfer has great impact on the performance. Unfortunately, as the block size further
increases, we can see that the cost of time start to increase. For a fixed size of matrix, increasing
block size results in less parallelism for matrix multiplication and each reducer task has to do more
computation work. Therefore, we can conclude that there is a tradeoff between the overhead of map
tasks for matrix replication and the parallelism of block matrix computation.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

SINGULAR VALUE DECOMPOSITION BASED ON MAPREDUCE

M I — T T T
| | B Basic J
= i
70 Revised]
m - -
] - —
5
£ 991]
A - -
I
g 18- i
[X] - .
£ 30 -
L] [a
=
m o -
18 -

a p— % I."_. .'\.I.
[} 16668 20060 30000 40000 50000
Hatrix Size

Figure 18. Experiment result for different settings of block size of revised block matrix multiplication.

Figure 18 shows the comparison result of performance between basic block matrix multiplication
and our proposed revised block matrix multiplication for different size of matrix. The number of
reducers is set to 70, and the size of block matrix is set to 1200. It is clear that our proposed method
significantly outperforms basic block matrix multiplication in MapReduce framework. When the
matrix size is relatively small, the time cost of our revised block matrix multiplication algorithm is
approximately half of the basic block matrix multiplication algorithm. Moreover, for large matrix
such as 50,000, basic block matrix multiplication gradually shows its bottleneck in our experiment
environment. Recall that for our revised block matrix multiplication, we only take non-zero elements
as input of our algorithm. When matrix size is 50,000, 388 map tasks will be launched for two
basic block matrix multiplication in MapReduce, which greatly exceeds the total map slots of our
experiment environment and causes network congestion, while running our revised block matrix
multiplication algorithm calls for 290 map tasks.

7. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new MapReduce-based approach to solve divide-and-conquer
SVD algorithm. Compared with previous implementations of SVD in MapReduce model, our
implementation aims to solve full rank SVD computation for general matrices in MapReduce.
Our implementation takes advantage of characteristics of divide-and-conquer SVD algorithm and
achieves excellent parallelism in MapReduce framework.

Although we adopt Hadoop1.0 as our experiment environment in this paper, our implementation
can be easily transplanted to any distributed computing platforms that support MapReduce program-
ming model like Yarn and Spark. Compared with Hadoop1.0 platform, these big data processing
platforms have made a lot of improvement to significantly reduce I/O operation during the execution
of MapReduce jobs. In addition, for a heterogeneous running environment, it is really interesting to
explore a mathematical model to predict the performance of our algorithm according to the diversity
of hardware condition of experiment cluster.

ACKNOWLEDGEMENTS

The authors would like to thank anonymous reviewers for their insightful comments, which have helped to
improve the manuscript significantly. This work is supported by the National Natural Science Foundation of
China under grant nos. 61173170, 61300222, and 61433006, the National High Technology Research and
Development Program of China under grant no. 2007AA01Z403, and the Innovation Fund of Huazhong
University of Science and Technology under grant nos. 2013QN120, 2012TS052, and 2012TS053.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

S.ZHAO ET AL.

REFERENCES

. Singular value decomposition. (Available from: http://en.wikipedia.org/wiki/Singular_value_decomposition)

[Accessed on 20 May 2014].

. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Operating Systems Design and

Implementation, San Francisco, California, 2004; 137-150.

. Mahout. (Available from: http://mahout.apache.org) [Accessed on 29 May 2014].
. Bayramli B. SVD Factorization for tall-and-fat matrices on Map/Reduce architectures, 2013. arXiv preprint

arXiv:1310.4664.

. Melman A. Numerical solution of a secular equation. Numerische Mathematik 1995; 69(4):483—493.
. Chung J, Knepper S, Nagy JG. Large-scale inverse problems in imaging . Handbook of Mathematical Methods in

Imaging 2011:43-86.

. Song F, You J, Zhang D, Xu Y. Impact of full rank principal component analysis on classification algorithms for face

recognition . International Journal of Pattern Recognition and Artificial Intelligence 2012; 26(3):1256005.

. Constantine PG, Gleich DF. Tall and skinny QR factorizations in MapReduce architectures . In Proceedings of the

second international workshop on MapReduce and its applications. ACM: San Jose, CA, USA, 2011; 43-50.

. Benson AR, Gleich DF, Demmel J. Direct QR factorizations for tall-and-skinny matrices in MapReduce

architectures. Proceedings of 10th 2013 IEEE International Conference on Big Data, Santa Clara, CA, USA, 2013;
264-272.

Golub G, Van Loan C. Matrix Computations (2nd edn). Johns Hopkins University Press: Baltimore, 1989.

Drmac Z, Veselic K. New fast and accurate Jacobi SVD algorithm. 1. SIAM Journal on Matrix Analysis and
Applications 2008; 29(4):1322-1342.

Cuppen JJM. A divide-and-conquer method for the symmetric tridiagonal eigenproblem. Numerische Mathematik
1981; 36(2):177-195.

Gu M, Eisenstat S. A divide-and-conquer algorithm for the bidiagonal SVD. Technical Report YALEU/DCS/RR-933,
Yale University, 1992.

Gu M, Demmel J, Dhillon I. Efficient computation of the singular value decomposition with applications to least
squares problems. Technical Report CS-94-257, Department of Computer Science, University of Tennessee, 1994.
Anderson M, Ballard G, Demmel J, Keutzer K. Communication-avoiding QR decomposition for GPUSs. International
Parallel and Distributed Processing Symposium, 2011; 48-58.

Novakovi V, Singer S. A GPU-based hyperbolic SVD algorithm. BIT Numerical Mathematics 2011; 51:1009-1030.
Liu D, Li R, Lilja DJ, Xiao W. A divide-and-conquer approach for solving singular value decomposition on a
heterogeneous system . Proceedings of the ACM International Conference on Computing Frontiers, Ischia, Italy,
2013; 36.

Liu Y, Li M, Hammoud S, Alham NK, Ponraj M. A MapReduce based distributed LSI. Proceedings of the 7th IEEE
International Conference on Fuzzy Systems and Knowledge Discovery 2010; 6(2):2978-2982.

Yeh C, Peng Y, Lee S. An iterative divide-and-merge based approach for solving large-scale least squares problems.
IEEE Transactions on Parallel and Distributed Systems 2013; 24(3):428-438.

Constantine PG, Gleich DF. Distinguishing signal from noise in an SVD of simulation data. Proceedings of 9th IEEE
International 1 Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012; 5333-5336.

Ding Y, Zhu G, Cui C, Zhou J, Tao L. A parallel implementation of Singular Value Decomposition based on Map-
Reduce and PARPACK. In International Conference on Computer Science and Network Technology, Vol. 2, IEEE:
Harbin, Heilongjiang, China, 2011; 739-741.

Li RC. Solving secular equations stably and Efficiently. Technical Report UCB/CSD-94-851, EECS Department,
University of California: Berkeley, 1994.

Melman A. A numerical comparison of methods for solving secular equations. Journal of Computational and Applied
Mathematics 1997; 86(1):237-249.

Bisection. (Available from: http://en.wikipedia.org/wiki/Bisection_method) [Accessed on 17 May 2014].

Qian Z, Chen X, Kang N, Chen M, Yu Y, Moscibroda T, Zhang Z. MadLINQ: large-scale distributed matrix com-
putation for the cloud. Proceedings of the 7th ACM European Conference on Computer Systems, Bern, Switzerland,
2012; 197-210.

A mapreduce algorithm for matrix multiplication. (Available from: http://www.norstad.org/matrix-multiply)
[Accessed on 2 June 2014].

He B, Fang W, Luo Q, Govindaraju NK, Wang T. Mars: a MapReduce framework on graphics processors. Proceed-
ings of the 17th International Conference on Parallel Architectures and Compilation Techniques, Toronto, Canada,
2008; 260-269.

Seo S, Yoon EJ, Kim J, Jin S, Kim J-S, Maeng S. Hama: an efficient matrix computation with the mapreduce
framework. Proceedings of the 7th IEEE International Conference on Cloud Computing Technology and Science,
Indianapolis, USA, 2010; 721-726.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)

DOI: 10.1002/cpe

	ILL: 169785637

