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A B S T R A C T

Fog computing offers stronger local computing power and reduces data transmission load, making it an ideal
solution to meet the energy-saving and efficient requirements of intelligent connected vehicle applications.
As intelligent networked vehicles and vehicle–road collaboration technologies advance rapidly, optimizing
scheduling under fog computing architecture has become a prominent research area. However, existing studies
primarily concentrate on parallel task scheduling with low energy consumption or high real-time performance,
failing to address the requirement for high reliability in intelligent networked vehicle scenarios. To achieve time
and reliability optimization for vehicular applications in fog computing architecture, this paper proposes a fog
computing task scheduling algorithm and explores its extension using replication techniques. Subsequently, the
algorithm underwent evaluation utilizing randomly generated directed acyclic graph models as well as real-life
automotive application instances. The experimental findings indicate that in comparison to existing methods,
the proposed algorithm exhibits a notable improvement in reliability while ensuring time optimization, thereby
demonstrating a distinct level of advancement and practicality.
1. Introduction

1.1. Background

Intelligent Connected Vehicles (ICV) refer to the integration of ve-
hicle networking and intelligent technologies, aiming to revolutionize
the transportation industry. Equipped with advanced onboard sensors,
controllers, actuators, and communication technologies, ICVs enable
intelligent information exchange and sharing between vehicles, people,
roads, and back-end systems. The primary focus of ICVs is to address
critical challenges related to safety, energy efficiency, environmental
protection, and autonomous perception capabilities [1]. To achieve
these goals, it is crucial to improve the safety of vehicles and optimize
the real-time performance and reliability of the networked vehicle
system through effective algorithms for task sequencing and execution
location determination [2,3].

Against the backdrop of rapid development in information and
communication technology, the demand for high processing resources,
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low latency, and high reliability in ICV applications continues to in-
crease [4]. These applications typically require significant computa-
tional power and consume a large amount of energy. However, in-
telligent connected vehicle terminals often have limited computing
capabilities and battery capacity, making it difficult to run complex
applications on them [5,6]. In recent years, fog computing architec-
ture has emerged as an effective solution to provide high-performance
computing capabilities, especially in applications such as intelligent
networked vehicles, where research on task scheduling algorithms in
fog computing environments has attracted widespread attention [7].
Fog computing extends the concept of cloud computing by decentral-
izing data management, processing, and applications to network edge
devices (such as sensors and edge devices) rather than relying solely on
cloud data centers [8]. The core idea is to introduce an intermediate
layer called the fog layer, situated between the end devices and the
cloud data center. The fog layer processes and stores data locally,
thereby alleviating the burden on cloud computing and storage.

Fig. 1 illustrates the conceptual distance between cloud and fog,
as well as their relationship with the user side. In fog computing,
vailable online 17 May 2024
167-739X/© 2024 Elsevier B.V. All rights are reserved, including those for text and

https://doi.org/10.1016/j.future.2024.05.014
Received 29 December 2023; Received in revised form 30 March 2024; Accepted 1
data mining, AI training, and similar technologies.

4 May 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:liuruihua@email.ncu.edu.cn
mailto:wuwufei@ncu.edu.cn
mailto:416100220228@email.ncu.edu.cn
mailto:zeng.gang@e.mbox.nagoya-u.ac.jp
mailto:lik@newpaltz.edu
https://github.com/silent309/FogComputing2024.git
https://doi.org/10.1016/j.future.2024.05.014
https://doi.org/10.1016/j.future.2024.05.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.05.014&domain=pdf


Future Generation Computer Systems 159 (2024) 567–579R. Liu et al.
Fig. 1. A simple conceptual diagram of cloud–fog-terminal relationship.

offloading compute-intensive tasks from user equipment (UE) to mo-
bile edge cloud (MEC) servers can effectively enhance the computing
capabilities of clients, extend their battery life, and improve energy
efficiency, enabling user terminals to save energy and accomplish more
tasks in the same amount of time. Additionally, due to its proximity to
the user side, the fog layer provides significant advantages in reducing
transmission costs and latency [9].

1.2. Motivation

In general, the mobile application running on UE can be represented
as a task list with different priority constraints, which can be quite com-
plex [10–12]. There are several commonly used models for representing
parallel applications with prioritized tasks, such as directed acyclic
graphs (DAGs), hybrid DAGs (HDAGs), and task interaction graphs
(TiGs) [13–15]. Furthermore, these tasks often have different execution
computational tasks and communication data transmission volumes.
Unlike common distributed system task scheduling problems, the fog
server in fog computing does not need UE to bear energy loss when ex-
ecuting tasks, and more factors need to be comprehensively considered,
which further aggravates the complexity of the problem [16–18].

Additionally, existing research on fog computing task scheduling
optimization mainly focuses on reducing the overall scheduling length
or improving energy usage efficiency, but insufficient attention has
been given to enhancing application reliability [19]. Meanwhile, it
should be noted that the maturity level of task scheduling strategies
in fog computing is not as advanced as that in traditional heteroge-
neous distributed systems, leaving significant room for further devel-
opment. Considering the importance of reliability metrics in the intel-
ligent networked vehicles, there is an urgent need for supplementary
contributions in this field.

Therefore, the motivation of this paper is to find a better optimiza-
tion algorithm to improve the time and reliability of task offloading
strategies for applications in fog computing environments.

1.3. Our contributions

The main contributions of this paper are summarized as follows.

• We attempt to add the transmission reliability calculation method
based on block fading into the reliability calculation model of
fog computing, replace the linear reliability [20], achieve a more
accurate quantization of reliability index in fog computing envi-
ronment.
568
• We propose a time-reliability dual-objective optimization schedul-
ing algorithm, referred to as Energy-Constrained Level-by-Level
Time-Reliability Optimization Scheduling (ECLLTROS), which
taking into account the communication or computation con-
sumption generated during replica execution in fog computing,
calculates the number of replicas for each task, filters the execu-
tion environment, and ensures the reliability and response-time
of the application.

The rest of this paper is organized as follow. Section 2 reviews
related research. Section 3 introduces related models of the system.
Section 4 introduces the problems to be solved. Section 5 proposes the
ECLLTROS algorithm. Section 6 assesses the algorithms and Section 7
concludes this study.

2. Related work

There have been many related studies on achieving dual-objective
optimization of time and reliability under energy constraints in a fog
computing environment, which can be mainly divided into the follow-
ing two aspects: (1) achievements in reliability optimization, (2) time
optimization achievements. Next, we will introduce them separately.

(1) Achievements in optimizing reliability. Reliability refers to
the probability that an application continuously provides the correct
service, which is an important metric for assessing whether an applica-
tion can stably and reliably deliver services. This has made the issue of
maximizing reliability under energy constraints a research hots pot in
recent years [21,22]. Over the past 50 years, significant advancements
have been made in developing various methods to enhance reliability.
These methods can be broadly categorized into four key areas [23,24]:

1. Fault prevention: These measures aim to prevent faults from
occurring or being introduced in the first place.

2. Fault tolerance: This focuses on mitigating the impact of business
failures when they do occur, ensuring continuity and resilience.

3. Troubleshooting: Strategies in this area aim to minimize the
number and severity of failures, enabling prompt identification
and resolution of issues.

4. Failure prediction: This involves estimating the current number
of failures, forecasting their future occurrence, and assessing the
potential consequences they may have.

In the research field of task scheduling, fault-tolerant methods are
often used to improve the reliability. Liu et al. proposed a common
reliability model, and achieved cost reduction by efficiently allocating
tasks among heterogeneous embedded systems while meeting end-
to-end distributed function response time targets [25]. Zhao et al.
designed a dynamic replica execution algorithm which named MaxRe
to maximize the reliability of heterogeneous distributed systems, but
did not consider the energy used for replica offloading execution [26].
Xie et al. assumed that for the current task, the maximum reliabil-
ity value would be assigned to the processor for each subsequent
unassigned task to minimize the cost of resource consumption. This
method was called MRCRG method [27], but the algorithm was not
mature enough in the stage of reliability index division. On this basis,
Yuan et al. invented the RGAGM algorithm to pre-allocate reliability
values to unassigned tasks according to the geometric mean, thereby
reducing resource consumption costs and effectively ensuring reliability
targets [28].

On the other hand, the addition of replica can also effectively im-
prove reliability. Xie et al. focused on the work related to quantitative
fault-tolerant scheduling. In order to meet the reliability requirements
of workflow on heterogeneous infrastructure, the execution cost was
reduced by minimizing the number of replicas [29]. Wang et al. showed
an improved algorithm to search for all optimal reliability communica-
tion paths for the current task [30]. This approach focuses on cloud or
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heterogeneous distributed system clusters and has not yet been applied
to vehicular applications in fog computing architecture.

(2) Achievements in optimizing time. Clouds and fog differ in
terms of task offloading possibilities and diversity. To optimize vir-
tualized resources and deliver corresponding delay-sensitive services
effectively, Minh et al. discovered a new context-aware service de-
centralization mechanism for experimental evaluation and comparative
measurement of real intelligent transportation system services in fog
computing [1]. Khan et al. utilized fog computing to address the task
offloading issue in the 5G IoHT cloud computing environment and
presented the MSCA algorithm [31]. However, when the fog is unable
to independently perform complete task computations, some tasks must
be offloaded from the fog to the cloud. Determining the optimal timing
for transferring the task from the fog to the cloud represents a signif-
icant decision point. The MTFCT algorithm, proposed by Jindal et al.
theoretically tackles this challenge, although it has yet to be validated
through relevant experiments [8].

Li studied the problem of computational offloading under the back-
ground of traditional task scheduling from the perspectives of optimal
computational offloading under energy constraints and optimal com-
putational offloading under time constraints [19]. At the same time,
Li applied this idea to fog computing, adopted the idea of step-by-step
scheduling and greedy algorithm to eliminate priority constraints and
maximize the utilization rate of fog server, while reducing the total
scheduling length as much as possible [32]. Meanwhile, Li applied
this idea to fog computing. The proposed ECLL algorithm adopts the
concepts of step-by-step scheduling and greedy algorithms, simplifying
the problem by eliminating priority constraints among tasks. This
approach maximizes the utilization of fog servers while minimizing
the total scheduling length as much as possible [32]. Alzailaa et al.
proposed a task classification and scheduling scheme for unconstrained
tasks in fog-cloud networking environments, which takes into account
task characteristics, user profiles, environmental exposure, and net-
work topology, to improve the overall latency of high-priority critical
tasks [33]. Tsega et al. developed a deadline-aware data offloading
model and algorithm using the design science approach, which has
been implemented on fog nodes. The algorithm considers various fac-
tors such as task deadlines, computational capabilities of fog nodes, task
characteristics, and transmission latency during the scheduling process,
which could ensure efficient management of resources, optimizing task
completion times while meeting deadlines [34].

In this study, our goal is to propose a scheduling algorithm in
fog computing to achieve reliability objective optimization for energy-
constrained applications, building upon existing research on time opti-
mization.

3. Establishment of model

In this section, we introduce four models that are directly related
to task optimization scheduling. The difference from previous research
models is that we have incorporated a block fading-based transmission
reliability calculation method into the reliability model, making the
reliability calculation more comprehensive. We have compiled the
symbols and their definitions as they appear in this article in Table 1.

3.1. The application model

Consider a user equipment UE has a mobile application 𝐺 = (𝐿, ≺),
where 𝐿 = (𝑡1, 𝑡2, ⋯, 𝑡𝑚) represents the list of tasks to be performed.
Each task 𝑡𝑖 is denoted as 𝑡𝑖 = (𝑟𝑖, 𝑑𝑖), where 𝑟𝑖 represents the com-
putational requirement of 𝑡𝑖 (the computational workload, measured in
illions of processor cycles or billions of instructions (BI)), 𝑑𝑖 represents
he communication requirement of 𝑡𝑖 (the amount of data exchanged
etween the UE and MEC, measured in millions of bits (MB)). ≺
epresents the existence of priority constraints within the task list,
ndicating the execution order that tasks must adhere to. Applications
569
Table 1
Notations and definitions.

Notations Definitions

𝐺 A set of tasks with priority constraints
𝑁 A set of heterogeneous processors
𝐸 The total energy constraint value of 𝐺
𝑆 The optimal scheduling strategy of 𝐺 under energy constraint 𝐸
𝑅𝐸 The task offloading execution reliability of 𝐺
𝑇 The task offloading execution time of 𝐺
𝑟𝑖 The execution requirement of task 𝑡𝑖
𝑑𝑖 The communication requirement of task 𝑡𝑖
𝑠𝑖,𝑗 The execution speed of task 𝑡𝑖 on MEC𝑗
𝑐𝑖,𝑗 The communication speed of task 𝑡𝑖 from UE to MEC𝑗
𝑐𝑡𝑖,𝑗 The communication time of task 𝑡𝑖 from UE to MEC𝑗
𝑒𝑡𝑖,𝑗 The execution time of task 𝑡𝑖 on MEC𝑗
𝑇𝑖,𝑗 The offloading execution time of task 𝑡𝑖 on MEC𝑗
𝑇𝑃𝑗 The cumulative task offloading execution time on MEC𝑗
𝑃𝑖,𝑗 The transmission power of task 𝑡𝑖 from UE to MEC𝑗
𝑤𝑗 The bandwidth of the channel between UE and MEC𝑗

𝛽𝑗 A constant that accounts for background noise, adjacent channel
interference and channel gain between UE and MEC𝑗

|

|

|

ℎ𝑖,𝑗
|

|

|

2
The power attenuation coefficient of task 𝑡𝑖 from UE to MEC𝑗

𝜆𝑖,𝑗 The constant failure rate per time unit of the processor MEC𝑗

𝑅𝐸𝑐𝑜𝑚𝑚
𝑖,𝑗 The communication reliability of task 𝑡𝑖 on MEC𝑗

𝑅𝐸𝑐𝑜𝑚𝑝
𝑖,𝑗 The execution reliability of task 𝑡𝑖 on MEC𝑗

SNR𝑎𝑟 The actual received signal noise ratio
𝜃𝑗 The threshold signal noise ratio of MEC𝑗

𝑃 𝑜𝑢𝑡
𝑖,𝑗 The communication interruption rate of task 𝑡𝑖 from UE to MEC𝑗

𝑝𝑟𝑜𝑐(𝑡𝑖) The subscript of MEC which actually allocated for task 𝑡𝑖

Fig. 2. (a) a Fast Fourier Transform DAG model with 5 layers architecture. (b) a
Gaussian Elimination DAG model with 8 layers architecture.

with priority constraints can be described using directed acyclic graphs
(DAGs).

Fig. 2 shows two DAGs with classical structures, based on fast
Fourier transform (FFT) and Gaussian elimination (GE) respectively
[27,28]. In the DAG, nodes represent the 𝑚 tasks in the task list 𝐿,
and arcs between nodes are defined such that there exists an arc from
𝑡1 to 𝑡2 only if 𝑡1 ≺ 𝑡2, meaning that if 𝑡1 ≺ 𝑡2, then 𝑡1 is a predecessor
of 𝑡2 and 𝑡2 can only start its execution after 𝑡1 has finished.

3.2. The computation and communication models

Assume there is a fog server set 𝑁 consisting of 𝑛 heterogeneous
server MECs, that is, 𝑁 = (MEC1, MEC2, ⋯, MEC𝑛). Each MEC𝑗 has its
own processor execution speed 𝑠𝑗 in GHz or billions of instructions per
second (1 ≤ 𝑗 ≤ 𝑛), 𝑠𝑗 is determined by the power available to the server

itself, regardless of UE.
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In terms of task offloading, the offloading execution time of task
𝑡𝑖 includes the execution time on the server and the transmission time
rom the terminal to the fog server. UE can choose to execute each
ask locally or send it to an idle MEC in the fog. If it is decided to
irectly execute 𝑡𝑖 on the UE, the computation speed 𝑠0,𝑖 of task 𝑡𝑖 is
etermined by the UE. At the same time, local execution does not incur
ommunication time, so the offloading execution time of task 𝑡𝑖 on the
E is equal to its execution time (in seconds), which can be calculated
s follows (where 1 ≤ 𝑖 ≤ 𝑚):

𝑖,0 = 𝑒𝑡𝑖,𝑗 = 𝑟𝑖∕𝑠𝑖,0. (1)

However, if the decision is made to offload task 𝑡𝑖 to an MEC for
og computing, the task’s execution time on MEC𝑗 can be computed as
𝑖∕𝑠𝑗 . In addition, the transmission time between the UE and MEC𝑗
or task 𝑡𝑖 can be derived from 𝑑𝑖∕𝑐𝑖,𝑗 , where 𝑐𝑖,𝑗 is the communication
peed (data transfer rate in megabits per second) of task 𝑡𝑖 between the
E and MEC𝑗 . Therefore, the offloading execution time of task 𝑡𝑖 on
EC𝑗 can be calculated as follows (where 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛):

𝑇𝑖,𝑗 = 𝑐𝑡𝑖,𝑗 + 𝑒𝑡𝑖,𝑗 = 𝑟𝑖∕𝑠𝑖,𝑗 + 𝑑𝑖∕𝑐𝑖,𝑗 . (2)

3.3. The power consumption model

In terms of energy consumption, the power consumption generated
by UE during task calculations can be categorized into two parts [35]:
dynamic power consumption and static power consumption. The static
power consumption is mainly incurred by the current leakage, whereas
the dynamic power consumption is mainly caused by the charging and
discharging of capacitors, both of which are measured in watts. The
dynamic power consumption, denoted as 𝑃𝑑 , is typically expressed as

𝑃𝑑 = 𝜉𝑠0
𝛼 , (3)

where 𝜉 and 𝛼 are constants determined by the specific technique
used [36]. The static component 𝑃𝑠 is usually considered constant.
Therefore, the total power consumption, denoted as 𝑃 , is given by the
um of the dynamic and static components,

= 𝑃𝑑 + 𝑃𝑠 = 𝜉𝑠0
𝛼 + 𝑃𝑠. (4)

For all cases where 1 ≤ 𝑖 ≤ 𝑚, when task 𝑡𝑖 is not offloaded and
s directly executed on the UE with the computation speed of 𝑠𝑖,0, its
ower consumption is 𝑃0 = 𝜉𝑠𝑖,0𝛼 +𝑃𝑠. The energy consumption of task
𝑖 on the UE, measured in joules, can be calculated as follows:
𝑐𝑜𝑚𝑝
𝑖,0 = 𝑃 (𝑟𝑖∕𝑠0,𝑖) = ((𝜉𝑠𝑖,0𝛼 + 𝑃𝑠)∕𝑠𝑖,0)𝑟𝑖. (5)

Task offloading operations in the fog environment have more con-
traints to consider. This is because the calculation of energy consump-
ion in different servers varies depending on the environment. If a task
s executed on the terminal, only its computational energy consumption
s considered (no task offloading occurs). However, if a task is offloaded
nd executed on an MEC, only its transmission energy consumption is
onsidered (the energy required for the fog server to execute the task
s provided by itself rather than the UE [19,32]).

Let 𝑃𝑖,𝑗 be the transmission power (in watts) of the transmission
ask 𝑡𝑖 from UE to MEC𝑗 (1 ≤ 𝑗 ≤ 𝑛). The wireless communication
nvironment in which tasks are transmitted between UE and MEC is
ssumed to be a block fading environment, that is, the transmission
ction will be affected by channel fading, and the channel fading
oefficient will remain unchanged during the transmission of a single
ask.

So the communication speed (i.e. data transfer speed, measured in
illions of bits per second) from UE to MEC𝑗 is [19,32]:

𝑖,𝑗 = 𝑤𝑗 log2(1 + 𝑃𝑡,𝑗𝛽𝑗
|

|

|

ℎ𝑖,𝑗
|

|

|

2
), (6)

here 𝑤𝑗 represents the channel band width, 𝛽𝑗 is a constant that
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ccounts for background noise, adjacent channel interference, and 𝑅
hannel gain between UE and MEC𝑗 . ℎ𝑖,𝑗 is a random coefficient used
o characterize Rayleigh fading (wireless channel fading), which takes
nto account factors such as multipath effect and shadow effect. Its
robability density follows the Rayleigh distribution, and the power
ttenuation coefficient ||

|

ℎ𝑖,𝑗
|

|

|

2
follows the exponential distribution with

n average value of 𝜎2𝑗 , namely:

ℎ(𝑥) =
1
𝜎2𝑗

exp(−𝑥∕𝜎2𝑗 ). (7)

Thus, the energy consumption for communication of task 𝑡𝑖 from UE
o MEC𝑗 is:

𝑐𝑜𝑚𝑚
𝑖,𝑗 = 𝑃𝑖,𝑗 (𝑑𝑖∕𝑐𝑖,𝑗 ) = (2𝑐𝑖,𝑗∕𝜔𝑗 − 1)𝑑𝑖∕(𝛽𝑗𝑐𝑖,𝑗

|

|

|

ℎ𝑖,𝑗
|

|

|

2
). (8)

.4. The reliability model

According to the ISO26262 standard, random hardware failures
i.e., instantaneous failures) are expected to follow a specific proba-
ility distribution. During the calculation process, the occurrence of
ransient faults in tasks based on a DAG function is assumed to follow
he Poisson distribution [27,28].

Set 𝜆𝑗 to represent the constant failure rate per time unit of the
rocessor, so the reliability 𝑅𝐸𝑖,𝑗 of task 𝑡𝑖 executed on processor during
ts execution time can be expressed as :

𝐸𝑐𝑜𝑚𝑝
𝑖,𝑗 = 𝑒−𝜆𝑗𝑒𝑡𝑖,𝑗 . (9)

In the aspect of task transmission reliability, communication inter-
uption rate is often used to measure the communication reliability of
he system in the relevant research of mobile cloud computing [37,38].
he interrupt rate is an important performance index in wireless com-
unication. According to Shannon channel coding theory, when the

ignal transmission rate is lower than the channel capacity, a coding
echnology must be utilized to ensure accurate signal reception. Con-
ersely, when the signal transmission rate exceeds the channel capacity,
he signal cannot be correctly received, leading to a communication
nterruption. Therefore, given the target transmission rate 𝑇𝑅 and
he channel capacity 𝐶, the communication interruption rate can be
efined as:

𝑜𝑢𝑡 = Pr(𝐶 < 𝑇𝑅). (10)

According to Shannon capacity formula, channel capacity and in-
tantaneous signal noise ratio (SNR) show a monotonically increasing
elationship, assuming that the actual received SNR and threshold SNR
f the communication receiving end are 𝑆𝑁𝑅𝑎𝑟 and 𝑆𝑁𝑅0 respec-
ively, the communication interruption rate can also be expressed as:

𝑜𝑢𝑡 = Pr(𝑆𝑁𝑅𝑎𝑟 < 𝑆𝑁𝑅0). (11)

When task 𝑡𝑖 is unloaded to MEC𝑗 for execution, according to Eq. (6),
he actual received SNR of MEC𝑗 is as follows:

𝑁𝑅𝑎𝑟 = 𝑃𝑡,𝑗𝛽𝑗
|

|

|

ℎ𝑖,𝑗
|

|

|

2
. (12)

Assuming that the threshold SNR of MEC𝑗 is 𝜃𝑗 , then according to
qs. (7) and (11), the communication interruption rate at this time can
e expressed as:
𝑜𝑢𝑡
𝑖,𝑗 = Pr(𝑆𝑁𝑅𝑎𝑟 < 𝜃𝑗 )

= Pr(||
|

ℎ𝑖,𝑗
|

|

|

2
< 𝜃𝑗∕𝑃𝑡,𝑗𝛽𝑗 )

= ∫

𝜃𝑗
𝑃𝑡,𝑗 𝛽𝑗

0

1
𝜎2𝑗

exp(−𝑥∕𝜎2𝑗 )𝑑𝑥

= 1 − exp(−𝜃𝑗∕𝑃𝑡,𝑗𝛽𝑗𝜎
2
𝑗 ).

(13)

Based on this, the communication reliability when task 𝑡𝑖 is of-
loaded to MEC𝑗 can be obtained as:

𝐸𝑐𝑜𝑚𝑚 = 1 − 𝑃 𝑜𝑢𝑡 = exp(−𝜃 ∕𝑃 𝛽 𝜎2), (14)
𝑖,𝑗 𝑖,𝑗 𝑗 𝑡,𝑗 𝑗 𝑗
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where 1 ≤ 𝑘 ≤ 𝑚. Obviously, when task 𝑡𝑖 is executed on UE, 𝑅𝐸𝑐𝑜𝑚𝑚
𝑖,𝑗 =

1. To sum up, we can get the total reliability when task 𝑡𝑖 is assigned
to MEC𝑗 :

𝑅𝐸𝑖,𝑗 = 𝑅𝐸𝑐𝑜𝑚𝑝
𝑖,𝑗 ⋅ 𝑅𝐸𝑐𝑜𝑚𝑚

𝑖,𝑗 . (15)

The reliability value of the application 𝐺 is determined by taking
the product of the reliability values of all tasks in the list 𝐿, namely:

𝑅𝐸(𝐺) =
∏

𝑡𝑖∈𝐿
(𝑅𝐸(𝑡𝑖,MEC𝑝𝑟𝑜𝑐(𝑡𝑖))), (16)

where MEC𝑝𝑟𝑜𝑐(𝑡𝑖) represents the MEC actually allocated for task 𝑡𝑖.

4. Problem definition

In this section, we provide a formal definition of the optimization
problem addressed in this study.

The DAG-based application 𝐺 = (𝐿, ≺) has a task list 𝐿 = (𝑡1, 𝑡2,… ,
𝑡𝑚), which is generated on terminal UE = (𝑠0, 𝜉, 𝑃𝑠), and 𝑡𝑖 = (𝑟𝑖, 𝑑𝑖)
(1 ≤ 𝑖 ≤ 𝑚). Suppose there are 𝑛 edge servers MEC: MEC1, MEC2,
⋯, MEC𝑛 in fog computing environment, MEC𝑗 = (𝑠𝑗 , 𝑐𝑗 , 𝑊𝑗) for all
𝑗 ∈ [1, 𝑛]. The task scheduling strategy 𝑆 for the mobile application 𝐺
aims to determine the execution starting time and location (either on
the UE or MEC) for each task 𝑡𝑖 in the task list 𝐿 (1 ≤ 𝑖 ≤ 𝑚).

𝑅𝑗 is defined as the total execution requirement of all tasks 𝑡𝑖
transmitted to MEC𝑗 , and 𝐷𝑗 is the total data of tasks transmitted to
MEC𝑗 , 𝐿𝑗 is defined as the set of tasks to be executed on MEC𝑗 (0 ≤ 𝑗 ≤
𝑛) (for the convenience of calculation and statistics, UE is defined as
MEC0). In terms of time, the execution time of 𝐿0 is 𝑇0 = 𝑅0∕𝑠0 (there
is no transmission time for local execution), the execution time of 𝐿𝑗
is 𝑇𝑗 = 𝑅𝑗∕𝑠𝑗 +𝐷𝑗∕𝑟𝑗 , and the total time of 𝐿 is:

𝑇 =
𝑅0
𝑠0

+
𝑛
∑

𝑗=1

(𝑅𝑗

𝑠𝑗
+

𝐷𝑗

𝑐𝑗

)

. (17)

In relation of energy consumption, it should be noted that local task
xecution does not incur transmission energy consumption. If the task
s offloaded to the fog-end server, its computing energy consumption
s not taken into account (as the server bears it), and can be obtained
rom Eqs. (5) and (8). The total energy consumption of the application
mounts to:

(𝐺) =
(

𝜉𝑠0𝛼 + 𝑃𝑠
𝑠0

)

𝑅0 +
𝑛
∑

𝑗=1

⎛

⎜

⎜

⎜

⎝

2𝑐𝑗∕𝑤𝑗 − 1

𝛽𝑗𝑐𝑗
|

|

|

ℎ𝑖,𝑗
|

|

|

2

⎞

⎟

⎟

⎟

⎠

𝐷𝑗 . (18)

In regards to task reliability, the total reliability of application G is
determined by the product of the individual reliabilities of all MECs,
as calculated using Eq. (9), (14), and (15). The calculation entails
the multiplication of the execution reliability with the communication
reliability for each MEC, as demonstrated below:

𝑅𝐸(𝐺) = exp

( 𝑛
∑

𝑗=0
−𝜆(𝑅𝑗∕𝑠𝑗 ) −

𝜃𝑗
𝑃𝑡,𝑗𝛽𝑗𝜎2𝑗

)

. (19)

Now we can define dual objective optimization problem to optimize
the task offloading scheduling scheme in fog computing, taking into
account execution time, reliability, and energy constraint.

Problem(Time-Reliability dual objective optimization schedul-
ing problem under energy constraint in fog computing): Given a
DAG-based task list denoted as 𝐿 = (𝑡1, 𝑡2, ⋯, 𝑡𝑚), where each task 𝑡𝑖

(𝑟𝑖, 𝑑𝑖) (1 ≤ 𝑖 ≤ 𝑚), and a UE = (𝜉, 𝛼, 𝑃𝑠), as well as a set of n MEC:
EC1, MEC2, ⋯, MEC𝑛, where each MEC𝑗 = (𝑠𝑗 , 𝑐𝑗 , 𝑤𝑗) (1 ≤ 𝑗 ≤ 𝑛), and

nergy constraints are represented by 𝐸. The objective is to find a task
cheduling strategy, denoted as 𝑆 = (𝐿0, 𝐿1, ⋯, 𝐿𝑛), and determine

the computation speed 𝑠0 and communication speed 𝑐𝑗 (1 ≤ 𝑗 ≤ 𝑛), in
uch a way that minimize time 𝑇 and maximize reliability 𝑅𝐸 while
nsuring that the total energy consumption 𝐸 does not exceed 𝐸.
571
Fig. 3. The flow chart of the proposed three-algorithm solution.

5. Proposed algorithms

An overview of the solution is shown in Fig. 3 to illustrate the logic
and invocation.

In our research, we mainly consider the scheduling optimization
perspective of single-user and multi-server, so the proposed algorithms
run on UE. For the problem to be solved, we will follow the following
three steps to simplify and deal with it:

1. Level-by-level scheduling. We attempt to divide the tasks of the
same execution priority in the task list into the same class, that
is, the same layer of task list in the DAG, which can eliminate
the priority constraint in the application. So that the task list
optimization scheduling problem with priority constraints under
energy constraints is simplified to the task list optimization
scheduling problem without priority constraints under energy
constraints, and an initial energy value is set for each level, and
the remaining energy is distributed many times in the form of
slices.

2. Time optimization. After the simplification of the problem in
the first step, the scheduling operations at each level will be
conducted in a structure without priority constraints, and the
calculation of total hierarchical time is based on the maximum
execution time of each server. Therefore, during the allocation
process, we only need to ensure that the maximum execution
time of each task on different servers is minimized to achieve
the slowest hierarchical time growth. This allows sufficient time
to be freed up for the subsequent reliability enhancements,
ensuring that there is ample sacrificial space available.
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3. Reliability optimization. There are various methods to enhance
reliability, but in this study, only fault-tolerant approaches are
employed for this purpose. The obtained level time in step
2 is recorded as 𝑇2, and the level time 𝑇1 calculated by the
ECLS_H algorithm [32] is defined as the upper limit of the
level time 𝑇𝑑𝑒𝑎𝑑𝐿𝑖𝑛𝑒. The consumable value of the time can be
obtained from 𝑇𝑑𝑒𝑎𝑑𝐿𝑖𝑛𝑒 − 𝑇2. Use the consumption value as the
reliability improvement space. A task scheduling policy can be
obtained that keeps the level time below 𝑇𝑑𝑒𝑎𝑑𝐿𝑖𝑛𝑒, but has a great
improvement in reliability index.

5.1. Analysis

In order to accurately determine the initial values of energy levels,
this section presents two theorems for establishing lower bounds on
task execution and transmission energy, while also considering the
transmission reliability in the presence of channel fading. The contents
of the theorems and their proof are as follows:

Theorem 1. When the computing speed of the UE 𝑠0 is set to 𝑠∗0 =
(𝑃𝑠∕𝜉(𝛼 − 1))1∕𝛼 , the required energy consumption 𝐸∗

0 is the lowest, with
a value of 𝑅0𝑃

1−1∕𝛼
𝑠 𝜉1∕𝛼𝛼∕(𝛼 − 1)1−1∕𝛼 , and the corresponding time 𝑇 ∗

0 is
𝑅0(𝜉(𝛼 − 1)∕𝑃𝑠)1∕𝛼 .

Proof. According to the relationship between energy and power and
time, there is the following formula:

𝐸0 = 𝑃0𝑇0 = (𝑃𝑑 + 𝑃𝑠)(𝑟∕𝑠0)
= (𝜉𝑠0𝛼−1 + 𝑃𝑠)(𝑟∕𝑠0)
= (𝜉𝑠0𝛼−1 + 𝑃𝑠∕𝑠0)𝑟.

(20)

Taking the partial derivative with respect to 𝑠0 on both sides of the
equation, we obtain that
𝜕𝐸0
𝜕𝑠0

= 𝑟
(

𝜉(𝛼 − 1)𝑠0𝛼−2 −
𝑃𝑠

𝑠02

)

, (21)

hen the left side of the equation is 0, so 𝜉(𝛼−1)𝑠0𝛼−2 = 𝑃𝑠∕𝑠02, which
is actually

𝑠0 = 𝑠∗0 = (𝑃𝑠∕𝜉(𝛼 − 1))1∕𝛼 . (22)

From this, we can conclude that

𝐸∗
0 = (𝜉(𝑠∗0)

𝛼−1 + 𝑃𝑠∕𝑠∗0)𝑟, (23)

𝑇 ∗
0 = 𝑟∕𝑠∗0 . (24)

Based on this, we observe that the function of 𝑠0 with respect to 𝐸0
takes on a U-shaped curve. As 𝑠0 increases from 0 to 𝑠∗0, 𝐸0 decreases,
but once 𝑠0 is greater than or equal to 𝑠∗0, 𝐸0 increases as 𝑠0 continues to
increase. Therefore, with 𝑠∗0 as the dividing point, we can always find
an 𝑠0 on both sides such that the calculated value of 𝐸0 is the same.
In other words, 𝑠∗0 represents the lowest point, corresponding to the
minimum value of 𝐸∗

0 . Thus, the proof is complete. ■

Theorem 2. For the MEC in fog computing, 𝐸𝑗 is an increasing function

of 𝑐𝑗 , and as 𝑐𝑗 approaches 0, 𝐸𝑗 approaches 𝐸∗
𝑗 = ln 2∕

(

𝑤𝑗𝛽𝑗
|

|

|

ℎ𝑖,𝑗
|

|

|

2
)

𝐷𝑗 ,
and 𝑇𝑗 approaches 𝑇 ∗

𝑗 = 𝑅𝑗∕𝑠𝑗 , for all 1 ≤ 𝑗 ≤ 𝑛.

Proof. According to the relationship between energy and power and
time, there is the following formula:

𝐸𝑗 = 𝑃𝑗𝑇𝑗 = 𝑃𝑗 (𝑑∕𝑐𝑗 ) = (2𝑐𝑗∕𝜔𝑗 − 1)𝑑∕(𝛽𝑗𝑐𝑗
|

|

|

ℎ𝑗
|

|

|

2
), (25)

set 𝑦 = (2𝑐𝑗∕𝜔𝑗 − 1)∕𝑐𝑗 , this also makes it so that

𝑦 = 𝑒ln 2(𝑐𝑗∕𝜔𝑗 ) − 1 = ln 2
⋅
𝑒ln 2(𝑐𝑗∕𝜔𝑗 ) − 1 , (26)
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𝑐𝑗 𝜔𝑗 ln 2𝑐𝑗𝜔𝑗
et 𝑥 = ln 2(𝑐𝑗∕𝜔𝑗 ), so the equation can be rewritten as:

𝑦 = ln 2
𝜔𝑗

⋅
𝑒𝑥 − 1
𝑥

. (27)

Meanwhile, by expanding 𝑒𝑥 using Taylor series, we have

𝑒𝑥 =
∞
∑

𝑘=0
𝑥𝑘∕𝑘!. (28)

According Eqs. (27) and (28), we can get the functional relationship
etween 𝑦 and 𝑥:

= ln 2
𝜔𝑗

⋅
∞
∑

𝑘=0

𝑥𝑘−1

𝑘!
. (29)

From Eq. (29), we can see that 𝑦 is an increasing function of 𝑥. At
the same time, when 𝑐𝑗 approaches 0, 𝑥 also approaches 0, which leads
to 𝑦 = ln 2∕𝜔𝑗 , similarly, it will also cause 𝐸𝑗 to approach 𝐸∗

𝑗 , expressed
as:

𝐸∗
𝑗 =

⎛

⎜

⎜

⎜

⎝

ln 2

𝜔𝑗𝛽𝑗
|

|

|

ℎ𝑖,𝑗
|

|

|

2

⎞

⎟

⎟

⎟

⎠

𝑑. (30)

Meanwhile, we can conclude that 𝐸𝑗 is an increasing function of 𝑐𝑗 .
The claim for 𝑇𝑗 is obvious. ■

5.2. Task scheduling for time-reliability with priority constraints

In the optimization of task offloading scheduling in heterogeneous
distributed systems, to ensure that task offloading does not violate the
priority constraints of tasks themselves, a common approach is the
𝑟𝑎𝑛𝑘𝑢 method [27,28], which is calculated using the following formula:

𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) = 𝑇𝑖 + max
𝑡𝑗∈succ(𝑡𝑖)

{𝑐𝑖,𝑗 + 𝑟𝑎𝑛𝑘𝑢(𝑡𝑗 )}, (31)

here 𝑇𝑖 represents the average worst case execution time of task 𝑡𝑖,
nd all tasks are sorted in descending order based on their ranks for
xecution. However, in the fog computing, the calculation method of
nergy has changed, the value of 𝑇𝑖 cannot be known in advance before

the actual offloading, rendering the 𝑟𝑎𝑛𝑘𝑢 method not fully adaptable
o task offloading optimization in fog environments.

To address this issue, we partition the DAG into 𝑣 levels, denoted
s 𝐿 = (𝐻1,𝐻2,… ,𝐻𝑣), where each level represents a group of tasks.

Level 𝐻1 consists of the initial tasks with no predecessor tasks. To
comply with task priority constraints during the scheduling process,
we adopt a hierarchical task scheduling approach. This means that
tasks in level 𝐻2 can only start execution once all tasks in level 𝐻1
are completed. In other words, each level of the DAG is independently
and separately scheduled for task offloading, effectively eliminating the
impact of priority constraints, although sacrificing some flexibility due
to the coordinated action of levels. This facilitates the optimization of
subsequent algorithms.

For data integration and result visualization purposes, we summa-
rize the offloading scheduling strategy as 𝑆 = (𝐿0, 𝐿1,… , 𝐿𝑣), where
𝐿𝑥 = (𝐿𝑇𝑥, 𝐿𝑅𝐸𝑥) (for all 1 ≤ 𝑥 ≤ 𝑣), storing the total offloading
execution time and total reliability of the tasks in each level.

In Algorithm 1, an energy constrained scheduling algorithm with
priority constraints in fog computing is proposed, which is called En-
ergy Constrained Level-by-Level Time-Reliability Optimization schedul-
ing (ECLLTROS).

Algorithm 1 Energy Constrained Level-by-Level Time-Reliability
Optimization Scheduling
Input: An application 𝐺 = (𝐿, ≺) with 𝐿 = (𝑡1, 𝑡2, ⋯, 𝑡𝑚), where 𝑡𝑖 =

(𝑟𝑖, 𝑑𝑖), for every 1 ≤ 𝑖 ≤ 𝑚, UE = (𝛼, 𝜉, 𝑃𝑠), MEC𝑗 = (𝑠𝑗 , 𝑤𝑗 , 𝑐𝑗), for
̃
every 1 ≤ 𝑗 ≤ 𝑛, and 𝐸.
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Output: An optimal computation offloading and power allocation
strategy which can ensure the total energy consumption 𝐸 does not
exceed the threshold 𝐸, while achieving dual objective optimization
of time (𝑇 ) and reliability (𝑅𝐸).

1: for (𝑥 = 1; 𝑥 ≤ 𝑣; 𝑥 + +) do
2: 𝐿𝑅𝐸𝑥, 𝐿𝑇𝑥 ← ECTROS(𝐸𝑥,𝐻);
3: end for;
4: 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ← 𝐸 −

∑

𝐸𝑥, for all 1 ≤ 𝑥 ≤ 𝑣;
5: 𝐸′ ← 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 / 𝐾;
6: while (𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 >0) do
7: if (𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ≤ 𝐸′) then
8: 𝛥𝐸 ← 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙;
9: else

10: 𝛥𝐸 ← 𝛾𝐸′, where 𝛾 ∈ [0.5, 1.0];
11: end if;
12: 𝑥′ ← indexmax 1 ≤ 𝑥 ≤ 𝑣 (𝐿𝑇𝑥 - ECTROS(𝐸𝑥+𝛥𝐸, 𝐻));
13: 𝐸′

𝑥 ← 𝐸′
𝑥 + 𝛥𝐸;

14: 𝐿𝑅𝐸′
𝑥 ← ECTROS(𝐸′

𝑥,𝐻);
15: 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ← 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 − 𝛥𝐸;
16: end while;
17: 𝑇 ← 𝐿𝑇1 + 𝐿𝑇2 + ... + 𝐿𝑇𝑣;
18: 𝑅𝐸 ← 𝐿𝑅𝐸1 ⋅ 𝐿𝑅𝐸2 ⋅ ... ⋅ 𝐿𝑅𝐸𝑣;
19: return 𝑆, 𝑇 and 𝑅𝐸.

Notation: In this paper, we set

ndexmax(𝐿𝑇1, 𝐿𝑇2,… , 𝐿𝑇𝑣)

o be the index 𝑥 such that 𝐿𝑇𝑥 = max(𝐿𝑇1, 𝐿𝑇2, ⋯, 𝐿𝑇𝑣).
At this point, tasks within the same level do not have priority

onstraints, allowing the use of a scheduling algorithm without priority
onstraints to make decisions on task offloading. This decision-making
rocess will be provided by Algorithm 2. Meanwhile, the initial energy
onstraint 𝐸𝑥 of a single level is determined as follows:

Let 𝑅𝑥 =
∑

𝑡𝑖∈𝐿𝑥
𝑟𝑖 and 𝐷𝑥 =

∑

𝑡𝑖∈𝐿𝑥
𝑑𝑖, for all 1 ≤ 𝑙 ≤ 𝑣. Then, the

following formula can be obtained through Eqs. (23) and (30):

𝐸𝑥 = 𝑅𝑥𝑃𝑠
1−1∕𝛼𝜉1∕𝛼 𝛼

(𝛼 − 1)1−1∕𝛼

+

(

ln 2
min1≤𝑗≤𝑛(𝜔𝑗𝛽𝑗 )||ℎ𝑚𝑖𝑛||

2

)

𝐷𝑥.
(32)

Algorithm 1 mainly focuses on determining the optimal allocation
of a given energy threshold among the levels 𝑣. It calculates the optimal
total reliability and total response time values for applying the no-
priority-constrained task scheduling algorithm to different levels 𝐻𝑥
under the energy constraint 𝐸𝑥 (where 1 ≤ 𝑥 ≤ 𝑣).

At the beginning of the algorithm, each level 𝐻𝑥 schedules and
allocates tasks using the initial energy 𝐸𝑥 calculated by Eq. (32) (lines
1–3), resulting in a preliminary strategic result. Next, the remaining
energy is calculated by subtracting the sum of energy consumption from
all level (𝐸1+𝐸2+⋯+𝐸𝑣) from the total energy constraint 𝐸, as shown
n line 4. The obtained value is then divided by 𝐾 to determine the
pper limit of energy 𝐸′ for each iteration (line 5). Subsequently, a
hile loop is executed (lines 6–16), with the loop executing no fewer

han 𝐾 times. In each iteration, the following operations are performed:
(1) Determine 𝛥𝐸, which is a random value generated by multiply-

ng 𝛾 with 𝐸′, where 𝛾 is uniformly distributed in the range [0.5, 1.0]
line 10).

(2) Obtain the level with the maximum optimization magnitude of
nergy allocation increment 𝛥𝐸 (line 12).

(3) Allocate 𝛥𝐸 based on the results from the previous step. The
bove while loop terminates after allocating all remaining energy.
etermine the overall reliability and response time of the application
nder the current allocation scenario (lines 17–18).

The time complexity of ECLLTROS is 𝑂((𝑣+𝐾)×(𝑚𝑛(log (𝑚)+2)+𝑚2)),
here scheduling all tasks of all levels can be done in 𝑂(𝑣×(𝑚𝑛(log (𝑚)+
) + 𝑚2)) time, the distribution of the remaining energy costs 𝑂(𝐾 ×

2
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(𝑚𝑛(log (𝑚) + 2) + 𝑚 )) time.
.3. Task-replica scheduling for time-reliability without priority constraints

With Algorithm 1, we have eliminated the priority constraints inher-
nt in the DAG, simplifying the problem to a task offloading scheduling
roblem within the same level, that is, a task scheduling without
riority constraints.

In the past years, many methods have been proposed in the research
f pre-power allocation. In constant velocity method, all tasks are
ssumed to have the same computation speed. However, this approach
s not feasible in fog computing because the UE cannot control the
omputation speed 𝑠𝑗 of MEC𝑗 , leading to an inability for the UE to
egulate the task execution time of MEC, making it unattainable for
ll tasks to have the same execution time. Therefore, in this paper,
e utilize the equal energy method that each task consumes an equal
mount of energy, denoted as: 𝐸∕𝑚.

It should be noted that equal energy method is not an optimal
nergy distribution method, the energy allocation of tasks within the
ame level is not optimized, resulting in lower levels of optimization
or some tasks. There is still considerable room for improvement. There-
ore, we set a reliability threshold 𝜂 for the final reliability of tasks, if
he reliability value of a task does not meet this threshold, the execution
f replicas is introduced, and the task is executed simultaneously on
ultiple servers, which could improve the overall reliability of the

pplication in a fault-tolerant manner.
Meanwhile, from recent related studies, we have observed that in

eterogeneous distributed systems, the execution phase of replica ad-
ition does not need to consider task offloading and energy. However,
he expansion of fog computing environment means that when the UE
ecide to offload tasks to a fog server, there must be an offloading trans-
ission operation, which implies that the energy for transmission needs

o be borne by the UE. Additionally, wireless transmission between
ervers in the fog computing environment is also feasible, subject to
arious influencing factors. Therefore, in this paper, we set the energy
sed by a single replica is the same as that of a task, and when a task
ecides to execute the replica, only one replica transmission behavior is
erformed, and the replica data is regarded as being transmitted to the
og, and the fog server can automatically extract it without UE sending
t multiple times. Furthermore, considering the significant time sacrifice
aused by excessive execution of replicas, we only allow a portion
f tasks within the level to have the permission to execute replicas,
enoted as the task-replica ratio 𝑦. In other words, the number of tasks
hat can execute replicas within the current level is 𝑚∕𝑦.

In Algorithm 2, an energy constrained scheduling algorithm of equal
nergy method without priority constraints is presented, namely, En-
rgy Constrained Time-Reliability Optimization Scheduling (ECTROS).

Algorithm 2 Energy Constrained Time-Reliability Optimization
Scheduling
Input: A given task list 𝐿 = (𝑡1, 𝑡2,⋯ , 𝑡𝑚), where 𝑡𝑖 = (𝑟𝑖, 𝑑𝑖), for all

1 ≤ 𝑖 ≤ 𝑚, UE = (𝜉, 𝛼, 𝑃𝑠), MEC𝑗 = (𝑠𝑗 , 𝑐𝑗 , 𝑤𝑗), for all 1 ≤ 𝑗 ≤ 𝑛, and
𝐸.

utput: An computation offloading and power allocation strategy are
proposed to ensure that the energy consumption (𝐸) does not
exceed the given threshold 𝐸, while achieving optimization of
reliability (𝑅𝐸) under the premise that the time does not exceed
𝑇𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒.

1: Initialize the list 𝐿 using heuristic 𝐻 ;
2: 𝐸𝑡𝑎𝑠𝑘 ← 𝐸∕(𝑚 + (𝑚∕𝑦)), 𝐸𝑟𝑒𝑝𝑙𝑖𝑐𝑎 ← (𝑚∕𝑦) ⋅ 𝐸𝑡𝑎𝑠𝑘;
3: 𝑇𝑑𝑒𝑎𝑑𝐿𝑖𝑛𝑒 ← ECLS_H(𝐸,𝐻);
4: 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙, 𝑇𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ← ECTM(𝐸 − 𝐸𝑟𝑒𝑝𝑙𝑖𝑐𝑎,𝐻);
5: for (all 𝑡𝑖 in 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙) do
6: Retrieve the reliability list 𝑅𝐸𝑙𝑖𝑠𝑡 of task 𝑡𝑖 execution on all MEC.

7: if (the replica execution condition is met) then

8: while (the replica execution condition is met) do
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9: Add a replica to task 𝑡𝑖;
0: Assign the MEC with the highest reliability in 𝑅𝐸𝑙𝑖𝑠𝑡, exclud-

ing the original execution MEC of 𝑡𝑖, as the execution MEC
for this replica.

1: end while;
2: Refresh 𝑅𝐸𝑓𝑖𝑛𝑎𝑙

𝑖 with Equation (33);
3: Refresh the time 𝑇𝑗 of all servers which executing replicas;
4: 𝐸𝑟𝑒𝑝𝑙𝑖𝑐𝑎 ← 𝐸𝑟𝑒𝑝𝑙𝑖𝑐𝑎 − 𝐸𝑡𝑎𝑠𝑘;
5: else
6: Maintain the original allocation offloading strategy;
7: end if;
8: end for;
9: 𝑇 ← max(𝑇1, 𝑇2, 𝑇3,⋯ , 𝑇𝑛);
0: 𝑅𝐸 ← 𝑅𝐸𝑓𝑖𝑛𝑎𝑙

1 ⋅ 𝑅𝐸𝑓𝑖𝑛𝑎𝑙
2 ⋅ 𝑅𝐸𝑓𝑖𝑛𝑎𝑙

3 ⋅ ... ⋅ 𝑅𝐸𝑓𝑖𝑛𝑎𝑙
𝑚 ;

1: return 𝑆, 𝑇 and 𝑅𝐸.

The key of Algorithm 2 is make full use of the interval between the
evel time and the upper limit time to improve the reliability of the
evel.

After initializing the task list with heuristic H (line 1), the equal
nergy method is used to allocate the single task energy to the total
nergy used by the copy (line 2). The ECLS_H and ECTM algorithms
re called respectively to calculate the total time, and the total time
btained by ECLS_H algorithm is set as the time upper limit 𝑇𝑑𝑒𝑎𝑑𝐿𝑖𝑛𝑒,

and set the total time obtained by the ECTM algorithm as the initial
value of the scheduling strategy (lines 3–4).

Set a reliability threshold 𝜂, if 𝑅𝐸𝑖,𝑗
′ (for all 𝑖 ∈ [1, 𝑚]) is less

han the threshold, add replicas to the current task until the duplicate
xecution condition is no longer met, and refresh the time data of the
ask and the replica execution server and the final reliability of the task
lines 7–10). The replica execution conditions are as follows:

(1) The reliability does not exceed the threshold 𝜂.
(2) The available server queue is not empty.
(3) The available energy for replica is greater than 0.
(4) The total time of the MEC executing the replica does not exceed

𝑑𝑒𝑎𝑑𝐿𝑖𝑛𝑒.
The replica calculation is dynamic, so the number of replicas

num(𝑡𝑖) required for each task can be different. After the algorithm is
alculated, the final reliability value of the task 𝑡𝑖 is :

𝐸𝑓𝑖𝑛𝑎𝑙
𝑖 = 1 −

∏

𝑀𝐸𝐶𝑗∈𝜑𝑚𝑒𝑐 (𝑡𝑖)
(1 − 𝑅𝐸𝑖,𝑗 ), (33)

here 𝜑𝑚𝑒𝑐 (𝑡𝑖) represents the list of servers where the replica is assigned
o execute. If the reliability of the current task is greater than the
hreshold, it is considered that it does not need replica (line 12).

The time complexity of ECTROS algorithm is 𝑂(𝑚𝑛(log (𝑚) + 2) +
𝑚2), algorithm ECLS takes 𝑂(𝑚(𝑛 + 𝑚)) time in line 3 [32], perform
replica computation operations in 𝑂(𝑚𝑛) time and call Algorithm 3 in
𝑂(𝑚𝑛 log (𝑚)) time.

5.4. Task scheduling for time without priority constraints

The main objective of Algorithm 3 is to maximize the utilization of
server queues in the fog computing while keeping the total scheduling
length as minimal as possible, which is called Energy Constrained Time
Minimization algorithm (ECTM).

Algorithm 3 Energy Constrained Time Minimization Algorithm
Input: A given task list 𝐿 = (𝑡1, 𝑡2,⋯ , 𝑡𝑚), where 𝑡𝑖 = (𝑟𝑖, 𝑑𝑖), for all

1 ≤ 𝑖 ≤ 𝑚, UE = (𝜉, 𝛼, 𝑃𝑠), MEC𝑗 = (𝑠𝑗 , 𝑐𝑗 , 𝑤𝑗), for all 1 ≤ 𝑗 ≤ 𝑛, and
𝐸.

Output: An computation offloading strategy and power allocation
strategy are proposed to ensure that the energy consumption (𝐸)
does not exceed the given threshold 𝐸, while minimizing the total
time (𝑇 ).

1: Initialize the list 𝐿 using heuristic 𝐻 ;
574
2: for (𝑗 = 0; 𝑗 ≤ 𝑛; 𝑗 + +) do
3: 𝑇𝑗 ← 0;
4: end for;
5: for (𝑖 = 1; 𝑖 ≤ 𝑚; 𝑖 + +) do
6: 𝑅𝐸𝑓𝑖𝑛𝑎𝑙

𝑖 ← 1;
7: for (all MEC𝑗) do
8: Offload 𝑡𝑖 on MEC𝑗 at time 𝑇𝑗 ;
9: 𝑅𝐸𝑖,𝑗 ← the overall reliability of 𝑡𝑖;
0: 𝑇𝑖,𝑗 ← the response time of 𝑡𝑖;
1: end for;
2: 𝑗′ ← indexmin(𝑇𝑖,0 + 𝑇0, 𝑇𝑖,1 + 𝑇1,⋯ , 𝑇𝑖,𝑛 + 𝑇𝑛);
3: Designate MEC𝑗′ as the actual execution MEC for task 𝑡𝑖;
4: 𝑅𝐸𝑓𝑖𝑛𝑎𝑙

𝑖 ← 𝑅𝐸𝑖,𝑗
′;

5: 𝑇𝑗 ← 𝑇𝑗 + 𝑇𝑖,𝑗 ′;
6: end for;
7: 𝑇 = max(𝑇1, 𝑇2, 𝑇3,⋯ , 𝑇𝑛);
8: 𝑅𝐸 = 𝑅𝐸𝑓𝑖𝑛𝑎𝑙

1 ⋅ 𝑅𝐸𝑓𝑖𝑛𝑎𝑙
2 ⋅ 𝑅𝐸𝑓𝑖𝑛𝑎𝑙

3 ⋅ ... ⋅ 𝑅𝐸𝑓𝑖𝑛𝑎𝑙
𝑚 ;

9: return 𝑆, 𝑇 and 𝑅𝐸.

The key of Algorithm 3 is to maximize the utilization of the fog
servers while allowing the total time to grow at the slowest rate.

After initializing the server time and task data (lines 1–4), set
𝑅𝐸𝑓𝑖𝑛𝑎𝑙

𝑖 to represent the actual reliability of each task (line 6). Using
a For loop (lines 7–11), unload a task to all MECs and record the
calculated reliability as 𝑅𝐸𝑖,𝑗 , which contains the calculated reliability
and communication reliability of the task.

By comparing the minimum value of 𝑇𝑖,𝑗 + 𝑇𝑗 , the corresponding
index of the server 𝑗′ is obtained (line 12), so the MEC𝑗′ is the actual
allocated server for the current task. Meanwhile, the offloading execu-
tion time and reliability of the current task when offloaded to MEC𝑗′

are obtained (lines 13–14). Therefore, after the loop is completed, the
total reliability of the task list, the total offloading execution time and
the corresponding scheduling policy can be obtained (lines 16–17).

The time complexity of ECTM is 𝑂(𝑛𝑚 log(𝑚)), within the time 𝑂(𝑚×
𝑛) all tasks scheduling, in 𝑂(log(𝑚)) time calculating minimum time
consumption value of each task.

6. Experiments and discussion

In order to evaluate the task optimization effect of the proposed
ECLLTROS algorithm in fog computing, corresponding experiments are
designed in this section. The program is realized with JAVA, and the
results have been carried out on a workstation with an Intel Core
i5-11400 processor running at 2.60 GHz and 8 GB RAM.

6.1. Parameter setting

In this study, we consider a fog computing environment consisting
of one UE and 𝑛 = 7 MEC servers. The UE is configured with the
following parameters: 𝛼 = 2.0, 𝜉 = 0.1, 𝑃𝑠 = 0.05 Watts, 𝜆 = 0.0015.
Each MEC𝑗 is configured with the following parameters: 𝑠𝑗 = 3.1 − 0.1𝑗
BI/second, 𝛽𝑗 = 5.25 − 0.25𝑗 Ws−1, 𝑤𝑗 = 2.9 + 0.1𝑗 MB/second, 𝜆𝑗 =
0.0015 + 0.0002𝑗, where 𝑗 ranges from 1 to 𝑛 (These parameters are set
in a way similar to existing studies [19,32]).

In addition, based on the Rayleigh random fading model described
above, the channel power fading coefficient is considered as a con-
tinuous random variable greater than zero. For simplicity in problem
analysis and experiments, this paper assumes that the value of |

|

|

ℎ𝑖,𝑗
|

|

|

2

during the actual scheduling process is a fixed discrete value within
the range of {0.4, 0.6, 0.8, 1.0}. Therefore, the value of |

|

ℎ𝑚𝑖𝑛||
2 is set

to 0.4. Meanwhile, the fading coefficient 𝜎2𝑗 follows an independent
uniform distribution within the range of [0.5, 0.9]. The SNR threshold
𝜃0,𝑗 = 0.5 + 0.1𝑗 db, where 0 ≤ 𝑗 ≤ 𝑛, and 0 ≤ 𝑖 ≤ 𝑚.

To represent and configure mobile application 𝐺, this study adopts
a random DAG. In the past, the widely used random DAG generation
methods in the task scheduling field were Fan-in/Fan-out [39] and
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Table 2
Scheduling length for energy constrained level-by-level scheduling (95% C.I. = ±1.32241%).

20 40 60 80 100 120 140 160 180 200

ORG 6.730777 11.243410 14.777211 17.844110 20.683817 22.874211 25.673958 27.238373 29.761461 31.508853
SRF 7.032300 11.562170 15.218487 18.762513 22.193556 24.492971 27.525085 29.523959 31.995812 34.113047
LRF 6.240248 10.072959 12.699155 15.479339 18.388477 20.128623 22.506501 24.112373 26.608650 28.631861
SDF 6.803812 11.331525 15.064040 18.297758 21.036884 23.405188 26.075848 28.097571 30.064148 32.032772
LDF 6.640983 11.068259 14.462160 17.513598 20.255224 22.280815 25.072499 26.906293 29.405372 31.232114
SRD 6.805786 11.327465 14.837259 18.154730 20.974092 23.186709 26.035815 28.223866 30.670089 32.457092
LRD 6.631069 10.929694 14.261595 17.361410 20.072169 21.948904 24.668660 26.307002 28.636455 30.346656
Table 3
Scheduling length for energy constrained level-by-level time-reliability optimization scheduling (95% C.I. = ±1.78491%).

20 40 60 80 100 120 140 160 180 200

ORG 5.529705 9.353080 12.281459 14.809853 16.552394 17.819718 18.214560 19.881652 20.333724 21.567056
SRF 5.635894 9.667544 13.083405 15.450959 18.007469 19.422108 21.490574 22.831961 23.880844 24.680749
LRF 5.146271 8.908753 11.943826 13.509538 14.923893 15.977928 16.985604 18.193393 19.208595 20.056841
SDF 5.645221 9.429969 12.493057 15.044648 17.077330 18.283802 19.766866 20.337494 21.082818 22.017111
LDF 5.525499 9.145814 12.111658 14.224195 16.160288 17.137794 18.441901 19.123425 20.120409 21.092012
SRD 5.444014 9.390965 12.659561 15.084257 17.152453 18.443375 19.955077 21.182584 22.107998 23.358586
LRD 5.208784 9.096155 12.047926 13.742382 15.994254 16.887666 17.729355 18.570028 19.424517 20.374670
Table 4
Reliability result for energy constrained level-by-level scheduling (95% C.I. = ±2.34511%).

20 40 60 80 100 120 140 160 180 200

ORG 0.793931 0.434511 0.323639 0.315200 0.304612 0.303267 0.303074 0.290280 0.286506 0.285850
SRF 0.801347 0.476853 0.340827 0.295861 0.260420 0.254653 0.250528 0.248936 0.248470 0.238907
LRF 0.824353 0.555171 0.495774 0.465800 0.434344 0.428839 0.426450 0.419150 0.417194 0.409947
SDF 0.789203 0.440024 0.302287 0.293987 0.283431 0.282724 0.280508 0.278620 0.277662 0.274052
LDF 0.816261 0.458141 0.348229 0.338806 0.322448 0.318400 0.308888 0.306952 0.290992 0.288907
SRD 0.802725 0.452946 0.332205 0.307504 0.296477 0.292595 0.277432 0.264784 0.263000 0.262044
LRD 0.790219 0.471309 0.368541 0.348565 0.346837 0.340185 0.340182 0.334702 0.328007 0.325249
Table 5
Reliability result for energy constrained level-by-level time-reliability optimization scheduling (95% C.I. = ±2.56793%).

20 40 60 80 100 120 140 160 180 200

ORG 0.650516 0.565825 0.520844 0.508587 0.484851 0.460499 0.438398 0.421204 0.405598 0.392064
SRF 0.651472 0.597322 0.563288 0.536058 0.502490 0.460073 0.423993 0.396239 0.379458 0.376508
LRF 0.711868 0.642316 0.602133 0.583635 0.568184 0.535915 0.521045 0.505131 0.488021 0.469651
SDF 0.619731 0.537685 0.508914 0.474814 0.459834 0.449426 0.431538 0.405341 0.386135 0.379069
LDF 0.667283 0.571029 0.548172 0.537431 0.512628 0.498531 0.475211 0.450058 0.434046 0.408924
SRD 0.660859 0.548623 0.511194 0.488914 0.465561 0.455907 0.434716 0.413748 0.387684 0.379311
LRD 0.681893 0.616023 0.574343 0.554297 0.531476 0.519880 0.492781 0.476107 0.452560 0.435786
G(m,p) [40]. While the Fan-in/Fan-out method could employ the TGFF
3.0 [41] tool to generate random DAGs, it could not guarantee the
eneration of DAGs with a fixed number of tasks. Therefore, we adopted
he G(m, p) method in that study. In the G(m, p) method, the value of m

was determined based on specific experiments. Specifically, a random
DAG with m nodes and an arc probability 𝑝 is generated using the
following method:

For any pair of tasks 𝑡𝑖 and 𝑡𝑗 in 𝐺, where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚, the
probability of having a priority constraint is 𝑝. In other words, there
is a directed arc from 𝑡𝑖 to 𝑡𝑗 between the corresponding nodes in the
random DAG with a probability of 𝑝. Following the generation method
mentioned above, for task 𝑡𝑖, the expected number of subsequent tasks
is (𝑚 − 𝑖)𝑝, where 1 ≤ 𝑖 ≤ 𝑚. By setting 𝑝 = 𝑏∕𝑚, where 𝑏 is set to 2 in
this paper, we can observe that this number falls within the range of
[0, 𝑏).

The task computation and communication requirements are gen-
erated randomly. The 𝑟𝑖 values are independently and uniformly dis-
tributed in the range [3.5, 5.0]. Similarly, the 𝑑𝑖 values are also
independently and uniformly distributed in the range [2.0, 4.0].

The following heuristics for the initial order of the task list 𝐿 = (𝑡1,
𝑡2, . . . , 𝑡𝑚) are considered in this article:

∙ ORG (Original Order) – Tasks are arranged in their original order.
∙ SRF (Smallest Requirement First) – Tasks are ordered in ascending

order of their computation requirements: 𝑟 ≤ 𝑟 ≤ ⋅ ⋅ ⋅ ≤ 𝑟 .
575

1 2 𝑚
∙ LRF (Largest Requirement First) – Tasks are ordered in descending
order of their computation requirements: 𝑟1 ≥ 𝑟2 ≥ ⋅ ⋅ ⋅ ≥ 𝑟𝑚.

∙ SDF (Smallest Data First) –Tasks are ordered in ascending order of
their communication requirements: 𝑑1 ≤ 𝑑2 ≤ ⋅ ⋅ ⋅ ≤ 𝑑𝑚.

∙ LDF (Largest Data First) –Tasks are ordered in descending order of
their communication requirements: 𝑑1 ≥ 𝑑2 ≥ ⋅ ⋅ ⋅ ≥ 𝑑𝑚.

∙ SRD (Smallest Requirement Data Ratio First) – Tasks are ordered in
ascending order of their computation-to-communication ratio: 𝑟1∕𝑑1 ≤
𝑟2∕𝑑2 ≤ ⋅ ⋅ ⋅ ≤ 𝑟𝑚∕𝑑𝑚.

∙ LRD (Largest Requirement Data Ratio First) – Tasks are ordered in
descending order of their computation-to-communication ratio: 𝑟1∕𝑑1 ≥
𝑟2∕𝑑2 ≥ ⋅ ⋅ ⋅ ≥ 𝑟𝑚∕𝑑𝑚.

6.2. Comparative experiment with different task number

The purpose of this experiment is to observe the optimization effect
of the algorithm on the overall reliability and scheduling length under
the randomly generated DAG structure model of different tasks. We set
the number of tasks 𝑚 = 20, 40, 60, 80, ⋯, 200, energy consumption
constraint 𝐸 = 24 m − 72 J, and the task-replica ratio of 𝑦 is 4:1,
the remaining parameters are all parameters in Section 6.1. A total of
200 random structure DAGs were generated in the simulation experi-
ment, and the average experimental results are shown in Tables 2–5.
The maximum 95% confidence interval (C.I.) of this experiment is
±2.56793%.
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Fig. 4. Scheduling length of algorithms (LRF) with different reliability thresholds (95%
.I. = ±1.729251%).

As can be seen in Tables 2 and 3, the scheduling length increases
ith the increase of 𝑚. Additionally, ECLLTROS implements control
ver the scheduling length, ensuring that the overall optimization re-
ults after adding replicas do not exceed the scheduling length of ECLL.
his achieves optimization in terms of the time metric. Under the same
umber of tasks, the best result of ECLLTROS in terms of time index is
RF, while compared with the result of ECLL, the largest optimization
mprovement is LRD, which has a maximum time improvement of
9.41%.

The results from Tables 4 and 5 indicate a decrease in reliability
ith an increasing value of 𝑚. Notably, the ECLLTROS algorithm
emonstrates significant advantages in enhancing reliability compared
o the ECLL algorithm, with the influence of replica, the reliability of
he ECLLTROS algorithm decreases in a more gradual manner. This
dvantage stems from the ECLLTROS algorithm’s trade-off of time for
igher reliability, as evidenced by the scheduling length data. The
aximum reliability improvement under the same number of tasks is
2.95%. However, it should be noted that when the number of tasks
s too small (m = 20), the difference between the upper and lower
imits of time is small due to the small base number, and the relia-
ility improvement space is not large, resulting in the final reliability
ptimization effect of ECLLTROS is not as good as that of the ECLL
lgorithm. Therefore, the algorithm is more practical when the number
f tasks has a certain scale.

Therefore, based on the experiment, it can be concluded that, at the
ame task level, LRF is the most effective heuristic sequence for both
cheduling length and reliability. Moreover, the optimization effect
f the algorithm improves as the number of tasks involved in the
ffloading allocation increases.

.3. Comparative experiment with different reliability thresholds

The purpose of the experiment in this section is to observe the
eliability and scheduling length optimization effects of randomly gen-
rated DAG structure models under different reliability thresholds. The
umber of tasks set in this section is 𝑚 = 80, and the reliability
hreshold is 𝜂 = 0.980, 0.985, 0.990, and 0.995, the task-replica energy
atio of 𝑦 is 4. Other parameters are set in reference to Section 6.1, and
he simulation experiment results (using the LRF heuristic order as an
xample) are shown in Figs. 4 and 5. For all the data in this experiment,
he maximum 95% C.I. is ±2.93989%.

From Figs. 4 and 5, it can be seen that both the reliability and
cheduling length metrics in the experimental results outperform the
CLL scheduling results. As 𝜂 gradually increases, the scheduling length
xhibits an increasing trend. At the same time, due to the high relia-
ility threshold of duplicate execution, some tasks that are close to the
hreshold preoccupy the qualification of duplicate execution, and some
asks that can be improved by a higher margin cannot be optimized,
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esulting in a decreasing reliability. i
Fig. 5. Reliability of algorithms (LRF) with different reliability thresholds (95% C.I. =
±2.93989%).

Fig. 6. Scheduling length of algorithms (LRF) with different ratio of replica (95% C.I.
= ±1.88425%).

6.4. Comparative experiment with different task-replica ratio

The purpose of the experiment in this section is to observe the
reliability and scheduling length optimization effect of randomly gen-
erated DAG structure models under different task-replica energy ratios.
The number of tasks set in this section is 𝑚 = 80, the reliability
threshold is 𝜂 = 0.990, and the task-replica ratio 𝑦 is 2, 4, 6, ⋯, 10
espectively for experiments, other parameters are set in Section 6.1.
he simulation experiment results (using the LRF heuristic order as an
xample) are shown in Figs. 6 and 7. For all the data in this experiment,
he maximum 95% C.I. is ±2.94371%.

From Figs. 6 and 7, it can be observed that the fewer the executable
copies in the task list, the worse the reliability improvement effect.
Even when 𝑦 = 10, the reliability optimization result of ECLLTROS
algorithm is lower than that of ECLL, which also leads to a significant
time increase.

6.5. Comparative experiment under a real-life industrial example

To evaluate the performance improvement of the algorithm in real-
life vehicular networking applications, we utilized a real automotive
function example shown in Fig. 8 adopted from [17,28] for experiment.

This application comprises six modules: an engine controller (𝑡1−𝑡7),
an automatic gearbox (𝑡8 − 𝑡11), an anti-lock braking system (𝑡12 − 𝑡17),
a wheel angle sensor(𝑡18 − 𝑡19), a suspension controller (𝑡20 − 𝑡24), and
bodywork tasks (𝑡25 − 𝑡31). In this experiment, the application was
deployed on 8 processors, including UE. We set the energy constraint
𝐸 = 24 m − 72 J, task replicas ratio 𝑦 to 4:1, reliability threshold 𝜂 to
.999, and kept other parameters consistent with the settings outlined

n Section 6.1. A total of one hundred simulation experiments were
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Fig. 7. Reliability of algorithms (LRF) with different ratio of replica (95% C.I. =
±2.94371%).

Fig. 8. A real-life automotive application.

Table 6
Experimental results of real vehicular networking application instances (95% C.I. =

2.78398%).
Heuristics ECLL ECLLTROS

Reliability Scheduling length Reliability Scheduling length

ORG 0.454682 5.809641 0.692454 4.216541
SRF 0.487353 5.937174 0.666322 4.302656
LRF 0.540498 5.466762 0.792340 3.878570
SDF 0.446692 5.928987 0.654195 4.354953
LDF 0.458675 5.744615 0.744626 4.046113
SRD 0.479681 5.838692 0.716017 4.164256
LRD 0.458414 5.850090 0.709262 4.186099

conducted, with the mean results presented in Table 6. The maximum
95% C.I. is ±2.78398%.

Based on the data in Table 6, it is evident that in real vehicular net-
working application instances, the ECLLTROS algorithm demonstrates
superior performance in both time and reliability metrics compared
to the ECLL algorithm. Furthermore, the experimental results further
validate the pattern described in Section 6.2, namely, the significant
577
optimization effect of the LRF heuristic sequence. This finding further
emphasizes the practicality and advanced nature of the ECLLTROS
algorithm in real-life applications.

7. Conclusion

This study aims to optimize the time and reliability metrics of
fog computing applications under energy constraints. A dual-objective
optimization algorithm ECLLTROS is proposed in this paper, targeting
time and reliability with task replica energy constraints. Experimental
results demonstrate that when the number of tasks reaches a certain
scale, compared to the ECLL algorithm, the ECLLTROS algorithm can
further enhance the overall reliability of applications while optimizing
the time metric, making the algorithm more practical and advanced.
This conclusion is further confirmed in experiments on a real-life au-
tomotive application. In future work, we will investigate the impact of
changing the number of intermediate layers in scheduling optimization
for randomly generated DAGs. Additionally, exploring different energy
allocation strategies will be another research direction for us.
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