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Abstract—The blockchain establishes trust by maintaining a
distributed appending-only ledger, which is widely applied to
the nodes lacking trust in the edge environment. However, the
full-replication storage mode of blockchain is a big challenge
for resource-constrained edge devices. What is worse, system
performance is also affected by the large storage overhead.
Existing solutions to reduce blockchain storage overhead often
require additional security assumptions, lack incentives, or fail
to account for resource heterogeneity. To overcome these limi-
tations, we design an auction-based storage resource allocation
scheme. Winners are selected to store blocks, taking into account
the block preferences of nodes, and the fairness of the system.
Nodes are incentivized by implementing fairness and equity in
distributed auctions and data transactions through smart con-
tracts. Finally, extensive experiments show 65%-81% savings in
storage overhead compared to fully replicated storage.

Index Terms—Auction, blockchain, block offloading, dis-
tributed system, fair trading.

I. INTRODUCTION
A. Motivation

N THE age of the Internet of Everything, edge devices
Igenerate or collect data and provide diverse services for
users [1], [2]. Due to the distrust between edge devices, the
potential value of business data cannot be effectively exploited
through sharing [3]. While the introduction of trusted third
parties ensures collaboration, it will face the risk of single
points of failure and privacy leaks.

Blockchain presents an emerging computing paradigm that
allows mutually untrusted members to collectively manage a
consistent ledger of transactions in a decentralized manner [4].
By deploying blockchain in the edge environment, it provides
a decentralized collaboration platform to support multiple edge
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services [5]. Blockchain’s data invariance, enhanced security,
and traceability avoid repudiation by malicious nodes and
facilitate trust building.

Nevertheless, the huge resource overhead and low
performance of blockchain is an urgent challenge for edge
environments. There has been a lot of work on solving the
throughput bottlenecks of blockchain in terms of consensus
algorithms [6], broadcast protocols [7], and transaction exe-
cution methods [8]. The elephant in the room is that the
throughput boost of blockchain will result in a massive growth
of storage overhead. The blockchain replicates data over all
nodes thus implementing state machine replication. This fully
replicated storage leads to the emergence of capacity bottle-
necks. For example, the data volume of Ethernet is currently
over 800 GB. The huge storage overhead will result in limiting
the participation of edge devices, which weakens decentraliza-
tion and threatens the security of blockchain. Therefore, how
to reduce the storage cost of blockchain is necessary for further
adoption of blockchain, especially for resource-constrained
edge environments.

A natural optimization approach is to reduce the storage
redundancy of the nodes while ensuring the data integrity of
the blockchain. We find that different edge nodes have prefer-
ences for different block data. For example, edge devices that
perform environmental prediction are only interested in blocks
that contain temperature and humidity data. It is inappropriate
and unrealistic for these nodes to waste a large amount of stor-
age space to store data that is not relevant to their interests.
We suggest storing only a portion of block data on resource-
constrained edge nodes. However, the design of the storage
allocation scheme faces several key issues.

1) The reduction of storage redundancy may lead to the

loss of block data due to malicious nodes.

2) Nodes with incomplete copies of data require additional
data communication with other nodes. There is a tradeoff
between storage redundancy and network overhead.

3) Edge nodes have different storage resources, which
should be utilized fairly and fully.

4) The allocation scheme should meet the interests of each
node for motivating the nodes to participate.

B. Related Work

Current state-of-the-art works do not fully consider the
above key issues. Nakamoto [9] proposed to divide nodes
into full nodes and light nodes in Bitcoin white paper. Light
nodes store only block headers, which saves a lot of storage
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space. Nevertheless, data integrity is all dependent on the
full node, leading to the risk of data loss. More seriously,
the number of full nodes is gradually decreasing as the stor-
age overhead grows (currently there are only about 6000 full
nodes in Ethereum), exacerbating the degree of decentraliza-
tion. Another popular solution is for multiple nodes to form
a consensus unit (CU) [10], [11]. All nodes in a CU jointly
maintain just one complete copy of the block data. In theory,
the larger the size of a CU, the lower the storage cost per
node. Nevertheless, this also implies more trust assumptions
between nodes, which goes against the original purpose of
using blockchain: to build trust in an environment of mistrust.

Unlike the work at the protocol layer described above,
the alternative is to focus on the storage engine layer with-
out strong trust assumptions. BFT-Store is proposed in [12],
which used erasure coding to divide storage partitions in per-
missioned blockchain. While the storage overhead can be
reduced from O(n) to O(1), recovering the data introduces
additional communication overhead and computation over-
head. Xu et al. [5] proposed a futile transaction filtering
algorithm and the invalid blocks that contain only invalid trans-
actions would be offloaded to cloud storage. However, this
introduces a new risk to the validation process. Wang et al. [13]
introduced ForkBase to efficiently retrieve and eliminate stor-
age redundancy. But the redundant part of the actual block is
very limited. Instead of analyzing the data itself, Dai et al. [14]
took into account users’ preferences for block data. Users store
only those transactions that are of interest to them and partial
Merkle branches. But no one wants to keep other users’ data,
leading to too little redundancy and new security issues.

To make fuller use of storage resources, there are several
works that study storage allocation for the entire blockchain
system. A fair and efficient distribution scheme for edge envi-
ronments is presented in [15]. How to find the best location for
storing transactions and blocks is modeled as the no capacity
facility location problem (NP-hard), and an efficient approxi-
mation algorithm is given. Zhang et al. [16] further combined
the reputation mechanism and storage allocation to achieve a
novel reputation-proof blockchain. However, the above meth-
ods require the full knowledge of the entire peer-to-peer (P2P)
network, which is extremely difficult to obtain in an untrusted
and dynamically changing environment.

C. Our Contribution

Our design goal is to allocate storage resources reasonably
and fairly without requiring a strong trust assumption. This
reduces the storage overhead of the blockchain while ensuring
a certain level of security.

In this article, we design an auction-based block storage
allocation model. First, in a decentralized blockchain, we
implement distributed auctions without a centralized auction-
eer through smart contracts. Then, nodes bid on the blocks
based on their preferences for them. Storing blocks selectively
on more relevant nodes reduces the possibility of subsequent
data communication to some extent. Finally, considering the
system load balancing and node bids, the auction algorithm
determines a batch of winning nodes with minimized storage
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and communication costs. The winning nodes store the com-
plete block data, while the losing nodes store only the block
headers.

In order to attract more nodes to actively participate, the
allocation scheme needs to safeguard the interests of each
node. The winning nodes contribute storage resources to main-
tain a portion of the block data, and they will be paid for this.
The losing nodes save storage overhead at the cost of them
having to pay for subsequent data requests. We achieve fair
trading in a distrustful environment. Both parties to the trade
are able to be simultaneously subjected to the correct block
data and payoff, and neither party has any way to benefit by
repudiation.

In summary, our major contributions are as follows.

1) We implement two-stage bidding auctions through smart
contracts without trusted third parties and offload the
auction computation to the off-chain.

2) We design a second price auction with multidimensional
information. On the one hand, the blocks are allocated
to the preferred nodes to reduce the frequency of nodes
requesting data; on the other hand, blocks are allocated
fairly according to the storage space of nodes to achieve
load balancing.

3) In order to achieve a fair trading between two parties
who do not trust each other, we verify the correctness
of the block data through asymmetric encryption and
use the smart contract of blockchain to realize cash on
delivery.

D. Paper Outline

The remainder of this article is structured as follows.
In Section II, the overall system framework is intro-
duced. Section III describes the distributed auction in detail.
Section IV describes the fair trading between untrusted nodes.
Next, the performance evaluation is performed in Section V.
Finally, we conclude our work in Section VI.

II. SYSTEM ARCHITECTURE

We deploy the blockchain in an edge environment, where
each node corresponds to an edge device. The data gener-
ated by the edge devices are preprocessed and uploaded to the
blockchain to support a variety of edge services. These basic
data are constructed into transactions that modify the state of
the blockchain ledger according to different business logic.
Each block contains information of multiple transactions,
which are stored in each node after consensus.

The resources of edge devices are constrained. To relieve the
storage pressure, we design an auction mechanism to allocate
blocks to some nodes for storage. Nodes are rewarded for
honestly responding to other nodes’ block requests, creating a
positive incentive.

To describe the data flow more clearly, we divide the core
framework of the node into three layers, namely, the API layer,
the blockchain layer, and the storage layer (including the block
buffer), as shown in Fig. 1.

The API layer provides interfaces for edge applications to
interact with the blockchain layer and the storage layer, such as
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Fig. 1. System architecture.

transaction queries, block requests, data uploads, etc. In addi-
tion, a reputation management and auction module is included.
Each node will be assigned a reputation value. Reputation is
updated in a decentralized manner to prevent manipulation
by malicious users. In the auction, nodes make bids on the
chain and perform calculations off-chain. Block offloading is
performed based on the proposal.

The blockchain layer implements the basic functions of
the blockchain. Some operations that change the state of the
blockchain ledger, such as data uploading, node bidding, and
reputation updates, are constructed as transactions or blocks
and broadcasted across the network. The validation module
validates the transactions or blocks. The accepted transactions
or blocks are stored and the status is updated. The Block
offload module analyzes the auction results and sends offload
requests to the Storage layer.

The storage layer provides storage services for the upper
layers. The block buffer temporarily stores some blocks that
are frequently used or about to be unloaded to improve access
speed and avoid frequent requests for block data from other
nodes.

III. PROBLEM MODELING

There are a total of N blockchain nodes (each node corre-
sponds to an edge device). These heterogeneous nodes have
limited storage space and computational resources. We pro-
pose an auction-based storage allocation scheme with the
following considerations.

1) Each node has different preferences for different blocks
of data, e.g., edge devices performing environmental
monitoring access temperature and humidity data fre-
quently. It is reasonable to let nodes store data relevant
to their own interests. But too little data redundancy car-
ries the risk of data loss. It is necessary to design a global
storage allocation scheme.

2) The data request between nodes brings additional com-
munication when the offloaded blocks are needed
again. There is a tradeoff between data redundancy
and communication overhead when designing the
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allocation scheme. But it is particularly difficult to
obtain full knowledge of P2P networks in an untrusted
environment.

3) The node sacrifices storage space and contributes to
the overall system because it helps other nodes store
block data. We believe that this should not be free, espe-
cially in resource-constrained edge environments. Nodes
should be rewarded for responding to other nodes’
requests for block data.

A. Auction Process

In a decentralized blockchain, we implement distributed
auctions between untrusted nodes via smart contracts with the
following process.

Step 1 (Select Blocks): The auction starts when the size of
the blocks that have been consensused exceeds a threshold.
These blocks will be auctioned together.

Step 2 (Submit Bids): In the two-stage bidding phase, nodes
bid via the smart contract.

Step 3 (Compute the Allocation Scheme): The nodes run
the auction algorithm off-chain based on the bid information
recorded by the smart contract.

Step 4 (Offload Blocks): The losers offload blocks at the
appropriate time. The winners continue to store blocks in
response to data requests from losers and get paid.

B. Two-Stage Bidding Strategy

To prevent leakage of bid information during the auction
process, we use two stages of bidding: 1) bid commitment
and 2) bid disclosure. To ensure that the nodes’ bidding
information is nonrepudiation and the whole process is ver-
ifiable, we implement bidding on a smart contract.

Bid Commitment: Each node n; calculates the commitment
com; = Hash(b;, height, str;) and uploads it to the smart con-
tract, where Hash(-) indicates a hash function, b; indicates the
node’s bid, height indicates the height of auctioned blocks,
and str; is a random string.

Bid Disclosure: Each node n; uploads the actual bid bid; =
(b;, height, str;) to the smart contract. All nodes are able to
verify that bid; and com; match.

In order to save gas overhead, the smart contract main-
tains only two lists and does not include any computational
processes. The nodes perform the hash calculation off-chain.

C. Fairness of Auction

With heterogeneous and limited resources of edge devices, it
is necessary to achieve fair storage allocation, which is directly
related to the stability of the system. We evaluate the fairness
in two dimensions.

Fairness degree cost (FDC) describes the storage resource
consumption: FDC; = s¥/(st — s¥), where s¥ and s} are used
storage and total storage. FDC; denotes the cost paid by a node
to store blocks. Nodes with more storage resources pay less
for storing blocks of the same size and have a higher priority
in storage allocation.

Fairness degree advantage (FDA) describes the initiative of
nodes to participate in the auction: FDA; =, € [0, 1, ..., T],
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where #; is the number of times a node has participated in
auctions since its last win. We encourage nodes to actively
participate in the auction, and each failed bid increases the
probability of success in the next one.

D. Second Price Auction

We design a second price auction with multidimensional
information, taking into account the nodes’ preferences and the
system’s fairness. Based on nodes’ bids, each node is assigned
to store those blocks that are most relevant to itself, reducing
additional data requests. Based on fairness metrics, nodes are
incentivized to participate in the auction and maximize the
utilization of storage resources.

Ranking of Competitive Advantages: The winners will pay
the second highest price. In our design, the nodes also have
different fairness metrics, which should be included in the
price paid by the winners. We map FDA, FDC, and bids
into a 3-D space. We define the ideal value of auctioned
blocks as the highest bid with the lowest cost and the highest
advantage, i.e., the ideal point Pjgea1 (0, T, Bidmax ). The smaller
the Euclidean distance d; between the node’s bid information
P;(FDC;, FDA;, b;) and the ideal point Pjqeq), the greater the
competitive advantage.

Data Redundancy Under Cost Tradeoffs: The degree of
block redundancy (i.e., the number of winners) affects the stor-
age cost and transmission overhead. The more winners, the
higher the storage cost to the system. In contrast, the more
losers, the higher the transmission overhead associated with
the requested blocks. A tradeoff is made between the two to
determine the level of redundancy.

The auction algorithm ranks the distances of all nodes and
sequentially selects the nodes with a large competitive advan-
tage to add to the winner queue until the sum of storage cost
and transmission overhead is minimized. The details are as
follows:

N-M N-M

min Y " AFDCix;+A Y bi(l — x;) (1)
i=1 i1

s.t. max|P;Pideal| < min|P;Pigear|(1 — x;) 2
x; € {0, 1}. 3)

In the above formulation, x; is the marker variable and
x; = 1 means that node i is selected as the winner. AFDC;
is the storage variation of the winner, which indicates the
storage cost paid. The bid b; indicates the importance of the
block, which is proportional to the frequency of access. So
the additional network transmission overhead of the system is
represented by the sum of the bids of the losers b;(1 — x;). A
is the scale factor that represents the tradeoff between storage
overhead and transmission overhead.

The price paid by the winners is calculated according to the
shortest distance of the losing side. We define that if there are
two points that are equidistant from the ideal point, they have
the same competitive advantage. When the fairness of two
points is the same, their bids can only be directly compared.
In Fig. 2, node x calculates the price it should pay based on
node y, dy < dy. All meaningful points on a sphere with
center Pjgea and radius dy are equivalent to the point Py. The
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Fig. 2. Second price of multidimensional information.

projection P, of the point P, on the sphere, which has the
same fairness as Py. So the price paid by node x is p, = b;.
In addition, By, = b; — by is the fairness repayment of node
x with respect to node y. The price paid by the winners was
divided between all the losers. When two distances are equal,
the node with the higher bid has higher priority.

We assume that the winning node i and the losing nodes

k, j are ordered as follows:
LoSdiZ...=Zdr ... .<d <.

where dy is the shortest distance among the losing nodes. The
price to be paid by node i is

pi = Bidmax — \/d,% —FDC? — (T —FDA)? < b;.  (4)

All nodes obtain nonnegative utility, ensuring individual ratio-
nality and budgetary equilibrium. If node j wins the auction
by raising its bid, it will pay

pj = Bidmax — \/d,f — Fch2 —(T- FDAj)2 > b (5)

Node j will receive a negative gain. If node j raises its bid but
does not win the auction, the number of winning nodes may
decrease according to (4), which will also make node j receive
less gain. Therefore, the truthful bid is the optimal choice for
the node.

E. Reputation Management

We design the reputation mechanism. There is no trust
between nodes in the blockchain and reputation value is used
to describe the trust cost. Reputation is not only a ticket for
nodes to participate in the auction (requiring a nonnegative
reputation value) but also a bargaining chip for bidding. A
winning node stores a copy of the auctioned blocks, paying
a reputation value as the trust price for the losing nodes to
trust it. The higher the reputation value of the bid, the more
important these blocks are to the node, and the higher the trust-
worthiness of the copies stored by the node. The reputation
value is calculated as follows:

max (Rmax»Ri _pi)» R >0
initialized (6)
node i does evil.

R; = { Rinitial,

_Rmax,
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Nodes are given an initial reputation value when they join the
blockchain. In each auction round, all nodes participating in
the auction should pay a reputation value p;, which is negative
for the losers. The reputation value has an upper limit Rpyax. If
there is a malicious node (winner) that does not store blocks
and refuses to respond to data requests from other nodes, its
reputation will be reduced to a minimum value —Rpax.

The reputation mechanism is implemented through smart
contracts. Each reputation value update (auction settlement) is
executed by a particular auctioneer and then each node par-
ticipates in the verification. The decentralized nature of smart
contracts makes reputation updates completely transparent and
prevents private malicious tampering.

IV. BLOCK TRADING

The losers have ample incentive to offload the blocks
because of the limited storage. We add the block buffer to
optimize block access. To motivate the winners to provide stor-
age services, we design a fair trading of block data to reward
winners.

A. Reward and Punishment Mechanisms

Lazy winners do not store some relatively low-value win-
ning blocks but rely on other winners to access this data. A
lot of laziness will lead to data loss. Irrational malicious nodes
do not even respond to requests from other nodes. Therefore,
we design some reward and punishment mechanisms.

The key to implementing these mechanisms is to identify
nodes (winners or losers). We describe the auction result AR
as: AR = [height, X, p, Hash(Winers), BF], where X and p are
the allocation scheme and the price paid, Hash(Winers) is the
hash of the list of all winners’ addresses, and BF is a binary
vector into which the Bloom Filter maps the addresses of all
winners [17]. Bloom Filters are widely used to quickly check
if an element is in a set. Taking the address of each winning
node as input, compute the values of some hash functions
and set the corresponding position Hash(address) mod length
to 1. Bloom filters suffer from the problem of false positive
matches, i.e., for an element that does not exist in the set, the
Bloom filter may think it does. When this occurs, additional
evidence is needed.

1) Lazy Nodes: We design a soft punishment to discourage
laziness. When two parties trade block data, the data provider
verifies the identity of the requester and charges the winner
(laziness) more than the loser. The identity of winners makes
lazy nodes request auctioned blocks with higher costs, which
drives them to actively play the role of winners to gain more
benefits.

The identification process is shown in Fig. 3. When the
nodes receive the auction result AR, the winner (Bob) saves
Hash(Winers) and BF. The loser (Alice) needs to determine
whether there is a false positive match for herself, and if so,
save the list Winers as evidence. In the identification step, if
Alice’s request message is appended with the list Winers, Bob
checks it by Hash(Winers). If not, Bob determines Alice’s
identity based on BF.
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Alice Bob a\
Bob's address BF
or Winers Hash(Winers)

signg ,{height(block D), token_num, (Winers)}

i " C Check!
signsg,{"Accept or Reject”, token_num}

signsgg{"start transaction"}

T
Block D

Token { . >\
«— |
ﬂ' Trading \r ),

~

Fig. 3. Identification step. Bob is a winner of the block D. Alice asks Bob
for block data. Bob charges different fees based on Alice’s identity.

2) Malicious Nodes: We define malicious behavior as the
winning node rejecting a block trade for an incorrect reason.
When malicious behavior occurs, the node uploads the accu-
sation record and submits a deposit to the smart contract [18].
The accused node is voted on. If the accusation is not true,
the plaintiff’s deposit will be confiscated and paid to the par-
ticipating nodes as the price of malicious defamation. If the
accusation is true, the plaintiff will recover the deposit, and the
defendant node needs to pay the same amount to be divided
equally by the participating nodes. If the defendant is unable
to pay, it is permanently removed from the system.

B. Fair Trading

In the case of mutual distrust, it is necessary for the win-
ners and the losers to achieve a fair trading, i.e., both parties
receive the correct block data and reward at the same time,
and neither can deny it. Smart contracts and zero-knowledge
proofs are widely used to achieve fair trading without trusted
third parties [19], [20]. In difference, we use computationally
more efficient asymmetric encryption to achieve this, since the
losers used to have all the knowledge.

The process is shown in Fig. 4. Before Alice is ready to
unload the block D, she sends a request to Bob asking if
he is willing to provide storage services. If Bob refuses, he
will be blacklisted by Alice, and Alice will ask other winners.
If accepted, Bob computes a pair of public and private keys
PK, SK and sends PK to Alice. Then, Alice encrypts the block
D with the public key D' = E(PK, D) and stores its hash value
HD' = Hash(D'). Eventually, both the original data D and the
encrypted data D" are deleted.

When Alice requests block D from Bob, Bob encrypts block
D and sends D, = E(PK, D) to Alice. Alice judges whether
two hash values are equal HD'? = Hash(D))). Subsequently,
Alice publishes a smart contract with publickeylock PK and
timelock Ti on the blockchain and places a deposit into the
smart contract [21]. The lock can only be opened with a private
key that matches the public key PK within a specified period
of time 7i to obtain the deposit. Bob calls this smart contract
and uses the private key SK as the input parameter to trigger
the internal transfer logic and get the deposit. At the same
time, this process is packaged as a transaction and broadcast
on the entire network, Alice also knows the SK and completes
the decryption D = D}, = DE(SK, D).
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Fig. 4. Request step and Trade step. Use asymmetric encryption to achieve
fair trading.

The suspension of the trading will not bring losses to both
parties. Alice is able to judge the correctness of the encrypted
block before publishing the smart contract. If the lock is
not opened within time 7i, the deposit will be returned to
Alice. Bob executes the smart contract locally, checking that
its internal logic and deposit are correct. Bob will broadcast the
transaction only after the check passes. Fair trading is achieved
using the atomicity of blockchain operations and asymmetric
cryptographic verification. Neither party can benefit from a
broken promise.

V. EXPERIMENT

In this section, we evaluate our proposed auction algorithm
and fair trading. We perform simulations on a computer with
an AMD Ryzen ThreadRipper 3970X processor and 128 GB
RAM. Docker! is an open-source application container engine
that we use to simulate multiple distributed nodes. Each node
runs the Go-Ethereum? blockchain framework in the con-
tainer. We have implemented smart contracts for the auction
algorithm using Solidity language, including user registration,
reputation management, submission of bids, and algorithmic
solution. In the case of a small number of users, smart con-
tracts can be used to complete the entire auction process. But
when a large number of users participate, it is not practical
to complete the auction process with smart contracts due to
the limitations of gas. Therefore, we adopt on-chain bidding
information submission, off-chain auction algorithm calcula-
tion, and on-chain scheme result consensus. We simulate the
off-chain auction algorithm with Python 3.9.

A. Storage Costs

We evaluate the auction algorithm from several perspectives.
Using fully replicated storage as a baseline, the benefit of the
auction is the percentage reduction in storage overhead after
block offloading. The factors affecting the benefits are shown

1 https://www.docker.com/products/container-runtime
2https://ethereum. github.io/go-ethereum
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TABLE I
FACTORS AFFECTING AUCTION BENEFITS

Notation Description
NN Number of blockchain nodes
NB Number of blocks
BS Average block size (KB)
The scale factor in Eq.(3)
5 The upper bound of false positive
BN 2000 4000 6000 mEm 8000 mEE 10000

~ ® ©
=) S 1)

o
S

offloading benefit(%)

o
o

100 200 400 500 1000 2000 5000 8000
NN

10000

Fig. 5. Offloading benefits with different number of blocks (NB) and the
number of nodes (NN). BS = 52, A = 1.

in Table I. The results of each experiment are repeated ten
times and averaged.

Scalability: Fig. 5 shows the offloading benefits achieved by
the auction algorithm for different number of nodes and differ-
ent number of blocks. The offloading benefit hardly changes
as the number of blocks increases, but it increases as the
number of nodes increases. Intuitively, in a fair auction, more
nodes can share the storage pressure of the system to some
extent. In each auction round, on average 18%-35% of the
nodes are selected to store the entire block, while the other
nodes only store the block header. In addition, each node
temporarily stores blocks in the cache and records the cor-
responding auction result information, including the winner’s
address and Bloom filter. This additional data occupies only a
small amount of storage space. Overall, the auction algorithm
ultimately achieves an average offload benefit of 65%-81%
and better scalability in terms of number of nodes and number
of blocks.

Additional Overhead: In our design, nodes need to store
auction results (winning node addresses, hash values, boolean
filters, etc.), which are the basis for fair trading. Depending
on the specific number n of winners in each auction round,
the length of the bloom filter L > nlog, e x log,(1/¢) [22].
Table IT shows the additional storage space occupied by the
auction results for different upper bound of false positive rate
and number of nodes. A suitable ¢ can reduce the additional
storage overhead to some extent. Inevitably, the percentage of
additional storage overhead increases as the number of nodes
increases. In total, nodes pay only a minimal storage cost (less
than 0.76%) to store auction results.

Applicability: In different blockchain application scenarios,
network resources and storage resources are not equivalent.
We simulate the resource situation in different scenarios by
tuning the scaling factor in (3). In addition, the block size
varies widely in different scenarios. We randomly sample the
size of a portion of Ethernet blocks in different time periods.
Table III shows the offloading benefits achieved by the auction
algorithm with different block sizes and different scale factors.
In general, the block size is not the main factor affecting the
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TABLE 11
PERCENTAGE OF ADDITIONAL STORAGE OVERHEAD (%)
NB =2000,BS=52,A=1

-3 —4 -5

NN 0.1 0.05 0.01 0.005 10 10 10
100 0.04 0.03 0.03 0.03 0.03 0.04 0.05
200 0.06 0.05 0.04 0.04 0.05 0.06 0.07
400 0.1 0.07 0.06 0.07 0.06 0.08 0.1
500 0.12 0.08 0.06 0.07 0.08 0.11 0.12
1000 |0.17 0.11 0.07 0.07 0.07 0.12 0.1
2000 [0.32 0.19 0.11 0.11 0.12 0.14 0.17
5000 [0.59 032 0.19 0.18 0.15 02 0.25
10000 [0.76 0.69 0.29 0.31 025 043 0.32

TABLE IIT

OFFLOADING BENEFIT (%) NN = 200, NB = 2000, ¢ = 1073

BS |16 Jun 17 Jun 18 Jun 19 Jun 20 Jun 21 Jun 22 Jun AVG
A 1.60 8.07 24.03 2470 31.22 5297 100.04

0.1 99.86  99.96 99.98 99.97 99.98 99.98 99.98 |99.96
0.2 99.84 99.97 9998 9998 99.98 99.98 99.99 |99.96
0.5 99.36  99.77 99.86 99.86 99.84 99.89 99.89 |99.78
0.6 99.12  99.7 99.77 99.75 99.12 99.8 99.8 |99.58
0.8 85.53 85.68 88.01 9439 82.17 83.85 90.75 |87.20
1 64.76 64.11 65.68 659 67.05 6222 673 |6529
1.2 4746 5099 55.02 49.8 52.14 4842 54.04 |51.12
1.6 32.15 33.33 3342 3381 31.31 3257 3266 |32.75
2 21.63 2339 2442 249 235 25 23.89 | 23.82
5 456 773 7.99 8.1 8.18 8.06 892 | 7.65
10 1.03 435 4.95 497 496 522 527 | 439

auction algorithm. Instead, a smaller scale factor A means that
storage resources are more scarce in that scenario, leading
to a smaller number of winners chosen in the end. A bigger
scale factor A means that network resources are more precious
in that scenario, and more storage resources are sacrificed to
avoid a large number of requests for blocks.

B. Fairness

In distributed scenarios, since devices are resource-limited
and heterogeneous, achieving fair storage is important to fully
utilize device resources. The above experiments show that
different scaling factors make a large difference in the final
realized offloading benefits compared to other influencing fac-
tors. So we evaluate the storage fairness row of the whole
system with different scale factors. Fig. 6(a) shows the Gini
coefficient® of FDC and average percentage of winners. When
A is small, the winner is selected mainly from storage over-
head considerations, resulting in a small number of winners.
In particular, when A is less than 0.7, a large number of block
auctions failed (with no winners), leading to an extremely
uneven storage allocation among nodes and also destroying
the integrity of the blockchain data. This situation should
be strongly avoided. As A gets progressively larger, storage
overhead and transmission overhead are considered together
or more focused on transmission overhead. The number of
winners tends to be stable and the Gini coefficient of the
whole system is below 0.2, achieving good fairness. In practi-
cal applications, the scale factor can be dynamically selected
according to specific application scenarios.

3The Gini coefficient is a commonly used index to measure the income
gap of residents and is also used to measure fair storage in [23] and [24].

21613
1.01 Gini index
— AVG %
0.8 0.6
0.6 1
0.4 1
°
0.4 1 £
IS
00.2 4
0.2 1 0
0.0 4 0.01
0.0 0.5 1.0 1.5 2.0 0 50 100 150
A umber of rounds of auction
(a) (b)

Fig. 6. Storage fairness of blockchain systems. (a) Gini coefficient of FDC
and average percentage of winners. (b) Gini coefficient gradually stabilizes
as the auction progresses.

In our design, the only way to gain reputation is to partic-
ipate in auctions, which means that the reputation that each
node has is relatively fixed throughout the auction process.
Each node has a competitive advantage that matches its stor-
age resources and selectively stores blocks by bidding freely.
Therefore, as the auction proceeds, the Gini coefficient of the
system will gradually decrease and eventually converge to a
relatively stable value, as shown in Fig. 6(b).

VI. CONCLUSION

In this article, we propose a partial storage scheme to reduce
the storage overhead of blockchain nodes. First, we design a
second price auction model with multidimensional information
that integrates the load balancing of the system and the nodes’
preferences for block data. The losers offload blocks to reduce
the storage overhead. The winners benefit by responding to
requests for block data. Second, distributed nodes compute
the auction solution off-chain and perform consensus on-chain.
Then, we use smart contracts and asymmetric encryption to
achieve a fair trading. Finally, the experiments demonstrate
that the scheme has good scalability, applicability, and fairness.
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