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a b s t r a c t

Virtual machine (VM) consolidation technology is a commonly used energy-saving method in data
centers. Most of the existing methods are committed to consolidating VMs to a small number
of servers to improve the utilization of server resources and reduce the total energy consumption
while preventing hotspots. However, energy and thermal-aware VM scheduling is a multi-objective
optimization problem. Most of the existing related work cannot provide adequate means to adjust
the impact of energy consumption and temperature on VM scheduling. Hence, this paper proposes a
power and thermal-aware VM dynamic scheduling scheme (PTDS) for cloud data centers. The proposed
PTDS dynamically adjusts the VM consolidation scheme by real-time detecting the server temperature
and resource utilization rate under the premise of considering the thermal cycle effect of the data
center computer room. Power and Thermal Objective Ant Colony Optimization (PTOACO) is proposed
in the VM placement. PTOACO improves the defect that the ant colony algorithm easily falls into local
optimization and adds control parameters to adjust the bias between sub-objectives. We performed
extensive experiments by using real PlanetLab and random workloads. The performance results were
compared with several advanced schemes regarding total energy consumption, hotspots, SLA violation
rate, etc. The experimental results demonstrate that PTDS reduces energy consumption by 26.69%
on average compared with other advanced schemes and ensures a meager SLA violation rate while
avoiding hotspots.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the vast energy consumption generated by
loud data centers has attracted wide attention from society.
elevant survey data [1] show that electricity demand in US data
enters has increased from 29 billion kWh in 2000 to nearly 73
illion kWh in 2020. The computing device will also increase the
hermal load while using electric energy. The thermal load of
single rack will reach 50 kW in 2025 [2]. In addition, it also

eads to the decline of quality of service (QoS) and environmental
eterioration [3,4], which runs counter to the concept of green
ustainable development. Therefore, achieving energy conserva-
ion and emission reduction is the key to developing the next
eneration of green data centers.
As shown in Fig. 1, information and communications technol-

gy equipment (ICT) and cooling equipment consume most of
he energy in the data centers. The server is the most critical

∗ Corresponding author at: School of Computer Science and Engineering,
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167-739X/© 2023 Elsevier B.V. All rights reserved.
ICT equipment. In most cases, the average CPU utilization rate of
the server is only 15% to 20%, and there are a large number of
servers in an idle state which consumes much energy. Therefore,
VMs can be relocated into as few physical machines (PM) as
possible through VM consolidation technology, and the low-load
PM can be switched off. No-load PM can be switched to a sleep
state to reduce the number of PMs during activities and avoid
energy waste [5]. For example, Hsieh et al. [6] solved the dynamic
scheduling problem of VM by predicting CPU utilization based on
the gray Markov model; similarly, Karmakar K et al. [7] expressed
the VM placement problem as a multi-objective optimization
problem and proposed a VM consolidation algorithm based on
the ant colony algorithm. The above works are committed to
improving the utilization of server resources and focusing the
workload on a few servers to reduce the overhead of computing
equipment. However, on the one hand, this strategy is easy to
causes the active server to be running under high load for a long
time, resulting in local hotspots. On the other hand, the increase
in local temperature will trigger the cooling system to produce
more cold air to avoid thermal risk [8], resulting in increased

operating costs of the cooling system while reducing the server’s
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eliability. In addition, upgrading computing equipment hardware
nd a good computer room layout can improve the thermal
erformance of the data center [9] so that the cloud data center
an work at a higher ambient temperature. Therefore, reducing
nergy consumption and avoiding thermal risk are two conflict-
ng objectives. In virtual machine consolidation, it is necessary to
onsider the operating costs of computing equipment and cooling
quipment. It should provide cloud service providers with the
ight to adjust the priority relationship between reducing energy
onsumption and thermal risk.
In this paper, an energy and thermal-aware dynamic VM

cheduling scheme, namely PTDS, is proposed. This scheme fo-
uses on the real-time detection of server temperature and re-
ource utilization under the heat recirculation effect to dynam-
cally adjust the VM consolidation. PTDS can adjust the priority
elationship between the two sub-objectives of energy consump-
ion and temperature to minimize the data center’s computing
nd cooling energy consumption while reducing the thermal
isk. We use the low complexity heat recirculation model pro-
osed by Tang et al. [10]. The model calculates the device’s
ower based on the data center’s thermodynamic and physical
haracteristics and accurately describes the linear power model
elated to CPU utilization and the linear model of the server
nlet temperature predicted under a given server utilization. We
nalyze the proposed algorithm with extensive simulation-based
xperiments using CloudSim [11] with real PlanetLab [12] and
andom workloads. Experiments show that the proposed scheme
educes the overall energy consumption of the data center and
he SLA violation rate while preventing hotspots.

In brief, the major contributions of this paper can be summa-
ized as follows:

•The paper proposes a VM scheduling scheme PTDS for the
loud data center to reduce the overall computing and cooling
nergy and proactively prevent hotspots.

•A novel host overload detection algorithm, called Average
edian Deviation (AMD), determines the upper limit threshold
f CPU utilization according to the average dispersion degree of
PU utilization history of the server.

•A novel VM placement algorithm based on an improved ant
olony algorithm, called PTOACO, modifies the evaluation criteria
f the solution of the ant colony algorithm and modifies the
pdate rules of the ant colony algorithm to avoid premature
alling into a locally optimal solution. Meanwhile, the influence
f energy and temperature on the solution is adjusted by preset
arameters.

•We implement the proposed scheme and validate its effi-
iency with extensive experiments using real workloads through
imulation and demonstrate its superiority by comparing it to the
everal baseline schemes.
The rest of the paper is organized as follows: Section 2 pro-

ides a literature review of the proposed VM consolidation. Sec-
ion 3 describes the scheme content and implementation details.
ection 4 shows the experimental results. Finally, conclusions are
ade in Section 5.

. Related work

A large number of researches are being carried out in cloud
omputing to reduce the operating cost of cloud data centers. The
M deployment and consolidation research can be divided into
any aspects, and each aspect has a different focus. In recent
ears, considerable attention has been paid to the energy cost of
he cooling system. How to reduce the impact of temperature by
mproving the scheduling of VMs has become a research hotspot.
n this section, previous literature is discussed.
579
Fig. 1. The power consumption breakdown of the entire data center and cooling
system [5].

Reducing the energy consumption of computing equipment
from the hardware is a typical energy-saving method. For exam-
ple, Intel has developed a dynamic voltage and frequency scaling
(DVFS) technology for energy saving at the chip level [13], which
can adaptively change the processor’s frequency through the uti-
lization rate of the processor. However, the disadvantage of this
technology is that it can only be applied to a single node. Chen
et al. [14] formally described the dynamic optimization problem
of server configuration and DVFS control, including the response
time SLA and the cost of server closure. In addition, it also
includes GreenSwitch by detecting hardware workload dynamic
management battery energy-saving method [15]. The above re-
search provides an idea of energy-saving from the perspective
of hardware and has achieved good results, but it does not con-
sider the use of virtualization technology. The development of
hardware virtualization technology makes VM consolidation, load
balancing and other technologies widely used in data center
saving [16].

In addition, some VM consolidation schemes focus on bal-
ancing the relationship between reducing energy consumption
and maintaining performance. For example, Beloglazov et al. [17]
consolidated the VM into as few hosts as possible according to the
CPU utilization rate and used the improved best fit decreasing al-
gorithm PABFD to find the appropriate target host for the VM. Luo
et al. [18] proposed a network-aware VM rescheduling algorithm
by combining network requirements. Zhao et al. [19] proposed
an energy-saving scheduling technology based on model predic-
tive control by combining DVFS technology. Gaggero et al. [20]
proposed a predictive control model, where VM migration is
transformed into an optimal control problem in a finite range.
Kansal et al. [21] first proposed to apply the firefly algorithm to
energy-aware data center virtual machine real-time migration.
Li et al. [22] designed a dual-threshold method using multiple
resources to trigger the migration of VMs, and proposed an algo-
rithm MPSO based on the improved particle swarm optimization
method. Li L et al. [23] also designed a VM scheduling method
based on SLA and energy consumption perception by improving
the HS3MC model. Ding et al. [24] proposed a VM consolida-
tion framework based on resource utilization and PPR of the
heterogeneous host. The above literature saves the data center’s
computing system overhead by optimizing the migration of VMs.
However, they do not consider the cooling system overhead and
potential thermal risks of cloud data centers.

Heat-aware resource management technology has lately re-
ceived significant attention for research due to the increasing
energy consumption of cooling systems in data centers. Litera-
ture [25] pointed out that the unreasonable design of the cooling
system in the data center will lead to the heat recirculation
phenomena, which is an alarming phenomenon that the cool-
ing efficiency is reduced due to the mixing of old and hot air.
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he following literature proposed different management schemes
onsidering the cost of cloud data center computing and cool-
ng system. Sun et al. [26] introduced the thermal-aware load
nd proposed an online scheduling heuristic algorithm for task
cheduling and thermal management. Wang L et al. [27] proposed
he thermal-aware task scheduling algorithm TASA to reduce
emperatures and cooling system power consumption. Li Xiang
t al. [28] used CFD to design a cooling model that considers
he thermal characteristics of CRAC, air and servers in the data
enter, and designed a VM placement and migration algorithm
RANITE to minimize computing and cooling resources. However,
hey did not consider managing underloaded hosts. In addition,
ee et al. [29] introduced the heat imbalance model and proposed
thermal-aware VM allocation scheme but did not consider

he effect of heat recirculation. Ilager et al. [30] proposed en-
rgy consumption and heat-aware scheduling algorithm ETAS, a
eta-heuristic algorithm based on GRASP, and can dynamically
onsolidate VMs in the case of active prevention of hotspots.
owever, this work greedily selects the target host for each VM
uring the placement of VMs and does not reduce the total cost
rom global considerations. Similarly, Abbas Akbari et al. [31]
rovided a heuristic algorithm for thermal-aware VM allocation
ased on a genetic algorithm, but it belongs to an offline algo-
ithm and cannot realize online thermal-aware VM allocation.
eng et al. [32] proposed a two-step algorithm to reduce the
verhead of data centers from three aspects: cooling system,
omputing system and network. A simulated annealing algorithm
as used to minimize the computational and cooling overhead

n the first step. In the second step, VMs with high traffic costs
ere placed on servers close to the location to reduce network
verhead. However, the algorithm did not fully consider how to
efine the threshold of server utilization and the VM selection
olicy. Aghasi A et al. [33] proposed a BGSA-based VM placement
lgorithm to minimize computational and cooling overhead and
esigned an adaptive fuzzy mechanism to enhance the algorithm.
. Hasan Jamal et al. [34] proposed hotspot adaptive workload
eployment algorithm and hotspot aware server relocation algo-
ithm based on thermal profiling regarding outlet temperature
rediction. However, it is hard to move a large number of hosts
n the real data center environment. Because of the uncertainty of
omputing resources and the complexity of temperature changes,
he computing system and cooling system should be considered
ogether. Unfortunately, the above work cannot provide cloud
ervice providers with the right to prioritize reducing operating
osts or avoiding thermal risks. Therefore, this paper focuses on
he dynamic adjustment of the VM consolidation scheme based
n server temperature and resource utilization under the heat
ecirculation effect and provides a solution for balancing the
nfluence of energy consumption and temperature.

. Scheme design and implementation

.1. System overview

The system model of this paper is shown in Fig. 2. The system
onsists of cloud users, a scheduling system and infrastructure.
sers submit tasks to the deployed VMs. The scheduling system
s responsible for receiving user requests, allocating comput-
ng resources for requests, and monitoring the CPU utilization
nd temperature of the hosts. Infrastructure includes physical
quipment such as computing equipment and cooling equipment.
The VM consolidation scheme includes host load detection,

M selection, and VM placement.
(1) In the host load detection phase, the host overload de-

ection algorithm is proposed by setting a fixed temperature
hreshold for the host and using the proposed AMD algorithm as
he utilization threshold.
580
(2) The VM selection phase selects the VM to be migrated from
the overload through the minimization algorithm (MM) [17].

(3) In the VM placement phase, the PTOACO algorithm is
used to allocate the target host for the VM to be migrated un-
der the consideration of energy consumption and temperature
constraints.

In the process of VM consolidation, it is committed to reducing
the running cost of computing equipment while maintaining the
temperature detection of the host to avoid the loss of the host
caused by high temperature, which will cause the cooling system
to consume much extra energy to stabilize the temperature of the
computer room.

The systemmodel consists of three sub-models: (1) computing
system power model, which describes the linear relationship
between the power consumption of the host and the time change.
(2) cooling system power model analyzes the use of cooling
energy. (3) server temperature model uses CPU temperature to
obtain the relationship between server utilization, CRAC cooling
capacity, and thermal characteristics.

3.2. Energy consumption and temperature model

The models in the system are described below.

3.2.1. Computing system power model
A Cloud data center comprises heterogeneous servers with

different physical capacities, power and processing capabilities.
The power consumption of the host is mainly determined by its
CPU utilization. This paper uses the following energy consump-
tion model to represent the power consumption of a single active
host [35]:

Pi(t) =

{
P idle
i +

∑Vi
j=1 U(VMi,k(t)) × Pdynamic

i (Vi > 0)
0 (Vi = 0)

(1)

In Eq. (1), the Pi(t) is the energy consumption of hi at time t. The
P idle
i is the power of hi without load; Pdynamic

i is the dynamic power
of hi. U(VMi,k(t)) represents the utilization rate of computing
resources when VMk runs in hi at time t; Vi is the total number
of VMs running in hi; The idle host (Vi = 0) should be switched
off to save unnecessary energy consumption.

3.2.2. Cooling system power model
CRAC is the central cooling equipment in cloud data cen-

ters, which takes up most cooling energy overhead [5]. The effi-
ciency of CRAC is usually measured by calculating the energy con-
sumption ratio between the computing system and cooling sys-
tem, also known as Coefficient of Performance (CoP). So we use
CoP to determine the power consumption model of the cooling
system [36]:

CoP(Tsup) =
PIT

Pcooling
(2)

In Eq. (2), the Pcooling is the total energy consumption of the
cooling system; PIT is the total energy consumption of the com-
uting system; Tsup is the CRAC cold air supply temperature.
The higher value of CoP indicates higher cooling efficiency. CoP

can be modeled using the regression techniques with multiple
experiments using the different workloads and supply air tem-
perature. Studies have shown a positive correlation between CoP
and supply air temperature. In this paper, CoP measured by HP
laboratory is used [36]:

CoP(Tsup) = 0.0068Tsup2 + 0.0008Tsup + 0.458 (3)

In Eq. (3), the Tsup is CRAC cold air supply temperature. Eq. (3)
shows that increasing the supply air temperature can increase the
cooling system’s efficiency.
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Fig. 2. System model.
3.2.3. Server temperature model
The inlet temperature of the host is mainly affected by the

CRAC air supply temperature, its power consumption and the
heat recirculation effect. The temperature model established by
Tang et al. [10] is used, so the inlet temperature of the host can
be directly defined as the following linear function:

T in
i (t) = Tsup +

N∑
j=1

di,j × Pj(t) (4)

In Eq. (4), the di,j represent the effect of heat recirculation
to hi from hj, and it is the number of row j in i in the thermal
distribution matrix D [10]; The Pj(t) is power of hj at time t. The
Tsup is CRAC cold air supply temperature; The N is the number of
hosts in the heat recirculation zone. Eq. (4) shows that the inlet
temperature of the host is affected by its physical position and
heat recirculation effect.

CPU temperature modeling is the most critical indicator of
temperature modeling, and the RC model is one of the mature
methods for calculating CPU temperature [30]. Its model can be
expressed as :

Ti (t) = PR + T in
i +

(
T0 − PR − T in

i

)
× e−

t
RC (5)

In Eq. (5), the Ti (t) is the CPU temperature of the hi at time t.
and C are the host’s the thermal resistance and heat capacity,

espectively; P is the energy consumption of the active host;
0 is the CPU initial temperature obtained by Eq. (4). The RC
odel assumes that the power and inlet temperature of the CPU

s stable, and PR + T in
i expresses the stable CPU temperature. It

s also a function related to time t. With the increase of time,
he CPU will continue to approach its stable temperature. Eq. (5)
hows the dynamic temperature change of a single host in the
eat recirculation zone.
581
3.3. Problem description

The total energy consumption of cloud data centers is mainly
composed of computing system energy consumption and cooling
system energy consumption. The sum of energy consumption of
all hosts is computing system energy consumption, which can be
expressed as:

PIT =

T∑
t=0

N∑
p=1

xjPi (6)

In Eq. (6), the Pi is the host’s computational energy consump-
tion, xj is a binary variable, when hj is active from time 0 to time
t , its value is 1, otherwise for 0. The N is the number of hosts
in the heat recirculation zone and T is total scheduling interval.
The timely shutdown of low-load hosts can save unnecessary
overhead, so the key is how to adjust the allocation of host
workload.

Energy consumption of the cooling system is defined as the
ratio of calculated energy consumption to CoP:

Pcooling =
PIT

CoP(Tsup)
, (7)

The mentioned Eq. (7) indicates that in order to provide colder
airflow. The cooling system needs to consume more energy to
remove the heat brought by the host calculation.

Total energy consumption is expressed by Eq. (8):

Ptotal = PIT + Pcooling (8)

The problem is expressed as the workload scheduling prob-
lem to minimize the total energy consumption. The total energy
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Table 1
Definition of notations.
Notation Definition Notation Definition

t Time interval t di,j Effect of heat recirculation to hi from hj
hi The ith host R Thermal resistance of host
N Number of hosts C Heat capacity of host
Pi Power of hi Umax Upper utilization threshold of host
Pdynamic
i Dynamic power of hi Tred Upper temperature threshold of host

P idle
i Idle power of hi VMj,i(Rcpu, Rmem) CPU and memory capacity occupied by VMj at

hi runtime
PIT Power of computing system hx(Rcpu, Rmem) CPU and memory capacity of hostx
Pcooling Power of cooling system s Safety factor of AMD algorithm
Ptotal Power of total data center AMD Value of average median deviation
Vi Number of VMs in hi value Evaluation standard of PTOACO algorithm
U(VMi,k(t)) Efficiency of VMk running in hi at time interval t α Adjustable parameter of PTOACO algorithm
Tsup Air supply temperature of CRAC Power Maximum energy consumption expected by

the target host in the ant-generated allocation
scheme of PTOACO algorithm

Ti(t) CPU temperature of hi at time interval t sumPower Total Power of all ants in PTOACO algorithm
T0 Initial temperature of CPU temperature Sum of all target host temperatures in the

ant-generated allocation scheme in PTOACO
algorithm

T in
i (t) Inlet temperature of hi at time interval t sumTemperature Total temperature of all ants in PTOACO

algorithm
L Number of host utilization history
3
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consumption of the cloud data center is minimized when the con-
straints of CRAC air supply temperature, the host utilization rate,
the critical temperature of the host CPU and the host workload
(represented by VM) constraints are considered.

MINNIZE Ptotal = PIT + Pcooling

=

T∑
t=0

N∑
p=1

(1 +
1

COP(Tsup)
)PIT

ubject to :U(hi) ≤ Umax (9)
Ti(t) < Tred

m∑
j=0

VMj,i(Rcpu, Rmem) ≤ hx(Rcpu, Rmem)

xj ∈ {0, 1}

The objective function in Eq. (9) is committed to minimizing
the data center’s energy consumption as a whole. Constraints en-
sure that the host does not cause CPU utilization and temperature
to exceed the threshold due to the increase in workload and that
the target host selected can meet the resource requirements of
the VM. xj is a binary variable, and its value is 1 when the VM is
assigned; Otherwise, it is 0.

The notations involved in this paper are shown in Table 1.

3.4. Algorithm

3.4.1. Algorithm overview
VM consolidation process of PTDS includes host overload de-

tection algorithm AMD, VM selection algorithm MM and VM
placement algorithm PTOACO. The relationship is shown in Fig. 3.

The AMD algorithm is used to determine whether host uti-
lization is overloaded to detect overloaded hosts. When detecting
the underloaded hosts, this paper uses the method of Beloglazov
et al. [17] to iterate all the underloaded hosts. If all the virtual
machines in the host can be migrated to other hosts, the host is
determined to be an underloaded host. The VM selection phase
uses the MM algorithm to find suitable VMs for migration. The
VM placement phase uses PTOACO to select the target host for
the VM to be migrated, considering the host’s expected energy
consumption and temperature.
582
Fig. 3. VM consolidation process.

.4.2. Algorithm details
The traditional utilization threshold determination method is
fixed threshold. If the host utilization exceeds the threshold,

he system must migrate some VMs to reduce the utilization
o prevent potential SLA violations. However, a fixed utilization
hreshold is unsuitable for a dynamic workload environment. The
roposed AMD can adjust the value of the utilization threshold
ccording to the strength of the CPU utilization deviation. It is a
easure of statistical dispersion, which improves the shortcom-

ng that the square of the difference between the data and the
ean in the standard deviation needs to be calculated, resulting

n a more significant weight of the value of a large deviation. In
rder to identify the server with overload utilization, it will check
hether the utilization of the host will be greater than the upper
hreshold Umax:

MD =
1
L

L∑
i=1

(|historyi − median(history)|)

Umax = 1 − s × AMD (10)

In Eq. (10), AMD is the average value of the difference between
each record and the median in the server utilization history
record, representing the average dispersion degree of the server’s
utilization history; historyi represents the ith term of the host
utilization history; L is the number of host utilization history;
median is the median value operation; s ∈ R+ represents the
safety factor. The evaluation level can be adjusted by changing
it. If it is increased, it can avoid violating SLA but reduce server
utilization. On the contrary, it can optimize resource utilization
but increase the possibility of violating SLA. The complexity of
AMD algorithm is O(V ×length ), where Vi is the number of
i history



R. Chen, B. Liu, W. Lin et al. Future Generation Computer Systems 145 (2023) 578–589

V
o

m
t
d
m
o
t
m
t
r

N

V
c
a
f
t

t
i
o
t
f
e
g
a
t
t

o
a
c
1
t
u
o
c
o
t
p
p
p
w
i

Ms allocated to the hi, and lengthhistory is the CPU history length
f each VM.
Algorithm 1 shows the process of selecting the VM to be

igrated. In this phase, the MM [17] is used. It first traverses
he host list, arranges the hosts’ VMs according to the utilization
escending order (line 3), and then finds the most suitable VM for
oving out of the host. In addition, the VMs will remain in the
riginal host until it is removed in the next scheduling interval if
here is no space in any of the other servers. The selected VM
akes the utilization rate of the host lower than the highest

hreshold and reduces the utilization rate at least after being
emoved.

The complexity of MM algorithm is O(Nover×Vhover ), where
over is the number of overloaded hosts, and Vhover is the VMs’

number of each overloaded host.

Before introducing PTOACO, we first describe the process of
M allocation using an ant colony optimization algorithm. Ac-
ording to the rules of the ant colony algorithm, assigning a VM to
host is called an allocation path. In order to find a set of optimal
easible solutions, all ants are divided into two parts. According to
he pheromone concentration matrix, one part of the ants choose
583
the path with the highest concentration. The other part of the
ant randomly chooses the allocation path to avoid premature
convergence to the optimal local solution. Each ant selects the
target host for each VM through the rule, obtains a set of feasible
solutions, uses the best solution, and then uses the update rule
to update the pheromone concentration of each path. Repeat
the above operation until the final optimal feasible solution is
obtained. PTOACO will consider the resource requirements of
VMs, such as CPU, memory, and storage capacity, and select the
most suitable host to ensure that the host will not exceed the
utilization rate and temperature threshold after migration.

Due to the positive feedback characteristics of the traditional
ant colony algorithm, the pheromone concentration in the algo-
rithm’s initial state is the same. The ants almost choose to update
the pheromone concentration randomly. When the pheromone is
updated, the ants will leave more pheromones in the path with
higher pheromone concentration. This process will increase the
difference caused by the initial state, resulting in local optimiza-
tion, but the existence of a globally optimal solution is ignored. In
this paper, the evaluation criteria of the solution and the updated
method of pheromone concentration are improved to reduce the
influence of optimal local problems on the results of the ant
colony algorithm.

The pseudo-code of PTOACO is shown in Algorithm 2. PTOACO
reduces the cost of computing systems and avoids potential ther-
mal risks. Firstly, the algorithm sets the pheromone as the ex-
pected energy consumption after the host allocates the VM and
obtains the initial pheromone concentration by calculation (lines
1 to 3). Then start iteratorNum iteration, and the former first
criticalNum ants are selected to assign the VM to the host accord-
ing to the maximum pheromone concentration in the VM-host
mapping. The other ant randomly sets the allocation scheme
(lines 6 to 10) to avoid premature algorithm convergence to the
optimal local solution. Cyclically traversing all ants to calculate
their respective, is the evaluation standard of the ant allocation
scheme, and it is calculated by Eq. (11):

value = α ∗
Power

sumPower
+ (1 − α) ×

temperature
sumTemperature

(11)

In Eq. (11), the parameter α is not less than 0 and not more
han 1, which is used to adjust the bias of the solution. When α

ncreases, the influence of energy consumption on the selection
f ants increases, and the influence of temperature decreases. On
he contrary, the influence of temperature increases, and the in-
luence of energy consumption decreases. Power is the maximum
nergy consumption expected by the target host in the ant-
enerated allocation scheme, and sumPower is the total Power of
ll ants. temperature is the sum of all target host temperatures in
he ant-generated allocation scheme, and sumTemperature is the
otal temperature of all ants.

In order to simulate the pheromone volatilization process
f ants in nature, the pheromones of all distribution paths are
ttenuated to the original p% at each iteration (line 12). After cal-
ulating the value of all ants, rank all ants in ascending order (line
3). maxQ is the maximum proportion of pheromone concentra-
ion that can be increased. The top 20% of ants are selected to
pdate the pheromone concentration. According to the position
f each ant in the ranking, the weight of the increased pheromone
oncentration is set. For example, the pheromone concentration
f the distribution path corresponding to the kth ant increases to
he original (maxQ-difference ×(k-1))%. The first ant increases the
heromone concentration to the original maxQ%. The increased
roportion of the pheromone concentration of the distribution
ath corresponding to the 20% ants is close to 0% (line 15). In this
ay, the risk of ignoring the optimal solution due to insufficient

nitial advantages can be avoided.
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The complexity of PTOACO algorithm is
(iteratorNum×antNum×hostNum×vmNum), where iteratorNum
s number of iterations and the antNum is number of ants, and
hese two parameters can be freely adjusted; hostNum is number
f potential target hosts, and vmNum is the number of VMs to be
igrated.

4. Experiments and results

4.1. Experimental setup

To prove the effectiveness of the proposed PTDS scheme, we
reated a large number of simulation experiments. We assume
he cloud data center contains ten zones, and each zone has
en racks. The racks are arranged in 5 × 2 rows, and each
ack has ten servers. Assuming that the heat recirculation effect
xists within each zone and the host temperature is affected by
ther hosts. The experiment adopts the heat distribution matrix
584
Table 2
VM types.
VM size Core Processing

speed (MIPS)
Ram (MB) Bandwidth

(Mbits/s)

Extra Large 1 2500 870 100
Large 1 2000 1740 100
Micro 1 1000 1740 100
Nano 1 500 613 100

Table 3
Experimental parameters.
Item Value

Data center
Number of zones 10
Number of racks in zone 10
Number of hosts in rack 10

CRAC Air supply temperature 25 ◦C

Server

Heat capacity 340 J/K
Thermal resistance 0.34 K/W
Initial CPU temperature 318 K
Threshold of CPU temperature 70 ◦C
Upper utilization threshold 80%

Simulation Simulation time 24 h
Simulation platform CloudSim V.4.0

used by Tang et al. [10]. The entire data center contains 1000
hosts, each of which is an IBM x3550 M3 machine with eight
processors and 4 GB RAM. There are two different types of hosts
with different processors, namely Intel Xeon X5670 (6 judges,
2.93 GHz, 12MB L3 Cache) processor and Intel Xeon X5675 (6
judges, 3.07 GHz, 12MB L3 Cache) processor. The experiment sets
four types of single-core VMs specifications that correspond to
Amazon EC2 [37]. Because the simulation experiment uses the
real-time workload traces obtained by PlanetLab from the CoMon
project [12,38], the amount of RAM is divided by the number of
cores for each VM type, as shown in Table 2.

To evaluate the performance of dynamic migration, simulation
experiments are performed using the parameters in Table 3. The
work of Tang et al. [10] inspires the layout of the data center
room. We assume each zone is affected by the heat recirculation
effect, and Tang et at. also provides a heat distribution matrix
to simulate the heat recirculation effect in the zone. According
to ASHRAE [39], the air supply temperature of CRAC is 25 ◦C. In
the host CPU temperature Eq. (5), the heat capacity and thermal
resistance are 340 J/K and 0.34 K/W, respectively, and the initial
CPU temperature is 318K [40].

The simulation experiment uses the real-time workload traces
obtained by PlanetLab from the CoMon project [12,38]. The data is
recorded at an interval of 5 min, as shown in Table 4, where the
Mean represents the mean value of data and the SD represents
the standard deviation. All algorithms are written in Java pro-
gramming language, running on the Core i5-8500 CPU, 3.00 GHz,
16 GB RAM machine.

4.2. Metrics

The experiment evaluates the efficiency of the proposed
scheme based on four standard metrics (energy consumption,
hotspots, SLA violation, active hosts).

Energy: This metric represents energy consumption of each
scheme in kWh.

SLA violation: This metric indicates the performance over-
head caused by dynamic consolidation of VMs [38]. Meeting
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Table 4
Workload data characteristics.
Workload
datasets

Date Number of
VMs

Mean (%) SD (%)

CoMon project
workload trace

03/03/2011 1052 12.31 17.09
06/03/2011 898 11.44 16.83
09/03/2011 1061 10.70 15.57
22/03/2011 1516 9.26 12.78
25/03/2011 1078 10.56 14.14
03/04/2011 1463 12.39 16.55
09/04/2011 1358 11.12 15.09
11/04/2011 1233 11.56 15.07
12/04/2011 1054 11.54 15.15
20/04/2011 1033 10.43 15.21

QoS requirements is significant for Cloud computing environ-
ments. Since the minimum throughput, maximum response time
and bandwidth delivered by the system can vary depending on
the application running. It is necessary to define a workload-
independent metric SLAviolation. When the utilization rate of the
ost is close to 100%, the VM performance level on the host
ill be limited by host capacity, which can be described as SLA
iolation time SLATAH for each active host. In addition, the con-
olidation of VMs will lead to performance degradation, which
an be described as Performance Degradation due to Migration
PDM).

LATAH =
1
N

N∑
i=1

Tsi
Tai

PDM =
1
M

M∑
j=1

Cdj

Crj
(12)

SLAviolation = SLATAH × PDM (13)

In Eq. (12), the N is the number of hosts; Tsi is the total
time during which the hi has experienced the utilization of 100%
leading to an SLA violation; Tai is the total of the hi being in the
active state; M is the number of VMs; Cdj is the estimate of the
performance degradation of the j-th VM caused by migrations;
Crj is the total CPU capacity (MIPS) requested by the j-th VM
during its lifetime. The overall SLA violation SLAviolation for cloud
infrastructure can be obtained by combining SLATAH and PDM , as
shown in Eq. (13).

Hotspots: This metric represents the number of hosts that
have exceeded the temperature threshold.

Active hosts: This metric represents the number of active hosts
during the experiment.

4.3. Baseline schemes

This paper verified the effectiveness of PTDS by comparing it
with benchmark scheduling schemes.

Random-Random: In the VM placement and selection phase,
a completely random strategy is used to randomly select the host
placed without considering any constraints.

GRANITE-MMT: The VM placement phase uses a VM place-
ment and migration algorithm GRANITE proposed by Li Xiang
et al. [28] to minimize the total energy consumption. In order to
achieve better cooling efficiency, the host will be greedily selected
in the placement phase. The Minimum migration time (MMT)
algorithm is used in the VM selection phase.

ETAS-MMT: The VM placement phase uses a dynamic consoli-
dation VM algorithm proposed by Ilager et al. [30]. This algorithm
uses a GRASP meta-heuristic online scheduling algorithm to re-
duce energy consumption while preventing hotspots. MMT is
used in the VM selection phase.

PABFD-MM: The VM placement phase uses the Power-aware
Modified Best Fit Decreasing algorithm (PABFD) proposed by
Beloglazov et al. [17] which dynamically consolidates VMs. The
585
basic idea is to set the upper and lower utilization threshold for
the host to maintain the utilization of all VMs in the host. The VM
selection phase uses a migration minimization algorithm (MM).

RACC-MDT: Ding et al. [24] proposed a VM consolidation
framework based on resource utilization and heterogeneous host
PPR. Residual Available Computing Capacity (RACC) technology is
used to detect overloaded hosts in the VM placement stage. The
Minimum Data Transfer algorithm (MDT) based on dynamic pro-
gramming is used in the VM selection phase. This framework can
effectively solve the trade-off between host computing overhead
and performance.

TASA-MMT: The VM placement phase uses the thermal-aware
scheduling algorithm (TASA) proposed by Wang et al. [27]. TASA
allocate workloads based on their task-temperature profiles and
allocate suitable resources for job execution. MMT is used in the
VM selection phase.

HAWDA-MMT: The VM placement phase uses the thermal
hotspot adaptive workload deployment algorithm HAWDA [34].
HAWDA uses a worst-case prediction model to predict the tem-
perature and deploys workload on the server. MMT is used in the
VM selection phase.

This paper configures the same simulation parameters for
each scheduling scheme to compare, including the hardware
conditions, workload and simulation environment of the data
center. For the parameters of PTOACO, the parameters α, the
number of iterations, the number of ants, criticalNum, the pro-
portion of pheromone attenuation and the maximum proportion
of pheromone increase are set to 0.5, 30, 30, 10, 80% and 150%,
respectively. The experiment proves that the setting can obtain
great results.

4.4. Experimental results and analysis

Firstly, each scheme’s average energy consumption and
hotspots are compared, and the results are shown in Fig. 4. It
is observed that PTDS has a remarkable effect on limiting energy
expenditure, which is 50.65% lower than that of Random-Random
with the worst effect, and 25.97% lower than the average of all
benchmark scheduling schemes. The Random-Random schedul-
ing scheme does not consider constraints, which means that all
the hosts in the sleep state have the same allocation opportu-
nities. Many hosts opened randomly, leading to an increase in
energy consumption. The randomness of Random-Random makes
it entirely ignore the thermal risk of the computer room in the
scheduling process, resulting in 9671 hotspots. GRANITE-MMT,
ETAS-MMT, PABFD-MM and RACC-MDT tend to choose the host
with minor energy consumption after placement as the target
host of the VM. On this basis, GRANITE-MMT will choose the
VM to migrate from the host with the temperature of the top
10%, but not all hosts will have the utilization overload. Excessive
migration leads to the result that it is inferior to PABFD-MM. And
the GRANITE-MMT adopts a thermal-aware scheduling strategy
to avoid the increase of hotspots. ETAS-MMT uses GRASP technol-
ogy to improve the greedy selection process of target hosts and
reduce the algorithm’s time complexity. However, there is no sig-
nificant improvement in terms of reducing energy costs. Besides,
ETAS-MMT stipulates the temperature constraint in selecting the
target host but does not bias the host with low thermal risk in
generating solutions, which increases the possibility of hotspots.
PABFD-MM’s MM algorithm ensures the selected VMs which are
just making the host out of the utilization overload state after
migrating from the host, so it does not cause excessive migration.
And PABFD-MM has an aggressive VM consolidation strategy. Its
upper threshold is set to 80% in this paper, thus ensuring that
the host will migrate out VMs before the hotspot is generated.
RACC-MDT tends to restore overloaded hosts to the normal state
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Fig. 4. Average energy consumption.

ith the least amount of transmission in selecting hosts to be
igrated. However, it increases the number of VMs migrated,

ncreasing the number of open hosts and increasing computa-
ional overhead. Moreover, it does not consider the influence of
otspots and cannot avoid the generation of hotspots. The TASA-
MT tends to allocate the VM with the highest task-temperature
rofile to the ‘‘coolest’’ host. The VM with the highest task-
emperature profile means that the VM needs the most CPU
apacity, and the ‘‘coolest’’ host means the host’s CPU capacity
s ample. This characteristic reduces the number of migrated
Ms from TASA, which consumes slightly less total energy than
TDS. But the number of hotspots is much higher than PTDS. And
ASA-MMT tends to run VMs on the coldest host but does not
onsider resource constraints, which cannot result in a lower final
emperature. The HAWDA-MMT allocates VM on the host with
he slightest increase in predicted temperature. The temperature
f the host is mainly related to CPU utilization, which results
n HAWDA avoiding excessive computational energy consump-
ion. But it only considers CPU capacity, quickly concentrating
orkloads on a few hosts that are not conducive to preventing
otspots. Compared with the above scheduling scheme, the MM
lgorithm of PTDS reduces unnecessary VM migration. AMD sets
he CPU utilization threshold for the host, and PTOACO ensures
hat the target host will not exceed the utilization threshold after
llocating VMs to achieve good average total energy consumption
esults. In addition, PTOACO excludes potential temperature-
verloaded hosts when selecting target hosts and adjusts the final
olution based on the predicted future temperature of the host.
he occurrence of hotspots will have many effects: (1) Overheat-
ng temperature may lead to server failure. (2) To prevent the
ccurrence of hotspots, the air supply temperature of the CRAC
eeds to be lowered, which will lead to an increase in the cooling
ystem’s energy consumption, according to Eq. (2).
Fig. 5 shows the average SLA violation, with Random-Random,

TAS-MMT and RACC-MDT having higher SLA violation rates.
lthough PTDS is slightly worse on SLA violation than GRANITE-
MT, PABFD-MM TASA-MMT and HAWDA-MMT, PTDS optimizes
oth total energy consumption and hotspots, minimizing SLA
iolation with better performance.
Taking the 06/03/2011 dataset of the CoMon project as an

xample, Fig. 6 compares the number of active hosts per hour
or each scheduling method. The experimental duration is 24 h.
fter removing the beginning and end, the data of the mid-
le 23 time nodes are counted. It can be seen intuitively that
andom-Random uses the most average number of active hosts
ompared to other schemes. The active hosts of GRANITE-MMT,
TAS-MMT, and PABFD-MM remain slightly above fifty because
hey always choose the hosts with the smallest increase in to-
al power growth and allocate the newly arrived workloads to
non-idle host rather than activate a new host. The traversal

haracteristic of HAWDA-MMT to find hosts with the lowest
586
Fig. 5. Average SLA violation.

Fig. 6. Number of active hosts per hour.

Fig. 7. Energy consumption under different workload datasets.

expected temperature also causes it not to start many idle hosts.
The MDT algorithm of RACC-MDT describes the VM selection
problem as a 0–1 knapsack problem, which tends to restore the
overloaded host to the normal state with the least amount of
data transmission. However, it increases the number of VMs to
be migrated, leading to an increase in the number of active hosts
and the SLA violation caused by VM migration. TASA-MMT cools
overheated computing nodes by shutting down overheated hosts.
PTDS shuts down underloaded hosts as timely as PABFD-MM, and
PTOACO selects the most suitable hosts for VMs from running
hosts without activating new hosts to keep the number of active
hosts at a low level.

Figs. 7 to 9 show the comparison of results under different
workloads. The experimental results show that the proposed
scheme PTDS has apparent advantages in minimizing energy
consumption, reducing the number of hotspots and ensuring
SLA violation, which further proves the effectiveness of PTDS in
improving energy efficiency and reducing data center hotspots.

In order to investigate the impacts of the different numbers
of hosts and VMs, the ratio of the hosts and VMs number is
configured to 1:1, 1:1.25, 1:1.5 and 1:1.75, respectively, and the
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Fig. 8. Hotspots under different workload datasets.

Fig. 9. SLA violation under different workload datasets.

total number of hosts is 1000. The experiment uses random
workloads.

As shown in Fig. 10, PTDS can still maintain efficient per-
ormance in dealing with random workload datasets. When the
umber of VMs increases, the total energy consumption of all
chemes increases. Among them, the performance of GRANITE-
MT, ETAS-MMT, RACC-MDT, TASA-MMT and HAWDA decreases
ignificantly. Because when the workload is larger than the pro-
essing capacity of the host, it will increase the probability of
tilizing an overloaded host and hotspots. Once the utilization
oad of the host exceeds the threshold, these schemes will mi-
rate the VMs in time, thus increasing the energy cost and SLA
iolation caused by migration. The performance of PABFD-MM is
uch worse than the result of running the Planetlab workload
ata. Because the PABFD tends to allocate VMs to the hosts with
he least power consumption improvement, but the higher ratio
f hosts and VMs number results in high load per host. The
ABFD can easily lead to excessive temperature. The selection of
he target host by PTDS can improve energy utilization without
xcessive energy consumption and SLA violation.
As shown in Fig. 11, to analyze the influence of parameters in

he PTDS scheme on the experimental results, this paper takes
he CoMon project 03/03/2011 dataset as an example to analyze
ts sensitivity. The experimental results show that the α’s size
as a significant impact on the total energy consumption and
he number of hotspots. Larger α will lead to a decrease in total
nergy consumption and an increase in the number of hotspots.
herefore, PTDS can control the influence of energy consumption
nd temperature on the solution by adjusting α.
In summary, the PTDS scheme proposed in this paper, whether

ealing with real workloads or random workloads, can put the
robability of total energy consumption, hotspots and SLA vio-
ation at a low level and has good robustness in dealing with
orkloads with different characteristics.
587
. Conclusion and future works

Cloud data centers generate massive energy consumption on
global scope. It needs to reduce the overall energy consumption
f cloud data centers under the premise of satisfying QoS and
voiding thermal risk and provides cloud service providers with
he right to adjust the priority relationship between reducing en-
rgy consumption and reducing thermal risk. In order to achieve
his goal, this paper proposes a VM dynamic scheduling scheme
TDS by studying the heat recirculation effect of the computer
oom. The VM consolidation process includes host detection, VM
election, and VM placement. In the host detection phase, the
MD algorithm is proposed to determine whether the utiliza-
ion is overloaded by calculating the mean difference between
he host utilization history and the median. The MM algorithm
elects the VM to be migrated to the overloaded host in the VM
election phase. In the VM placement phase, a heuristic algorithm
TOACO based on an improved ant colony algorithm is proposed,
hich not only modifies the update rules of the ant colony al-
orithm to avoid prematurely falling into local optimum but also
odifies the evaluation criteria of the solution, and adjusts the
ias between energy consumption and temperature by presetting
arameters in the algorithm.
Many experiments are conducted on the real-world workload

ataset and random workload obtained by the PlanetLab sys-
em. The experiments show that PTDS is superior to the existing
chemes in many metrics, which can avoid hotspots and effec-
ively reduce energy consumption and has good robustness. This
aper explores the thermal management and energy saving of
ata centers, analyzes its effectiveness, and lays the foundation
or further research on a more effective scheduling scheme.

On this basis, we plan to expand the model in the future
urther. For example, we can consider the impact of hetero-
eneous servers relocated according to their thermal profiles
nd the regional inlet temperature. Other resources, such as the
etwork, can be considered the basis for VM scheduling under
emperature constraints. Meanwhile, we can add dynamic control
ooling supply technology. According to the heat distribution of
he cloud data center, we can dynamically adjust the air supply
emperature and wind speed of CRAC to reduce the waste of
ooling system resources.
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Fig. 10. Performance comparison of schemes under random workloads (setting hosts number=1000 and varying ratios of hosts and VMs number are1:1, 1:1.25, 1:1.5,
1:1.75).
Fig. 11. Sensitivity analysis of parameter α (a) Energy consumption; (b) Hotspots; (c) SLA violation.
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