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On Generalized Zeroing Neural Network Under
Discrete and Distributed Time Delays and Its
Application to Dynamic Lyapunov Equation
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Abstract—Zeroing neural network (ZNN), an effective method
for tracking solutions of dynamic equations, has been developed
and improved by various strategies, typically the application
of nonlinear activation functions (AFs) and varying parameters
(VPs). Unlike VPs, AFs applied in ZNN models act directly on
real-time error. The processing unit of v needs to obtain neural
state in real time. In the implementation process, highly non-
linear AFs become an important cause of time delays, which
eventually leads to instability and oscillation. However, most stud-
ies focus on exploring new theoretically valid AFs to improve
performance of ZNNs, while ignoring the adverse effects of highly
nonlinear AFs. The nonlinearity of AFs requires us fully con-
sider time-delay tolerance of ZNNs using nonlinear AFs, so as
to ensure that the model is not unstable even when disturbed
by time delays. In this work, delay-perturbed generalized ZNN
(DP-GZNN) is proposed to investigate time-delay tolerance of
generalized ZNN (G-ZNN) in solving dynamic Lyapunov equa-
tion. Considering the nonlinearity of AFs, two delay terms are
elegantly added to G-ZNN and DP-GZNN is then derived. After
rigorous mathematical derivations, sufficient conditions in a lin-
ear matrix inequality (LMI) manner are presented for global
convergence of DP-GZNN. Through rich numerical experiments,
hyperparameters involved in the analysis process are discussed in
detail. Comparative simulations are also conducted to compare
the ability of different ZNN models to resist time delays. It is
worth to mention that this is the first time to consider the ability
of G-ZNN to resist discrete and distributed time delays.

Index Terms—Discrete and distributed time delays, dynamic
Lyapunov equation (DLE), exponential convergence, varying
parameter (VP), zeroing neural network (ZNN).
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I. INTRODUCTION

MOST of the issues in engineering and control fields
can be modeled and further transformed to mathe-

matical solving problems (MSPs) and solved by solving the
modeled MSPs. The manipulator motion problem can be
cited as an example. As in [1], the robot inverse motion
problem (RIMP) was modeled as an MSP, on the basis of
which a zeroing neural network (ZNN) model combining with
the idea of proportion-integration-differentiation (PID) con-
trol was designed. With this designed neural network model,
RIMP was successfully solved even in noisy environments.
In [2], the collision-avoidance problem of dual redundant
robots was modeled as an optimization problem with equal-
ity and inequality constraints and was further converted to
linear projection equations (LPEs). By constructing a neural
network based on the LPEs, a safe robot motion scheme was
found. Zhang et al. [3] compared six numerical methods for
solving repetitive motion planning of redundant robot manipu-
lators, which was converted to a simple mathematical form as
in [2]. Methods, which are developed and improved for settling
MSPs, have also been investigated to control various robot
manipulators. For solving the quadratic programming (QP)
problem, Qi et al. [4] converted it into an LPE, put forward a
discrete neural network to solve the QP in noisy environment,
and further applied it to robot inverse motion and filter design.
In [5], a ZNN-based method was designed for solving MSP
with cognitive periodic noises considered, and it was further
employed to solve RIMP. More ZNN-based solutions to prac-
tical issues can be found in [6]. By the way, in the hot field
of machine learning, many high-performance algorithms like
in [7]–[9] also go hand in hand with MSPs. Therefore, it is of
great value to explore more efficient solutions to those basic
and important MSPs like in [1]–[10].

Unlike numerical algorithms as in [11] that are designed
on the basis of serial processing, RNNs, which are typically
built on a foundation of parallel processing, prevail a lot when
solving time-invariant or time-variant MSPs. As seen in [12]
and [13], time-invariant MSPs can be efficiently addressed
by the gradient-based neural network (GNN), which is one
typical class of RNN. It is greatly superior to other numeri-
cal algorithms when it comes to time-invariant MSP of large
scale. However, for time-variant MSPs, GNN fails to track the
theoretical solution of target MSP due to inevitably occurred
lagging error [13]–[15]. For retrieving this inferiority, ZNN,
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which makes the most of time derivative of coefficients, is
designed and developed. As in [16], a conventional ZNN
model was adopted for solving Sylvester equation. It is
worth noting that this proposed ZNN method was successfully
applied to the control of the ball-and-beam system and trolley
inverted pendulum system in [16]. As in [15], for online solv-
ing time-varying matrix inversion problems, ZNN models with
different activation functions (AFs) was employed. By taking
various implementation errors into consideration, robustness
of these models was proven by rigorous analysis. In addi-
tion, they were successfully applied to kinematic control of
redundant manipulators.

Since then, various kinds of strategies have been studied
for performance enhancements of ZNNs. AF is one of the
important directions of model improvement, which greatly
expedites convergence. For example, the bipolar-sigmoid func-
tion, power function, and power-sigmoid function can achieve
global exponential convergence [15], [17]; sign-bipower (SBP)
function brings about finite-time convergence [14], [18], [19];
the tunable SBP function in [5] and [20] further expedites the
convergence; the simplified SBP function in [21] and [22] with
lower nonlinearity maintains this speed; and the piecewise SBP
function in [23] achieves convergence in a predefined time.
Besides, various varying parameters (VPs), such as exponen-
tial type in [24] and [25] and power type in [17] and [26],
significantly improve the convergence speed. As in [27], even
for a normal ZNN model with linear AF, an appropriate VP
can accelerate the convergence rate to superexponential level.

The most prominent ZNNs mentioned in the above-cited
references are those that employ both excellent AFs and
rapidly growing VPs. They have been substantiated to possess
outstanding convergence performance and noise suppression.
Zhang et al. [17] newly designed a varying-parameter neural
network while online solving the time-varying Sylvester equa-
tion. A power-type parameter formed as tp +p, as well as four
typical AFs including linear function, bipolar-sigmoid func-
tion, power-type function and power-sigmoid function, was
considered in their work. It was demonstrated that this model
possesses superexponential convergence and great robustness.
As seen in [22], by introducing an exponential-type param-
eter and a simplified SBP function, a neural network with
finite-time convergence was developed for solving optimiz-
ing problems and successfully applied to a two-category
classification problem. As in [25], with an exponential-type
parameter λ + λt used, an improved ZNN model activated
by power-sigmoid function was developed for solving linear
time-varying equations. Experiments verified its fast conver-
gence and good robustness. It refers that the convergence
and robustness can be greatly improved by using AFs and
VPs that have been proved to be superior by numerous
studies.

Recently, the new innovation of combining the ZNN method
with a fuzzy control strategy extends a new direction for
ZNN’s research. Fuzzy control is developed for dealing with
the uncertainty in modeling process. As in [28], on the basis
of nonsingleton fuzzier, the author proposed a fuzzy neural
network through applying type-2 membership function, and

succeeded to construct a predictive control model for achiev-
ing the robust synchronization of fractional-order time-delayed
chaotic systems, in which the critical function is uncertain.
Zhang and Yan [29] creatively applied the method of fuzzy
control when designing a ZNN model to eliminate the influ-
ence of joint drafting produced by redundant robot in motion.
In 2020, Jia et al. [30] put forward an adaptive fuzzy ZNN (F-
ZNN) model for solving dynamic quadratic planning problem.
Trough adding a fuzzy control parameter, which depends on
the value of the error function, the convergence rate was adap-
tively adjusted according to real-time error. Leaving aside
these fundamental design ideas and considering only the
dynamic expression, F-ZNN can be reduced to G-ZNN with
a parameter related to real-time error.

While implementing a ZNN model in the analog circuit, an
extra processor for the nonlinear AF is necessary for the non-
linear AF, the complexity of which may eventually leads to
undesirable appearance of time delays. However, time delays,
which are considered to be an important cause of model insta-
bility and poor performance in [31]–[33], have been rarely
considered before in ZNNs. Shen et al. [20] developed a ZNN
model with a tunable SBP AF for solving the time-variant
Sylvester equation, and have verified its robustness against
time delay by numerical simulations. But no theoretical veri-
fications were presented for this observation. Zuo et al. [34]
formally put forward a time-varying delayed ZNN for solv-
ing invariant matrix inverse problem. Sufficient conditions
in linear matrix inequality (LMI) manner for the proposed
model to converge were derived through theoretical analy-
sis. However, only discrete delay was considered in [34]. As
reported in [31]–[33] and [35], discrete time delays occur
due to the limitation of neuron signal transmission speed
and neural amplifiers’ switching speed, while distributed time
delays result from the parallel property of neural networks,
which often leads to various parallel pathways of different
axon sizes and lengths. Thus, it is worth taking both discrete
and distributed delays into account while modeling a neural
network.

This work studies the delay robustness of G-ZNNs with AFs
and VPs in solving a dynamic Lyapunov equation (DLE). In
fact, it is not the first time for researches to focus on the
solution of DLE, which is an important principle to testify
system stability in the control field [36]. As early in 2008 [13],
researchers proposed a ZNN model with nonlinear AF to track
the solution of DLE. Comparative experiments showed that
ZNN employing a power-sigmoid AF holds a great superiority
to GNN for solving DLE. Yan et al. [36] modified this model
through introducing an integral item based on the concept
of PID control, and the resultant model possesses exponen-
tial convergence and great noise resistance. As in [37], an
improved ZNN was constructed for solving DLE and was
successfully applied as a control law to realize the repeti-
tive motion of the planar six-link manipulator. Researchers
pay much attention to convergence speed and noise resistance
when investigating an excellent ZNN model for solving DLE.
On the contrary, the impact of time delay is rarely considered
when designing a model to solve DLE.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on July 20,2022 at 03:24:29 UTC from IEEE Xplore.  Restrictions apply. 



5116 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 52, NO. 8, AUGUST 2022

In this work, we, for the first time, present a delay-perturbed
generalized ZNN (DP-GZNN) for solving DLE to qualitatively
analyze the ability of G-ZNN to resist discrete and distributed
time delays. This model is proposed to reflect the possible
time-delay effect of generalized ZNN models, which generally
refers to those common ZNN models with nonlinear AFs and
VPs. It essentially models the time delays that may occur during
circuit implementation. Its convergence indicates the ability of
G-ZNNs to resist the bad effect of time delays in circuit imple-
mentation. During the analysis, inspired by the experience of
previous researches, the method of Lyapunov–Krasovskii func-
tional (LKF) [38]–[41] is applied to investigate this model’s
dynamic properties. In addition, sufficient conditions in an LMI
manner can be sought for DP-GZNN to achieve global conver-
gence provided that the AF satisfies the Lipschitz condition.
It must be noted that, in light of restrictions on the AF, VPs
involved in DP-GZNN are proposed as an efficient strategy
for achieving convergence enhancements. Besides, an improve-
ment has been made to relax the restriction on AFs and thus
contributes a lot to the practicality of our results. Originalities
and innovations of this work are briefed as follows.

1) The DP-GZNN model is for the first time designed for
solving DLE. This model reveals the performance of
G-ZNN in solving time-varying equations with various
time delays. This is the first study on the ability of
a ZNN in the generalized form to resist various time
delays when solving time-varying problems.

2) Theoretical discussions are articulated for studying the
performance of DP-GZNN. Two sufficient conditions for
DP-GZNN to achieve convergence are derived through
rigorous analysis, and the delay robustness of G-ZNN
for solving DLE is clarified.

3) For arguably authenticating the convincingness of our
thoughtful results, computer simulations are organized
and presented for inspection. Through the detailed sim-
ulation experiments, the involved hyperparameters are
quantitatively analyzed, which provides a reference for
the selection of parameters.

4) Comparative simulations about different ZNN models,
including the newly proposed fuzzy ZNN model in [30],
for solving DLE with both discrete and distributed time
delays considered are organized, which illustratively
compare the delay robustness of different ZNN models.

A brief introduction on the organization of this work is
displayed here. Section II formulates the targeted DLE and
constructs the DP-GZNN. Some sufficient conditions in an
LMI manner for DP-GZNN to achieve global convergence
are shown in Section III. Before we conclude this work in
Section V, theoretical results are experimented in computer
and detailed simulations can be found in Section IV, where
comparative experiments are also conducted for comparing the
delay robustness of different ZNN models.

At the end, some mathematical symbols are necessary to
be listed: vec(·) stacks a matrix to a vector in columnwise; ⊗
denotes the Kronecker product; ‖ · ‖ and ‖ · ‖F , respectively,
represent the 2-norm of a vector and the Frobenius norm of a
matrix; I4 denotes the 4 × 4 dimensional identity matrix; and
I refers to an identity matrix of appropriate dimension.

Fig. 1. Block diagram of G-ZNN (4) while solving (1).

II. PRELIMINARIES AND DP-GZNN MODEL

Deemed to be one of the most significant causes to model
instability and oscillation, time delay is an issue unallowable
to neglect in the design and analysis of neural networks. It
is actually an efficient criterion for testing the efficacy and
practicality of neural networks. Taking discrete and distributed
delays into consideration, a DP-GZNN is designed.

A. Preliminaries

In this section, some preliminaries with respect to the target
problem will be presented. First, the DLE is formulated as

CT(t)X(t) + X(t)C(t) = −G(t) (1)

where t represents the time variable. Time-varying matrices
C(t) and G(t) and the unknown variable X(t) are all valued in
R

n×n. Besides, coefficient matrices C(t) and G(t) are assumed
to meet the unique solution condition [12].

Aiming to provide a pellucid explanation for why and when
delays occur, the design process of ZNN in generalized form
is listed here [17]. First, for solving (1) in real time, an error
function is designed as

E(t) = CT(t)X(t) + X(t)C(t) + G(t). (2)

Second, a descend formula of error function E(t) is
specified as

dE(t)

dt
= −�(t)F(E(t)) (3)

where �(t) > 0 is assumed to be a monotonically nonde-
creasing function, and F(·) stands for a strictly monotone
increasing odd function array.

Substituting (2) into (3), it leads to the generalized ZNN
(G-ZNN) with the implicit dynamic property

CT(t)Ẋ(t) + Ẋ(t)C(t) = −ĊT(t)X(t) − X(t)Ċ(t) − Ġ(t)− �(t)

× F(CT(t)X(t) + X(t)C(t) + G(t)
)
.

(4)

The block diagram corresponding to G-ZNN (4) in Fig. 1
shows that an extra processor is specially brought in for the
introduced AF F(·), and this is the most significant cause for
the appearance of time delays.
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Fig. 2. Block diagram of DP-GZNN (5) while solving (1), where the part
in the dotted box corresponds to the delay items in the model.

B. DP-GZNN Model

Taking discrete time delay and distributed time delay into
consideration, a DP-GZNN model for investigating the robust-
ness of G-ZNN against time delay is developed in this section.
For ease of analysis, the DP-GZNN will be converted to a
vector form by using the Kronecker product.

First, the DP-GZNN is formulated as

CT(t)Ẋ(t) + Ẋ(t)C(t) = −ĊT(t)X(t) − X(t)Ċ(t) − Ġ(t)

− �(t)F(CT(t)X(t) + X(t)C(t)

+ G(t)
)+ a1P(t − d1)

+ a2Q(t − d2) (5)

where a1 ≥ 0, a2 ≥ 0, d1 > 0, d2 > 0, and

P(t − d1) = F(CT(t − d1)X(t − d1)

+ X(t − d1)C(t − d1) + G(t − d1)
)

Q(t − d2) =
∫ t

t−d2

F(CT(s)X(s) + X(s)C(s) + G(s)
)

ds.

It is assumed that all entries of this AF array F(·) share the
same expression in the form of f (·). The specific structure of
DP-GZNN (5) can be clarified through Fig. 2, where the part
in the dotted box corresponds to the time-delay terms.

Then, for simplifying the analysis of the dynamic behavior
of DP-GZNN (5), a vectorization formula [i.e., vec(ABC) =
(CT ⊗ A)vec(B)] is utilized to vectorize DP-GZNN (5). It
leads to

M(t)ẋ(t) = −Ṁ(t)x(t) − ġ(t) − �(t)f (M(t)x(t) + g(t))

+ a1p(t − d1) + a2q(t − d2) (6)

where M(t) = I ⊗ CT(t) + CT(t) ⊗ I, x(t) = vec(X(t)), g(t) =
vec(G(t)), and

p(t − d1) = f (M(t − d1)x(t − d1) + g(t − d1))

q(t − d2) =
∫ t

t−d2

f (M(s)x(s) + g(s)) ds.

Substituting e(t) := vec(E(t)) = M(t)x(t) + g(t) into (6), the
vectorized DP-GZNN (6) can be rewritten as

ė(t) = −�(t)f (e(t)) + a1f (e(t − d1)) + a2

∫ t

t−d2

f (e(s)) ds.

(7)

Searching a neural state x(t) such that e(t) = 0 equals solv-
ing (1), and the way how e(t) approaches 0 is exactly what
we concern about. Assume that there exists a positive constant
ω such that ‖M−1(t)‖ ≤ ω. Evidently, the global stability of
equilibrium point 0 of (7) implies the global convergence of
DP-GZNN (5). Here, we claim that this assumption is the
premise of all theoretical analysis in this work.

III. CONVERGENCE ANALYSIS

Qualitative analyses on convergence performance of
DP-GZNN (5), which also reflect the delay robustness of
G-ZNN (4), are presented in this section. Sufficient conditions
of global exponential convergence are derived in the first sec-
tion, while those of global exponential convergence are shown
in the second section.

For convenience, before expanding our demonstrations, we
list the main LKFs to lay the groundwork for a smooth analysis
as follows.

1) V1 = eT(t)R1e(t), which is the most commonly used
LKF for an ordinary differential equation, like the case
of (7) with a1 = a2 = 0.

2) V2 = a1
∫ t

t−d1
f T(e(s))R2f (e(s)) ds is normally employed

in differential equations with discrete time delays, like
the case of (7) with a2 = 0.

3) V3 = a2
∫ d2

0

∫ t
t−s f T(e(r))R3f (e(r))dr ds works well for

differential equations with distributed time delays like
the case of (7) with a1 = 0.

A. Global Convergence

Global convergence of the equilibrium point for a differen-
tial equation reveals that any solution starting from any initial
state converges to this point infinitely but definitely. For DP-
GZNN (5), the neural state corresponding to the solution of
(7) will be infinitely close to the exact solution of DLE (1).
That is, a predefined accuracy can be achieved in a short time.
Furthermore, the faster the convergence rate, the shorter the
time it takes. Main results concerning the global convergence
of DP-GZNN (5) are presented in this section.

Before developing our demonstrations, some preparations,
including an assumption for the AF as well as a useful lemma,
are necessary to be established for a better reading experience.

Assumption 1: The AF f (·) in (7) is restricted by the
following Lipschitz condition:

k1 ≤ f (s1) − f (s2)

s1 − s2
≤ k2 (8)

where s1 and s2 are arbitrary real numbers and k1 and k2 are
positive numbers.

Lemma 1 [42]: Assuming that the involved integrations
well defined, the following inequality holds true for a given
scalar ρ > 0 and any positive-definite matrix P ∈ R

n×n:
(∫ ρ

0
m(s) ds

)T

P

(∫ ρ

0
m(s) ds

)
≤
∫ ρ

0
ρmT(s)Pm(s) ds.

Based on these preparations, a sufficient condition for the
global convergence of DP-GZNN (5) is obtained, as shown in
the following theorem.
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Theorem 1: Under Assumption 1, neural state X(t) of DP-
GZNN (5) starting from an arbitrary initial state X(0) con-
verges to the theoretical solution of target problem (1) globally,
if there exist positive-definite matrices R1, R2, and R3 and non-
negative diagonal matrix S, such that �1(0) is negative definite
with �1(t) defined as

�1(t) =

⎡

⎢⎢
⎣

−2k1�(t)R1 a1R1 a2R1 KS
a1R1 −a1R2 0 0
a2R1 0 − a2

d2
R3 0

SK 0 0 φ1

⎤

⎥⎥
⎦

where φ1 = a1R2 + a2d2R3 − 2S, K = k2I, and matrices
mentioned here are all in R

n2×n2
.

Proof: V(t) = V1(t) + V2(t) + V3(t) is a suitable LKF to
analyze the stability of the vectorized DP-GZNN (7). Then,
it turns to be whether the time derivative of V(t) is negative
definite or not. For testifying this, alongside the solution of (7),
we differentiate every term of this functional with respect to
time t as follows:

V̇1(t) = 2eT(t)R1
de(t)

dt

= 2eT(t)R1

(
− �(t)f (e(t)) + a1f (e(t − d1))

+ a2

∫ t

t−d2

f (e(s)) ds

)

≤ −2k1�(t)eT(t)R1e(t) + 2a1eT(t)R1f (e(t − d1))

+ 2a2eT(t)R1

∫ t

t−d2

f (e(s)) ds

V̇2(t) = a1f T(e(t))R2f (e(t))

− a1f T(e(t − d1))R2f (e(t − d1))

V̇3(t) = a2d2f T(e(t))R3f (e(t))

− a2

∫ d2

0
f T(e(t − s))R3f (e(t − s)) ds

= a2d2f T(e(t))R3f (e(t))

− a2

∫ t

t−d2

f T(e(s))R3f (e(s)) ds

≤ a2d2f T(e(t))R3f (e(t))

− a2

d2

(∫ t

t−d2

f (e(s)) ds

)T

R3

(∫ t

t−d2

f (e(s)) ds

)
.

Subsequently

V̇(t) ≤ ξT(t)�̃1ξ(t)

where

ξ =
(

eT(t), f T(e(t − d1)),

∫ t

t−d2

f T(e(s)) ds, f T(e(t))

)T

and

�̃1(t) =

⎡

⎢⎢
⎣

−2k1�(t)R1 a1R1 a2R1 0
a1R1 − a1R2 0 0
a2P1 0 − a2

d2
R3 0

0 0 0 a1R2 + a2d2R3

⎤

⎥⎥
⎦.

According to Assumption 1, the following inequality is valid
for any nonnegative diagonal matrix S:

2f T(e(t))S(Ke(t) − f (e(t))) ≥ 0

and this leads to

V̇(t) ≤ ξT(t)�̃1ξ(t) + 2f T(e(t))S(Ke(t) − f (e(t)))

= ξT(t)�1(t)ξ(t).

Therefore, the global stability of the vectorized DP-GZNN (7)
is guaranteed provided that �1(t) < 0.

Since �(t) increases monotonically with respect to t, �(t) ≥
�(0) is valid for any t ≥ 0. Therefore, the negative definiteness
of �1(0) leads to the negative definiteness of �1(t), t ≥ 0.
This can be derived from the following fact: denoting the ith
leading principle minor of �1(t) by Di(t), Di(t) ≤ Di(0) < 0
works for any odd number i ∈ {1, 2, . . . , n2} and Di(t) ≥
Di(0) > 0 works for any even number i ∈ {1, 2, . . . , n2}, and
this indicates the negative definiteness of �1(t). The proof is
completed.

Dynamic behaviors of the discrete-delay-only case and
distributed-delay-only case can be derived with a similar
analysis.

Corollary 1: For the discrete-delay-only case, it is sufficient
for DP-GZNN (5) with a2 = 0 to achieve global convergence
if Assumption 1 is satisfied and there exists a group of matrices
R1, R2, and S such that �2(0) is negative definite with �2(t)
defined as

�2(t) =
⎡

⎣
−2k1�(t)R1 a1R1 KS

a1R1 −a1R2 0
SK 0 a1R2 − 2S

⎤

⎦

where K = k2I. Requirements for R1, R2, and S are the same
as in Theorem 1.

Corollary 2: For the distributed-delay-only case, it is suf-
ficient for DP-GZNN (5) with a1 = 0 to achieve global
convergence, if Assumption 1 is satisfied and there exists a
group of matrices R1, R3, and S such that �3(0) is negative
definite with �3(t) defined as

�3(t) =
⎡

⎣
−2k1�(t)R1 a2R1 KS

a2R1 − a2
d2

R3 0
SK 0 a2d2R3 − 2S

⎤

⎦

where K = k2I. Requirements for R1, R3, and S are the same
as in Theorem 1.

Remark 1: The above results indicate that the value of time
delay d1 has no effect on the convergence of DP-GZNN (5),
while the value of distributed time delay d2, as well as the
weights a1 and a2, has a great influence on convergence.
Besides, even if �1(0) is not negative definite, the global
convergence of DP-GZNN (5) can still be guaranteed if �(t)
increases to a big enough value to make �1(t) negative defi-
nite after a finite time. That is, to say, the constraint condition
on negative definiteness of �1(0) can be further loosen to be
the negative definiteness of �1(t1) with t1 < +∞.

As mentioned before, restrictions on AFs in Assumption 1
is too strict, which makes the change rate of AF vary in a
linear manner. Here, we are to relax this assumption.

Assumption 2: The AF f (·) in (7) is restricted by the
following Lipschitz condition:

0 <
f (s1) − f (s2)

s1 − s2
≤ k2 (9)

where s1 and s2 are arbitrary and k2 is a positive constant.
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Theorem 2: Under Assumption 2, the results in Theorem 1
and the above two corollaries still hold true if �(0) > a1+a2d2
and lims→+∞ f (s) exists.

Proof: In Assumption 2, there is not an explicit k1 defined
as in Assumption 1. Nevertheless, if the error e(t) is proved
to be bounded, f (·) is restrict in a bounded interval. Thus, it
is sufficient for us to find a local lower bound k1 of (f (s1) −
f (s2))/(s1 − s2) on a bounded interval, and then, analogous
mathematical derivations can help complete the proof.

Define ei(0) as the ith initial element of (7) for i ∈
{1, 2, . . . , n2}. Doubtlessly, positive ei(0) leads to nonnega-
tive ei(t) for t > 0, and negative ei(0) leads to nonpositive
ei(t) for t > 0.

First, let us consider the case of ei(0) > 0. Letting a =
lims→+∞ f (s), the following inequality can be derived due to
the monotonically increasing property of f (·) and �(t):

−�(t)f (ei(t)) + a1f (ei(t − d1)) + a2

∫ t

t−d2

f (ei(s)) ds

≤ −�(0)f (ei(t)) + (a1 + a2d2)a.

Assume that ui(t) is the solution to an ordinary differential
equation

du(t)

dt
= −�(0)f (u(t)) + (a1 + a2d2)a (10)

with the initial condition being u(0) = ei(0). Evidently,
|ei(t)| ≤ ui(t) holds true for any t ≥ 0.

Noting that �(0) > a1 + a2d2, there exists a positive real
number ε such that �(0) = a1 +a2d2 + ε. Therefore, (10) can
be rewritten as

du(t)

dt
= (a1 + a2d2)(a − f (u(t))) − εf (u(t)).

Let H(u) := (a1 + a2d2)(a − f (u)) − εf (u). Then, H(0) =
(a1+a2d2)a > 0 and limu→+∞ H(u) = −εa < 0. There exists
u+

0 > 0 such that H(u+
0 ) = 0, and u+

0 is the unique equilib-
rium point of the above ordinary differential equation due to
the monotonicity of f (·). Besides, once u(t) ≥ u+

0 , u̇(t) ≤ 0
and u(t) have a tendency to decrease; and once u(t) ≤ u+

0 ,
u̇(t) ≥ 0 and u(t) have a tendency to increase. This suggests
the boundness of ui(t) and ei(t). In actual, ei(t) is bounded by
max{|ei(0)|, |u+

0 |}.
For the case of ei(0) < 0, similar conclusions can be derived

by defining ui(t) being the solution to

du(t)

dt
= −�(0)f (u(t)) − (a1 + a2d2)a

with the initial condition being u(0) = ei(0). Actually, there
exists u−

0 < 0 such that −�(0)f (u−
0 ) − (a1 + a2d2)a = 0. As

a result, |ei(t)| ≤ |ui(t)| validates for any t ≥ 0, and |ei(t)| is
bounded by max{|ei(0)|, |u−

0 |}.
Suppose that r := max{|ei(0)|, |u+

0 |, |u−
0 |} is the bound

of |e(t)|, the domain of AF f (·) in (7) has been demon-
strated to be restricted in the interval of [−r, r]. Therefore,
the proof procedures in Theorem 1 can go on with k1 =
mins1,s2∈[−r,r](f (s1)− f (s2))/(s1 − s2). This immediately leads
to the completeness of this proof.

B. Global Exponential Convergence

For characterizing the convergence speed, some results con-
cerning the global exponential convergence of DP-GZNN (5)
are presented in this part.

Before developing our demonstrations, the definition of
global exponential convergence needs to be introduced first.

Definition 1: The equilibrium point 0 of (7) is globally and
exponentially stable, if there exist c > 0 and v > 0 such that

‖e(t)‖ ≤ c exp(−rt) sup
−d≤s≤0

‖e(s)‖

holds for any t ≥ 0, where d = max{d1, d2} and e(θ), θ ∈
[−d, 0] is arbitrary.

Definition 2: The neural state X(t) of DP-GZNN (5) is
globally and exponentially convergent to the theoretical state
X�(t), if there exist c > 0 and r > 0 such that
∥∥X(t) − X�(t)

∥∥
F ≤ c exp(−rt) sup

−d≤s≤0

∥∥X(s) − X�(s)
∥∥

F

holds for any t ≥ 0, where d = max{d1, d2} and X(θ), θ ∈
[−d, 0] is arbitrary.

Evidently, the global exponential convergence of DP-
GZNN (5) can be ensured if the equilibrium point 0 of (7)
is globally and exponentially stable. In fact, while there exists
a positive constant ω such that ‖M−1(t)‖F ≤ ω, we can derive

∥∥X(t) − X�(t)
∥∥

F =
∥∥∥M−1(t)E(t)

∥∥∥
F

≤ ω‖e(t)‖
≤ ωc exp(−rt) sup

−d≤s≤0
‖e(s)‖.

Theorem 3: Under Assumption 1, neural state X(t) of DP-
GZNN (5) with an arbitrary initial state X(θ), θ ∈ [−d, 0],
converges to the theoretical solution of (1) globally and expo-
nentially, if there exist positive-definite matrices R1, R2, and R3
and nonnegative diagonal matrix S, such that �1(0) is negative
definite with �1(t) defined as

�1(t) =

⎡

⎢⎢
⎣

−2k1�(t)R1 a1R1 a2R1 KS
a1R1 −a1R2 0 0
a2R1 0 − a2(1−ε)

d2
R3 0

SK 0 0 1

⎤

⎥⎥
⎦

where 0 < ε < 1, 1 = a1(1+εd1)R2+a2d2R3−2S, K = k2I,
and matrices mentioned here are all in R

n2×n2
.

Proof: For verifying the global exponential stability of DP-
GZNN (5), it is sufficient to search a positive-definite LKF
which exponentially decreases to 0 with time variable t along-
side the trajectory of DP-GZNN (5). Here, we are going
to construct a function candidate W(t) such that G(t) :=
exp(2υt)W(t) monotonically decreases with respect to t, where
υ > 0. It is computed that Ġ(t) = exp(2υt)(2υW(t) + Ẇ(t)).
We claim that W(t) = V1(t) + V2(t) + V3(t) + V4(t) is an
appropriate function to meet this need, where

V4(t) = a1ε

∫ d1

0

∫ t

t−s
f T(e(r))R2f (e(r))dr ds.

Evidently

W(t) ≤ λmax(R1)‖e(t)‖2 + a1I1(t) + a2d2I2(t)

+ a1d1ε

∫ t

t−d1

f T(e(s))R2f (e(s)) ds
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≤ λmax(R1)‖e(t)‖2 + a1(1 + d1ε)I1(t) + a2d2I2(t)

where λmax(·) represents the largest eigenvalue of the matrix,
and

I1(t) =
∫ t

t−d1

f T(e(s))R2f (e(s)) ds ≥ 0

I2(t) =
∫ t

t−d2

f T(e(s))R3f (e(s)) ds ≥ 0.

Recomputing V̇3(t) and V̇4(t), we have

V̇3(t) = a2d2f T(e(t))R3f (e(t)) − a2(1 − ε)I2(t) − a2εI2(t)

≤ −a2(1 − ε)

d2

(∫ t

t−d2

f (e(s)) ds

)T

R3

(∫ t

t−d2

f (e(s)) ds

)

+ a2d2f T(e(t))R3f (e(t)) − a2εI2(t)

V̇4(t) = a1d1εf T(e(t))R2f (e(t)) − a1εI1(t).

Therefore

Ẇ(t) ≤ ξT(t)�1(t)ξ(t) − a1εI1(t) − a2εI2(t).

Then, it can be deduced that

2υW(t) + Ẇ(t) ≤ (2υλmax(R1) + λmin(�1(t)))‖e(t)‖2

+ (2υ(1 + d1ε) − ε)a1I1

+ (2υd2 − ε)a2I2.

Letting all of the coefficients being nonpositive, we derive
⎧
⎨

⎩

2υλmax(R1) + λmin(�1(t)) ≤ 0
2υ(1 + d1ε) − ε ≤ 0
2υd2 − ε ≤ 0.

Solving these inequalities leads to

υ ≤ υ0 := min

{−λmin(�1(t))

2λmax(R1)
,

ε

2(1 + d1ε)
,

ε

2d2

}
.

Thus, for υ ≤ υ0, we have Ġ(t) ≤ 0.
Next, we devote to analyzing the decreasing speed of W(t).

Assuming that 0 < υ ≤ υ0, we have Ġ(t) ≤ 0. Hence, we
have the following derivation results:

exp(2υt)W(t) ≤ W(0) ≤ λmax(R1)‖e(0)‖2

+ a1(1 + d1ε)I1(0) + a2d2I2(0)

I1(0) =
∫ 0

−d1

f T(e(s))R2f (e(s)) ds

≤ sup
−d1≤s≤0

‖e(s)‖2 · d1k2
2λmax(R2)

I2(0) =
∫ 0

−d2

f T(e(s))R3f (e(s)) ds

≤ sup
−d2≤s≤0

‖e(s)‖2 · d2k2
2λmax(R3).

Hence

exp(2υt)W(t) ≤
(
λ1 + a1d1(1 + d1ε)λ2k2

2 + a2d2
2λ3k2

2

)

· sup
−d2≤s≤0

‖e(s)‖2

where λ1 = λmax(R1), λ2 = λmax(R2), and λ3 = λmax(R3).

Since W(t) ≥ V1(t) ≥ λmin(R1)‖e(t)‖2, we have

‖e(t)‖2 ≤ λ1 + a1d1(1 + d1ε)λ2k2
2 + a2d2

2λ3k2
2

λmin(R1)

· exp(−2υt) sup
−d2≤s≤0

‖e(s)‖2.

Setting

c :=
(

λ1 + a1dd1(1 + d1ε)λ2k2
2 + a2d2

2λ3k2
2

λmin(R1)

)1/2

and r = υ, one can derive the global exponential convergence
of DP-GZNN (5). The proof is thus completed.

According to Theorem 3, we can easily deduce two corollar-
ies for the discrete-delay-only case and distributed-delay-only
case like in the previous section.

Corollary 3: For the discrete-delay-only case, it is sufficient
for DP-GZNN (5) with a2 = 0 to achieve global exponential
convergence, if Assumption 1 is satisfied and there exists a
group of matrices R1, R2, and S such that �2(0) is negative
definite with �2(t) defined as

�2(t) =
⎡

⎣
−2k1�(t)R1 a1R1 KS

a1R1 −a1R2 0
SK 0 a1(1 + εd1)R2 − 2S

⎤

⎦

where 0 < ε < 1 and K = k2I. Requirements for R1, R2, and
S are the same as in Theorem 3.

Corollary 4: For the distributed-delay-only case, it is suf-
ficient for DP-GZNN (5) with a1 = 0 to achieve global
exponential convergence, if Assumption 1 is satisfied and there
exists a group of matrices R1, R3, and S such that �3(0) is
negative definite with �3(t) defined as �2(t) defined as

�3(t) =
⎡

⎣
−2k1�(t)R1 a2R1 KS

a2R1 − a2(1−ε)
d2

R3 0
SK 0 a2d2R3 − 2S

⎤

⎦

where 0 < ε < 1 and K = k2I. Requirements for R1, R3, and
S are the same as in Theorem 3.

Also, analogous improvements for the limitations imposed
by Assumption 1 on the activated function employed in
DP-GZNN (5) can be developed like Assumption 2 and
Theorem 2. For this reason, we omit this redundant discussion
but claim that we have presented all theoretical analyses.

IV. NUMERICAL SIMULATIONS

Simulation experiments and comparison analyses are
presented in this section. In the first section, we employ DP-
GZNN (5) to solve a specific example of DLE for testing
the correctness and conservativeness of the previous theo-
retical results. Models with different AFs and VPs are also
experimented and compared in the second section. The newly
designed F-ZNN proposed in [30] is also involved there. In
the last section, some explorations on higher dimensional DLE
and hyperparameters are presented.

Before that, the desirable example of DLE with the follow-
ing time-varying coefficients is cited as a preparation [13]:

C(t) =
[−1 + 1.5c2 1 − 1.5sc
−1 − 1.5sc −1 + 1.5s2

]
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TABLE I
VERIFICATIONS FOR THE DISCRETE-AND-DISTRIBUTED CASE1

G(t) =
[ (

2s − 3sc2
) −0.5

(
c − 6s2c

)

0.5
(
4c − 3c3 + 3s2c

)
0.5
(
s − 3s3 + 2sc2

)
]

where c denotes cos(t) and s denotes sin(t). The real solution
is easily computed as

X(t) =
[

sin t − cos t
cos t sin t

]
.

Finally, we present the following AFs and VPs that will be
applied in the following experiments:

f1(x) = x; f2(x) = x

|x| + 1
f3(x) = tanh(x); f4(x) = arctan(x)

�1(t) = α; �2(t) = α + tα; �3(t) = α exp(t)

where α > 0 is the initial value of those VPs. Time delays in
DP-GZNN (5) are set as d1 = d2 = 4.

A. Verifications for Theoretical Results

Theorems unable to withstand numerical validations are of
little value. In this section, DP-GZNN (5) will be employed
to cope with the above mentioned DLE in two-dimension.

For the discrete-and-distributed case with a1 = a2 = 1,
d1 = d2 = 4, and ε = 0.5 are set for validating Theorems 1–3.
First, results in Theorems 1 and 3 will be examined with
three kinds of VPs, and linear AF f1(·) is applied here for
simplifying the analysis. Then, several common AFs and VPs
articulated in the beginning of this section are employed for
verifying Theorem 2 and Remark 1. Finally, we have to note
that, while using the LMI toolbox of MATLAB to solve LMIs
in these theorems, tmin > 0 indicates there is no solution for
the input inequality and tmin < 0 infers that there exists at
least one appropriate solution.

Table I and Fig. 3(a), where ‖ · ‖F denotes the Frobenius
norm and ‖E(t)‖F = ‖e(t)‖2, test the sufficient condition
derived in Theorem 1. In Table I, with different values
of α, tmin related to the negative definiteness of �1(0) in

Fig. 3. Error norms of DP-GZNN (5) with �(t) = αi, i ∈ {1, 2, . . .} and
a linear AF employed, originating from the initial state X(0) = 0. Case 0
refers to the discrete-and-distributed case with a1 = a2 = 1, case 1 refers to
the discrete-delay-only case with a1 = 1, a2 = 0, and case 2 refers to the
distributed-delay-only case with a1 = 0, a2 = 1. Other parameters of case 0
are set as Table I, while those of cases 1 and 2 are recorded in Table II. (a)
Case 0. (b) Case 1. (c) Case 2.

Theorem 1 is precisely computed, and a group of matrices
such that �1(0) < 0 are given, if there exists. The following
observations are from Table I and Fig. 3(a).

1) In Table I, when α is set to be 4.8999, tmin > 0 means
there does not exist a group of matrices R1, R2, R3, and
S, such that �1(0) < 0, which violates the condition in
Theorem 1. The global convergence of DP-GZNN (5) is
not guaranteed, and Fig. 3(a) suggests it.

2) When α increases from 4.9999 to 5.0001, the sign of
tmin goes from positive to negative, which indicates the
negative definiteness of �1(0). It is evident that the error
of DP-GZNN (5) converges to 0 globally and infinitely,
as in Fig. 3(a).

3) When α is increased to 6, the convergence speed is
greatly improved. Rapid reduction of the maximal steady
state residual error (MSSRE) in Table I witnesses it, as
well as the steepness of the curves in Fig. 3(a).

Fig. 5 illustrates the global convergence of DP-GZNN (5) with
ten random initial states in [−3, 3] for �(0) = α = 6.

The second half of Table I and Fig. 4(a) test the sufficient
condition derived in Theorem 3. As displayed in Table I, for
α6 = 7.3699 and α7 = 7.7399, tmin is positive and, thus,
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Fig. 4. Error norms of DP-GZNN (5) with �(t) = αi, i ∈ {1, 2, . . .} and
a linear AF employed, originating from the initial state X(0) = 0. Similar
to Fig. 3, other parameters are recorded as in Tables I and II. (a) Case 0.
(b) Case 1. (c) Case 2.

Fig. 5. Error norms of DP-GZNN (5) randomly initiating from 10 states
X(0) ∈ [−3, 3] activated by a linear AF with α = 6 and a1 = a2 = 1.
(a) �1(t) ≡ 6. (b) �2(t) = 6 + t6. (c) �3(t) = 6 exp(t).

TABLE II
PARAMETER SETTING FOR FIGS. 3 AND 41

there does not exist a group of matrices such that �1(0) < 0.
However, Fig. 4(a) shows the global exponential convergence
in this case. That is, not surprising, because the condition in
Theorem 3 is only sufficient but not necessary. Nevertheless,
this inspires us to explore some less conservative conditions
for the model to converge exponentially, and derive some more
precise expressions for the convergence rate.

Also, some simulative experiments are constructed for ver-
ifying Theorem 2 and Remark 1. Convergence performance
of DP-GZNN (5) with different kinds of AFs employed, is
illustrated in Figs. 7 and 8, which certificate the correctness
of Theorem 2. As claimed in Remark 1, in order to force
DP-GZNN (5) to converge, it is enough for a certain strictly
increasing parameter to increase to a big enough value within
a finite time, that is, the convergence speed does not depend on
the initial value of this kind of parameters. Though there might

Fig. 6. Error norms of DP-GZNN (5) randomly initiating from 10 states
X(0) ∈ [−3, 3] activated by a linear AF with α = 8 and a1 = a2 = 1.
(a) �1(t) ≡ 8. (b) �2(t) = 8 + t8. (c) �3(t) = 8 exp(t).

be an increase tendency at the very beginning, it steadfastly
converges. We can acquire some supports for this argument
from Fig. 9(b) and (c).

As to the discrete-delay-only case and the distributed-
delay-only case, we only present the simulative results as in
Figs. 3(b)–(c) and 4(b)–(c).

B. Comparative Analysis

For further verifying the delay robustness of different neural
networks, we carry out comparative experiments and analyses
from three aspects: the first is based on AFs; the second is
based on VPs; and the third is based on the essential design
ideas, which includes the newly designed F-ZNN in [30].

1) G-ZNNs With Different AFs: In actual, G-ZNN (4) can
be deemed as the generalized form of ZNN models with AFs
and VPs. Hence, its delay-perturbed version (5) can be applied
to analyze the delay robustness of any ZNN models in the
form of (4). On the basis, we develop some experiments by
employing different AFs.

The related simulative results can be seen in Figs. 7–9. As
observed, no matter how large or how small the parameter
is, curves in the same subfigure are very close together, which
implies a similarity in convergence performance while employ-
ing those four AFs with time delays considered. Since all of
the four AFs satisfy the assumption in Theorem 2, the proper-
ties of these functions are similar in nature. This inspires us to
further explore some sufficient conditions with less restrictions
on AFs.

2) G-ZNNs With Different Parameters: Some simula-
tive experiments for G-ZNN with different parameters are
developed as in Figs. 5–8.

The larger �(0), the faster the convergence rate will be. �(0)

is increased to 8 in Fig. 6 as compared to Fig. 5. In Fig. 5(a)
where �(t) ≡ 6, it takes more than 150 s for all error norms
to decrease to the level of 10−3, while less than 50 s is cost
when �(t) ≡ 8 as depicted in Fig. 6(a). For VPs, a larger initial
value is of great help. Like in Figs. 5(b) and 6(b), the case of
�(0) = 6 takes nearly 3.7 s, while that of �(0) = 8 takes nearly
2.7 s. Figs. 5(c) and 6(c) also validate this point. It does not
change when various AFs are employed as in Figs. 7 and 8.

With the same initial values, monotonically increasing
parameters perform much better than the fixed parameters.
As shown in Fig. 5(a), for the case of the fixed parameter
�1(t) ≡ 6, residual error ‖E(t)‖F of DP-GZNN (5) turns to
be at the level of 10−3 after 150 s. It can be seen from Fig. 5(c)
that only 5 s is taken for �3(t) with �3(0) = 6 to achieve an
accuracy of the same level. Much more advantageously, the
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Fig. 7. Error norms of DP-GZNN (5) initiating from X(0) = 0 activated by
four kinds of AFs as listed in the previous, with α = 6 and a1 = a2 = 1.
(a) �(t) ≡ α = 6. (b) �2(t) = 6 + t6. (c) �3(t) = 6 exp(t).

Fig. 8. Error norms of DP-GZNN (5) initiating from X(0) = 0 activated by
four kinds of AFs as listed in the previous, with α = 8 and a1 = a2 = 1.
(a) �(t) ≡ α = 8. (b) �2(t) = 8 + t8. (c) �3(t) = 8 exp(t).

Fig. 9. Error norms of DP-GZNN (5) initiating from X(0) = 0 acti-
vated by four kinds of AFs as listed in the previous, with a1 = 1, a2 = 1.
(a) �1(t) ≡ 80. (b) �2(t) = 3 + t3. (c) �3(t) = 3 exp(t).

case of �2(t) with �0 = 6 illustrated in Fig. 5(b) only needs
less than 4 s to achieve the accuracy of 10−3. Figs. 6–8 with
different AFs and different �(0) also verify this point.

According to Figs. 5–8, for achieving an accuracy of 10−3,
only several seconds are required for the case of strictly
increasing parameters, such as �2(t) and �3(t), while hun-
dreds seconds are cost for the case of invariant parameter.
This further inspires us to pay much attention in the future to
investigating some useful VPs for expediting convergence.

3) Comparisons Between Different Neural Models: For
convenience, we simply classify the neural dynamics that can
be applied for solving DLE into four categories: 1) GNN [13];
2) G-ZNNs; 3) PID-type ZNN [36]; and 4) F-ZNN in [30].

As in [13], the first model fails in tracing the dynamic solu-
tion online due to its serious lagging errors. Hence, we are not
to discuss that how a GNN-like model performs while delay
exists, but only to explore the last three ZNN-like models.
For G-ZNN in the form of (5), we have actually made some
comparative simulations by applying different AFs and vari-
ous parameters in the above discussion. The PID-type ZNN
accumulates historical errors to control the change of state,
and thus its model expression is quite different from the other
two ZNN-like models. Therefore, the sufficient conditions for
it to converge also differs a lot. For this reason, we regard this
model as one of the interests of future research, but does not
consider this model in this work.

Fig. 10. Error norms of G-ZNN (4) and F-ZNN (11) with linear AF f1(x)
applied while time delays exist. The initial state X(0) is set to be 0. (a) α = 6.
(b) α = 8. (c) α = 10.

As to F-ZNN, it can be seen in [30] that the fuzzy parameter
is bounded, which implies that its convergence performance
is between two G-ZNNs with fixed parameters. Based on this
observation, we compare F-ZNN with G-ZNN through adopt-
ing different parameters as in Fig. 9. According to the original
design idea of F-ZNN in [30], a fuzzy control parameter ν

generated by the applied fuzzy control method is added to the
design formula, and leads to the following F-ZNN model for
solving (1):

CT(t)Ẋ(t) + Ẋ(t)C(t) = −ĊT(t)X(t) − X(t)Ċ(t) − Ġ(t)

− (α + ν)

× F(CT(t)X(t) + X(t)C(t) + G(t)
)
.

(11)

Time delays are considered in the same way of DP-GZNN (5).
Let a1 = a2 = 1 and d1 = d2 = 4. When time delays exist,
by setting 0 < ν ≤ ν0, the best convergence performance of
F-ZNN (11) can be described by the curves in Fig. 10. As can
be seen, increasing the upper bound of ν from 20 to 100, the
convergence of F-ZNN (11) is accelerated accordingly while
time delays exist. The error norm of F-ZNN (11) drops faster at
the beginning than that of G-ZNN (4) with two VPs employed.
However, G-ZNN (4) quickly overtakes it, even if the upper
bound of fuzzy control parameter ν is increased to 100. This
further indicates a superiority of G-ZNN (4) over F-ZNN (11)
while time delays exist.

Remark 2: We directly employ a theoretically optimal
parameter of F-ZNN to establish the delay-perturbed fuzzy
ZNN (DP-FZNN) model and compare the convergence of DP-
FZNN with that of DP-GZNN to illustrate the advantage of
G-ZNN models using VPs when time delays exist. But strictly
speaking, DP-FZNN is not the same as that of DP-GZNN in
structure. Fuzzy factor in F-ZNN depends on real-time error,
so the signal delay caused by the processing unit of member-
ship function that is used to generate a fuzzy factor must be
considered when constructing DP-FZNN. The ability to resist
time delays of F-ZNN models is worth further studying in
the future, and specific constraints need to be given for the
membership function used in F-ZNN models.

C. Explorations

This section explores the effects of hyperparameters in
DP-GZNN (5) on convergence, and an application of DP-
GZNN (5) to a DLE of higher dimension is presented to show
its efficacy to some high-dimensional DLE.
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TABLE III
EXPLORATIONS FOR a1

TABLE IV
EXPLORATIONS FOR a2

TABLE V
EXPLORATIONS FOR d2

1) Hyperparameters: In DP-GZNN (5), there are many
hyperparameters, including a1, a2, d1, d2, �(t), and F . In
Section IV-B, the effect of �(t) and F has been discussed.
Here, we are to analyze the effect of the remained hyperpa-
rameters a1, a2, d1, and d2, which are related to the term of
time delays.

As claimed in Remark 1, the negative definiteness of the
critical matrix is independent of d1, which implies that the
value of d1 has no effect on the convergence of DP-GZNN (5).
a1 and a2 correspond to the weights of discrete and distributed
delay terms, respectively. Let a2 = 1 and d1 = d2 = 4, and we
can derive Table III by adjusting the value of hyperparameter
a1. As observed, the larger the weight a1 is, the bigger the
infimum α is, which represents the least value of α for ensur-
ing the global convergence of DP-GZNN (5). Explorations
about a2 with a1 = 1 and d2 = 4 are shown in Table IV,
while explorations about d2 with a1 = a2 = 1 are shown in
Table V. The results with regard to a2 and d2 are similar to
the case of a1. By analyzing these three tables, it is observed
that the design parameter α needs to be larger than a1 + a2d2.
We have to point that this observation is also indicated in
Theorem 2. However, it is much weaker than the sufficient
condition in Theorem 2. This inspires us to think about how
to relax sufficient conditions in the current theoretical results.

In conclusion, the weights of time delay terms make a
great influence on the convergence of DP-GZNN (5). Since
we cannot derive a delay-perturbed model with completely
accurate weights of time-delay terms, what we can do is to
assume that the time delay is very big, and apply an appro-
priate design parameter α to guarantee the convergence of
DP-GZNN (5). However, α corresponds to the reciprocal of
capacitance parameter in practical, and we cannot set it to

Fig. 11. Error norms of DP-GZNN (5) for solving the 5 × 5-dimensional
DLE, initiating from ten random states X(0) ∈ [−3, 3]. Here, a1 = a2 = 1,

d1 = d2 = 4, �(t) = 6 exp(t), and linear AF f1(x) is applied.

be arbitrarily large. A monotonically increasing parameter can
overcome this handicap, as discussed in the previous section.

2) Solution of Higher Dimensional DLE: Actually, there
is no limitation on dimension n in the theoretical part of the
whole work. This implies the efficacy of DP-GZNN (5) when
solving high-dimensional DLEs. Here, we present an appli-
cation to a 5 × 5 dimensional DLE, which is constructed
with

C(t) =

⎡

⎢⎢⎢
⎢
⎣

s c s c s
c s c c s
s s c c s
c s s c s
s c c s c

⎤

⎥⎥⎥
⎥
⎦

(12)

and G(t) in (13), shown at the bottom of the page. Setting
a1 = a2 = 1, d1 = d2 = 1, �(t) = 6 exp(t), and F(x) = f1(x),
Fig. 11 shows the global convergence of DP-GZNN (5) while
solving this 5 × 5 dimensional DLE.

V. CONCLUSION

In this work, DP-GZNN was presented as an analytical
model for qualitatively analyzing time-delay robustness of
G-ZNN models. Through rigorous analysis on this proposed
model, sufficient conditions for the convergence of DP-GZNN
were derived, of which the correctness was testified by numer-
ical experiments. The robustness against time delays of this
model have withstood testification theoretically and practi-
cally. Comparative experiments with respect to different ZNN
models including the newly proposed F-ZNN have been

G(t) =

⎡

⎢⎢
⎢⎢
⎣

−5cs − c2 −2cs − 2c2 −4cs − c2 − s2 −3cs − 2c2 − s2 −s − 2cs
−3cs − 2c2 − 3s2 −2cs − 4s2 −2cs − 2c2 − 4s2 −5cs − c2 − 2s2 −c − cs − 3s2

−6cs − 2c2 −3cs − 2c2 − s2 −5cs − 2c2 − s2 −2cs − 4c2 − 2s2 −c − 3cs − s2

−4cs − 3c2 − s2 −cs − 2c2 − 3s2 −5cs − 2c2 − s2 −6cs − 2c2 −s − cs − 3s2

−s − 3cs − s2 −c − cs − s2 −c − 2cs − 2s2 −s − cs − 3s2 −2c

⎤

⎥⎥
⎥⎥
⎦

(13)
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constructed, and results suggested that VPs can accelerate con-
vergence to a large extent, which means that VPs can improve
delay robustness of G-ZNN models. Nevertheless, in this work,
restrictions on AFs are still too strict and the SBP function is
excluded, which has been shown to have great advantages in
convergence. Hence, it is of significance for us to further inves-
tigate the convergence of DP-GZNN with better nonlinear AFs
in the future.
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