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Abstract— For solving dynamic generalized Lyapunov equa-
tion, two robust finite-time zeroing neural network (RFTZNN)
models with stationary and nonstationary parameters are gen-
erated through the usage of an improved sign-bi-power (SBP)
activation function (AF). Taking differential errors and model
implementation errors into account, two corresponding per-
turbed RFTZNN models are derived to facilitate the analyses
of robustness on the two RFTZNN models. Theoretical analysis
gives the quantitatively estimated upper bounds for the con-
vergence time (UBs-CT) of the two derived models, implying a
superiority of the convergence that varying parameter RFTZNN
(VP-RFTZNN) possesses over the fixed parameter RFTZNN
(FP-RFTZNN). When the coefficient matrices and perturbation
matrices are uniformly bounded, residual error of FP-RFTZNN is
bounded, whereas that of VP-RFTZNN monotonically decreases
at a super-exponential rate after a finite time, and eventually con-
verges to 0. When these matrices are bounded but not uniform,
residual error of FP-RFTZNN is no longer bounded, but that of
VP-RFTZNN still converges. These superiorities of VP-RFTZNN
are illustrated by abundant comparative experiments, and its
application value is further proved by an application to robot.

Index Terms— Dynamic generalized Lyapunov equation,
finite-time convergence, robustness, varying parameter, zeroing
neural network (ZNN).

I. INTRODUCTION

LYAPUNOV equation is applied prevalently in scientific
and electronic engineering fields [1], [2] and works a

fairly significant role in controller design and system sta-
bility [3]–[5]. Large quantities of strategies, which can be
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classified into iterative algorithms [6]–[8] and neural dynamics
[9]–[11], are adopted to settle the solution of Lyapunov equa-
tion in real time. Because those matrix equation-solving tasks
with high-dimensional coefficients are time consuming for
iterative approaches based on the serial-processing manner as
reported in [6], researchers make a tremendous development in
neural networks. Originating from Hopfield neural networks,
which was first introduced by Hopfield in 1982 [12], [13],
recurrent neural networks [14], [15], including gradient-based
neural networks (GNNs) and ZNNs, arise wide interest in
theoretical research and practical application. For their parallel
processing and distributed storage nature, they are elegantly
applied to solve various kinds of essential mathematical solv-
ing issues.

It can be seen from [9] and [11] that GNN performs well
when dealing with static Lyapunov equation. However, as for
dynamic Lyapunov equation like in [10] and [16], continuous
GNNs, which employ an L2-norm-based scalar-valued energy
function, bring with lagging-behind errors between the state
solutions and the theoretical solution to the target prob-
lem [10], [11]. Some discontinuous GNNs are conducted by
adopting the gradient of a nonsmooth energy function, which
is defined on the basis of the nonsmooth L1-norm. As in [17],
a discontinuous GNN was established by the subdifferential
with regard to the state variables of an L1-norm-based energy
function. The author claimed that, if the penalty parameter
surpasses a specific threshold, the adopted network will reach
the target solution in finite time. Hence, for better tracing the
target solution, the design parameter should be set as large
as the estimated threshold required and as the given hardware
permitted. However, it can be difficult to be satisfied and may
result in over-fitting in some application scenarios.

Look back to the continuous GNNs, the main reason they
fail when dealing with dynamic solutions is that they normally
exploit the error matrix norm as the optimization index without
making the most of the derivative information of time-varying
coefficient matrices. For this reason, a ZNN model, which uses
an error vector to record the distance between neural state and
target solution to facilitate the usage of derivative information
of coefficient matrices in the target problem, is developed to
address various time-varying equation-solving problems and
succeeds in eliminating the lagging error [10], [11].

It is observed that many researchers have devoted a lot
to accelerate the convergence rate of ZNN during the past
decades. One of the most basic methods is to apply effi-
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cient nonlinear AFs to the conventional ZNN (CZNN). It is
worth mentioning that all of AFs before Li et al. [18],
[19] can expedite the convergence velocity gradually but
still keep the defect of infinite-time convergence, which is
fairly unpractical to tackle real-time equation solving problems
with strict requirements in practical applications. Li et al. [18]
first proposed a sign-bi-power (SBP) activation function (AF)
(SBP-AF) to optimize convergence rate of CZNN and suc-
ceeded to achieve finite-time convergence. However, a tremen-
dous amount of data will be generated during the procedure
of computer simulations if SBP-AF is applied. Simplified
SBP-AFs were thus considered to enhance convergence per-
formance of the neural dynamics in [20] and [21]. After
that, a ZNN with fixed parameter activated by a simplified
SBP-AF (SSBP-AF) in [20] was proposed to solve DLE in real
time [16].

In the implementation process, perturbations resulted from
various factors are tricky but inevitable. Most of neural
dynamics proposed in studies are efficient under ideal con-
ditions, but that changes when perturbations exist. Some
of them with poor robustness are sensitive to perturba-
tions, which are usually deemed as omnipresent back-
grounds during computer simulations [20], [22]. Over the
past years, many researchers have developed various methods
such as proportion-integration-differentiation (PID) controller
[23]–[25], and varying parameter [26]–[28], to endow neural
networks with robustness. Although the integration item often
brings an excellent property of noise suppression, the side
effect of time delay (a slight concussion emerging before
convergence) going with it is prone to blight simulation results
in perturbation-free condition [23], [25]. In consideration of
the basic idea of varying parameter methods, which perform
as automatically magnifying actual parameters over time,
dynamic parameters growing over time can eliminate this flaw
and bring in noise tolerance [26], [28]. The accompanying
faster convergence also makes it more suitable for the actual
situation.

Different from [10], [11] and [16], this work aims to
solve dynamic generalized Lyapunov equation (DGLE). The
standard Lyapunov equation in [10], [11] and [16] is actu-
ally a special case of DGLE. But converting a DGLE into
standard form involves the inversion of a matrix. Hence,
it is more general to solve DGLE directly. In this work,
we creatively put forward an approach converting fixed para-
meter to exponential-type varying parameter to speed up the
convergence and resist the inevitable perturbations. Except
for the comparison about upper bounds for the convergence
time (UBs-CT) for the fixed-parameter robust finite-time
zeroing neural network (RFTZNN) (FP-RFTZNN) model
and varying-parameter RFTZNN (VP-RFTZNN) model, their
robustness is also verified and compared through taking dif-
ferential and implementation errors into consideration. For
all we know, it is the first time to analytically compare the
FP-RFTZNN model and such a novel VP-RFTZNN model
in the terms of convergence time and robustness for solving
DGLE. Therefore, it is worthwhile to make a synopsis of major
contributions to this work.

1) Two RFTZNN models with fixed and varying parameters
are designed for solving DGLE. By taking differential
errors and implementation errors into account, the cor-
responding perturbed RFTZNN models are proposed.

2) The finite-time convergence of two RFTZNN mod-
els is proven through theoretical analyses. And their
UBs-CT, which in theory reveal the great advantage
of VP-RFTZNN over FP-RFTZNN, are quantitatively
estimated.

3) As proved, residual error of perturbed VP-RFTZNN
converges to 0 if both coefficient matrices and perturba-
tion matrices are bounded, whereas that of perturbed
FP-RFTZNN is bounded only if they are uniformly
bounded.

4) The residual error of perturbed VP-RFTZNN is quali-
tatively proved to either monotonically decrease to an
interval in a finite time at a super-exponential con-
vergence rate and stay within it all time after that,
or decrease to 0 monotonically and super-exponentially.

5) In numerical experiment, the so-called PID-type ZNN
(PIDT-ZNN), which is known for its good noise toler-
ance, is used as the reference object to highlight the
performance of two RFTZNN models.

The reminder of this article is composed of six parts. DGLE
and CZNN models are formulated in Section II. Section III
discusses the performance of FP-RFTZNN in terms of conver-
gence and robustness, and Section IV focuses on that of VP-
RFTZNN. An example of solving DGLE with two RFTZNN
models is given in Section V, and an application to robot is
presented there. At last, a brief conclusion emphasizing on the
main results and contributions is drawn in section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

At the beginning, some mathematical notations used in this
work are necessary to be defined. R represents the set of
real numbers and Z stands for the set of integer numbers.
E2 denotes a matrix with all elements equal to 1. For a matrix
A ∈ Rm×n : vec(A) is a column vector generated by stacking
the column of A; ‖A‖F denotes the Frobenius norm; and
Ai j denotes the element of A on row i and column j . The
Kronecker product A ⊗ B , where B ∈ Rp×q , is defined as

A ⊗ B =

⎡
⎢⎢⎢⎣

a11 B a12 B · · · a1n B
a21 B a22 B · · · a2n B

...
...

. . .
...

am1 B am2 B · · · amn B

⎤
⎥⎥⎥⎦.

‖·‖1 denotes the 1-norm of a vector and ‖·‖2 denotes the 2-norm
of a vector or the induced 2-norm of a matrix.

This work aims to solve the following DGLE:
AT(t)X (t)B(t) + BT(t)X (t)A(t) = −C(t) (1)

where X (t) ∈ Rn×n is unknown. Coefficient matrices A(t),
B(t), and C(t) are assumed to be smooth and valued in Rn×n.
For ensuring the existence and uniqueness of X (t), a sufficient
and necessary condition [29] is cited as follows.

Assumption 1: For any t > 0, the matrix pencil λB(t) −
A(t) is regular, that is, there must be at least one λ such
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that |λB(t) − A(t)| �= 0, and all of its eigenvalues are finite.
Besides, λi + λ̄ j �= 0 holds for any two eigenvalues λi and λ j

with i, j ∈ {1, 2, . . . , n}.
By letting M(t) = BT(t) ⊗ AT(t) + AT(t) ⊗ BT(t), (1) is

vectorized as M(t)x(t) = −c(t), where x(t) = vec(X (t)) and
c(t) = vec(C(t)). According to [29], (1) is uniquely solvable
if and only if M(t) is nonsingular for any t . Hence, under
Assumption 1, M(t) is invertible.

Here, we present the design process of CZNN for solv-
ing (1) as follows:

1) Define the following error matrix to record the solution:
E(t) = AT(t)X (t)B(t) + BT(t)X (t)A(t) + C(t). (2)

2) Design an evolution formula for E(t)

d E(t)/dt = −γ E(t) (3)

where γ > 0 is an adjustable parameter.
3) By substituting (2) into (3), the nonlinear CZNN model

is derived as

AT Ẋ B + BT Ẋ A

= − ȦT X B − AT X Ḃ − ḂT X A

−BTX Ȧ − Ċ − γ
(

AT X B + BT X A + C
)

(4)

where the time variable t is omitted for ease of writing.
The following lemma indicates the dynamic property of

model (4) while solving (1).
Lemma 1 [11]: Given dynamic matrices A(t), B(t), and

C(t), which are assumed to satisfy Assumption 1, its state
matrix X (t) of CZNN (4) converges to the theoretical solution
of (1) globally and exponentially.

III. FP-RFTZNN MODEL

In this section, FP-RFTZNN and its perturbed model
are formulated and studied. The finite-time convergence of
FP-RFTZNN is described by a quoted theorem without proof,
whereas its robustness is confirmed theoretically by the analy-
sis of its perturbed model.

A. Design of FP-RFTZNN and Its Perturbed Version

By applying the SSBP-AF �(·) to CZNN (4),
the FP-RFTZNN model is obtained:

AT Ẋ B + BT Ẋ A

= − ȦT X B − AT X Ḃ − ḂT X A

−BT X Ȧ − Ċ − γ �
(
AT X B + BT X A + C

)
(5)

in which γ > 0, and �(·) is a function array:
�(q) = ( f (q1), f (q2), . . . , f (qn))

T

where q = (q1, q2, . . . , qn)
T, and

f (qi) = qi + sign(qi)|qi |r , i = 1, 2, . . . , n (6)

where r is a real constant with 0 < r < 1, and sign(qi) is a
function returning the sign of the input value qi .

When using circuits to realize neural networks, analog
circuit components are prone to produce high-order resid-
ual errors. In addition, it is not surprising that truncation

or rounding errors occur in digital implementation. Model
implementation errors eventually appear because of these
facts [30]. Taken differential error �A(t),�B(t),�C(t), and
hardware implementation error �H (t) into consideration, per-
turbed FP-RFTZNN model is obtained as follows:

AT Ẋ B + BT Ẋ A

= −(
Ȧ + �A

)T
X B − AT X

(
Ḃ + �B

)
−(

Ḃ + �B
)T

X A − BT X
(

Ȧ + �A
) − (

Ċ + �C
)

−γ �
(
AT X B + BT X A + C

) + �H . (7)

Because E(t) = AT(t)X (t)B(t) + BT(t)X (t)A(t) + C(t),
perturbed FP-RFTZNN (7) is reformulated as

Ė(t) = −γ �(E(t)) − �T
A X B − AT X�B − �T

B X A

−BTX�A − �C + �H

which is equivalent to

ė(t) = −γ �(e(t)) − �M (t)M−1(t)e(t)

+�M(t)M−1(t)c(t) + (�h(t) − �c(t))

where e(t) = vec(E(t)); �h(t) = vec(�H (t)); �c(t) =
vec(�C(t)); �M (t) = BT ⊗ �T

A + �T
B ⊗ AT + AT ⊗ �T

B +
�T

A ⊗ BT; and, M(t) and x(t) are defined as before.
Set R(t) = −�M(t)M−1(t) and r(t) = −R(t)c(t)+�h(t)−

�c(t), we have

ė(t) = −γ �(e(t)) + R(t)e(t) + r(t). (8)

From the above process, the robustness of FP-RFTZNN (5)
can be equivalently demonstrated by monitoring the solution
of (8).

B. Theoretical Analysis

Because it has been proven in [16] that RFTZNN (5) is
finite-time convergent, we simply state the theorem without
giving a concrete proof to avoid repetition.

Theorem 1: Given dynamic matrices A(t), B(t), and C(t),
which are assumed to satisfy Assumption 1, the state solution
X (t) to FP-RFTZNN (5), originating from any initial state
X (0) ∈ Rn×n, converges to the theoretical time-varying
solution of (1) in finite time tc with

tc ≤ max

{
1

(1 − r)γ
ln

(∣∣e+(0)
∣∣1−r + 1

)
,

1

(1 − r)γ
ln

(∣∣e−(0)
∣∣1−r + 1

)}

where e+(0) and e−(0) respectively refer to the largest and
smallest element of e(0).

As to the robustness of FP-RFTZNN (5), the following
theorem indicates the boundedness of its residual error.

Theorem 2: Given dynamic matrices A(t), B(t), and C(t),
which are assumed to satisfy Assumption 1, if ‖A(t)‖F ,
‖B(t)‖F , ‖C(t)‖F , ‖�A(t)‖F , ‖�B(t)‖F , ‖�H (t)−�C(t)‖F ,
and ‖M−1(t)‖F are, respectively, upper bounded by εA, εB ,
εC , δA, δB , δC , and φ, and γ > 2φε1/ρ, then

lim
t→+∞

∥∥X (t) − X∗(t)
∥∥

F
≤ n(n + 1)ε2φ

2(γρ − 2φε1)
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validates for neural state X (t) of perturbed FP-RFTZNN (7)
originating from any initial state X (0). Here, ε1 = δAεB +
εAδB , ε2 = 2φε1εC + δC , and ρ = f (|ei |)/|ei | > 1.

Proof: Considering (8), a Lyapunov function v =
‖e(t)‖2

2/2 ≥ 0 is defined in advance to facilitate the subsequent
analysis of convergence. The time derivative of v along the
solution to (8) is computed as

v̇ = eTė = eT(−γ f (e) + Re + r)

= −γ eT f (e) + eTRe + eTr. (9)

Evidently, the first term of (9) satisfies

−γ eT f (e) = −
n2∑

i=1

γ |ei | f (|ei |).

As to the second term of (9), we have eTRe ≤ ‖e‖2‖Re‖2 ≤
‖e‖2

2‖R‖F = eTe‖R‖F . The first inequality sign comes
from the Cauchy inequality, and the second inequality sign
results from the consistency between the induced 2-norm and
Frobenius-norm of a matrix. Besides

‖R‖F = ∥∥�M M−1
∥∥

F
≤ φ‖�M‖F

≤ φ
∥∥BT ⊗ �T

A + �T
B ⊗ AT + AT ⊗ �T

B + �T
A ⊗ BT

∥∥
F

≤ 2φ(‖B‖F‖�A‖F + ‖�B‖F‖A‖F )

≤ 2φ(δAεB + εAδB) := 2φε1.

For the last term of (9), eTr ≤ ‖e‖2‖r‖2 ≤ ‖e‖1‖r‖2.
Besides

‖r‖2 = ‖ − Rc + �h − �c‖2 ≤ ‖Rc‖2 + ‖�h − �c‖2

≤ ‖R‖F ‖c‖2 + ‖�h − �c‖2

= ‖R‖F ‖C‖F + ‖�H − �C‖F

≤ 2φε1εC + δC := ε2.

As a result

v̇ ≤ −
n2∑

i=1

γ |ei | f (|ei |) + 2φε1eTe + ε2‖e‖1

= −
n2∑

i=1

|ei |(γ f (|ei |) − 2φε1|ei | − ε2). (10)

Because inequality (10) has a similar form to inequality of
(25), it is natural to infer that there is a similar conclusion for
‖e(t)‖2. That is, ‖e(t)‖2 is bounded.

In fact, inequality (10) can be reformulated as

v̇ ≤ −
n2∑

i=1

|ei |(γ f (|ei |) − 2φε1|ei | − ε2)

= −
n2∑

i=1

|ei |(γρ|ei | − 2φε1|ei | − ε2)

= −(γρ − 2φε1)

n2∑
i=1

|ei |
(

|ei | − ε2

γρ − 2φε1

)

where there exists a sensitive parameter ρ = f (|ei |)/|ei | > 1.
By analyzing the last formula, we can easily find that when

|ei | = ε2

2(γρ − 2φε1)
, i ∈ {

1, . . . , n2
}

the i th term of the last formula can achieve its highest value.
Set the values of all terms except the i th term as the

maximum they can reach. For any i ∈ {1, 2, . . . , n2}, we have

v̇ ≤ −(γρ − 2φε1)

(
|ei |2 − ε2

γρ − 2φε1
|ei |

−
(
n2 − 1

)
ε2

2

4(γρ − 2φε1)
2

)
. (11)

We denote

Z(|ei |) = |ei |2 − ε2

γρ − 2φε1
|ei | −

(
n2 − 1

)
ε2

2

4(γρ − 2φε1)
2

then the solution of Z(|ei |) = 0 is

|ei | = (n + 1)ε2

2(γρ − 2φε1)
.

This leads to

max
1≤i≤n2

|ei(t)| ≤ (n + 1)ε2

2(γρ − 2φε1)
(12)

for sufficiently large t . If not, there exists k ∈ {1, 2, . . . , n2},
such that |ek(t)| goes beyond that upper bound in inequal-
ity (12). Considering the graph of Z(|ei |) and (11), it can
be deduced that v̇ ≤ 0, which forces ‖e(t)‖2 to decrease.
Accordingly, ‖e(t)‖2 will keep decreasing until |ek(t)| satisfies
the inequality (12). Thus, inequality (12) validates.

Further, we obtain

lim
t→+∞‖E(t)‖F ≤ lim

t→+∞ n max
1≤i≤n2

|ei(t)| ≤ n(n + 1)ε2

2(γρ − 2φε1)
.

Because ‖X (t) − X∗(t)‖F = ‖M−1(t)e(t)‖2, we have

lim
t→+∞

∥∥X (t) − X∗(t)
∥∥

F
≤ lim

t→+∞ ϕ‖e(t)‖2 ≤ n(n + 1)ε2φ

2(γρ − 2φε1)
.

The proof of Theorem 2 is now completed. �

IV. VP-RFTZNN MODEL

It is unpractical for users to adjust the parameters at every
turn to meet different requirements on accuracy and conver-
gence time. An exponential-type varying-parameter γ exp(t)
is thus employed to achieve faster convergence and better
robustness. Based on this, VP-RFTZNN for solving DGLE
is established, as well as its perturbed model. As proved,
VP-RFTZNN has great advantages in terms of convergence
and robustness: when perturbations do not exist, it converges
faster than FP-RFTZNN; when perturbations exist, it still
converges.

A. Design of VP-RFTZNN and Its Perturbed Version

Because of the similarity to the aforementioned
FP-RFTZNN model, we directly present the VP-RFTZNN
model as follows:

AT Ẋ B + BT Ẋ A

= − ȦT X B − AT X Ḃ − ḂTX A − BT X Ȧ

−Ċ − γ exp(t)�
(

AT X B + BT X A + C
)
. (13)
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Analogous to Section III-A, the perturbed VP-RFTZNN can
be designed as follows:

AT Ẋ B + BT Ẋ A

= −(
Ȧ + �A

)T
X B − AT X

(
Ḃ + �B

)
−(

Ḃ + �B
)T

X A − BT X
(

Ȧ + �A
) − (

Ċ + �C
)

−γ exp(t)�
(
AT X B + BT X A + C

) + �H (14)

which can be reformulated as

ė(t) = −γ exp(t)�(e(t)) + R(t)e(t) + r(t) (15)

where �A,�B,�C ,�H , R(t), and r(t) are defined as in the
previous section.

Remark 1: By the method of vectorization and simple math-
ematical transformations, we can transform VP-CFTZNN (13),
which is established in matrix manner, into an explicit dynamic
equation showing the relationship between the neurons. And
then, the circuit diagram of this model can clearly show the
realizability of VP-RFTZNN (13).

1) At first, vectorizing VP-RFTZNN (13) leads to

M(t)ẋ(t) = −Ṁ(t)x(t) − ċ(t) − γ exp(t)

·�(M(t)x(t) + c(t))

where M(t) is defined as before, x(t) = vec(X (t)) ∈
Rn2×1, and c(t) = vec(C(t)) ∈ Rn2×1.

2) Next, rewrite it as

ẋ(t) = (M(t) + I )ẋ(t) + Ṁ(t)x(t) + ċ(t) + γ exp(t)

·�(M(t)x(t) + c(t))

in which I ∈ Rn2×n2
represents the identity matrix.

3) The evolution formula of the i th neuron can be formu-
lated as

ẋi(t) =
n2∑

j=1

m̄i j ẋ j(t) +
n2∑
j=1

m̃i j x j(t) + ċi(t)

+γ exp(t) f

⎛
⎝ n2∑

j=1

mi j(t)x j(t) + ci (t)

⎞
⎠. (16)

Here, we denote by xi(t) the value of the i th neuron
at time instant t . For any vector v, we denote the i th
element by vi . For any matrix Y , we denote it by (yi j),
where the subscript i j refers to the element at row i and
column j . Here, M(t)+ I = (m̄i j(t)), Ṁ(t) = (m̃i j(t)),
and M(t) = (mi j(t)).

Now, we can show the circuit implementation of our VP-
RFTZNN (13) according to (16) as in Fig. 1.

Remark 2: As in Fig. 1, a separate processor is required
to handle the nonlinear AF. Li and Li [32] have depicted
the detailed hardware realization of the typical SBP-AF with
analog devices, including diodes, amplifiers, etc. This also
indicates that SSBP-AF (6) is realizable with analog devices.
We omit the specific realization because of the similarity
between the typical SBP function and SSBP-AF (6).

B. Theoretical Analysis

In this section, theoretical analyses are conducted to prove
the finite-time convergence of VP-RFTZNN (13). In addition,
perturbed VP-RFTZNN (14) is proven to converge as time
tends to positive infinity. More definite expressions, concern-
ing the upper and lower bounds for the residual error, as well
as the specific time it takes to start decreasing monotonically
and super-exponentially, are estimated quantitatively.

Theorem 3: Given dynamic matricesA(t), B(t), and C(t),
which is assumed to satisfy Assumption 1, the state solution
X (t) of VP-RFTZNN (13), originating from any initial state
X (0) ∈ Rn×n, converges to the theoretical time-varying
solution to (1) in finite time tc:

tc ≤ max

{
ln

(
1

(1 − r)γ
ln

(∣∣e+(0)
∣∣1−r + 1

)
+ 1

)

ln

(
1

(1 − r)γ
ln

(∣∣e−(0)
∣∣1−r + 1

)
+ 1

)}

in which e+(0) and e−(t) are defined as in Theorem 1.
Proof: At first, we assumed that e+(0) ≥ ei(0) and

e−(0) ≤ ei(0), i ∈ {1, 2, . . . , n2}. Note that the time deriv-
ative of every element in e(t) has the same expression; we
conclude that e+(t) ≥ ei (t) and e−(t) ≤ ei (t),∀t ≥ 0, i ∈
{1, 2, . . . , n2}. Hence, If e+(tc) = 0 and e−(tc) = 0 for
tc < +∞, every element ei (t) in e(t) converges to 0 within
finite time.

Besides, the vector form of the error function satisfies
ė(t) = −γ exp(t)�(e(t)), which leads to

ėi(t) = −γ exp(t)
(
ei(t) + sign(ei (t))|ei(t)|r

)
. (17)

It is clear that ėi(t) has the opposite sign from ei (t).
Hence, ei(t) decreases monotonically and keeps nonnegative
when ei (0) ≥ 0, and increases monotonically but still keeps
nonpositive when ei(0) ≤ 0. This implies that once ei(t)
reaches 0, it will maintain this stable state. Namely, ∀t ≥ tc,
e+(t) = 0 and e−(t) = 0 hold true.

Next, we only focus on the case of e+(t), because e−(t)
can be certificated through the same arguments. Specifically,
the convergence of e+(t) will be divided into the following
three cases according to the sign of e+(0):

1) When e+(0) > 0, we have

ė+(t) = −γ exp(t)
(
e+(t) + (

e+(t)
)r)

which can be further rewritten as

d
(
e+(t)

)
e+(t) + (e+(t))r = −γ exp(t)dt . (18)

Supposing that there exists t+
f ≥ 0 such that e+(t+

f ) = 0,
integrating (18) from 0 to t+

f results

∫ e+
(

t+
f

)

e+(0)

d
(
e+(t)

)
e+(t) + (e+(t))r =

∫ t+
f

0
−γ exp(t)dt

from which the following result is obtained:
1

1 − r
ln

((
e+(t)

)1−r + 1
)∣∣0

e+(0)
= −γ exp(t)

∣∣t+
f

0 .
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Fig. 1. Circuit schematic for VP-RFTZNN (13).

That is,

1

1 − r
ln

1

(e+(0))1−r + 1
= −γ exp

(
t+

f

)
+ γ.

Hence, we can solve t+
f as

t+
f = ln

(
1

(1 − r)γ
ln

((
e+(0)

)1−r + 1
)

+ 1

)
.

2) When e+(0) < 0, we have

ė+(t) = −γ exp(t)
(
e+(t) − (

e+(t)
)r)

which can be further rewritten as

d
(
e+(t)

)
e+(t) − (e+(t))r = −γ exp(t)dt .

Recall that if e+(0) < 0, we have e+(t) ≤ 0,∀t ≥ 0.
Hence, −|e+(t)| = e+(t) validates for all nonnegative t ,
which leads to

−d
(∣∣e+(t)

∣∣)
−∣∣e+(t)

∣∣ − ∣∣e+(t)
∣∣r = −γ exp(t)dt .

That is,

d
(∣∣e+(t)

∣∣)∣∣e+(t)
∣∣ + ∣∣e+(t)

∣∣r = −γ exp(t)dt

which has a similar form of (18). Consequently, after
analogous procedures, t+

f can be calculated as

t+
f = ln

(
1

(1 − r)γ
ln

(∣∣e+(0)
∣∣1−r + 1

)
+ 1

)
.

3) When e+(0) = 0, it is evident that 0 is lower than the
UB-CT t+

f .

To sum up the above three cases for e+(t), the UB-CT t+
f

can be estimated as

t+
f = ln

(
1

(1 − r)γ
ln

(∣∣e+(0)
∣∣1−r + 1

)
+ 1

)
.

Similarly, we can also deduce the UB-CT t−
f for the

situation of e−(t)

t−
f = ln

(
1

(1 − r)γ
ln

(∣∣e−(0)
∣∣1−r + 1

)
+ 1

)
.

As a result, the UB-CT for the VP-RFTZNN (13) is derived
as

tc ≤ max

{
ln

(
1

(1 − r)γ
ln

(∣∣e+(0)
∣∣1−r + 1

)
+ 1

)
,

ln

(
1

(1 − r)γ
ln

(∣∣e−(0)
∣∣1−r + 1

)
+ 1

)}
.

�
Evidently, VP-RFTZNN (13) achieves a faster conver-

gence rate than FP-RFTZNN (5) according to the inequal-
ity ln(1 + x) < x when x > 0. As to the robustness,
the following two theorems reveal the great advantage of VP-
RFTZNN (13) through analyzing the convergence of perturbed
VP-RFTZNN (14).

Theorem 4: With ρ, φ, and ε1 defined in Theorem 2, assum-
ing that γρ exp(t) > 2φε1, residual error ‖E(t)‖F of perturbed
VP-RFTZNN (14) decreases to 0 as time evolves, which
indicates that the solution of VP-RFTZNN (14) converges to
the theoretical solution of (1).

Proof: Analogous to Theorem 2, an upper bound for the
residual error ‖E(t)‖F can be derived as

‖E(t)‖F ≤ n(n + 1)ε2

2(γ exp(t)ρ − 2φε1)
:= w(t).
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This leads to the fact that limt→+∞ ‖E(t)‖F = 0 and
limt→+∞ ‖X (t) − X∗(t)‖F = 0, which completes the proof.�

Remark 3: Because of the monotonicity of varying parame-
ter γ exp(t), it takes finite time t̄ = ln((2φε1)/(γρ)) to achieve
γρ exp(t) > 2φε1. Hence, starting from X (t̄), the solution of
perturbed VP-RFTZNN (14) converges to the theoretical state
X∗(t). That is, the requirement on parameter as described in
Theorem 4 is in fact nothing. The global convergence and
unconstrained parameter show the significant advantage of
perturbed VP-RFTZNN (14) over perturbed FP-RFTZNN (7),
indicating the great superiority of VP-RFTZNN (13) over
FP-RFTZNN (5).

It is noted that the uniform boundedness of coefficient matri-
ces and perturbation matrices in Theorem 2 and Theorem 4 are
too strong. In reality, this is necessary for FP-RFTZNN (5),
but not for VP-RFTZNN (13). When it comes to linear per-
turbation matrices, ε1 and ε2, which used to be two constants,
grow linearly with time t . For Theorem 2, the upper bound of
residual error converges to +∞. For Theorem 4, the exponen-
tial item γ exp(t)ρ grows much faster than any polynomial
function, and thus VP-RFTZNN (13) still converges. The
following corollary illustrates this view.

Corollary 1: Suppose that the Frobenius norms mentioned
in Theorem 2 are bounded but not uniformly bounded, which
means εA = εA(t), εB = εB(t), εC = εC(t), φ = φ(t), δA =
δA(t), δB = δA(t), and δC = δC(t). The neural state X (t) of
VP-RFTZNN (13) will converge to X∗(t) if

lim
t→+∞

n(n + 1)φ(t)ε2(t)

2γ exp(t)ρ − 4φ(t)ε1(t)
= 0

where ε1(t) and ε2(t) are defined as in Theorem 2.
Remark 4: According to Corollary 1, it can be deduced

that VP-RFTZNN (13) still converges when upper bounds of
corresponding matrices are polynomial functions. However,
the convergence might be very slow. Hence, it is wise to
choose an appropriate parameter γ making γ exp(t)ρ >
2φ(t)ε1(t) valid for any t ≥ 0. For example, suppose that
2φ(t)ε1(t) = ∑p

i=0 ai t i , γ satisfying γ > max0≤ j≤p{ j !a j}/ρ
would be a good choice.

Theorem 5: Under the same conditions as Theorem 4, after
a period time of t1 ≥ 0, the residual error ‖E(t)‖F of per-
turbed VP-RFTZNN (14) will either monotonically decrease
to the interval [0, w(t)] at a super-exponential convergence
rate s(t) in a finite time and stay within this interval all
time, or monotonically decrease to 0 with a super-exponential
convergence rate s(t) and stay within the interval [w(t),w(t)]
all time. The involved unknown parameters are derived as

t1 = ln
4φε1 + √

2nε2

2γ +
(√

2s1

)1+r
γ

s(t) = (1 − α)(g2(t) − g2(t2))

2(t − t2)

w(t) = 2nε2

α

(
2γ exp(t) +

(√
2s1

)r+1
γ exp(t) − 4φε1

)

among which s1 > 0 and 0 < α < 1 are positive constants,
and

g1(t) =
(

2 +
(√

2s1

)r+1
)

γ exp(t) −
(

4φε1 + √
2nε2

)
t

g2(t) =
(

2 +
(√

2s1

)r+1
)

γ exp(t) − 4φε1t

t2 = h1

(
g1(t1) − 2 + 2

√
v(t1)

)
where h1(·) is the inverse function of g1(·).

Proof: Similar to Theorem 2, we define v(t) = ‖e(t)‖2
2/2

and can deduce that

v̇(t) ≤ −γ exp(t)
(‖e(t)‖2

2 + ‖e(t)‖r+1
r+1

) + 2φε1‖e(t)‖2
2

+ε2‖e(t)‖1

≤ −γ exp(t)
(‖e(t)‖2

2 + (s1‖e(t)‖2)
r+1) + 2φε1‖e(t)‖2

2

+nε2‖e(t)‖2

≤ −γ exp(t)
(

2v(t) + sr+1
1 (2v(t))

r+1
2

)
+ 4φε1v(t)

+nε2

√
2v(t)

= −(2γ exp(t) − 4φε1)v(t) −
(√

2s1

)r+1
γ exp(t)

·(v(t))
r+1

2 + √
2nε2(v(t))

1
2 .

The second inequality comes from the fact that ‖u‖2 ≤
‖u‖1 ≤ n‖u‖2 and s1‖u‖2 ≤ ‖u‖r+1 ≤ s2‖u‖2 for any u ∈
Rn2×1, in which s1 and s2 are positive constants. We claim that
such constants exist because of the equivalence of norms.

When t ≥ t1, we have ġ1(t) ≥ 0 and ġ2(t) ≥ 0. According
to the result in Theorem 4, it is clear that limt→+∞ v(t) = 0.
Therefore, if v(t1) ≥ 1, there exists t2 ≥ t1 such that v(t) ≥ 1
validates for any t ∈ [t1, t2] and v(t2) = 1. In this case, v(t) ≥
(v(t))(1+r)/2 ≥ (v(t))1/2 for any t ∈ [t1, t2]. Hence,

v̇ ≤ −(2γ exp(t) − 4φε1)v
1
2 −

(√
2s1

)r+1
γ exp(t)v

1
2

+√
2nε2v

1
2 = −ġ1(t)v

1
2 ≤ 0.

Integrating both sides of inequality v̇(t) ≤ −ġ1(t)(v(t))1/2

from t1 to t2, we have

2 − 2
√

v(t1) ≤ g1(t1) − g1(t2).

Because ġ1(t) > 0 validates for any t > t1, g1(t) monoton-
ically increases in the interval [t1, t2]. The inverse function
t = h1(y) exists and monotonically increases in the interval
[t1, t2]. Thus,

t2 ≤ h1

(
g1(t1) − 2 + 2

√
v(t1)

)
.

Here, we have to note that, if

γ ≥ 4φε1 + √
2nε2

2 +
(√

2s1

)r+1 := γ0

then, t1 = 0 and

t2 = h1

((
2γ +

(√
2s1

)r+1
)

γ − 2 + 2
√

v(0)

)
.

Now, we have proved that after a period of time t1, if
v(t1) ≥ 1, v(t) will monotonically decrease to 1 within a finite
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time of t2 − t1. Especially, in the case of γ ≥ γ0, if v(0) ≥ 1,
v(t) will monotonically decrease to 1 within a finite time of t2.

For the case of v(t1) < 1, we let t2 = t1. Then v(t2) ≤ 1.
Now, we only have to discuss the case of t ≥ t2.

We claim that v(t) ≤ 1 validates for any t ∈ [t2,+∞).
If not, there exists t̃ > t2, such that v(t̃) > 1. Set t3 = max{t ∈
[t2, t̃)|v(t) = 1}, for t ∈ (t3, t̃], it is clear that v(t) > 1.
However, according to the previous analysis, v̇(t3) < 0. This
leads to a contradiction.

In this situation, v(t) ≤ (v(t))(r+1)/2 ≤ v(t)1/2 and

v̇ ≤ −(2γ exp(t) − 4φε1)v −
(√

2s1

)r+1
γ exp(t)v

+√
2nε2v

1/2

= −ġ2(t)v + √
2nε2v

1/2

= −(1 − α)ġ2(t)v −
(
αġ2(t)v − √

2nε2v
1/2

)
.

One sufficient condition for v̇(t) ≤ 0 to be valid is

αġ2(t)v(t) ≥ √
2nε2(v(t))1/2.

That is,

(v(t))1/2 ≥
√

2nε2

αġ2(t)

which leads to ‖e(t)‖2 ≥ w(t).
When ‖e(t)‖2 ≥ w(t), we have

v̇(t) ≤ −(1 − α)ġ2(t)v(t).

According to the theory of ordinary differential equations
as well as the comparison theorem, it is evident that

v(t) ≤ v(t2) exp(−(1 − α)(g2(t) − g2(t2))).

As a result

∥∥e(t)
∥∥

2 ≤ ∥∥e(t2)
∥∥

2 exp

(−(1 − α)(g2(t) − g2(t2))

2

)
.

This means, once the residual error ‖E(t)‖F exceeds w(t),
it will monotonically decrease to the interval [0, w(t)] with an
exponential convergence rate

s(t) = (1 − α)(g2(t) − g2(t2))

2(t − t2)
.

We call it super-exponential convergent because
limt→+∞ s(t) = +∞. If it takes tc ∈ [t2,+∞) for
‖E(t)‖F to converge to the interval [0, w(t)], it will stay
in this interval all time after the convergence. Or else, with
a super-exponential convergence rate, the residual error
‖E(t)‖F will decrease to 0 monotonically and infinitely, and
it keeps in the interval [w(t),w(t)] after a finite time. The
proof is completed. �

Theorem 5 further demonstrates the monotonicity and
super-exponential convergence of perturbed VP-RFTZNN (14)
and shows quantitatively estimated expressions concerning
the bounds for the error state and the time it takes to start
decreasing monotonically and super-exponentially.

V. COMPARISON VERIFICATION

With above theoretical analyses, VP-RFTZNN (13) is veri-
fied to be superior to FP-RFTZNN (5) in terms of convergence
and robustness when applied to solve (1). In this section,
an example of DGLE is elegantly constructed for verifying
the superiority. Because of the strong robustness of PIDT-ZNN
in [23] and [33], of which the design formula is

Ė(t) = −γ

(
�(E(t)) +

∫ t

0
�(E(s))ds

)
(19)

it is also cited to solve the example as a comparison. As seen,
the same nonlinear AF as models (5) and (13) is applied to
PIDT-ZNN (19) to make sure the comparison is fair. In the
end, a robot manipulator with four degree of freedom (DOF)
is shown and controlled by the method of VP-RFTZNN to
draw a circle in 3-D Euclidean space. Relevant experiments
are completed based on the ode45 solver of MATLAB.

A. Numerical Example

Based on the example of standard Lyapunov equation
in [16], an example of DGLE is constructed as follows:

A(t) =
⎡
⎢⎣−1 − 1

2
cos(2t)

1

2
sin(2t)

1

2
sin(2t) −1 + 1

2
cos(2t)

⎤
⎥⎦

B(t) =
⎡
⎢⎣

2

3
cos(2t) − 4

3
−2

3
sin(2t)

−2

3
sin(2t) −2

3
cos(2t) − 4

3

⎤
⎥⎦

C(t) =
⎡
⎢⎣−2 cos(t)

10

3
sin(t)

−4

3
sin(t) −2 cos(t)

⎤
⎥⎦

X (t) =
[

cos(t) − sin(t)
sin(t) cos(t)

]
.

Note that this constructed example is uniquely solvable
and that the coefficient matrices are uniformly bounded. It is
calculated that

εA =
√

10

2
, εB = 2

3

√
10, εC = 10

3

√
2, φ =

√
17

5
.

To testify the robustness of two RFTZNN models, the fol-
lowing four kinds of perturbation matrices are considered:

1) Constant: �A = �B = �H − �C ≡ 1/4E2.
2) Sinusoidal

�A =
[

cos(t) 0
0 sin(t)

]
, �B =

[
sin(t) 0

0 cos(t)

]

�H − �C =
[

sin(t) 0
0 − cos(t)

]
.

3) Linear: �A = �B = �H − �C = 1/4t E2.
4) Quadratic: �A = �B = �H − �C = 1/4t2 E2.

The first two groups of perturbation matrices satisfy the uni-
formly bounded condition required by Theorem 2, Theorem 4,
and Theorem 5, whereas the last two do not. According to
Theorem 2, to ensure the boundedness of residual error of
FP-RFTZNN (5), γ should be larger than 3.0423 for the first
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Fig. 2. Transient behaviors of FP-RFTZNN (5), VP-RFTZNN (13), and PIDT-ZNN (19) when applied to solve the example in Section V-A. The red solid
curves correspond to the theoretical solution X∗(t). (a) X11(t). (b) X12(t). (c) X21(t). (d) X22(t). (e) ‖X (t) − X∗(t)‖F . (f) ‖X (t) − X∗(t)‖F . (g) ‖E(t)‖F .
(h) ‖E(t)‖F .

Fig. 3. Transient behaviors of FP-RFTZNN (5), VP-RFTZNN (13), and PIDT-ZNN (19) when applied to solve the example in Section V-A with four kinds
of perturbation matrices are considered. (a) Constant. (b) Sinusoidal. (c) Linear. (d) Quadratic.

group of perturbation matrices and be larger than 6.0846 for
the second group. As to the last two cases, the boundedness
cannot be guaranteed. According to Remark 3 and Corollary 1,
VP-RFTZNN (13) is convergent for the four cases with any
γ > 0. However, it is wise to set γ > 3.0423 for the constant
case; γ > 6.0846 for the sinusoidal case; γ > 3.0423 for the
linear case; and γ > 6.0846 for the quadratic case.

1) Convergence: Set γ = 3 and X (0) = 1.5E2. Fig. 2 illus-
trates the convergence performance of two RFTZNN models
when applied to solve this DGLE. As seen, PIDT-ZNN (19)
is also experimented as a comparison. Noting that the relative
tolerance and absolute tolerance are adjusted as 10−6 and
10−8, respectively, we compare the convergence speed of the
three models by observing the time when the error norms
in Fig. 2(f) and (h) converge to 10−6. It is evident that
VP-RFTZNN (13) has the fastest convergence rate, followed
by FP-RFTZNN (5) and PIDT-ZNN (19). Besides, the conver-
gence curve of PIDT-ZNN (19) has obvious delay convergence
property, which resulted from the integral item of its design
formula. The factor contributing to the good robustness of
PIDT-ZNN (19) also brings the model bad influence to the
convergence. As observed in Fig. 2(h), the residual errors
of FP-RFTZNN (5) and VP-RFTZNN (13) converge to 10−6

after about 0.63 s and 0.49 s, respectively. This observation

coincides with the deductions in Theorem 1 and Theorem 3.
Actually, it is easy to calculate the UBs-CT of two RFTZNN
models as 0.6380 s and 0.4935 s, respectively.

2) Robustness: The initial state is set to 1.5E2, the rela-
tive tolerance is set to 10−4, and the absolute tolerance is
set to 10−6. According to the analysis at the beginning of
Section V-A, we set γ = 3.1 for the constant case; γ = 6.1 for
the sinusoidal case; γ = 3.1 for the linear case; and γ = 6.1
for the quadratic case. As can be seen in Fig. 3, the solution
error of VP-RFTZNN (13) monotonically converges to the
level of 10−4 within less than 0.4 s for the four kinds of
perturbation matrices, whereas that of FP-RFTZNN (5) is
bounded only if the perturbation matrices are constant or
sinusoidal. That is, the uniform boundedness of perturbation
matrices is necessary for FP-RFTZNN model to realize its
boundedness of solution error. In addition, VP-RFTZNN (13)
can monotonically converge to a good accuracy in a short time,
whereas PIDT-ZNN (19) that claims good robustness perform
about as well over this time period as FP-RFTZNN (5) that
converges only to a bounded interval.

B. Application to Robot Manipulator

A robot manipulator consisting of three revolute joints
and one prismatic joint is shown in Fig. 4(a), and its
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Fig. 4. Simulation performance of VP-RFTZNN (13) controlling a 4-DOF robot to draw a circle in 3-D Euclidean space. (a) Simulated appearance of the
4-DOF robot. (b) Joints position in motion, which is described by the origin of the joint coordinate system. (c) Phase of the moving robot. (d) Distance
between the actual position and the desired position.

TABLE I

DH PARAMETER LIST

Denavit-Hartenberg (DH) parameter list defined by the mod-
ified DH parameter method [34] is summarized in Table I,
with p1, p2, p3, and p4 representing the joint variables. Here
the robot is controlled by VP-RFTZNN (13) to draw a circle
in 3-D Euclidean space within 3.1 s, of which the coordinate
is

lc(t) = [0.75 cos(2π t/3), 0.75 sin(2π t/3), 0.6], t ∈ [0, 3].

For convenience, the position of the end-effector is assumed
to coincide with the origin of the fourth joint coordinate
system. Evidently, the forward kinematic equation of the robot
is

le(t) =
⎡
⎣0.5 cos p1 cos p3 + 0.5 cos p1

0.5 sin p1 cos p3 + 0.5 sin p1

0.5 sin p3 + 0.3 + p2

⎤
⎦ := h(p(t))

where p(t) = [p1(t), p2(t), p3(t), p4(t)]. The control formu-
las based on VP-RFTZNN (13) are formulated as

ṗ(t) = J +(p)
(
l̇c(t) + γ exp(t)�(lc − h(p(t)))

)
where J (p) represents the Jacobian matrix of h(p) with
respect to p, and J +(p) represents the pseudo-inverse of J (p).
Set γ = 3 and p(0) = [0, 0.4, π/6, π/3]. Fig. 4(b)–(d) shows
that the method based on VP-RFTZNN (13) can effectively
control the robot to draw a curve that is very consistent with
the target trajectory, and it takes only 0.1 s for the robot to
follow the desired path.

VI. CONCLUSION

Based on the purpose of searching a more efficient approach
to solve DGLE in real time, a new design formula with
time-varying parameter was proposed and compared with the
case of fixed parameter. Rigorous mathematical proof of con-
vergence for VP-RFTZNN was presented and the UB-CT was

estimated to show its superiority to FP-RFTZNN. Then, their
robustness were further proved by analyzing two perturbed
RFTZNN models with differential errors and implementation
errors. The convergence of perturbed VP-RFTZNN model
was obtained, which indicated the superiority of VP-RFTZNN
model to FP-RFTZNN model. Comparative simulations fur-
ther certificated the efficacy and superiority of VP-RFTZNN
model over FP-RFTZNN model when tackling DGLE online.
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