
1724 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

COALA: A Compiler-Assisted Adaptive
Library Routines Allocation Framework for

Heterogeneous Systems
Qinyun Cai , Guanghua Tan , Wangdong Yang , Xianhao He , Yuwei Yan , Keqin Li , Fellow, IEEE,

and Kenli Li , Senior Member, IEEE

Abstract—Experienced developers often leverage well-tuned li-
braries and allocate their routines for computing tasks to enhance
performance when building modern scientific and engineering
applications. However, such well-tuned libraries are meticulously
customized for specific target architectures or environments.
Additionally, the performance of their routines is significantly
impacted by the actual input data of computing tasks, which
often remains uncertain until runtime. Accordingly, statically
allocating these library routines may hinder the adaptability of
applications and compromise performance, particularly in the
context of heterogeneous systems. To address this issue, we pro-
pose the Compiler-Assisted Adaptive Library Routines Allocation
(COALA) framework for heterogeneous systems. COALA is a
fully automated mechanism that employs compiler assistance for
dynamic allocation of the most suitable routine to each com-
puting task on heterogeneous systems. It allows the deployment
of varying allocation policies tailored to specific optimization
targets. During the application compilation process, COALA
reconstructs computing tasks and inserts a probe for each of these
tasks. Probes serve the purpose of conveying vital information
about the requirements of each task, including its computing
objective, data size, and computing flops, to a user-level allocation
component at runtime. Subsequently, the allocation component
utilizes the probe information along with the allocation policy
to assign the most optimal library routine for executing the
computing tasks. In our prototype, we further introduce and
deploy a performance-oriented allocation policy founded on
a machine learning-based performance evaluation method for
library routines. Experimental verification and evaluation on

Manuscript received 10 August 2023; revised 18 March 2024; accepted
30 March 2024. Date of publication 9 April 2024; date of current version
11 June 2024. This work was supported in part by the National Key
R&D Program of China under Grant 2022YFF0606302, in part by the Key
Program of National Natural Science Foundation of China under Grant
U21A20461, Grant 62227808, and Grant 92055213, in part by the major
projects of Xiangjiang Laboratory under Grant 22xj01011, and in part by
China Scholarship Council (CSC). Recommended for acceptance by C. Li.
(Corresponding authors: Guanghua Tan; Wangdong Yang.)

Qinyun Cai, Guanghua Tan, Wangdong Yang, Xianhao He, Yuwei Yan,
and Kenli Li are with the College of Computer Science and Electronic
Engineering, Hunan University, Hunan 410082, China, and also with the
National Supercomputing Center in Changsha, Hunan 410082, China (e-mail:
hnutsai@hnu.edu.cn; guanghuatan@hnu.edu.cn; yangwangdong@hnu.edu.cn;
hexianhao@hnu.edu.cn; yanyuwei@hnu.edu.cn; lkl@hnu.edu.cn).

Keqin Li is with the College of Computer Science and Electronic En-
gineering, Hunan University, Hunan 410082, China, also with the National
Supercomputing Center in Changsha, Hunan 410082, China, and also with
the Department of Computer Science, State University of New York, New
Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TC.2024.3385269

two heterogeneous systems reveal that COALA can significantly
improve application performance, with gains of up to 4.3x for
numerical simulation software and 4.2x for machine learning
applications, and enhance system utilization by up to 27.8%.

Index Terms—Compiler assistance, computing task, dynamic
allocation, high-performance computing, library routine.

I. INTRODUCTION

EFFECTIVE use of computing libraries, such as BLAS [1],
FFT [2], tensor [3], and SPARSE [4], is an important

technique for developers to build high-performance scien-
tific or engineering computing applications [5]. Well-crafted
computing library implementations of these libraries that are
manually tuned by domain experts can deliver much higher
performance than code generated by compilers [6]. These li-
braries are carefully tailored for specific target architectures or
environments. For the instance of the popular BLAS (Basic
linear algebra subprograms) library, many highly optimized
implementations are available for heterogeneous systems: MKL
[7], [8] customized for Intel CPUs, OpenBLAS [9] supported by
OpenMP [10] or POSIX [11], ATLAS [12] with automatically
tuned ability, CuBlas [13] customized for Nvidia GPUs, and
ClBLASt [14] supported by OpenCL [15]. Although routines
from different BLAS library implementations can perform the
same calculation, they may behave a critical difference when
handle a dynamic computing task. The dynamic computing
task refers to a computing task where the actual computational
operations or data are not fully specified or determined until
runtime, rather than being predefined statically. Library routines
are significantly influenced by the characteristics of the input
data of computing tasks, which often remains uncertain until
runtime. Accordingly, solely relying on a single library im-
plementation may not be optimal for applications, as dynamic
computing tasks could exceed the the optimal performance
range of the library’s routines at runtime. Therefore, develop-
ers should consider multiple library implementations and their
corresponding routines during software development to ensure
the utilization of the most efficient and effective routines from
these libraries.

Efficient utilization of computing resources and enhance-
ment of application performance remains a challenging research
problem [16], [17]. Particularly, when addressing the allocation

0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7642-457X
https://orcid.org/0000-0001-6001-2351
https://orcid.org/0000-0003-2681-7898
https://orcid.org/0000-0001-7348-1157
https://orcid.org/0009-0002-3687-4933
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0002-2635-7716
mailto:hnutsai@hnu.edu.cn
mailto:guanghuatan@hnu.edu.cn
mailto:yangwangdong@hnu.edu.cn
mailto:hexianhao@hnu.edu.cn
mailto:yanyuwei@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:lik@newpaltz.edu


CAI et al.: COALA: A COMPILER-ASSISTED ADAPTIVE LIBRARY ROUTINES ALLOCATION FRAMEWORK FOR HETEROGENEOUS SYSTEMS 1725

Fig. 1. Two computing tasks need to be executed on the heterogeneous system via two alternative library routines, but naively allocating routines cannot
bring the optimal performance.

of library routines for dynamic computing tasks, this chal-
lenging is further compounded by three critical issues. Firstly,
allocating routines from multiple library implementations and
assigning an optimal one to each dynamic computing task is
inherently difficult. It necessitates not only programmers’ ex-
tensive experience in utilizing these routines but also accu-
rate prediction of the characteristics of the target computing
task. Furthermore, it imposes a substantial workload on pro-
grammers, requiring them to manage diverse and complex as-
signments. Secondly, allocating routines from only one library
implementation and assigning an optimal one to each dynamic
computing task is easy but hard to bring an overall optimum
in applications. There has yet to be a one-for-all library im-
plementation that could perfectly suit various situations that
varying input data features and uncertain computing resources.
Although most programmers would select an appropriate li-
brary implementation to cover all tasks, the application’s effect
depends on the developers’ experience. Lastly, static allocation
of routines imposes limitations on the software, input data, and
platform. When users intend to execute the software on a new
platform, they are compelled to manually modify the code for
using another library implementation, entailing a significant
workload. Therefore, these issues can be prohibitive for both de-
velopers and users, hindering the efficient allocation of library
implementation routines and impeding the adoption of software
across different platforms.

A. Motivating Example

Fig. 1 illustrates the issue in a heterogeneous system, where
the peak theoretical performance of GPU is ten times that
of CPU (assuming that 10 Tflops of CPU and 100 Tflops of
GPU), and the bandwidth between CPU and GPU is 32 GB/s. It
assumes that an application has two dynamic computing tasks;
task 1 has a considerable input data size, while task 2 has
a small input data size. Both of them are going to perform
a General Matrix Multiplication (GEMM) with the help of
the BLAS library; Two highly optimized implementations are

available for these tasks, each of which can supply a GEMM
routine. Nevertheless, the BLAS-CPU-GEMM routine executes
tasks on the CPU while the BLAS-GPU-GEMM routine exe-
cutes tasks on GPU. Fig. 1(a) shows the process of assigning
BLAS-CPU-GEMM routine for tasks, while Fig. 1(b) shows
the other. We can easily estimate the total time cost for these
two situations:

• Fig. 1(a): the total time cost is 104.00 ms, including 102.40
ms computing time cost of task 1 and 1.60 ms computing
time cost of task 2;

• Fig. 1(b): the total time cost is 42.06 ms, including 10.24
ms computing time cost and 29.80 ms data transfer time
cost of task 1, 0.16 ms computing time cost and 1.86 ms
transfer time cost of task 2.

Though the overall performance in the Fig. 1(b) situation
is better than the Fig. 1(a) situation, the application needs to
achieve optimal performance. The time cost of the task in
Fig. 1(b) outnumbers Fig. 1(a), because there needs to be more
computation to hide the data movement via PCI-E. A good
solution is to assign the optimal routine for each task as Fig. 1(c)
shows, task 1 is assigned the BLAS-GPU-GEMM routine and
task 2 is assigned the BLAS-CPU-GEMM routine. However,
it is impossible to allocate them statically because we need to
know their data size in advance, and so we propose a runtime
solution in this work.

B. The Proposed Solution

The above example implies a need for a system-level
mechanism that can efficiently allocate library routines and
dynamically assign the optimal routine for each dynamic com-
puting task. To address this challenge, we first formalize
this challenging problem and then design a framework called
COALA1 (Compiler-Assisted Adaptive Library Routines Allo-
cation), which provides adaptive allocation of library routines

1The source code is available at github.com/e2mcc/coala

https://github.com/e2mcc/coala


1726 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

for heterogeneous systems. COALA offers a uniform manage-
ment approach for all library implementations and employs
compiler assistance to dynamically identify the requirements
and data features of dynamic computing tasks. It then dynam-
ically assigns an optimal routine for each dynamic computing
task in terms of task features and the capabilities of the com-
puting device within heterogeneous systems. Implementation-
wise, COALA leverages LLVM [18] (Low-Level Virtual
Machine) thereby applies to any language once it is compiled to
LLVM-IR. It works without manual effort and does not change
any source code. Because it is fully automated and leverages
the compiler to reconstruct original dynamic computing tasks.
Briefly, a reconstructed dynamic computing task contains an
information probe and related memory operations. It contains a
whole set of memory operations, including memory allocations
and data transmissions, to ensure it can be executed on any
computing device without breaking its correctness. The probe
is statically inserted into the task code. It gathers and conveys
the task’s requirements and the data’s information (such as task
purpose, data size, and requirement of computing flops obtained
by the compiler static analysis) to a user-level allocation at
runtime before the task is executed. The allocation then dy-
namically assigns the optimal library routine for the dynamic
computing task in terms of its probe and allocation policies.
Our COALA supports deploying different allocation policies
for different optimization targets. In this paper, we focus on the
design of the COALA framework and introduce a performance-
oriented allocation policy. The allocation policy is based on a
machine learning (ML)-based performance evaluation method
specifically developed for library routines. The main contribu-
tions of this work are summarized as follows:

• Proposal of COALA: We propose COALA, an adaptive
library routines allocation framework to uniformly manage
all mainstream library implementations on heterogeneous
systems. A prototype of COALA is implemented by the
LLVM framework support. It enables independent and
uncooperative library implementations to execute simul-
taneously within an application at runtime. Furthermore,
COALA can dynamically assign optimal routines for each
dynamic computing task based on task features and com-
puting device’s characteristics in heterogeneous systems.

• Compiler-assisted method: We devise a compiler-assisted
method to reconstruct dynamic computing tasks, acquire
their requirements, analyze their data features, and insert
probes to transmit relevant information to the allocation
component at runtime. It is a fully automated method
without any manual effort or changes to the application
source code.

• Efficient performance-oriented allocation policy: We in-
troduce an efficient performance-oriented allocation pol-
icy aimed at enhancing application performance and
system utilization. This policy is grounded in the ML-
based performance-oriented evaluation method, character-
ized by using neural network model for prediction.

• Verification and evaluation on heterogeneous systems: We
verified and evaluated our work on two distinct types of
heterogeneous systems: a personal computer and a HPC

TABLE I
TERMINOLOGY USED IN THIS PAPER

Terminology Description
CUDA Compute unified device architecture
OpenCL Open computing language
BLAS Basic linear algebra subprograms
MKL Math kernel library
ATLAS Automatically tuned linear algebra software
ClBlast Tunable OpenCL-based implementation of the BLAS
CuBLAS Nvidia’s implementation of the BLAS
FFT Fast fourier transform
HPC High-performance computing
COALA Compiler-assisted adaptive library routines allocation
GEMM General matrix multiplication
SYR2K Symmetric rank-2k update
LLVM Low Level Virtual Machine
IR Intermediate representation
YOLO You only look once, a neural network for target detection
DNN Deep neural network
flops Floating point operations per second
ML Machine learning

server. The experimental evaluation provides evidence: (a)
the proposed ML-based performance evaluation method
can make a accurately prediction for library routines and
the deployed policy in COALA verified its effectiveness;
(b) COALA effectively manages library implementations
and makes them cooperate; (c) COALA offload compu-
tation to the device which is beyond the original code
support; (d) COALA increase performance and system
utilization efficiently, the results indicate that it improves
the performance of machine learning application up to
4.2x, and system utilization up to 27.8%, and the perfor-
mance of numerical simulation software up to 4.3x.

The rest of paper is organized as follows. In Table I, we
provide a comprehensive list of abbreviations and correspond-
ing descriptions for the terminology employed throughout this
study. Section II discusses the relevant work. In Section III, we
provide a formalized description of the problem. Section IV
presents the COALA framework, and details the task recon-
struction, lazy runtime, the allocation component. In Section V,
we introduce the performance-oriented allocation policy, ac-
companied by its machine learning-based performance eval-
uation method. Section VI describes the experimental setup
and discuss the results. Section VII discussed the potential
drawbacks or areas where COALA may not be as effective.
Section VIII summarizes this paper.

II. RELATED WORK

To the best of our knowledge, this work is the first to ad-
dress this challenge of adaptively allocating library routines on
heterogeneous systems via a fully automated manner with no
source code or system changes.

Several unified programming models, such as oneAPI [19]
developed by Intel, SYCL [20] developed by the Khronos
Group, is proposed to simplify the development of applications
across a wide range of computing architectures. oneAPI uses
a set of libraries including oneDNN, oneMKL, and oneCCL
that help developers optimize and accelerate their applications.
It also provides compatibility and portability across different



CAI et al.: COALA: A COMPILER-ASSISTED ADAPTIVE LIBRARY ROUTINES ALLOCATION FRAMEWORK FOR HETEROGENEOUS SYSTEMS 1727

hardware architectures. SYCL stands for “Standard C++ for
Parallelism”. It allows developers to write code in standard
C++ and execute it efficiently on different heterogeneous de-
vices, such as GPUs, CPUs, FPGAs, and DSPs, without requir-
ing device-specific modifications. These programming models
primarily focus on addressing the portability of code across
different architectures and selecting the optimal code imple-
mentation based on the characteristics of each architecture. This
approach is more of a static optimization method. However, we
are more concerned with finding the optimal implementation
for different computing tasks at runtime, which is a dynamic
optimization approach.

Several works are proposed by using the compiler-assisted
method. In [21], Ghiglio et al. discussed the need for efficient
compiler and runtime support for the growing number of plat-
forms that use SYCL as an open-standard API for accelerat-
ing C++ software. They contributed an alternate approach that
bypasses OpenCL and uses a CPU-directed compilation flow
with Whole Function Vectorization to generate optimized host
and device code. It was implemented in a specific compiler,
ComputeCpp. While our work focuses on the application built
with libraries, and it is not limited to a specific programming
framework. Neves et al. [22] proposed a compiler-assisted data
streaming approach to improve performance for regular code
structures instead of complex prefetching schemes. It uses static
analysis at compile-time to detect and encode memory access
patterns, including indirect accesses, into descriptors. The com-
piler then transforms array accesses into stream references,
reducing instructions. At runtime, a stream controller gener-
ates addresses from the descriptors and fetches data ahead into
buffers, bypassing caches. However, we are more concerned
with the dynamic characteristics of tasks and the input data
they handle during runtime. Our research aims to enhance
the performance of dynamic computing tasks, ultimately im-
proving the overall application performance. In [6], Carvalho
et al. presented an idiom recognizer implemented as a LLVM
pass, named KernelFaRer (Kernel Find & Replacer). Kernel-
FaRer is able to identify GEMM (general matrix-matrix mul-
tiplication) and SYR2K (symmetric rank-2k update) idioms,
and replaced them with corresponding BLAS library routines.
This article combined pattern matching and loop information
analysis in LLVM Intermidiate Representation (IR) to deter-
mine GEMM and SYR2K matrix’s access orders through a
formulation of an analysis. However, KernelFaRer is limited to
only two BLAS routines, GEMM and SYR2K, and restricted
to statically replacement. In contrast, COALA applies to most
math libraries and dynamically analyze the computing tasks for
assigning optimal library routines. Chen et al. [23] presented
a fully automated GPU scheduling framework, called CASE,
by utilizing the compiler-assisted method. CASE focused on
efficiently utilizing multiple high-power GPUs’ resources. This
contribution has inspired our work. Regrettably, this work has
not yet incorporated the consideration of CPU devices, nor
has it been extended to heterogeneous platforms other than
Nvidia GPUs.

Several works are proposed to optimizing computing task
running in a specific situation. In [24], Ayala et al. presented the

design and implementation of the heFFTe (Highly Efficient FFT
for Exascale) library, which targets exascale supercomputers.
The heFFTe library provides highly scalable GPU kernels that
achieves more than 40x speedup compared to local kernels from
CPU state-of-the-art libraries and over 2x speedup for the whole
FFT computation. The library also includes a communication
model for parallel FFTs to analyze the bottleneck for large-scale
problems. In [25], Springer et al. introduced the open-source
C++ library, High-Performance Tensor Transposition (HPTT).
HPTT is a high-performance implementation for tensor trans-
positions that can be used in applications where tensor sizes
and permutations are determined at runtime. HPTT incorporates
optimizations such as blocking, multi-threading, and explicit
vectorization, making it easy to port to different architectures.
Yang et al. [26] proposed a probability-based method to par-
tition sparse matrices that provides an effective partitioning
technique to accelerate SpMV computing tasks on GPUs and
multicore CPUs. These related works extended or created APIs,
which requires manual code adjustments by programmers to
utilize them. While COALA is a system-level framework and
can manage independent libraries. Consequently, COALA can
effectively support these works and facilitate collaboration with
other library implementations, leading to broader optimizations
for various applications.

III. PROBLEM FORMALIZATION

We begin by walking through the motivating example de-
picted in Fig. 1. we use i to denote the statically predefined
computational function and d to represent the actual input data
at runtime. As a result, let x= g(i, d) represent the dynamic
computing task. Here, g refers to an actual execution of the
dynamic computing task at runtime. We use R to denote the
space consisting of all alternative routines. Let t denote a spe-
cific target that we primarily care about, such as prioritizing
throughput or reducing energy consumption. f is the evaluation
function for evaluating the effect of utilizing the routine r to
execute a dynamic computing task at this specific target t. We
prefer to use a smaller value to represent a better evaluation
result. Therefore, we are interested in a r ∈R that can execute
the dynamic computing task x to achieve the minimum value
of y = f(x, r, t) for the specific target t. For a given tuple of
(i, d, g, r,R, t, f), our problem can be formalized by

argmin
r∈R

f(g(i, d), r, t). (1)

Equation (1) has guiding significance for us to design a system-
level framework to deal with this challenging problem. Ac-
cording to this equation, our framework needs several parts
to be composed of: firstly, our framework needs to be able
to manage available library routines; secondly, our framework
needs to be able to dynamically recognize the characteristics of
dynamic computing tasks, especially those resulting from data
input; lastly, our framework needs to be able to deploy different
polices, and our framework should automatically allocate the
optimal routines based on the evaluation functions matched
with these strategies.



1728 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

Fig. 2. The overview of COALA framework. The COALA framework
provides an automated and adaptive solution for allocating library routines
in heterogeneous systems. The diagram incorporates green expressions and
letters to demonstrate the correlation between the various components depicted
in the diagram and equation (1).

IV. THE DESIGN OF COALA

The purpose of COALA’s design is to implement a system-
level mechanism that address the problem we formalized in
Section III. As shown in Fig. 2, the green expressions and letters
illustrate the correlation between the corresponding parts in the
diagram and Equation (1). Our COALA has the ability to man-
age almost all mainstream libraries by identifying their routines.
Routines are explicitly implied by calls to computing library
routines’ API, which are listed in the head file of computing
library implementations (e.g., “cblas.h”, “cublas.h”). COALA
consists of three main components: a compiler pass, lazy run-
time, and an allocation component. The compiler pass, along
with the lazy runtime, reconstructs dynamic computing tasks
and inserts a probe in each task. At runtime, the probe conveys
the information gathered from tasks and data to the allocation
component. The allocation component assigns an optimal li-
brary routine for the dynamic computing task based on their
probe information and the allocation policy.

A. Dynamic Computing Task

In this work, the “dynamic computing task” is defined as a
group operation with a close relationship, containing a com-
puting library routine API as well as a set of host operations
and device operations. The calculation function of a dynamic
computing task is predefined statically, while the actual data
and related computational operations are not fully specified or
determined until runtime. Fig. 3 shows an example task, in
which the code from lines 3-29 belongs to a dynamic computing
task for performing a BLAS GEMM calculation. Line 19 is
the GEMM routine API from ClBLASt implementation, which
performs the task on the GPU, and the rest is the related memory
operation. The host operations allocate (e.g. malloc, lines 3-5)
and release (e.g. free, lines 27-29) memory on the host.
Additionally, the host operations load data from the file to the
memory (e.g. loadFromFile, lines 7-10). The device operations

Fig. 3. An example dynamic computing task consists of an original library
routine and related memory operations.

allocate (e.g. clCreateBuffer, lines 11-13) and release (e.g. clRe-
leaseMemObject, lines 23-25) the memory on the device, such
as GPU global memory. Moreover, the device operations trans-
fer data from host to the device (e.g. clEnqueueWriteBuffer,
lines 15-17) and transfer results from device to the host (e.g.
clEnqueueReadBuffer, line 21).

B. Task Reconstruction

Our COALA leverages a compiler pass, along with the lazy
runtime, to reconstruct dynamic computing tasks and gather
the information of the data input. It works on the LLVM-
IR of applications, consequently, it can support applications
programmed with various programming languages supported
by LLVM. Essentially, COALA reconstructs a dynamic com-
puting task by first searching for its original computing library
routine. Then, the compiler pass utilizes the def-use chain to
locate the related operations and identifies the memory address
of data input. However, in some cases, applications encapsulate
data input and related memory operations in separate functions.
Alternatively, the data may not enter memory for the first time
or be reused from other tasks. The compiler cannot embody
such def-use chains among operations on LLVM-IR, thereby the
compiler pass cannot follow up. To address this, the compiler
will reconstruct dunamic computing tasks by generating an
abstract version. It consists unbound operations, a probe and
an API linking to the allocation component, the pseudo code is
shown in Fig. 4. The “unbound operation” is a static temporary
representation. For example, a call to clCreateBuffer will be



CAI et al.: COALA: A COMPILER-ASSISTED ADAPTIVE LIBRARY ROUTINES ALLOCATION FRAMEWORK FOR HETEROGENEOUS SYSTEMS 1729

Fig. 4. The pseudo code of the reconstructed dynamic computing task
generated by COALA.

replaced by the compiler with the dev_malc, which will simply
assign a unique pseudo address for representing the memory ob-
ject to be allocated instead of performing the actual allocation.
The “unbound operation” will be realized an actual operation
eventually and this process of realizing we called “binding”.

Generally, host operations remains unchanged in an applica-
tion running on a platform. Therefore, the unbound host oper-
ations will be realized as the original host operations at static
analysis stage. For example, the task shown in Fig. 3, host_malc
at line 3 in Fig. 4 will be bound to malloc. However, the bindings
of these unbound device operations will be deferred to lazy
runtime. If the optimal routine assigned by COALA runs on
the CPU at the end, these pseudo memory operations would
not bind any operation and return immediately. After that, the
compiler pass collects and analyzes the task information, which
is presented in the form of symbols. In LLVM IR, each symbol
has a unique identifier, usually a name starting with a “%”
sign or an “@” sign like %42 or @malloc. These symbols are
used to represent various tasks, data and operations, such as:
functions, function parameters, variables and instructions. Then
the compiler pass inserts a probe to convey these symbols to the
allocation, as shown in line 11 in Fig. 4. These symbols will be
interpreted at lazy runtime to obtain the actual value.

C. Lazy Runtime

The lazy runtime refers to the runtime environment in
which certain operations are delayed until they are absolutely

necessary. There are primarily three steps to be performed
within the lazy runtime. Firstly, the lazy runtime must be en-
abled to record the actual value of symbols carried by the
probe since we cannot get the specific data information, which
only exists in the form of symbols in the static analysis stage.
Secondly, the COALA analysis is used to evaluate the specific
data size and floating-point requirements in the lazy runtime.
For example, the information about the dynamic computing
task purpose carried by the probe is to compute a matrix-vector
product (GEMV), and the information about the dimension of
the related matrix is m by n. So that COALA would analyze
the actual float point requirement q by the equation q = 2mn
since each matrix element in GEMV would do one float-point
multiplication operation and one float-point addition operation.
Moreover, the actual data size of the matrix smat is analyzed by
the equation smat =mn and the actual data size of the vector
is svec is analyzed by the equation svec = n. Following the
aforementioned steps, whether to bind those unbound device
operations will be determined based on the final evaluation by
COALA. If COALA ultimately determines assigning a CPU-
executing routine, those unbound device operations will not
bind to any operation and will return immediately. Conversely,
if COALA determines that a GPU-executing routine should
be assigned, the unbound device operations will bind to their
corresponding device operations.

D. The Allocation Component

The allocation component is deployed to assign optimal li-
brary routines for dynamic computing tasks based on their
requirements and input data features. For applications, the al-
location exposes a simple API, coala_allocating, to replace a
task’s original library routine, as shown in line 21 in Fig. 4. This
API is a synchronized function that can block the process until
it returns. It is inserted by the compiler pass and fed with a task
ID used by the runtime to identify the task uniquely. From the
task ID, the allocation component can find the corresponding
task’s probe. The coala_allocating put this parameters to the
allocation and then waits for the response from the allocation
component. In return, the allocation component find optimal
routine in term of the deployed allocation policy. This allocation
component provides a flexible and adaptable foundation for
designing and implementing various allocation policies that can
be tailored to specific computing environments. For example, in
cloud computing environments, prioritizing low-power routines
as optimal routines may be a suitable cost-reducing strategy.
while in a high-performance computing environment, a policy
that focuses on maximizing processing power might be more
suitable. Additionally, the deployed allocation policy can be
easily adjusted to reflect changing circumstances from a general
getOptimalRoutine() interface (line 2 at Algorithm 1). Algo-
rithm 1 explains how the coala_allocating function works, and
it is implemented based on LLVM-IR statements. The following
are detailed explanations of Algorithm 1:

1) Line 1 retrieves the probe associated with the task ID
t from the probe list P , since all tasks’ probe within a
LLVM-IR module are stored in a probe list.



1730 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

Algorithm 1 The pseudo code of the coala_allocating function
Require:

P : The probe list;
t: The task ID;

Ensure:
�: Execution status.

1: Get the probe from the probe list:
Probe p ← P [t];

2: Get optimal routine:
Routine r ← getOptimalRoutine(p);

3: Get required arguments from the probe:
Args a ← getRoutineArgs(p,r);

4: Assemble the routine and the arguments together:
r(a) ← r, a;

5: return �.

2) Line 2 uses the getOptimalRoutine(p) interface to find the
optimal routine based on the deployed allocation policy.
The detailed process is described in Algorithm 2.

3) Line 3 uses the getRoutineArgs(p, r) interface to ex-
tract the required arguments from the probe’s information
based on the optimal routine found in line 2.

4) Line 4 assembles the optimal routine and related argu-
ments to form a completed routine.

In this paper, we mainly concentrate on the design of this
COALA framework, demonstrating its benefits with an efficient
and performance-oriented allocation policy.

V. THE PERFORMANCE-ORIENTED ALLOCATION POLICY

An efficient and performance-oriented allocation policy is
introduced at this section. It is based on the ML-based (Ma-
chine Learning based) performance evaluation method for
library routines.

In a given heterogeneous computing system, the peak perfor-
mance of computing hardware is fixed and can be quantified by
the number of floating-point operations executed per unit time.
This peak performance is attainable under ideal conditions.
Nevertheless, library routines can only utilize a fraction of the
computing hardware’s peak performance due to various con-
straints, such as the routine’s algorithm, data scale, system data
transfer capability, and processor performance, among others.
Most of these factors are static, with the sizes of input data being
the most crucial dynamic influencing factor. We represent the
utilization ratio of the computing hardware’s peak performance
by a library routine at runtime as μ= U(s), where s is a vector
representing the sizes of the input data and U signifies the
dynamic impact of input data sizes on μ.

The performance evaluation method involves utilizing a ma-
chine learning method, constructing a fully connected neural
network model, to predict the utilization ratio μ that the library
routine can achieve for given input data sizes. Upon initial
deployment of the COALA framework, benchmarks is system-
atically executed to sample the peak utilization ratios of library
routines across diverse data sizes. These samples serve as the
dataset for the neural network model, with data sizes s as the

Algorithm 2 The pseudo code of getOptimalRoutine() function
based on the performance-oriented allocation policy
Require:

W : The file recording the system information;
R: The file recording the routines’ information;
P : The probe;

Ensure:
z: The optimal routine.

1: Read the host peak performance from the file:
πh ← readSysInfo(W , “peak”, “host”)

2: Read the device peak performance from the file:
πd ← readSysInfo(W , “peak”, “device”);

3: Read the Bandwidth from the file:
b ← readSysInfo(W , “Bandwidth”, null);

4: Get required routine type from the probe:
r ← getRoutineType(P ,R);

5: Read the neural network model list of host routines:
Mh ← readModels(r,“host”);

6: Read the neural network model list of device routines:
Md ← readModels(r,“device”);

7: Get data size vector from the probe:
s ← getDataSizeVec(P );

8: Get float point requirement from the probe:
q ← getFloatPointRequirement(P );

9: min ← INF;
10: minIdx ←−1;
11: flag ← 0;
12: for i in Mh do
13: μ ← predictUR(Mh[i],s);
14: temp ← q/(μ ∗ πh);
15: if temp < min then
16: min ← temp;
17: minIdx ← i;
18: end if
19: end for
20: for j in Md do
21: μ ← predictUR(Md[i],s);
22: temp ← q/(Md[i] ∗ πd)+ norm2(s)/b;
23: if temp < min then
24: min ← temp;
25: minIdx ← j;
26: flag ← 1 ;
27: end if
28: end for
29: z ← getTheRoutine(R, r, minIdx, flag);
30: return z;

feature variable and utilization ratio μ as the target variable. The
neural network model is trained, utilizing this sampling data to
derive a set of weight parameters for each library routine. In
the inference stage, the model loads these corresponding weight
parameters to accurately forecast the peak utilization ratio of
each library routine, adapting to varying data sizes at runtime.
The workflow of the ML-based performance evaluation method
is shown in Fig. 5. The fully connected neural network model



CAI et al.: COALA: A COMPILER-ASSISTED ADAPTIVE LIBRARY ROUTINES ALLOCATION FRAMEWORK FOR HETEROGENEOUS SYSTEMS 1731

Fig. 5. The workflow of the ML-based performance evaluation method by
using a neural network model for prediction.

comprises three layers: an input layer, a hidden layer, and an
output layer. The input layer contains n neurons, corresponding
to the number of input data and the dimension of the data
is denoted as s. For example, to perform a GEMV routine
(y = αAx+ βy) needs to load 5 input data including variable
α and β, matrix A, vector x and vector y. The dimension of the
data is s= (1, 1, sizeof (A), sizeof (x), sizeof (y)). Accordingly,
the number of the neurons n is 5. The hidden layer consists of
10n neurons which is 50 neurons in the example and the ReLU
[27] (Rectified Linear Unit) activation function is applied to
its outputs. According to our empirical tests, this configuration
enables the model to effectively capture intricate relationships
and features, resulting in a high predictive capability. The output
layer contains 1 neuron, responsible for calculating regression
predictions. We adopt the Xavier initialization method to ini-
tialize edge weights for enhanced training performance.

Based on the neural network model, our performance-
oriented allocation policy is as follows. Assume that there is a
heterogeneous system consisting of a CPU with πc flops peak
performance and a GPU with πg flops peak performance, as
well as a b GB/s bandwidth between the CPU and the GPU.
The task’s float point requirement is q, and its data size vector
is s. Additionally, there are a set of routines with the same
calculation function; the i-th routine is ri. It assumes that ri
can utilize μic = Uic(s) ratio of CPU peak performance, μig =
Uig(s) ratio of GPU peak performance. Accordingly, a time
cost function f is proposed to evaluate the execution time of
a dynamic computing task by using the routine ri. The cost
function f of routine ri can be represented by

f(ri, q, s) =

⎧
⎪⎪⎨

⎪⎪⎩

q

Uic(s)πc
, ri runs on CPU;

q

Uig(s)πg
+

‖s‖
b

, ri runs on GPU.
(2)

Thus, the performance-oriented policy for allocating the opti-
mal routine z from n available routines for a computing task
can be represented by

z = argmin{f(ri, q, s)}, i= 1, 2, · · · , n (3)

Algorithm describes the details about this performance-
oriented allocation policy. The following are explanations of
the algorithm.

1) Lines 1-3 read the peak performance value and the band-
width value. It can be easily extract from the static system
information file.

2) Line 4 obtains the required routine type of the computing
task according to the information carried by the probe.

3) Lines 5-6 retrieve the list of neural network models of
corresponding routines.

4) Lines 7-8 extract information of the task requirements
carried by the probe.

5) Lines 9-11 initialize temporary variables for further cal-
culations.

6) Lines 12-28 firstly find the minimum theoretical time
along with the corresponding index of CPU routines in
the first for loop. Then comparing with the theoretical
time of GPU routines. At the end, the index of optimal
routine by the minimum theoretical time is obtained. At
Line 13 and 21, the predictUR() function invokes the
corresponding pre-trained neural network model and pre-
dicts the value of the peak performance utilization ratio
based on the data size of the computing task. At line 22,
norm2() function calculates the level 2 norm of the data
size vector.

7) Line 29 returns the optimal routine from getTheRoutine()
interface.

VI. EVALUATION

This section evaluated COALA on two independent plat-
forms: a personal computer(PC) and a HPC server. The PC
consists of an Intel Core i5-10400 CPU @ 2.90 GHz with 6
cores, an AMD Radeon RX550 GPU, and PCI-E 1.0 with width
x8. The server consists of two Intel Xeon Gold 5120 CPUs @
2.20 GHz with 14 cores/CPU, an NVIDIA A100 GPU, and PCI-
E 3.0 with width x16. All experiments in this section are carried
out on Ubuntu 20.04.3 LTS. Firstly, we verified the effectiveness
of our described ML-based performance evaluation method and
the consequent policy. Subsequently, we conducted experiments
on deep learning and numerical simulation jobs, considering
their widespread adoption and significant importance in the
field. This allowed us to further investigate the capabilities of
our approach in these specific contexts.

A. Experiments on the Proposed Performance Evaluation
Method and Policy

In this subsection, we first show that the ML-based per-
formance evaluation method can accurately predict the peak
performance utilization ratio of GEMM routine. Furthermore,
we verified the effectiveness of our COALA with the deployed
performance-oriented allocation policy by testing GEMM rou-
tines from multiple BLAS implementations.

GEMM stands for “General Matrix-Matrix Multiplication,”
and it performs a highly optimized multiplication operation



1732 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

Fig. 6. The results of the neural network model for the OpenBLAS GEMM
routine.

between two matrices. The GEMM routine in the BLAS li-
brary is highly optimized, flexible, and fundamental for Gen-
eral Matrix-Matrix Multiplication. Its significance lies in its
efficiency, flexibility, and central role in many linear algebra
operations. Applications that benefit significantly from using
GEMM include machine learning and deep learning, signal
processing, computational physics and engineering, computer
vision, and data science. GEMM calculates the product of two
matrices A (of size M ×K) and B (of size K ×N ), resulting
in a new matrix C (of size M ×N ). The formal definition of
GEMM is

C(i, j) = β · C(i, j) + α ·
k∑

p=1

A(i, p)B(p, j), (4)

where Ci,j denotes the element at the i-th row and j-th column
of C. Matrix A and B follows the same convention. α and β
are any value. The flops (floating point operations per second)
of a GEMM can be calculated by

flops =
2MNK

t
, (5)

where t represents the time required to perform the GEMM in
seconds. The value of flops represents the performance level of
the routine executing the GEMM.

The neural network model is implemented in C++ language
for conveniently embedding into COALA. It consists of 3
layers including a input layer with 5 neurons for dimensional
features of the GEMM input data (matrices A, B, C and coef-
ficients α, β), a hidden layer with 50 neurons by using ReLU
activation function for output and a output layer with 1 neuron
for outputting the regression result. It use MSE (Mean Square
Error) as the loss function and R-squared (the coefficient of
determination) as the evaluate function. Using R-squared can
provide a quantitative measure of how well the model fits the
data. R-squared values range from 0 to 1, with higher values
indicating a better fit. We generate 500 random square matrices
with a dimension from 100 to 10,000 and use them to test
OpenBLAS GEMM routine in the HPC server. The result data
of testing the OpenBLAS GEMM function is randomly divided
into two parts, with a ratio of 7:3. 70% of the data is used for
the model training, and the remaining part is used for testing.
The experimental results are as shown in Fig. 6. The training

Fig. 7. Comparison on the PC platform (Intel Core i5-10400 CPU and AMD
Radeon RX550 GPU). Tflops is calculated by dividing the total number of
floating-point operations by the task performing time. The performing time
involves the routine computing time and the data migration time.

Fig. 8. Comparison on the server platform (Intel Xeon Gold 5120 CPU and
NVIDIA A100 GPU). Tflops is calculated by dividing the total number of
floating-point operations by the task performing time. The performing time
involves the routine computing time and the data migration time.

accuracy of the neural network model is shown in the blue curve
in Fig. 6, the test accuracy is the yellow curve and the loss is
the red curve. When the epochs reach 9250, the loss gradually
converges to 0.004, the training R-squared of the model is about
to 0.88, and the test R-squared of the model is about to 0.82. The
experimental results show that the neural network model can
accurately predict the routine’s peak performance utilization
ratio through the its input data sizes.

Our prototype of COALA manages three highly optimized
BLAS implenmentations, including OpenBLAS, ATLAS, and
ClBLASt, on the PC with an AMD GPU. On the HPC
server with an Nvidia GPU, it manages OpenBLAS, ATLAS,
ClBLASt, and CuBLAS. We test the benchmark program,
which has the GEMM computing task with a dimension of data
input from 2,00 to 10,000 (interval of 200). For comparison, this
GEMM computing task are performed by using these highly
optimized BLAS implementaitons and our COALA method,
respectively. Fig. 7 shows the results of the program running on
the PC platform, and the Fig. 8 shows the results of the program
running on the HPC server.

In theory, the execution performance of computing tasks
using the COALA method should closely approach the perfor-
mance achieved with manually selected optimal routines. This
theoretical expectation is supported by the results depicted in



CAI et al.: COALA: A COMPILER-ASSISTED ADAPTIVE LIBRARY ROUTINES ALLOCATION FRAMEWORK FOR HETEROGENEOUS SYSTEMS 1733

TABLE II
THREE JOBS AT DARKNET AND THE CORRESPONDING CONFIGURATIONS

Task Model Weight Data
Detection yolov3 [30] COCO Dataset [31] 500 images
Prediction vgg-16 [32] ILSVRC-2014 [33] 500 images
Training cifar_small [34] random initialization cifar-10 [34]

Fig. 7 and Fig. 8, which align with the theory. The observed con-
sistency between the performance of COALA and the optimal
routine implies that the proposed allocation policy introduces
minimal overhead and does not lead to performance degrada-
tion. It is worth noting that certain performance data points in
the figures show COALA outperforming the theoretical opti-
mum, which is theoretically impossible. This discrepancy can
be attributed to unavoidable errors arising from performance
fluctuations. Despite this, both Fig. 7 and Fig. 8 confirm the
validity of COALA, as it consistently maintains the executing
performance of computing tasks close to the optimal level, thus
affirming the efficacy of COALA in optimizing task execution
performance.

B. Results With the Darknet Benchmarks

In this subsection, we utilize Darknet [28], an open source
neural network framework written in C and CUDA, as the
benchmark. It provides several machine learning models, such
as YOLO [29] and neural network, for training and inference
tasks. In our experiments, we conducted three types of jobs
using Darknet: real-time object detection (CNN), prediction for
image classification (CNN), and neural network training. For
real-time object detection, we used the pre-trained yolov3 [30]
architecture and weights from COCO Dataset [31]; the data of
detection contains 500 images. For prediction, we used the pre-
trained vgg-16 [32] architecture and weights from the ImageNet
Large Scale Visual Recognition Challenge 2014 [33]; the data
of prediction contains 500 images. For neural network training,
we employed the provided CIFAR small architecture offered by
Darknet; the data of training is from CIFAR-10 [34] dataset.
Table II shows the configurations used for each Darknet task.
In our evaluation, all Darknet workloads are ten homogeneous
jobs for a given task. This approach ensured consistency and
fairness in the assessment process. For comparisons, we com-
plied Darknet source code into three versions, a CPU version
(represented by DN-CPU) via its original CPU implementation,
a GPU version (represented by DN-GPU) via its original GPU
implementation supported by CUDA, and a COALA version
(represented by DN-COALA) via our COALA. Note that, on
the PC platforms, we only built Darknet into DN-CPU and
DN-COALA since our PC platform with an AMD GPU cannot
support CUDA.

At first, we evaluated the utilization of systems, the results
are shown in Fig. 9. Note that overall system utilization ratio
Us is computed by Us = (Uc + Ug)/2, where Uc represents the
ratio of CPU utilization ratio and Ug represents the ratio of GPU
utilization ratio. If Us > 50%, it means both CPU and GPU
are used. Fig. 9(a), 9(b), and 9(c) show that using COALA
on the PC platform, the average utilization of the three jobs is

improved by 12.3%, 8.0%, and 28.1%, respectively. Further-
more, as shown in Fig. 9(a) and 9(d), the system utilization
ratio is more than 50% by introducing COALA. This indicates
that with the compilation assistance of COALA, Darknet can
effectively utilized both Intel CPU and AMD GPU, which
contributes to improving computing performance. Remember
that original Darknet cannot utilize AMD GPU directly because
its source code is C and CUDA. It implies that COALA en-
ables Darknet to utilize the AMD GPU by adaptively assign-
ing ClBLASt library routines. Fig. 9(d), 9(e), and 9(f) show
that using COALA on the HPC server platform, the average
utilization of the three jobs is improved by 4.3%, 4.6%, and
17.5%, respectively, comparing to DN-CPU, and 27.8%, 9.4%,
and 27.4%, respectively, comparing to DN-GPU.

Then we summarized the performance by the results shown
in Fig. 10. Note that the ratio of performance improvement is
computed by normalized to the lowest performance, where the
ratio in Fig. 10(a) are normalizing to DN-GPU, and the ratio in
Fig. 10(b) are normalized to DN-CPU. Both of them indicate
that COALA can improve the performance on heterogeneous
systems, the performance improvement by over 1.21x and up
to 1.32x on the PC platform, and by over 1.78x and up to 4.26x
on the HPC server platform.

C. Results With the CitcomCu Benchmarks

In this subsection, we utilize CitcomCu (Citcom for Convec-
tion Underworld) [35], [36], [37] as the benchmark. CitcomCu
is a well-known numerical simulation software used in the
field of geodynamics, specifically for modeling mantle convec-
tion processes. It uses iterative methods to solve the Stokes
equation, which yields the velocity and pressure fields. These
fields are then combined with energy conservation equations
and geological physical parameters to solve for the temperature
field. The primary computational process of CitcomCu involves
numerical simulation, which utilizes various computing library
routines’ API present in its source code. When CitcomCu per-
forming large-scale numerical simulation, numerous dynamic
computing tasks will be executed by using library routines. In
CitcomCu, an initialization file is a text-based configuration
file that serves as the primary input for the software when
setting up a numerical simulation. The initialization file con-
tains various parameters and settings that define the specific
problem to be modeled, including initial conditions, boundary
conditions, iteration steps, and simulation accuracy to the sim-
ulation. The number of iterations steps represents the time of
the geological changes simulated by CitcomCu, with each step
representing one hundred thousand years. The simulation accu-
racy refers to how closely the CitcomCu simulation represents
the real-world mantle processes it aims to model. The higher
the simulation accuracy, the larger the data scale generated in
the simulation.

For comparisons, we complied CitcomCu source code into
two versions, an original version (represented by Cit-Ori) and
a COALA version (represented by Cit-COALA). Note that, in
its original source code, CitcomCu only supports libraries only
in CPU. We test the time performance of 8 simulation case with



1734 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

Fig. 9. Utilization comparison among DN-CPU, DN-GPU and DN-COALA where dot lines represent the average ratio.

Fig. 10. Histogramme of speedup ratio by the performance comparison among DN-CPU, DN-GPU and DN-COALA.

8 different initialization files, each case simulating a 20 million
year (200 iteration steps) mantle convection process but with
different simulation accuracy.

The result is shown in Fig. 11, the simulation accuracy of
cases 1 to 8 increases gradually and the speedup ratio is the
overall execution time ration of the case running by Cit-Ori to
the case running by Cit-COALA. In Fig. 11, the yellow portion
of the dual-color bars represents the ratio of tasks running on
the GPU to the total number of tasks, while the green portion
represents the ratio of tasks running on the CPU to the total
number of tasks. From the Fig. 11, it can be seen that as
the simulation accuracy of cases increases, COALA allocates
more GPU routines to computing tasks with larger and larger

data scales, resulting in an increasingly higher proportion of
the yellow part of the bar. Both of Fig. 11(a) and Fig. 11(b)
indicate that COALA can improve the CitcomCu simulation
performance on heterogeneous systems, the performance im-
provement in our cases by over 1.12x and up to 3.07x on the
PC platform, and by over 1.18x and up to 4.36x on the HPC
server platform.

VII. DISCUSSION ON LIMITATIONS

In this section, we discuss the potential drawbacks or areas
where the COALA framework may not be optimally effective.

In scenarios of homogeneous systems, homogeneous com-
puting devices exhibit similar performance levels, the efficacy



CAI et al.: COALA: A COMPILER-ASSISTED ADAPTIVE LIBRARY ROUTINES ALLOCATION FRAMEWORK FOR HETEROGENEOUS SYSTEMS 1735

Fig. 11. Histogramme of speedup ratio by the cases of Cit-Ori and Cit-COALA, where the yellow portion in dual-color bar of Cit-COALA represents the
ratio of computing tasks running on GPU and the green portion represents the ratio of computing tasks running on CPU.

of the COALA framework in optimizing applications is notably
diminished. This limitation stems from the fundamental design
of the COALA framework, which predicates its effectiveness
on the inherent optimizability of the task execution process.
In these systems, the uniformity in computing task charac-
teristics and the architecture of homogeneous computing de-
vices results in a minimal differential impact on task execution.
Consequently, in such circumstances, the COALA framework
struggles to achieve pronounced optimization effects on the task
execution process.

In the realm of dedicated system, dedicated devices are tai-
lored for specific tasks or functions, often demonstrating en-
hanced efficiency and performance optimization within their
respective specialized areas. However, these devices inherently
lack the versatility required for general-purpose computing and
lack the possibility of fine-tuning the executive process of com-
puting tasks. As a result, the COALA framework, which hinges
on the adaptability and tunability of the task execution process,
finds its optimization capabilities invalid in such environments.

In scenarios where the primary optimization goal shifts from
sheer performance to other goals, current COALA prototype
lacks the deployment of tailored optimization strategy. For
example, many embedded devices more concern energy con-
sumption, especially high performance per watt. Although the
existing optimization strategy deployed in the COALA frame-
work is towards enhancing computing task performance and
also reduce overall energy consumption, it does not explicitly
target on performance per watt. However, it is important to
note that COALA possesses the capability to deploy diverse
optimization strategies, involving an energy efficiency strategy.
Moving forward, our plan involves the deployment of additional
optimization strategies to expand the COALA framework’s
adaptability to more optimization requirements.

VIII. CONCLUSION

This paper introduces COALA framework, an automated
and adaptive library routine allocation framework for hetero-
geneous systems. COALA supports various mainstream li-
brary implementations and assigns the most suitable routine

for each computing task. It utilizes a compiler-assisted ap-
proach to analyze and reconstruct computing tasks by inserting
probes to gather relevant information. Additionally, it incorpo-
rates a lazy runtime that defers related operations until they
are necessary. The runtime involves symbol value recording,
data analysis, and binding unbound operations based on the
evaluation of COALA. COALA’s allocation component is
responsible for assigning the optimal routine for computing
tasks at runtime, taking into account the probe information
and the applied allocation policy. Furthermore, the paper in-
troduces a performance-oriented allocation policy founded on
the ML-based performance evaluation for library routines. The
effectiveness of COALA is evaluated on two heterogeneous
systems, namely a personal computer and an HPC server. The
results from the experiments of Darknet application and Cit-
comCu software demonstrate significant performance improve-
ment and system utilization enhancement when utilizing the
COALA framework.

REFERENCES

[1] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
linear algebra subprograms for FORTRAN usage,” ACM Trans. Math.
Softw. (TOMS), vol. 5, no. 3, pp. 308–323, 1979.

[2] M. Frigo and S. G. Johnson, “FFTW: An adaptive software architecture
for the FFT,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP’98) (Cat. No. 98CH36181), vol. 3, Piscataway, NJ, USA: IEEE
Press, 1998, pp. 1381–1384.

[3] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “Splatt:
Efficient and parallel sparse tensor-matrix multiplication,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp., Piscataway, NJ, USA: IEEE Press,
2015, pp. 61–70.

[4] T. Davis, W. Hager, and I. Duff, “Suitesparse.” Accessed: 2014. [Online].
Available: http://faculty.cse.tamu.edu/davis/suitesparse.html

[5] K. Goto and R. A. v. d. Geijn, “Anatomy of high-performance matrix
multiplication,” ACM Trans. Math. Softw. (TOMS), vol. 34, no. 3,
pp. 1–25, 2008.

[6] J. P. De Carvalho et al., “Kernelfarer: replacing native-code idioms
with high-performance library calls,” ACM Trans. Archit. Code Optim.
(TACO), vol. 18, no. 3, pp. 1–22, 2021.

[7] MKL Intel, “Developer reference for Intel® oneAPI math kernel
library—C,” Intel R, 2021.

[8] M. K. Jaiswal and N. Chandrachoodan, “FPGA-based high-performance
and scalable block LU decomposition architecture,” IEEE Trans. Com-
put., vol. 61, no. 1, pp. 60–72, Jan. 2012.

[9] X. Zhang, Q. Wang, and Z. Chothia, “OpenBLAS.” Accessed: 2012.
[Online]. Available: http://xianyi.github.io/OpenBLAS

http://faculty.cse.tamu.edu/davis/suitesparse.html
http://xianyi.github.io/OpenBLAS


1736 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 7, JULY 2024

[10] J. Sun, N. Guan, F. Li, H. Gao, C. Shi, and W. Yi, “Real-time
scheduling and analysis of OpenMP DAG tasks supporting nested
parallelism,” IEEE Trans. Comput., vol. 69, no. 9, pp. 1335–1348,
Sep. 2020.

[11] A. Castelló, R. M. Gual, S. Seo, P. Balaji, E. S. Quintana-Orti, and
A. J. Pena, “Analysis of threading libraries for high performance
computing,” IEEE Trans. Comput., vol. 69, no. 9, pp. 1279–1292,
Sep. 2020.

[12] R. Whaley and J. Dontarra, “Automatically tuned linear algebra soft-
ware,” in Proc. ACM/IEEE Conf. Supercomput., Piscataway, NJ, USA:
IEEE Press, 1998.

[13] C. Nvidia, “CuBLAS library,” NVIDIA Corporation, Santa Clara, CA,
USA, vol. 15, no. 27, p. 31, 2008.

[14] C. Nugteren, “CLBlast: A tuned OpenCL BLAS library,” in Proc. Int.
Workshop OpenCL, 2018, pp. 1–10.

[15] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Comput. Sci. Eng.,
vol. 12, no. 3, pp. 66–72, 2010.

[16] X. Hou et al., “AlphaR: Learning-powered resource management for
irregular, dynamic microservice graph,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp. (IPDPS), Piscataway, NJ, USA: IEEE Press,
2021, pp. 797–806.

[17] Q. Cai, G. Xiao, S. Lin, W. Yang, K. Li, and K. Li, “ABSS: An adaptive
batch-stream scheduling module for dynamic task parallelism on chiplet-
based multi-chip systems,” ACM Trans. Parallel Comput., vol. 11, no. 1,
Mar. 2024, Art. no. 6.

[18] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Int. Symp. Code Gener. Optim.
(CGO), Piscataway, NJ, USA: IEEE Press, 2004, pp. 75–86.

[19] “OneAPI specification release 1.2-rev-1.” Intel Corporation. [Online].
Available: http://spec.oneapi.io/versions/latest/oneAPI-spec.pdf

[20] R. Keryell, R. Reyes, and L. Howes, “Khronos SYCL for OpenCL: A
tutorial,” in Proc. 3rd Int. Workshop OpenCL, IWOCL ’15, New York,
NY, USA: Association for Computing Machinery, 2015, Art. no. 24.

[21] P. Ghiglio, U. Dolinsky, M. Goli, and K. Narasimhan, “Improving
performance of SYCL applications on CPU architectures using LLVM-
directed compilation flow,” in Proc. 30th Int. Workshop Program.
Models Appl. Multicores Manycores, 2022, pp. 1–10.

[22] N. Neves, P. Tomás, and N. Roma, “Compiler-assisted data streaming
for regular code structures,” IEEE Trans. Comput., vol. 70, no. 3,
pp. 483–494, Mar. 2021.

[23] C. Chen, C. Porter, and S. Pande, “CASE: A compiler-assisted schedul-
ing framework for multi-GPU systems,” in Proc. 27th ACM SIGPLAN
Symp. Princ. Pract. Parallel Program., 2022, pp. 17–31.

[24] A. Ayala, S. Tomov, A. Haidar, and J. Dongarra, “heFFTe: Highly
efficient FFT for exascale,” in Proc. Int. Conf. Comput. Sci., New York,
NY, USA: Springer-Verlag, 2020, pp. 262–275.

[25] P. Springer, T. Su, and P. Bientinesi, “HPTT: A high-performance
tensor transposition C++ library,” in Proc. 4th ACM SIGPLAN Int.
Workshop Libraries, Languages, Compilers Array Program., 2017,
pp. 56–62.

[26] W. Yang, K. Li, Z. Mo, and K. Li, “Performance optimization using
partitioned SpMV on GPUs and multicore cpus,” IEEE Trans. Comput.,
vol. 64, no. 9, pp. 2623–2636, Sep. 2015.

[27] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. 27th Int. Conf. Mach. Learn. (ICML-
10), 2010, pp. 807–814.

[28] J. Redmon, “Darknet: Open source neural networks in C.” [Online].
Available: http://pjreddie.com/darknet/

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 779–788.

[30] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[31] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” 2015,
arXiv:1405.0312.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[33] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis. (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[34] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[35] M. Kronbichler, T. Heister, and W. Bangerth, “High accuracy mantle
convection simulation through modern numerical methods,” Geophys. J.
Int., vol. 191, no. 1, pp. 12–29, 2012.

[36] G. Morra, “Pythonic geodynamics: Implementations for fast computing
on Jupyter notebooks,” in Proc. AGU Fall Meeting Abstr., vol. 2019,
Dec. 2019, ED53F-0902.

[37] J. Assuncão and V. Sacek, “Benchmark comparison study for mantle
thermal convection using the CitcomCU numerical code,” in Proc. 15th
Int. Congr. Brazilian Geophys. Soc. EXPOGEF, Rio de Janeiro, Brazil.
Brazilian Geophys. Soc., 2017, pp. 1630–1635.

Qinyun Cai received the B.S. degree from Harbin
Institute of Technology, China, in 2014. He is
currently working toward the Ph.D. degree with
the College of Computer Science and Electronic
Engineering, Hunan University, China. His research
interests include parallel and distributed process-
ing, high-performance computing, compiler opti-
mization, heterogeneous computing systems, and
distributed computing systems.

Guanghua Tan received the Ph.D. degree from
the College of Computer Science and Technology,
Zhejiang University, Hangzhou, China. Currently,
he is an Associate Professor with the College of
Information science and Engineering, Hunan Uni-
versity, Changsha, China. His research interests
include medical image processing, computer vision,
3D modeling, and computer graphics.

Wangdong Yang received the M.S. degree in com-
puter science from Central South University, China,
and the Ph.D. degree in computer science from
Hunan University, China. He is a Professor of
computer science and technology with Hunan Uni-
versity, China. His research interests include model-
ing and programming for heterogeneous computing
systems, parallel and distributed computing, and
numerical computation. He has published more than
60 papers in International conferences and journals.
He is currently served on the editorial boards of
IEEE INTERNET OF THINGS JOURNAL.

Xianhao He received the M.S. degree in computer
science from the National University of Defense
Technology, in 2021. Currently, he is working to-
ward the Ph.D. degree in computer science and
technology with the College of Computer Sci-
ence and Electronic Engineering, Hunan Univer-
sity. His research interests include high-performance
computing, compiler optimization, and machine
learning.

http://spec.oneapi.io/versions/latest/oneAPI-spec.pdf
http://pjreddie.com/darknet/


CAI et al.: COALA: A COMPILER-ASSISTED ADAPTIVE LIBRARY ROUTINES ALLOCATION FRAMEWORK FOR HETEROGENEOUS SYSTEMS 1737

Yuwei Yan received the B.S. degree in transporta-
tion engineering from Hohai University, in 2021.
Currently, he is working toward the M.S. degree in
computer science and technology with the College
of Computer Science and Electronic Engineering,
Hunan University. His research interests include
high-performance computing, artificial intelligence,
and edge intelligence.

Keqin Li (Fellow, IEEE) is a SUNY Distinguished
Professor of computer science with the State Uni-
versity of New York. He is also a National Dis-
tinguished Professor with Hunan University, China.
His research interests include cloud computing, fog
computing and mobile edge computing, energy-
efficient computing and communication, embedded
systems and cyber-physical systems, heterogeneous
computing systems, Big Data computing, high-
performance computing, CPU-GPU hybrid and co-
operative computing, computer architectures and

systems, computer networking, machine learning, intelligent and soft com-
puting. He has authored or coauthored more than 860 journal articles, book
chapters, and refereed conference papers, and has received several best paper
awards. He is currently an Associate Editor of ACM Computing Surveys and
CCF Transactions on High Performance Computing. He is a Member of
Academia Europaea (Academician of the Academy of Europe).

Kenli Li (Senior Member, IEEE) received the Ph.D.
degree in computer science from Huazhong Uni-
versity of Science and Technology, China, in 2003.
He was a Visiting Scholar with the University
of Illinois with Urbana-Champaign, from 2004 to
2005. He is currently a Cheung Kong Professor
of computer science and technology with Hunan
University (HNU), the Vice-President of the HNU,
the Dean of the College of Computer Science and
Electronic Engineering of HNU, and the Director
in the National Supercomputing Center in Chang-

sha. His research interests include parallel and distributed processing, high-
performance computing, and Big Data management. He has published over
350 research papers in international conferences/journals. He is a Fellow of
the CCF. He is currently serving or has served as an Associate Editor for
IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS ON INDUSTRIAL

INFORMATICS, and IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING.


	7

