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Abstract: Excavators are one of the most frequently used pieces of equipment in large-scale
construction projects. They are closely related to the construction speed and total cost of the entire
project. Therefore, it is very important to effectively monitor their operating status and detect
abnormal conditions. Previous research work was mainly based on expert systems and traditional
statistical models to detect excavator anomalies. However, these methods are not particularly suitable
for modern sophisticated excavators. In this paper, we take the first step and explore the use
of machine learning methods to automatically detect excavator anomalies by mining its working
condition data collected from multiple sensors. The excavators we studied are from Sany Group,
the largest construction machinery manufacturer in China. We have collected 40 days working
condition data of 107 excavators from Sany. In addition, we worked with six excavator operators
and engineers for more than a month to clean the original data and mark the anomalous samples.
Based on the processed data, we have designed three anomaly detection schemes based on machine
learning methods, using support vector machine (SVM), back propagation (BP) neural network
and decision tree algorithms, respectively. Based on the real excavator data, we have carried out
a comprehensive evaluation. The results show that the anomaly detection accuracy is as high as
99.88%, which is obviously superior to the previous methods based on expert systems and traditional
statistical models.
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1. Introduction

Excavators are one of the most heavily used pieces of equipment in large construction
projects, which are typically sold for more than hundreds of thousands of dollars per machine [1].
Since excavators greatly affect the construction speed and the total cost of the whole project, it is
necessary to carefully monitor their running status and detect anomalies as early as possible. In an
environment where neglecting potential hazards could result in irreversible damage to the whole
excavator and even threaten the safety of the operator, anomaly detection is a key tool to improve the
reliability and usability of the excavator and ensure the operator’s safety.

Prior works try to automatically detect excavator anomalies based on two types of methods,
expert systems [2–4] and traditional statistic models [5–7], respectively. However, these methods
are not suitable for modern excavators which are exceptionally complex, leaving the anomaly
detection in practice still relying on using simple thresholds for certain working condition metrics.
Specifically, expert systems require extensive expert knowledge to predefine rules, which is almost
impractical for modern complex excavators that contains hundreds of key components and up to
hundreds of sensors monitoring various metrics. Moreover, as the volume of excavator working
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condition data increases, it is hard to extract regular patterns from mass of data based on traditional
statistic models.

The recent advancement of neural network and machine learning (ML) have been successfully
applied to various application scenarios [8–14]. However, none has used them in anomaly detection for
excavators. Therefore, in this paper, we take the first step to explore using modern machine learning
methods to automatically detect excavator anomalies by mining its working condition data collected
from multiple sensors.

Our study is based on the excavators of Sany Group [15], the largest construction machinery
manufacturer in China. We have collected 40 days of working condition data of 107 excavators from
Sany, in total containing 3 million pieces of data entries uploaded from 26 sensors on each excavator.
A typical challenge of applying machine learning methods in the traditional industry scenario is the
poor data quality, which we have also encountered. As such, we have closely worked together with
six excavator operators and engineers for more than one month to clean the original data and label
anomalies in them.

Based on the processed data, we have devised and applied three machine learning based anomaly
detection methods, using classic support vector machine (SVM) [16], back propagation (BP) neural
network [17] and decision tree [18] algorithms, respectively. Comprehensive evaluation on real data
from 107 excavators show that the anomaly detection accuracy of our methods is up to 99.88%,
which greatly outperforms prior works based on expert systems and traditional statistic models.

To the best of our knowledge, this is the first work that applies modern ML methods (e.g., SVM,
BP network, decision tree) on anomaly detection for large and complex excavators. Although currently
only several simple classic ML algorithms have been adopted in this paper, the evaluation shows
promising performance results and great potential to use ML algorithms in detecting anomalies
for excavators.

The rest of paper is organized as follows. In Section 2, we review the related works. Then,
we describe the excavator under our study and how we collect, clean and label the data in
Sections 3 and 4. Section 5 presents our excavator anomaly detection algorithms. Experiment results
are shown and analyzed in Section 6. Finally, conclusions are drawn in Section 7.

2. Related Work

Since previously most traditional manufacturers have kept their excavators’ working condition
data as confidential, there are not many publicly-available works proposing anomaly detection methods
for excavators. Among them, two categorizations can be drawn:

• Expert systems [2–4]. To detect excavator anomalies, the authors in [2] discussed an expert
system framework for failure detection and predictive maintenance (FDPM) of a mine excavator.
FDPM includes an expert system engine and a mathematical knowledge base for fault detection
and the corresponding repairing under various conditions. However, the authors in [2] only
proposed a framework without implementation, so the effectiveness has not been validated.
The authors in [3,4] combined the fault tree analysis with simple rule-based expert system,
and designed an expert system with complex reasoning and interpretation functions. However,
the construction of the fault tree and the latter analysis highly rely on the professional domain
knowledge in a specific environment, which may not be easily adopted to general excavators.

• Traditional statistic models [5–7]. These methods mainly use traditional probability and statistics
algorithms for anomaly detection. For instance, the authors in [5,6] rely on principal component
analysis (PCA) and auto-regressive with extra output (ARX) to extract features that reflect
anomalies, and fuzzy c-means (FCM) and radial basis function (RBF) to cluster anomalies and
norms, respectively. However, these methods are shown to be not effective when applying to
complex and large-volume multi-sensor data. Moreover, the authors in [5,6] only carried out
experiments using simulated dataset but no real data verification. The authors in [7] proposed a
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framework for excavator fault diagnosis based on multi-agent system (MAS). However, only the
overall design has been presented and their system has not been implemented and verified.

In summary, compared with the above approaches, the solution we propose does not require
extensive professional domain knowledge and can handle a large volume of complex multi-sensor
data well. Moreover, our solution has been tested and verified using real excavator data.

3. Data Sources

This section is devoted to showing the excavator description and data collection.

3.1. Excavator Description

As shown in Figure 1, the excavator used in our study is Sany Group’s SY215C medium-sized
hydraulic excavator (weight 22,000 kg, bucket capacity 0.93 m3, climbing ability 35 degrees, walking
speed 5.4 km/h) [1]. The excavator is mainly composed of an engine, hydraulic system, working
device, walking device and electrical control system. The walking device is to enable the walking,
which includes a track, a walking engine, and a braking system. The working device is for excavating,
which includes booms, arms, buckets, and hydraulic pumps, etc.

Figure 1. SY215C medium-sized hydraulic excavator.

3.2. Data Collection

The excavator is equipped with 26 sensors on various components (engine, fuel tank, pump, etc.)
monitoring the real-time working condition. The sensors sample the working condition every 10 s and
upload the data to the excavator’s controller area network (CAN), which then transmits the data to
our central data server. Note that each excavator’s data are only collected and uploaded during its
running time but not in its shutdown time.

Sensors with different functions will collect corresponding working condition indicators.
For example, the speed sensor will collect the engine speed and no-load engine speed, while the
water temperature sensor will collect the cooling water temperature, and the pressure sensor will
collect the pump 1 main pressure, pump 2 main pressure and oil pressure.
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During the period from 10 November 2018 to 20 December 2018, we have collected 107 excavators’
working data for 40 days. The whole dataset contains approximately 3 million records. Each record
contains 68 working condition metrics sampled by the sensors, including engine speed, hydraulic
oil temperature, cooling water temperature, and so on. Table 1 summarizes our dataset. In addition,
Tables 2 and 3 list 68 characteristic indexes of excavators.

Table 1. Dataset description.

Item Description

Size of the dataset 2,998,690
The number of sampled metrics 68

Time span of data collection 40 days
Excavator model SY215C

Number of excavators 107

Table 2. Sixty-eight characteristic indexes of excavators.

Indexes Character Representation Brief Description Type

Number of GPS satellites Gps_starsnum The number of GPS satellites Numeric
GPRS signal strength Gprs_sigstrength The strength of the GPRS signal Numeric

GPRSEMEI no. Gprs_emei The serial number of GPRSEMEI Numeric
Local data acquisition time Timestamp_local Data collection time of the equipment Numeric

Device data entry time Timestamp_cloudm2m The time when the data enters the cloud Numeric
Device ID Deviceid The ID number of the device Numeric

Major key ID Uuid The major key ID number of the device Numeric
Date Bizdate Date of data collection Numeric
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Table 3. Sixty-eight characteristic indexes of excavators.

Indexes Character Representation Brief Description Type

Equipment GPSID Gpsid The device is configured with the GPS ID Numeric
Device IP address Ip IP address of the device Numeric

Time Time Data acquisition time Numeric
GPS status Rd_gpssta Shows the current status of the GPS Numeric

TRU system fault word_word fault code Rd_werrorcode Indicates whether the device is faulty Numeric
TRU alarm combination word_word alarm code Rd_walmcode Show whether the device has an alarm Numeric

Gear position Rd_steppos Display device working gear Numeric
HCU alarm merge word 1_bit fault code Rd_berrorcode Displays the specific fault type Numeric

HCU alarm merge word 2_bit alarm code Rd_balmcode Displays the specific alarm type Numeric
HCU system fault word_number of satellites Rd_saticunt Show the number of satellites Numeric

Action number_fault handling status Rd_errdealsta Shows whether the fault has been handled Numeric
Handshake switch rd_commctsch Used to display handshake switches Numeric
Operating mode Rd_uintresv10 Show what mode of operation the device is in Numeric

Display operates the switch quantity Rd_uintresv11 Operating switch value of display screen Numeric
Input switch Rd_uintresv12 Switches collected by sensors Numeric

Output switch Rd_uintresv13 Variable of electrical component output Numeric
Lock machine level Rd_uintresv14 Displays the lock level Numeric

Cell phone number 1_3 digits Rd_uintresv15 Display the phone number 1–3 digits Numeric
Cell phone number 4_7 digits Rd_uintresv16 Display the phone number 4–7 digits Numeric

Cell phone number 8_11 digits Rd_uintresv17 Display the phone number 8–11 digits Numeric
Call status word Rd_uintresv18 Shows what call state it is in Numeric
Call instruction Rd_uintresv19 Display call command Numeric

Noload engine speed Rd_uintresv20 Engine speed at which the equipment is idle Numeric
The largest stall Rd_uintresv21 Shows maximum engine stall Numeric

Average stall Rd_uintresv22 Show engine average speed Numeric
Screen application version number Rd_uintresv23 The version number used by the device Numeric

Longitude 1 Rd_longitude Displays the longitude 1 of the device Numeric
Latitude 1 Rd_latitude Displays the latitude 1 of the device Numeric

Displacement velocity 1 Rd_velocity Operating speed 1 of equipment (km/h) Numeric
Displacement direction 1 Rd_orientation The displacement direction 1 of the device Numeric

Working time Rd_wktime Last startup time of the equipment Numeric
Total working time Rd_totalwktime Total working hours of the equipment Numeric

Lock machine remaining time Rd_rmntime The remaining time of the device being locked Numeric
Battery voltage Rd_batteryvol Display battery voltage Numeric
Engine speed Rd_engv Display engine speed Numeric
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Table 3. Cont.

Indexes Character Representation Brief Description Type

Fuel oil level Rd_oillev Fuel level of equipment (%) Numeric
Height Rd_altitude Altitude of the equipment Numeric

Signal quality Rd_sgniq Shows the strength of satellite signal quality Numeric
Cooling water temperature Rd_floatresv13 Display cooling water temperature Numeric

Pump 1 main pressure Rd_floatresv14 Display pump 1 main pressure size Numeric
Pump 2 main pressure Rd_floatresv15 Display pump 2 main pressure size Numeric

Proportional valve 1 current Rd_floatresv16 The current level of proportional valve 1 Numeric
Proportional valve 2 current Rd_floatresv17 The current level of proportional valve 2 Numeric

Oil pressure Rd_floatresv18 Display oil pressure Numeric
Hydraulic oil temperature Rd_floatresv19 Display the temperature of the hydraulic oil Numeric

Action time_arm lift Rd_floatresv20 Pilot pressure for arm lift Numeric
Fuel consumption_arm drop Rd_floatresv21 Lead pressure for arm drop Numeric

Front pump mean main pressure Rd_floatresv22 Front pump average main pressure size Numeric
Front pump average current Rd_floatresv23 Front pump solenoid valve average current size Numeric
Front pump average power Rd_floatresv24 Display front pump average power Numeric

Mean main pressure of rear pump Rd_floatresv25 The average main pressure of the rear pump Numeric
Rear pump average current Rd_floatresv26 Display the average current of the rear pump Numeric

Average power of rear pump Rd_floatresv27 Display the average power of the rear pump Numeric
Throttle voltage Rd_floatresv28 Voltage at the throttle of the device Numeric

Gear voltage Rd_floatresv29 Display the voltage level of each gear Numeric
Longitude Gps_longitude Displays the longitude of the device Numeric
Latitude Gps_latitude Displays the latitude of the device Numeric

The displacement speed Gps_velocity Operating speed of equipment (km/h) Numeric
Sense of displacement Gps_orientation The displacement direction of the device Numeric

GPS signal strength Gps_sigstrength The strength of the GPS signal Numeric
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4. Data Preprocessing

In this section, how to clean data and label anomalies is described.

4.1. Cleaning Data

A few working condition samples are missed in our original dataset because of the temporary
failures in the sensors and the data collection system. Since typical ML methods can not deal with
incomplete datasets, we fill in those missing values according to the following rules: (1) Some working
condition metrics are rather stable in a short time period, e.g., the previous sample value of a missing
point equals to its next sample. Therefore, we can simply fill in the missing point with the value of
its neighboring samples. (2) Some working condition metrics vary significantly, so we take the mean
value of the previous sample and the next sample as the value of those missing points.

We note that the above methods may not precisely restore those missing values. However,
since the missing points only contribute to one ten thousandth of the whole dataset, we believe this
imprecision will not affect our final algorithm results (also verified by our experiments in Section 6).

4.2. Labeling Anomalies

Our original data source does not contain anomaly labels. Therefore, we have closely worked
together with six excavator operators and engineers for more than one month to label anomalies in
our collected dataset. Specifically, multiple excavator operators helped us to manually record each
excavator’s maintenance condition during these 40 days. Each maintenance record consists of the
maintenance time, whether there is an anomaly/fault, the anomaly/fault description, the rough time
when the anomaly/fault occurs, and the working environment, etc. We define the time period from the
occurrence of the anomaly to the end of the maintenance as an abnormal period, and label the working
condition data samples during this period as abnormal, i.e., the negative samples. According to the
labeled result, the ratio of positive and negative samples in the dataset is about 12:1.

5. Methodology

We now present our anomaly detection algorithms. Specifically, we first merge the original
sampled time-series into discrete samples, and then use association analysis techniques to select
features. Finally, we adopt three machine learning algorithms (i.e., SVM, BP neural network,
decision tree) to detect excavator anomalies from working condition data.

5.1. Merging Time-Series into Discrete Samples

The sensor uploads data every 10 s, which we originally thought to be time series. However, the sensor
only collects data when the excavator is working. Since the working time of each excavator is uncertain
and discontinuous, and the interval time is also uncertain (e.g., work for an hour and rest for one day),
the collected data does not meet the conditions of time series data. As such, to adapt to current ML
algorithms, we merged the original sampled time-series into fewer discrete samples.

We observed that the sampled data are quite intermittent, and there is little or no change in each
sampled metric value within one excavator working period. Therefore, we merge the samples within
each working period into one sample. Specifically, we define that a working period ends if there is
no sampled data for more than 2 min. (otherwise should upload sampled data for every 10 s). Then,
we take the average value of the original sampled metrics as the value of the merged sample within
this time period, and label it as abnormal if there is at least one maintenance record indicating it as
abnormal within this time period. The dataset has 56,480 samples after merging.

5.2. Feature Selection

There are 68 sampled metrics forming 68 features in the original dataset. The importance of each
metric is different, we need to choose important metrics as much as possible. Hence, we only select
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part of the features for learning the excavator anomalies. Specifically, we leverage association analysis
to select features, which is an effective method to reveal relationships between different features and
tend to find an optimal and minimal combination of features. The feature selection technique based on
association analysis consists of two steps.

5.2.1. Association Rule Mining Based on an a Priori Algorithm

Association rules can be used to discover hidden relationships in the industrial data feature set.
f1 and f2 are two subsets in the feature space F. For feature candidates f1 and f2, the association rule
f1 → f2 have two indicators, namely support and confidence. Support indicates the frequency at
which the feature subset occurring in the rule and is calculated by Equation (1).

support( f1 → f2) =
α( f1 ∪ f2)

N
, (1)

where, α( f1) defines the number of transactions contained in a certain item set. N represents the total
number of item set. Confidence denotes the strength of the rule and is calculated by Equation (2):

con f idence( f1 → f2) =
α( f1 ∪ f2)

α( f1)
. (2)

5.2.2. Using Association Rules to Select Features

The lift calculation of association rule f1 → f2 is as shown in Equation (3). If the lift is greater
than 1, the feature candidate f1 is positively correlated with the feature candidate f2. In addition, if the
lift is less than 1, it means that the feature candidate f1 and the feature candidate f2 are negatively
correlated. In the same set, all association rules should be calculated. If the corresponding lift is
less than 1, the candidate is added to the feature subset, if the lift is greater than 1, the candidate is
removed from the feature. Finally, the optimal feature subset with the smallest dimension is selected
by iteration:

li f t( f1 → f2) =
α( f1 ∪ f2)

α( f1)× α( f2)
. (3)

As described in Table 4, we use association analysis techniques to select 16 features from 68
attributes in the excavator working condition dataset to form the best feature combination.

In order to verify whether the feature set selected using the association analysis is the optimal
combination, we conducted a field study. We went to the excavator repair service center of Sany
Heavy Industry in Changsha City, Hunan Province, and conducted in-depth discussions with
excavator maintenance technicians of the repair service center, and verified the features selected
by the association analysis one by one, to confirm whether it is directly related to the failure
of excavator. Fortunately, 16 features we chose are directly related to the failure of the excavator.
Excavator maintenance technicians also refer to these characteristics when repairing the excavator.
It proves that the feature set we chose is indeed the optimal combination.
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Table 4. Sixteen features selected using association analysis.

Feature Character Representation Brief Description Type

Gear position Rd_steppos Display device working gear Numeric
Operating mode Rd_uintresv10 Show what mode of operation the device is in Numeric
Output switch Rd_uintresv13 Variable of electrical component output Numeric
Average stall Rd_uintresv22 Show engine average speed Numeric

Total working time Rd_totalwktime Total working hours of the equipment Numeric
Battery voltage Rd_batteryvol Display battery voltage Numeric
Engine speed Rd_engv Display engine speed Numeric

Cooling water temperature Rd_floatresv13 Display cooling water temperature Numeric
Pump 1 main pressure Rd_floatresv14 Display pump 1 main pressure size Numeric
Pump 2 main pressure Rd_floatresv15 Display pump 2 main pressure size Numeric

Proportional valve 1 current Rd_floatresv16 Display the current level of proportional valve 1 Numeric
Proportional valve 2 current Rd_floatresv17 Display the current level of proportional valve 2 Numeric

hydraulics pressure Rd_floatresv18 Display oil pressure Numeric
Hydraulic oil temperature Rd_floatresv19 Display the temperature of the hydraulic oil Numeric

Throttle voltage Rd_floatresv28 Voltage at the throttle of the device Numeric
Gear voltage Rd_floatresv29 Display the voltage level of each gear Numeric
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5.3. Anomaly Detection Algorithms for Excavators

BP neural network, SVM, and decision tree have proven to be effective by recent ML-based
anomaly detection works for other application scenario [19–24]. Hence, we leverage these three classic
algorithms in our design, and devise the following three algorithms for excavator anomaly detection.

5.3.1. BP Neural Network-Based Anomaly Detection

At present, multi-level feedforward neural networks have been successfully applied in many
aspects. The training of this network is based on the steepest descent method, which is BP algorithm.
BP algorithm is one of the most successful and widely used methods in the field of anomaly detection.

In this paper, BP neural network is trained by using the working condition data of the excavator
to construct a anomaly detection model. The BP neural network includes an input layer, hidden layers,
and an output layer. The hidden layer has two layers, the first layer has 10 neurons, and the second
layer has three neurons. The number of input variables is 16, and the number of expected output
variables is 2. Figure 2 shows its topology.

Figure 2. The topology of theBP neural network.

The BP neural network was trained and tested using different data sets, and the ratio of training
and test sets was continually adjusted. Experimental details and results are described in detail in
Section 6. The optimal values of the main parameters of the BP neural network in the scenario of this
paper are shown in Table 5.

Table 5. Main parameters of the BP neural network.

Parameter Description Value

net.trainmethod training method traingd
net.trainParam.epochs Maximum number of training 10

net.trainParam.goal Training requirements accuracy 0
net.trainParam.lr Learning rate 0.01

net.trainParam.max_fail Maximum number of failures 6

5.3.2. SVM-Based Anomaly Detection

SVM was first proposed by Vapnik et al. in [25], and has now become a very popular method for
dealing with classification problems. Support vector machine is based on the principle of Structural
Risk Minimization (SRM) in statistical learning theory, and has good generalization performance [26].
Minimizing structural risk means maximizing profits between different categories. Thus, SVM is not
only a useful statistical theory, but also a way to deal with engineering problems [27]. The idea of SVM
is to divide training samples into two classes using a linearly separated hyperplane.
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In this study, excavator anomaly detection is formulated as a two-class classification problem,
wherein SVM classifier is applied to determine if the state of the excavator is abnormal. We adopt
a supervised learning approach for the classifier. That is, we train the classifier with marked data.
Data sets are divided into training and test sets in different proportions and used to train and test SVM
classifiers. Experimental details and results are described in detail in Section 6. The optimal values of
the main parameters of SVM in the scenario of this paper are shown in Table 6.

Table 6. Main parameters of SVM.

Parameter Description Value

C Penalty coefficient of the objective function 1
Kernel Kernel function RBF

Gamma Kernel function bandwidth 1/16
Coef0 Independent item in the kernel function 0

Probablity Specify whether to use probability estimation when predicting a decision False
Class_weight Refers to the weight of each class 1

Max_iter The maximum number of iterations −1

5.3.3. Decision Tree-Based Anomaly Detection

The ID3 algorithm is an algorithm implementation of decision tree proposed by Ross Quinlan,
which is based on information theory and takes information entropy and information gain as the
measurement standard to realize data induction and classification. The algorithm tends to select
attributes with a large number of different values, resulting in many small and pure subsets [28],
which can effectively avoid the defects of measurement bias. Accordingly, this paper selects ID3 for
intelligent detection of excavator anomaly.

The decision tree algorithm has been applied to the problem of excavator anomaly detection.
Input to the algorithm is a set of features selected in Section 5.2, the output is the category, which is
normal or abnormal. Similar to the previous two algorithms, data sets are divided into training and
test sets in different proportions and used to train and test decision tree. Experimental details and
results are described in detail in Section 6. The optimal values of the main parameters of SVM in the
scenario of this paper are shown in Table 7.

Table 7. Main parameters of the decision tree.

Parameter Description Value

Criterion Feature selection criteria Entropy
Splitter Character classification criteria Best

Max_depth Maximum depth of decision tree None
Min_impurity_decrease Node division minimum impurity 0

6. Experimental Analysis

This section is devoted to showing evaluation metrics and comprehensive evaluation of the
performance of three machine learning algorithms.

6.1. Evaluation Metrics

In order to effectively evaluate three anomaly detection schemes, we selected five commonly used
evaluation indicators, namely accuracy, specificity, sensitivity, F-measure and AUC (Area Under ROC
Curve). The accuracy is the sum of the proportion of classes that are correctly classified in the total.
It is given by Equation (4):

accuracy =
(TN + TP)

(TN + TP + FN + FP)
, (4)



Symmetry 2019, 11, 957 12 of 18

where TN,TP,FN and FP are true negative, true positive, false negative and false positive, respectively.
The specificity reflects the ability of a classifier to identify negative examples. In addition,
the sensitivity reflects the ability of a classifier to recognize positive examples. They are given by
Equations (5) and (6), respectively:

speci f icity =
TN

(TN + FP)
, (5)

sensitivity =
TP

(TP + FN)
. (6)

F-measure is the harmonic mean of recall and precision. It is given by Equation (7). In addition,
the last evaluation indicator is AUC. The larger its value, the better the classification effect of
the classifier:

F−measure = 2 · (recall × precision)
(recall + precision)

. (7)

6.2. Comprehensive Evaluation

We have devised and applied three machine learning based anomaly detection methods,
using SVM, BP neural network and decision tree algorithms, respectively. In addition, we completed
the comprehensive evaluation. We adjusted the ratio of the test set to training set to find the best ratio.
At the same time, the detection performance of the three machine learning algorithms is evaluated.

We set the dataset to five subsets. The first sub-data set contains data on the working condition of
20 excavators. The second sub-dataset adds working condition data for 20 excavators based on the
first sub-dataset, i.e., the second sub-dataset contains data on the working condition of 40 excavators.
By analogy, the third sub-data set contains the working condition data of 60 excavators, and the
fourth sub-data set contains the working condition data of 80 excavators. Since there are a total of
107 excavator working conditions data, the fifth sub data set contains the working condition data of
107 excavators.

The three approaches were trained and tested by five sub-datasets, and the ratio of training set to
test set was adjusted. The results are shown in Tables 8–12. For example, Table 8 shows the values of
the evaluation indicators obtained by training and testing the three schemes using datasets 1–5 when
the ratio of test set to training set is fixed at 7:3.

Table 8. The ratio of the test dataset to the training dataset is 7:3.

Methods Indicators Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

SVM

AUC (%) 45.61 48.87 50.98 50.99 51.64
Accuracy (%) 67.15 80.06 93.32 93.40 94.03
Specificity (%) 70.43 82.52 93.72 93.87 95.41
Sensitivity (%) 68.32 83.12 90.64 92.12 93.64
F-measure (%) 66.78 79.45 90.24 91.58 93.34

BP neural network

AUC (%) 69.15 76.48 82.61 87.56 90.15
Accuracy (%) 70.21 78.63 84.72 90.42 94.12
Specificity (%) 72.35 80.19 85.62 91.87 95.54
Sensitivity (%) 69.27 76.24 83.54 89.21 93.63
F-measure (%) 68.13 75.64 82.13 88.64 92.64

Decision tree

AUC (%) 74.15 75.64 76.90 98.84 98.97
Accuracy (%) 70.33 86.52 92.52 99.83 99.85
Specificity (%) 72.89 88.64 94.15 99.85 99.89
Sensitivity (%) 69.12 85.36 91.24 99.11 99.16
F-measure (%) 71.64 87.62 93.44 99.84 99.86
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Table 9. The ratio of the test dataset to the training dataset is 6:4.

Methods Indicators Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

SVM

AUC (%) 51.16 51.97 52.17 52.32 58.67
Accuracy (%) 68.43 80.17 93.14 93.48 95.08
Specificity (%) 71.62 82.46 93.88 94.16 95.77
Sensitivity (%) 68.12 79.32 92.64 92.71 94.76
F-measure (%) 67.89 78.64 91.77 92.15 93.48

BP neural network

AUC (%) 71.43 78.51 83.12 89.62 91.56
Accuracy (%) 72.14 80.12 87.64 92.54 95.17
Specificity (%) 74.62 82.19 88.79 93.42 96.41
Sensitivity (%) 71.12 79.64 86.52 91.65 94.13
F-measure (%) 70.65 78.34 85.97 90.18 93.78

Decision tree

AUC (%) 71.19 82.75 85.95 98.90 98.94
Accuracy (%) 71.47 88.31 96.26 99.86 99.87
Specificity (%) 73.81 90.44 97.84 99.87 99.89
Sensitivity (%) 70.62 87.52 95.63 99.14 99.42
F-measure (%) 72.87 89.47 96.89 99.87 99.88

Table 10. The ratio of the test dataset to the training dataset is 5:5.

Methods Indicators Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

SVM

AUC (%) 50.46 51.89 52.63 53.69 58.21
Accuracy (%) 68.95 80.63 93.27 93.57 94.88
Specificity (%) 71.24 81.85 94.81 94.82 95.02
Sensitivity (%) 68.14 79.46 91.84 92.68 94.42
F-measure (%) 67.46 78.74 90.63 91.85 94.10

BP neural network

AUC (%) 70.11 77.68 82.42 89.67 91.24
Accuracy (%) 72.35 79.56 85.37 92.15 94.72
Specificity (%) 75.41 81.23 87.19 93.48 95.68
Sensitivity (%) 71.62 79.14 84.67 91.62 94.16
F-measure (%) 70.41 78.89 84.15 90.17 93.64

Decision tree

AUC (%) 70.18 80.49 85.43 98.91 98.78
Accuracy (%) 70.62 87.14 95.51 99.87 99.87
Specificity (%) 73.49 89.43 96.12 99.87 99.88
Sensitivity (%) 69.54 86.72 94.68 99.35 99.49
F-measure (%) 72.78 88.13 95.89 99.83 99.85

Table 11. The ratio of the test dataset to the training dataset is 4:6.

Methods Indicators Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

SVM

AUC (%) 50.19 51.63 53.22 53.35 58.62
Accuracy (%) 68.21 82.91 93.22 93.62 95.11
Specificity (%) 71.27 85.21 94.13 94.51 96.32
Sensitivity (%) 68.08 80.65 92.85 93.19 94.82
F-measure (%) 67.41 79.45 91.42 92.86 93.16

BP neural network

AUC (%) 71.25 76.14 84.52 89.17 91.56
Accuracy (%) 75.68 80.58 88.14 93.01 95.31
Specificity (%) 77.82 82.34 90.48 94.53 96.42
Sensitivity (%) 74.61 80.13 87.52 92.14 94.62
F-measure (%) 73.18 79.61 86.42 91.73 93.51

Decision tree

AUC (%) 68.71 82.45 89.44 98.96 98.97
Accuracy (%) 71.84 88.62 96.96 99.88 99.88
Specificity (%) 73.52 90.41 97.54 99.88 99.89
Sensitivity (%) 70.56 87.91 95.78 99.07 99.15
F-measure (%) 72.41 89.77 97.15 99.87 99.88
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Table 12. The ratio of the test dataset to the training dataset is 3:7.

Methods Indicators Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

SVM

AUC (%) 50.32 52.41 54.00 56.13 58.94
Accuracy (%) 70.41 84.28 92.83 94.12 95.28
Specificity (%) 72.63 86.48 93.75 95.14 96.21
Sensitivity (%) 70.15 83.67 92.16 94.01 95.17
F-measure (%) 69.57 83.12 91.85 93.67 94.15

BP neural network

AUC (%) 65.14 70.12 76.32 82.18 92.96
Accuracy (%) 80.73 83.59 89.46 93.63 95.41
Specificity (%) 81.59 84.63 90.23 94.28 96.23
Sensitivity (%) 80.42 83.14 89.11 93.14 94.89
F-measure (%) 79.68 82.48 88.42 92.67 93.78

Decision tree

AUC (%) 64.31 80.15 86.00 98.89 98.87
Accuracy (%) 73.73 90.65 97.82 99.88 99.88
Specificity (%) 79.82 93.58 98.15 99.89 99.91
Sensitivity (%) 72.88 90.17 97.02 99.49 99.51
F-measure (%) 75.98 92.67 98.04 99.88 99.89

6.2.1. Exploring the Optimal Ratio of Test Set to Training Set

In terms of the ratio of test set to training set, five ratios are set. The ratio of test set to training set
is set as 7:3, 6:4, 5:5, 4:6 and 3:7, respectively. The proportion of test set to training set was adjusted.
The results are shown in Tables 8–12. For example, Table 12 show the values of the evaluation indicators
obtained by training and testing the three schemes using datasets 1–5 when the ratio of test set to
training set is fixed at 3:7. Table 11 shows the experimental results with a ratio of 4:6 between the test
set and the training set. In addition, Tables 8–10 show the experimental results with a ratio of 7:3, 6:4
and 5:5 between the test set and the training set, respectively.

The ratio of test set to training set also has a large impact on the performance of the detection
solution. As shown in Figure 3, the dataset 5 is used to train and test the three anomaly detection
schemes, and the ratio of test set to training set is changed. From the experimental results, it can be
seen that, when the ratio of test set to training set is 3:7, the performance of the three approaches is
optimal. Accordingly, we have come to the conclusion that the optimal ratio of test set to training set
is 3:7.

Figure 3. Cont.
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Figure 3. Experimental comparison of different proportions of test sets to training sets.

6.2.2. Performance Evaluation of Three Anomaly Detection Methods

Dataset 5 was used to train and test three anomaly detection approaches, and the ratio between
test set and training set was fixed at 3:7. The experimental results are shown in Figure 4. It can be seen
from experimental results that the performance of three anomaly detection approaches is very excellent,
and their detection accuracy is higher than 0.95. Of course, in comparison, each evaluation index of
the detection scheme based on the decision tree is better than the other two schemes. Accordingly,
two conclusions can be drawn, one is that the feature combination we choose is optimal; the other is
that the detection performance of the decision tree is better than the other two methods.

Figure 4. Performance comparison of three anomaly detection schemes.
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7. Conclusions

In this paper, we take the first step to explore modern machine learning methods to automatically
detect excavator anomalies by mining its working condition data collected from multiple sensors.
In the face of poor quality data, we have performed a series of pre-processing tasks, including data
cleaning, anomaly marking, and discretization. In addition, we have selected 16 features using
correlation analysis techniques. Based on the processed data, we have designed and applied three
machine learning-based anomaly detection methods, using SVM, BP neural network and decision tree
algorithms, respectively. Comprehensive evaluation on real data from 107 excavators show that the
best anomaly detection accuracy reaches 99.88%. It shows that the machine learning method has great
potential in the field of excavator anomaly detection.

Applying machine learning to the field of excavator anomaly detection has played a very
important role in the intelligentization of excavators. In the future, we have three research priorities.
The first one is to improve the quality of data collection, improve the collection equipment and
collection rules. The second important point is to classify the abnormality of the excavator, specifically
to the component, that is, to be able to detect which component has an abnormality. The third focus is
to explore more machine learning methods and apply them to the field of excavator anomaly detection.
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The following abbreviations are used in this manuscript:

SVM Support vector machine
BP Back propagation
ML Machine learning
FDPM Failure detection and predictive maintenance
PCA Principal component analysis
ARX Auto-regressive with extra output
FCM Fuzzy c-means
RBF Radial basis function
MAS Multi-agent system
CAN Controller area network
SRM Structural risk minimization
SVs Support vectors
AUC Area under ROC curve
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