
2262 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

CBANA: A Lightweight, Efficient, and Flexible
Cache Behavior Analysis Framework

Qilin Hu , Yan Ding , Member, IEEE, Chubo Liu , Member, IEEE, Keqin Li , Fellow, IEEE,
Kenli Li , Senior Member, IEEE, and Albert Y. Zomaya , Fellow, IEEE

Abstract—Cache miss analysis has become one of the most
important things to improve the execution performance of a
program. Generally, the approaches for analyzing cache misses
can be categorized into dynamic analysis and static analysis. The
former collects sampling statistics during program execution but
is limited to specialized hardware support and incurs expensive
execution overhead. The latter avoids the limitations but faces two
challenges: inaccurate execution path prediction and inefficient
analysis resulted by the explosion of the program state graph.
To overcome these challenges, we propose CBANA, an LLVM-
and process address space-based lightweight, efficient, and flex-
ible cache behavior analysis framework. CBANA significantly
improves the prediction accuracy of the execution path with
awareness of inputs. To improve analysis efficiency and utilize
the program preprocessing, CBANA refactors loop structures to
reduce search space and dynamically splices intermediate results
to reduce unnecessary or redundant computations. CBANA
also supports configurable hardware parameter settings, and
decouples the module of cache replacement policy from other
modules. Thus, its flexibility is established. We evaluate CBANA
by using the popular open benchmark PolyBench, graph work-
loads, and our synthetic workloads with good and poor data
locality. Compared with the popular dynamic cache analysis tools
Perf and Valgrind, the cache miss gap is less than 3.79% and
2.74% respectively with over ten thousand data accesses for the
synthetic workloads, and the time reduction is up to 92.38%

Manuscript received 23 September 2023; revised 9 May 2024; accepted
27 May 2024. Date of publication 19 June 2024; date of current version
9 August 2024. This work was supported in part by the National Key Research
and Development Program of China under Grant 2021YFB0300300; in part
by the National Natural Science Foundation of China under Grant 62072165;
Grant 62202154, and Grant 62225205; in part by the Science and Technology
Innovation Program of Hunan Province under Grant 2021RC3063 and Grant
2023GK2003; in part by the Science and Technology Program of Changsha
under Grant kh2301011; and in part by China Scholarship Council (CSC).
Recommended for acceptance by A. Karanth. (Corresponding authors: Yan
Ding; Chubo Liu.)

Qilin Hu, Yan Ding, Chubo Liu, and Kenli Li are with the College of Com-
puter Science and Electronic Engineering, Hunan University, Hunan 410082,
China, and also with the National Supercomputing Center in Changsha, Hu-
nan 410082, China (e-mail: hql@hnu.edu.cn; ding@hnu.edu.cn; liuchubo@
hnu.edu.cn; lkl@hnu.edu.cn).

Keqin Li is with the College of Computer Science and Electronic En-
gineering, Hunan University, Hunan 410082, China, also with the National
Supercomputing Center in Changsha, Hunan 410082, China, and also with
the Department of Computer Science, State University of New York, New
Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Albert Y. Zomaya is with the School of Computer Science, University
of Sydney, Sydney, NSW 2006, Australia (e-mail: albert.zomaya@sydney.
edu.au).

Digital Object Identifier 10.1109/TC.2024.3416747

and 97.51% for the multiple-path workloads. Compared with
the popular static cache analysis tool Heptane, CBANA achieves
a time reduction of 97.71% while ensuring accuracy at the
same time.

Index Terms—Cache behavior modeling, path analysis, path
selection, static analysis.

I. INTRODUCTION

ADVANCEMENTS in chip design have widened the per-
formance gap between memory and processor [1], [2].

The recent Intel Core i9 processor has around 4 ns of calculation
latency, while memory latency exceeds 90 ns [3]. To bridge the
gap between calculation latency and memory access latency,
cache has been introduced as an important component [4], [5],
[6], [7]. Cache miss serves as a critical criterion for analyz-
ing the execution performance of a program. A lower num-
ber of cache misses usually indicates the overhead reduction
in data movement and thus significantly improves execution
performance.

Depending on whether the program is executing during the
analysis, existing cache miss analysis can be categorized into
dynamic analysis and static analysis as illustrated in Fig. 1.
Dynamic analysis can usually be further classified into run-time
profilers and simulators. Run-time profilers [8], [9], [10] esti-
mate cache misses by sampling data in Performance Monitoring
Counter (PMC). Simulators [11], [12], [13], [14], [15] realize
fine-grained memory access trace through dynamic binary in-
strumentation (DBI) during the program execution on simulated
hardware/system. Static analysis methods [16], [17], [18], [19],
[20] generally abstract static information from programs and
construct a model of execution flows to analyze the cache
misses. Although current dynamic and static analyses provide
various ways to evaluate cache misses, they still have individual
limitations and inefficiencies.

Dynamic analysis is highly limited to specialized hardware
and also incurs expensive execution overhead. For example, a
run-time profiler samples a portion of cache behavior and then
estimates the entire program performance, which is limited to
the number of PMCs and the sampling frequency. Simulators
avoid hardware constraints caused by insufficient number of
PMCs through fine-grained simulation of instruction streams,
but the modification and interception of instructions incur ad-
ditional run-time overhead. In addition, the dynamic analysis
scheme requires multiple executions of the program to cover

0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3377-1656
https://orcid.org/0000-0001-6956-9260
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-3090-1059
mailto:hql@hnu.edu.cn
mailto:ding@hnu.edu.cn
mailto:liuchubo@hnu.edu.cn
mailto:liuchubo@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:lik@newpaltz.edu
mailto:albert.zomaya@sydney.edu.au
mailto:albert.zomaya@sydney.edu.au

HU et al.: CBANA: A LIGHTWEIGHT, EFFICIENT, AND FLEXIBLE CACHE BEHAVIOR ANALYSIS FRAMEWORK 2263

Fig. 1. Design trade-off between different cache miss analysis methods.

Fig. 2. Program state graph is generated by the path sensitive analysis of
CFG. Further splitting of program states may cause the explosion.

multiple or even entire execution paths in the program, which
further leads to analysis lag.

In contrast, static analysis provides the potential to analyze
cache misses without the hardware constraints and execution
overhead. However, most existing static analysis schemes only
analyze cache misses on a single path or the worst-case execu-
tion path due to the challenges of inaccurate execution predic-
tion and inefficient program state analysis. Many path selection
schemes use branch prediction to decide which branch should
be taken. However, the accuracy of branch prediction that uses
heuristic methods is probabilistic [21]. Furthermore, large-scale
programs face the risk of state explosion when generating the
program state graph. As shown in Fig. 2, a program can be
represented as a Control Flow Graph (CFG). The utilization
of language constructs such as loops may cause an exponential
increase in the number of program states [22], thus incurring the
state explosion and leading to an abrupt interruption of analysis.

In this work, we try to take advantage of static analysis
while tackling its challenges. We design CBANA, a static cache
behavior analysis framework, to analyze the cache misses of
the program executed on systems with a cache architecture.
Accurate execution prediction is achieved by leveraging input-
aware path analysis. Loop refactoring and dynamic splicing
of intermediate results ensure efficient data stream generation
and lightweight cache miss calculation. Flexible cache behav-
ior modeling is provided by configurable hardware parameter
settings and decoupling the module of the cache replacement
policy from other modules. Overall, the main contributions of
CBANA are as follows:

• We present CBANA, a static cache behavior analysis
framework that overcomes the challenges of inaccurate
execution path prediction and inefficient program state
analysis.

• We enable an input-aware path analysis mechanism. It
abstracts a program into multiple program points and in-
troduces program states to describe the various conditions
of a program point. Analyzing the program states ensures
the accuracy of path selection.

• We propose a dynamic splicing scheme of intermediate
results to reduce unnecessary or redundant analysis. The
concrete data stream is generated after getting the exe-
cution path. For overlapping parts on different paths, the
information inside a basic block can be reused.

• For the synthetic workloads with more than ten thousand
data accesses, our evaluation shows that compared with the
popular dynamic cache analysis tools (i.e., Perf and Val-
grind), the cache miss gap is less than 3.79% and 2.74%,
respectively. In addition, CBANA achieves up to 92.38%
and 97.51% time reduction when the multiple-path work-
loads are analyzed by 1000 sets of inputs. Compared with
the popular static cache analysis tool Heptane, CBANA
achieves a time reduction of 97.71% while ensuring accu-
racy at the same time.

This paper is organized as follows. Section II provides an
overview of related work and highlights the characteristics of
CBANA. Section III describes the organization and design de-
tails of our framework. Section IV covers the implementation of
CBANA and presents the evaluation results. Finally, Section V
concludes this paper.

II. RELATED WORK

As mentioned earlier, existing methods for analyzing cache
misses are generally categorized into dynamic analysis [9], [10],
[12], [13], [23] and static analysis [17], [18], [19], [24] accord-
ing to whether the source program needs to be executed during
the analysis. As is shown in Table I, we compare CBANA
with representative methods from various aspects, including
the characteristics of the analysis methods, the ability of path
analysis, the analysis granularity, and the cache architecture
supported by these methods.

Dynamic analysis includes run-time profilers and simulators.
Run-time profilers leverage a set of PMCs in modern processors
to capture program run-time performance information [9], [10],

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

2264 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

TABLE I
COMPARISON OF THE TECHNIQUES IN CACHE MISS ANALYSIS

Category Methods
Program
Execution

Path
Analysis

Limitations
Analysis
Granularity

Supported Architectures
(i.e., cache mapping, type,
and replacement policy)

Dynamic

Perf [9]

Yes
N/A

1. Limited specialize hardware
2. Extra overhead during execution
3. Single path analysis per execution

Instruction
-LWPTool [10] Line

RDX [23] Program
Valgrind [12] Function/Line I/D/LL cache, LRU

QEMU [13] Instruction
SA, I/D cache,
LRU/FIFO/Rand

Static

SPS [19]

No
1. Inaccurate execution prediction
2. Inefficient program state analysis

Loop LRU
Chronos [17]

Worst-case
Program

Direct/SA, I-cache, LRU

Heptane [18]
SA, I/D cache,
LRU/PLRU/FIFO/
MRU/Rand

Exact-CS [24]
Program/
Fragment

FA/SA, I/D cache, LRU

CBANA (this paper) Input-aware -
Program/
Function/Line

FA/SA, D-cache,
LRU/FIFO/MRU

Note: FA = fully associative, SA = set-associative, I = instruction, D = data, LL = last level, LRU = least recently used, PLRU =
pseudo-LRU, FIFO = first in first out, MRU = most recently used, Rand = random, N/A = not applicable.

[25], [26]. PMCs collect cache-related events (e.g., L1-dcache-
load-misses and L1-icache-load-misses) during the execution
of a program. However, inadequate sampling frequency and the
sharing of a single counter between multiple events can cause
considerable errors [27], [28]. Jitter and noise during sampling
can also introduce uncertainty in cache miss measurements
[29]. Simulators achieve accurate cache behavior analysis by
modeling hardware architecture [15]. For example, Cachegrind
detects cache data interactions by simulating a machine with
L1 and L2 cache. It is available in a framework for dynamic
binary analysis called Valgrind [12]. A cache simulation module
is also established in QEMU [13] to provide cache miss rate
measurement. To alleviate the simulating overhead, CANAL
[14] models the cache behavior by inserting a sequence of
optimization (opt) passes before and after each Load/Store
instruction during the program execution. Although the sys-
tem modeling techniques are relatively well established, the
running of the simulator may require significant computing
resources. For instance, DBI involved in the simulation will
modify the source code and introduce significant additional
execution overhead.

Static analysis based on abstract interpretation uses math-
ematical semantics to describe the computing process of a
program [16]. By maintaining an abstract domain at each fix-
point, the abstract properties of the program can be analyzed
by the abstraction of the actual behavior. Heptane [18] is a
representative approach that provides data address and cache
analysis based on abstract interpretation. It is capable of de-
termining the intervals of addresses by analyzing the content
of each register with dataflow equation representation [30] and
associating every memory reference with Cache Hit/Miss Clas-
sification (CHMC) under different cache architecture. Abstract
interpretation enhanced with speculative execution has been
implemented in many popular analysis tools, such as LLVM
[31] to detect the number of cache misses on the path with

Worst-case Execution Time (WCET) analysis [20]. Chronos
[17] performs detailed micro-architectural modeling to generate
WCET estimates of C programs. Both Heptane and Chronos use
Integer Linear Programming (ILP) formulation to represent the
execution time of the entire program and use ILP solvers to find
WCET estimates. Cache persistence analysis is also studied as
an important part of WCET analysis. Considering all memory
accesses in a program or a fragment of a program, Exact-CS
[24] introduces the first exact persistence analysis for caches
with LRU replacement.

The LRU stack distance, also known as reuse distance, is
a widely used definition that can be applied in both dynamic
analysis and static analysis. It proves to be an effective criterion
for recognizing code with poor data locality in LRU replace-
ment algorithm [23], [32], [33], [34], [35], [36]. Stack distance
measures the distinct data between two memory accesses and
was first proposed by Mattson et al. [37]. To describe how
close a set of data is accessed in a program, reference affinity
is defined in [38]. It uses the stack distance as a reference
to reorganize the array and the structure. To improve analysis
efficiency, the approximate analysis of stack distance is pro-
posed, which trades accuracy for efficiency [32]. An alternative
method for measuring working-set locality is reuse time [39],
which counts the number of accesses between two consecutive
accesses to the same cache block. Static parallel sampling is
proposed to predict miss ratio curves for complex loops and
branches based on reuse time, which measures almost exact
results as trace-based analysis [19]. A lightweight profiling tool
RDX [23] integrates PMU event-based sampling and debug
registers to analyze reuse distance and characterize program’s
locality during the execution. However, the reuse distance is
designed for the LRU algorithm and cannot be applied to other
cache replacement algorithms.

In view of the drawbacks of the existing approaches, CBANA
is designed to pinpoint program performance bottlenecks in

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

HU et al.: CBANA: A LIGHTWEIGHT, EFFICIENT, AND FLEXIBLE CACHE BEHAVIOR ANALYSIS FRAMEWORK 2265

Fig. 3. Overview of CBANA. It mainly contains six modules: flow sensitive analysis, path sensitive analysis, input-aware path analysis, dynamic splicing
of intermediate results, data mapping analysis, and cache miss calculation.

different paths of a program at a fine-grained granularity. As
a static analysis scheme, CBANA is able to correlate cache
misses to the location of variable access line-by-line. Besides,
the input-aware path analysis and configurable cache architec-
ture ensure the efficiency and flexibility of analyzing multiple
paths in parallel. Meanwhile, dynamic splicing of intermedi-
ate results reduces the risk of program state explosion dur-
ing static analysis and therefore ensures a lightweight cache
miss calculation.

III. CBANA FOR ANALYZING CACHE BEHAVIOR

In this section, we present CBANA. First, we introduce the
overall design of CBANA. Second, we show the design details
of key components in CBANA.

A. Overall Framework Design

Fig. 3 illustrates the overview of the cache behavior anal-
ysis framework. The framework is mainly divided into three
parts: Part I, source code information extraction, Part II, cache
architecture analysis, and Part III, cache behavior modeling
and analysis (CBANA in this paper). Part I and Part II mainly
provide the program and hardware information required by
Part III. In Part I, the source code is analyzed by a front-end
analysis tool such as LLVM Clang and compiled into an ELF
file to extract the source code information. In Part II, the cache
architecture parameters of the target system are taken as inputs.
In Part III, cache behavior is modeled according to the extracted
information, and cache misses will be calculated according to
the selected execution paths. Part III is mainly divided into
six modules:

Flow Sensitive Analysis: It divides the statements into sev-
eral basic blocks and generates CFG according to the control
flow between basic blocks. The program point is defined as a
node in CFG.

Path Sensitive Analysis: It correlates each program point
with more than one program point and generates a program state
graph to indicate realistic execution paths with path constraints.
The program state will record the current related basic blocks
and other detailed information.

Input-aware Path Analysis: With the path information pro-
vided by the CFG and the program state graph, it is responsible
for analyzing path constraints and selecting branches according
to the computation results of symbolic expressions. Then it will
generate a simplified basic block sequence.

Dynamic Splicing of Intermediate Results: It divides the
simplified basic block sequence into multiple path segments
according to the conditional statements. To relieve the over-
head brought by analyzing large-scale loops, segment splicing
restores the original basic block sequence with the intermediate
results and the number of loop iterations. The data stream
is generated from the sequence and internal information of
basic blocks.

Data Mapping Analysis: It models the virtual address space
by using the compilation information and cache architecture
information to generate the cache line mapping table.

Cache Miss Calculation: It takes data streams, cache line
mapping table, and cache related architecture parameters as
inputs to estimate the number of cache misses for selected
execution paths.

Overall, as shown in Fig. 3, the framework consists of eight
stages (Stages ❶-❽). In Stage ❶, front-end analysis generates
the CFG and program state graph. In Stage ❷, virtual address

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

2266 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

Fig. 4. Source code is divided into a number of basic blocks in CFG, and the
different conditions of the expression in the program point further introduce
distinct program states.

space is modeled to map the data into different cache lines in
the subsequent steps by combining process address space in the
operating system (OS) and parsing data regions. At the same
time, in Stage ❸, the parameters of the cache architecture in
the target system are taken as inputs for data mapping analy-
sis. In Stage ❹, the input-aware path analysis determines the
execution path by computing the symbolic expressions in the
path constraints of each branch. In Stage ❺, each data stream
is dynamically spliced according to the block sequence of the
path. In Stage ❻, the data streams are taken as one of the
inputs to cache miss calculation. In Stage ❼ and Stage ❽,
the cache line mapping table and cache replacement poli-
cies are also taken as the inputs for cache miss calculation.
After that, the cache misses of the corresponding path can
be estimated.

Flow sensitive analysis and path sensitive analysis are used
for the preprocessing of the whole program, which analyzes
all of the basic blocks and corresponding program states.
Input-aware path analysis provides accurate path selection and
efficient program state analysis. CBANA also supports config-
urable cache architecture parameters, where the address space
modeling promises the spatial locality involved in cache line
replacement. Moreover, CBANA employs a decoupled design
to support more potential types of high-level languages and
cache replacement policies.

B. CFG and Program State Graph Generation

Flow Sensitive Analysis: The goal of flow sensitive analysis
is to infer program control flow and generate CFG. We divide
the statements into several basic blocks where the control flow
can only enter from the first statement and come out from the
last statement in a basic block. After the program is divided into
basic blocks, CFG is built to indicate the control relationship
between the basic blocks. Take the source code in Fig. 4 as

an example, the program is divided into five basic blocks,
and it starts at an entry B4 and ends with an exit B0. The
conditional statement (i.e., if) in basic block B3 introduces two
edges pointing to different basic blocks B1 and B2, which will
introduce different program points.

Path Sensitive Analysis: To further correlate concrete in-
puts or classes of inputs with different execution paths, path
sensitive analysis is done to generate the program state graph.
The program state includes the accumulated execution situa-
tions when reaching the program point. Each program state
owns four main attributes, which are Point, Store, Expressions,
and Ranges. Point records the basic block associated with the
current program state, Store records the effects of assignments
in statements, Expressions records the detailed expressions,
and Ranges is optional and records the states that satisfy the
current branch. Fig. 4 shows the conversion of CFG into a
program state graph. By evaluating the conditional statement,
two program states are created with different path conditions
true and false, which correspond to the two branches x≥ 1
and x≤ 0. Therefore, the program state graph may end with
multiple exits.

With the flow sensitive analysis and path sensitive analysis,
we get the path constraints on the corresponding branches.
Analyzing data and instruction streams is well-studied [11],
[12], [17], [18]. However, these studies focus on analyzing a
single path in the compiled file or the worst-case execution path.
In this study, path sensitive analysis relates a path to a specific
path constraint, where basic blocks on different paths can be
analyzed simultaneously and independently. The expenditure
of symbolic expressions is also well utilized. When the path
constraints satisfy the current condition, path sensitive analysis
further updates the path constraints according to the symbolic
expression on the subsequent path. Therefore, the paths can be
filtered according to the class of inputs to reduce unnecessary
analysis. For example, in Fig. 5(a), if the variable n satisfies the
statement n%20 == 0, the condition corresponds to (C → S1)
and (S1→ Exit). If the condition is false, it corresponds to
(C → S2) and (S2→ Exit).

Based on the path constraints, input-aware path analysis will
utilize the information from Ranges and Point to determine the
path constraints that meet the conditions and decide the final
execution path that matches the current input.

C. Input-Aware Path Analysis

Input-aware path analysis builds on the granularity of basic
blocks and is used to determine which branch should be chosen
for a particular input condition.

To select the exact path, variables with concrete inputs or
classes of inputs in the current period are plugged into symbolic
expressions of path constraints to decide which path to enter by
analyzing the results of expressions. As shown in the Fig. 5(a), if
the variable n is a multiple of 20, (C → S1) and (S1→ Exit)
will be selected. For program states with multiple branches
satisfying different conditions, analyzing the path constraints in
parallel improves the efficiency of path selection. At this point,
a complete sequence of basic blocks constrained by the input is

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

HU et al.: CBANA: A LIGHTWEIGHT, EFFICIENT, AND FLEXIBLE CACHE BEHAVIOR ANALYSIS FRAMEWORK 2267

Fig. 5. Examples of input-aware path analysis from original code to CFG.
The statements in pseudocode are represented as nodes in CFG, where the
conditional statements incur different branches with distinct path conditions.

generated. However, the states of the variables within the basic
block may affect the symbolic expressions in the conditional
statements, traditional methods will repeat the program state
within the loop at each round of loop iterations, leading to a
program state explosion. To solve the problem of program state
explosion, dynamic splicing of intermediate results is further
introduced in CBANA.

D. Dynamic Splicing of Intermediate Results

As the symbolic expression of each variable is updated, the
increase of program states will lead to the program state ex-
plosion. Specifically, the current program state will be forked
into two different states when facing a conditional branch [40].
Therefore, the number of feasible paths will grow exponentially
along with the expansion of the branch scale. CBANA solves
the problem by recognizing and reusing the intermediate results
in the source code. Take the definition of compile-time enumer-
able in SPS [19] as a reference, the data streams in the loops
are compile-time enumerable when the expressions of the loop
bounds, strides, branch predicates, and array subscripts con-
tain only the loop index variables and constants. Based on the
assumption of enumerable in the program, CBANA provides
dynamic splicing of intermediate results of basic blocks.

Path Division and Segment Splicing: We define the basic
blocks divided by the conditional statements as path segments,
where a path segment is the basic unit of the dynamic splicing
and consists of at least one basic block. To reduce the redundant
program state and analyze the loops more efficiently, the basic

blocks included in loops are fully expanded into the original
sequence of basic blocks after the execution path is selected.
Take Fig. 5(b) as an example, we analyze one iteration of the
loop. Once the value of variable n is captured, the path segment
1 (i.e., (C → S2), (S2→ S1), and (S1→ C)) will be spliced
dynamically according to the number of original iterations. For
nested loops, we first expand the inner loop and then the outer
loop. As Fig. 5(c) shows, the basic blocks in the nested loop
are divided into four path segments. Path segment 2 in the inner
loop is firstly spliced according to the value of variable n, and
then the segments (i.e., path segment 1, the spliced path segment
2, and path segment 3) included in the outer loop are further
spliced totally according to the number of iterations.

Dynamic splicing of intermediate results avoids excessive
concentration on the internal information of basic blocks during
loop analysis or among different paths. When input-aware path
analysis of multiple paths involves overlapped basic blocks,
analysis at the granularity of basic blocks helps to reduce redun-
dant and unnecessary information analysis. For the final data
stream generation of multiple paths, we can reuse the internal
information of previous basic blocks without reanalyzing the
entire program.

E. Data Mapping Analysis

To guarantee the precision of cache miss analysis, we need
to determine how the variables are mapped in the cache line.
Using the cache line as the granularity of the cache behavior
analysis enables better integration of cache analysis with the
spatial locality of the data. As shown in Fig. 6, the source code is
compiled into an ELF file and further parsed into virtual address
space distribution in a real runtime environment. Furthermore,
the virtual address space is divided into global, stack, and heap
regions. Then the data will be mapped into different cache lines
according to the cache parameters. The mapping information
will be recorded in the mapping table for the cache behavior
analysis. For different variables, if the mapping table records
the same Tag and Index, it indicates that they are in the same
cache line. Therefore, we can analyze the mapping situation of
variables in fully associative and set-associative based on the
obtained virtual addresses.

Understanding the distribution of virtual address space bene-
fits the procedure of cache line mapping. The operating system
provides a separate virtual address space for each process in
order to manage memory more efficiently and securely [41].
The mapping principles of these regions are usually as follows:

• Code (.text): Contains executable instructions.
• Initialized data (.data): Saves initialized

global and static variables, which can be further divided
into the read-only region and initialized read-write region.

• Uninitialized data (.bss): Stores global and
static variables that are not explicitly initialized in the
source code.

• Stack: Located in the high part of user address space and
grows towards the lower address as the function is called.

• Heap: Grows from low addresses to higher addresses and
is maintained by a dynamic memory allocator in the form

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

2268 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

Fig. 6. Memory address mapping. Firstly, the address space is modeled by
parsing the ELF file compiled from the source code. Secondly, addresses are
partitioned based on the cache architecture. Thirdly, Tag and Index are mapped
and recorded into the cache line mapping table according to the addresses.

of an implicit free list. The memory in heap region can
be managed by the methods of malloc(), calloc(),
realloc(), and free().

The variables in section .data and .bss are arranged and
initialized by their assigned value or default value at compile
time. The variables in heap and stack are arranged according to
run-time state. Note that the order of variables on the stack is
not the same as the order of those variables in the source code.
When the size of the free memory block in heap satisfies the
invocation, the memory area will be allocated to the process.
After the allocation, the memory is marked as reserved and a
pointer to this location is returned.

In general, global, stack, and heap regions are modeled in
different ways. The layout of the global region is decided by
variables in .data and .bss. For stack region, the layout
inside a called stack frame is determined by the compiler.
Local variables leverage a memory alignment strategy gener-
ally. However, the memory allocation for local variables within
branches (i.e., if, for, and while) varies with different compil-
ers and optimization levels. Some compilers will optimize the
memory allocation of local variables. Therefore, the address
allocation of variables within a frame needs to be analyzed
by the ELF file. Based on the assumption of an acyclic call,
we can analyze the relative order of call propagation from the
information in the CFG. Then, combining the function stack
frames calling order and the internal information of the frames,

Fig. 7. Cache miss calculation gets the cache line access sequence according
to data streams and the cache line mapping table. Then, it simulates cache
architecture and cache replacement policies to count the cache misses on
execution paths.

we obtain the variable allocation model of the stack region. The
memory declared by malloc() is stored in the heap region,
and the function returns a pointer to the starting address of
the allocated memory. The information on array size is lost
in the compiler IR optimization, so we get the size from the
compiler front-end information. The heap region is managed by
the programmer and can be freely allocated at runtime, where
resources are requested and released depending on the runtime
state. We consider the case where the heap region memory is
requested in a two-phase locking way, that is, the memory can
only be free after all malloc() are requested. The two-phase
locking model ensures the continuity of memory blocks in the
heap region address and the correction of the analysis.

F. Cache Miss Calculation

The cache miss calculation component supports fully asso-
ciative and set-associative cache models with various cache
replacement policies (e.g., LRU, FIFO, and MRU). As shown
in Fig. 7, different cache replacement policies are used in the
virtual cache architecture to estimate cache misses. The data
access sequence represented by data streams is converted into
a cache line access sequence. For the LRU algorithm, the cache
miss calculation can be modeled as LRU stack distance to
simplify the analysis. In particular, CBANA implements the
LRU policy in two ways: one is based on approximate LRU
stack distance, and the other is based on the update of priority.
The former method provides greater efficiency while the lat-
ter method provides greater accuracy. For other policies, each
cache line provides a field to record the content saved in the
current cache line and sets a state bit to store priority. For
example, for any memory access, the content and priority of
the cache line in the cache model are updated. If the current
variable hits, the priority of the line is updated according to the
replacement policy; if there is a cache miss, the strategy further
determines whether the set is full and the cache contents need to
be replaced, and updates the cache line priority. When a cache

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

HU et al.: CBANA: A LIGHTWEIGHT, EFFICIENT, AND FLEXIBLE CACHE BEHAVIOR ANALYSIS FRAMEWORK 2269

TABLE II
WORKLOADS USED FOR THE EVALUATION OF CBANA AND OTHER ANALYSIS TOOLS

Workload Type Name
Memory
Access Patterns

Number of
Memory Accesses Description

Synthetic load*_loop*_ir irregular [104, 109] The workload loads data * times in * loop iterations by using the
random indexes.

load*_loop*_r regular [104, 105] The workload loads data * times in * loop iterations by using a
consecutive index.

br_path regular/irregular [105, 107] The workload includes * branches and the executing path is *.
PolyBench [42] trisolv regular 105 Triangular matrix solver using forward substitution.

mvt regular 105 Matrix vector multiplication composed of another matrix vector mul-
tiplication but with transposed matrix.

lu regular 105 LU decomposition without pivoting.
durbin regular 105 Durbing is an algorithm for solving Yule-Walker equations, which is

a special case of Toelitz systems.
jacobi_2d regular 105 Jacobi-style stencil computation over 2D data with 5-point stencil

pattern.
seidel_2d regular 105 Gauss-Seidel style stencil computation over 2D data with 9-point

stencil pattern.
Graph [43] tc irregular [105, 106] Triangle Count (TC) counts the total number of triangles in a graph,

and also counts the number of triangles associated with each vertex.
pr irregular 105 PageRank (PR) algorithm attempts to increase the relative rating of a

node based on the weights of all the nodes it is connected to.

miss occurs, we can trace it back to the exact variable and the
source code location that caused the cache miss.

IV. EVALUATION

In this section, we provide an extensive analysis of the perfor-
mance of CBANA. Firstly, we describe the experimental setup
of the evaluation. Secondly, we evaluate the cache miss analysis
of CBANA and Perf for different data regions and various data
structures. In addition, we also compare it with the existing rep-
resentative analysis tools Perf and Valgrind on the commonly
used benchmarks PolyBench [42] and graph workloads [43].
Thirdly, we analyze the execution efficiency of CBANA over
different kinds of workloads and scales. We compare results
among popular dynamic and static analysis tools Perf, Valgrind,
Heptane, and our proposed CBANA.

A. Experimental Setup

CBANA is implemented by C/C++ and uses the extracted in-
formation of LLVM Clang. Program point and program state are
extracted from the program state graph generated by the Clang
Static Analyzer (SA). CBANA uses clang-tidy to capture the
information. CBANA takes the source code files, related inputs,
cache architecture parameters (i.e., cache line size, number of
lines, and the associativity of the data cache), and replacement
policy as key parameters to model the cache behavior. We
use Intel Xeon Silver 4110 @ 2.10GHz as the CPU model
for our target machine. It has 32 KB, 8-way set-associative
cache (usually corresponding to L1), and the cache line size is
64 Bytes.

Workloads: We perform experiments with 12 types of syn-
thetic workloads with compute/memory intensiveness and var-
ious scales, 6 types of workloads from PolyBench [42], and
2 types of workloads from commonly used graph algorithms
[43]. Table II lists the workloads. Memory access patterns are

classified as either regular or irregular [44]. Regular patterns
exhibit sequential access, with a constant stride between con-
secutive memory addresses. In contrast, irregular patterns have
no fixed strides. The number of memory accesses indicates
the range of each kind of workload size. For synthetic work-
loads, some of the large-scale workloads contain several loops
and branches to verify the analysis precision and efficiency of
CBANA when facing program state explosion. More specif-
ically, workloads are divided into global, stack, and heap
regions and various data structures. Other workloads contain
selective paths to verify the efficiency of dynamic splicing and
the accuracy of path selection. For PolyBench, linear algebra
benchmarks (trisolv, mvt, lu, durbin) and stencil benchmarks
(jacobi, seidel) use two-dimensional arrays as inputs. The scales
of the arrays are default and divided into mini-scale, small-
scale, and medium-scale. For the graph workloads, Triangle
Count (TC) and PageRank (PR) are implemented with small-
scale and medium-scale sizes corresponding to around 100 and
1000 edges in each graph respectively.

Approaches: We compare CBANA with dynamic and static
cache miss analysis schemes, namely Perf [9], Valgrind [12],
and Heptane [18]. We run the cache miss collector command
of Perf on the target machine to get the cache miss results during
program execution. To evaluate Valgrind, it is also deployed on
the target machine to get the cache miss results. For Heptane,
it provides configurable parameters for cache analysis and de-
couples with the target machine during the time.

Metrics: The metrics are mainly divided into two dimen-
sions: the precision of the analysis results and the efficiency dur-
ing the analysis. To evaluate the performance of the CBANA,
we report the precision of the evaluation results of Perf,
Valgrind, Heptane, and CBANA under the same workloads.
In addition, we illustrate the analysis time when using dif-
ferent approaches to analyze the cache miss on single and
multiple paths.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

2270 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

Fig. 8. Comparison of Perf and CBANA for L1 D-Cache miss analysis under different synthetic workloads. Bar plots show the cache miss count. Line plot
is the gap (%) between the two bar plots. The gap is highlighted with its exact numeric value. For each workload, the name indicates the number of loops it
has and the number of data loaded in each loop. For instance, load1K_loop1 means there is only a single loop where one thousand data are loaded in each
loop, and load1M_loop1 means one million data are loaded in one loop.

B. Precision of CBANA

We first compare the precision of CBANA with the dynamic
analysis method Perf over synthetic workloads. For the Val-
grind, the DBI during simulation will lead to a long execution
time for certain synthetic workloads, which is impractical in a
real scenario. Comparisons with Heptane only include some of
the small-scale workloads because large-scale workloads lead
to program state explosion and analysis corruption.

CBANA analyzes the data streams of three types of regions,
global, stack, and heap regions. In addition, it also analyzes
hybrid regions with different scales. As described in Table II,
the workloads are identified by the keywords (i.e., load and
loop), which indicate the number of loops included in the code
and the number of variables loaded in the loop. The analysis
results of cache misses are shown in Fig. 8. The scale of the
data loaded in the workloads increases from one thousand to
one hundred million. For different regions, global and heap
modelings show the most predictable results. For stack region,
there is a fluctuation of prediction error when the scale of the
data access is small, which indicates that there is still room for
improvement in the precision of runtime behavior modeling.

Fig. 8 also illustrates the CBANA’s precision of cache miss
analysis oriented to common structures, i.e., array, structure,
array of structures, and structure of arrays, that may cause
the problem of data locality. As the program scale increases,
CBANA implements a similar cache miss analysis result to
Perf. This indicates the correctness of structure and array mod-
eling in memory address mapping. The fine-grained analysis
of CBANA helps analyze the data affinity in data structures,
which further benefits the reorganization of the layout in data

Fig. 9. Comparison of Perf, Valgrind, and CBANA for L1 D-Cache miss
analysis in (a) PolyBench and (b) Graph workloads. Bar plots show the cache
miss count of different approaches.

structures. In addition, the workloads in the regular type include
branches. Compared with irregular workloads, regular work-
loads achieve lower cache miss gaps for the same scale of data
accesses. The main reason is extra cache misses caused by the
operating system. For instance, irregular memory accesses will
introduce more interferences of OS such as the execution of
frequent context switch and page/cache line replacement. The
results also show that the input-aware path analysis scheme
could calculate the number of cache misses on different paths
with multiple sets of inputs respectively. For each path, we
use a consecutive index to access the array to realize a regular
memory access pattern. The overall results show that the gap
of CBANA decreases with the expanded scale and eventually
remains below 3.79% for ten thousand data accesses.

Fig. 9 shows the cache miss analysis of both PolyBench and
graph workloads, which include nested loops and fixed-step
iterating array access. As demonstrated in Fig. 9(a) and 9(b),

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

HU et al.: CBANA: A LIGHTWEIGHT, EFFICIENT, AND FLEXIBLE CACHE BEHAVIOR ANALYSIS FRAMEWORK 2271

Fig. 10. Breakdown of the total execution time of CBANA over different synthetic workloads.

the results of Valgrind and CBANA have the same analyzing
trend. Cache miss gaps between Valgrind and CBANA are
introduced by library functions that are dynamically loaded and
have different behaviors based on the program itself, resulting
in higher cache miss results (e.g., tc, pr, etc) for Valgrind. How-
ever, compared with the dynamic analysis tool Perf, the cache
miss results of some workloads (e.g., jacobi, lu, seidel, etc) vary
enormously. The reason could be the extra cache misses caused
by operating systems and library functions, even though the
program is running individually. Compared with CBANA, we
analyze that the lower results (e.g., mvt and trisolv) of Perf are
caused by hardware optimization (i.e., hardware prefetching for
first-level data cache [45]). However, CBANA only simulates
the cache behavior, which is a limitation of static analysis tools
in general. In particular, it is found that the cache miss profiling
results increased linearly with the runtime of the program when
sleep() was used in the code. This situation may lead to er-
rors in the results of dynamic analysis. Cache misses introduced
by operating system cannot be analyzed by simulation or static
estimation. Nevertheless, this gap will be bridged as the scale
of the program increases.

C. Efficiency of CBANA

The execution overhead of CBANA is shown in Fig. 10,
which can be generally divided into preprocessing for the whole
program and cache miss analysis for each execution path. For
the preprocessing, it includes: (1) flow sensitive and path sen-
sitive analysis shown as the time of loop refactoring, DFS,
and block expansion, and (2) data mapping analysis shown as
the time of array mapping and memory address mapping. For
the cache miss analysis, it includes input-aware path analysis,
dynamic splicing of intermediate results, and cache miss cal-
culation. The former is shown as the time of path selection
in the breakdown of the total execution time. The compilation
time is not listed, as the time is little and depends on the

TABLE III
COMPARISON OF THE TIME OF PROGRAM STATE ANALYSIS BEFORE AND

AFTER LOOP REFACTORING

Workload Name
Original Loop Refactoring

Time (s)
Number of

nodes Time (s)
Number of

nodes

load10K_loop100_ir 35.377 11006022 2.628 110089
load100K_loop100_ir 405.094 110033022 26.123 1100359

compiler. As the scale of data accesses grows, the time of loop
refactoring is increased. For small-scale workloads, memory
address mapping takes up a major portion of the time overhead.
As the scale of the workloads increases, loop refactoring and
DFS take up most of the time overhead and memory address
mapping becomes less of a bottleneck. In fact, the time of loop
refactoring and DFS is influenced by the growing number of
paths in the exploded graph. More specifically, the amount of
data inside the loop affects the loop refactoring time mainly,
while the number of loops affects the DFS time more. Mem-
ory address mapping occupies the most time in small-scale
workloads.

Table III shows the difference in program state analysis be-
fore and after the loop refactoring in dynamic splicing. The
original time is collected during the period when Clang SA
analyzes the total nodes in a program state graph. After loop
refactoring, the number of nodes in the program state graph
will be greatly reduced. The analysis time and the number of
nodes are mainly related to the number of loop iterations and
the number of program states in the loop, so the optimization
effect of different programs is different. Our scheme reduced
time overhead by more than 92.57% in loop analysis. Overall,
CBANA is the first static analysis tool to address state explosion
in large-scale programs.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

2272 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

TABLE IV
EFFICIENCY MEASUREMENT (SINGLE PATH)

Workload
Type

Workload
Name

Dynamic Analysis Static Analysis
Perf [9] Valgrind [12] Heptane [18] CBANA

Cache
Miss

Total
Time (s)

Cache
Miss

Total
Time (s)

Cache
Miss

Total
Time (s)

Cache
Miss

Total
Time (s)

Synthetic load600_loop50_r 30144 0.29 30047 0.36 30001 97.59 29225 3.71
load800_loop50_r 40280 0.29 40047 0.37 40001 171.10 40001 4.92
load1K_loop50_r 50249 0.30 50042 0.37 50001 267.23 50001 6.12

PolyBench [42] durbin_mini 26 0.25 12 0.53 - - 8 0.59
jacobi_1d_medium 507 0.26 77 4.82 - - 101 70.92
jacobi_1d_small 41 0.26 15 1.38 - - 31 3.53
lu_mini 6520 0.27 391 2.64 - - 403 83.72
mvt_mini 249 0.27 224 0.74 - - 202 10.09
mvt_small 4313 0.27 5535 3.48 - - 5505 1073.43
seidel_2d_mini 1113 0.27 180 4.09 - - 201 139.16
trisolv_small 1269 0.27 2100 1.20 - - 2085 94.66

Graph [43] tc_small 795 0.27 69 0.80 - - 51 7.05
tc_medium 14476 0.29 500 7.15 - - 314 703.16
pr_small 1248 0.27 98 0.78 - - 79 4.47
pr_medium 10937 0.28 757 3.22 - - 413 169.73

Note: The symbol “-” indicates the data can not be obtained within 30 minutes.

TABLE V
EFFICIENCY MEASUREMENT (MULTIPLE PATHS)

Workload
Name

Execution
Path

Dynamic Analysis Static Analysis
Perf [9] Valgrind [12] CBANA

Cache
Miss

Total
Time (s)

Cache
Miss

Total
Time (s)

Cache
Miss

Preprocessing
Time (s)

Cache Miss
Analysis Time (s)

Total
Time (s)

load1K_2br_
path1 509190

272.46
501391

832.48
500001

6.32 14.42 20.75
path2 14356 6391 5001

load1K_3br_
path1 5011531

287.22
5001398

1617.85
5000102

6.32 239.36 245.67path2 59513 51398 50011
path3 9873 2398 1002

Table IV demonstrates the comparisons of cache miss and
analysis time among Perf, Valgrind, Heptane, and CBANA
over the workloads with a single path. Synthetic workloads
are designed to evaluate the cache miss gaps with large scales
of data accesses, which reduces the influence of cache misses
caused by the operating system in dynamic analysis methods.
Compared with the dynamic analysis tools Perf and Valgrind,
CBANA achieves maximum cache miss gaps of 3.05% and
2.74% respectively for synthetic workloads. Compared with
the static analysis tool Heptane, CBANA reduces analysis time
by up to 97.71%. Furthermore, Table IV shows that our ap-
proach can get results those cannot be obtained by Heptane
within an appropriate large time limit for PolyBench and graph
workloads.

Though the execution time of CBANA is not superior to
dynamic approaches for tackling inputs with a single path, when
considering multiple paths, our method is much better. The
results are summarized in Table V. For each workload, we ran-
domly generate 1000 sets of inputs for the multiple-path work-
loads (i.e., load1K_2br_path* and load1K_3br_path*) and get
the cache miss analysis results for each path. Compared with
Perf and Valgrind, the total analysis time can be reduced
by up to 92.38% and 97.51% separately. The reason is that
CBANA analyzes the whole program during preprocessing, and
it can leverage the preprocessed intermediate results to reduce

computation for multiple paths. Therefore, as the number of
input sets increases, CBANA shows superior performances.

D. Summary of Evaluation

We compare the precision and efficiency of CBANA with
other analysis approaches in different benchmarks. Our results
show that CBANA achieves the same precision as other static
methods and is also capable of analyzing large-scale programs
precisely. When compared with the dynamic analysis tool Perf,
the cache miss gap decreases with the increase in the number
of data accesses and is less than 3.79% for ten thousand data
accesses. The overall gap rate can be even less than 0.89%
when the number of data accesses is large. Compared with
Valgrind, the cache miss gap is less than 2.74%. For multiple-
path workloads, CBANA achieves up to 92.38% and 97.51%
time reduction compared with Perf and Valgrind, respectively.
Compared with the popular static cache analysis tool Heptane,
it achieves a time reduction of 97.71% when analyzing single-
path workloads.

V. CONCLUSION

In this study, we describe the design and implementa-
tion of a lightweight, efficient, and flexible cache behavior
analysis framework, CBANA. With the detailed information

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

HU et al.: CBANA: A LIGHTWEIGHT, EFFICIENT, AND FLEXIBLE CACHE BEHAVIOR ANALYSIS FRAMEWORK 2273

extracted from the source level, CBANA provides input-aware
path analysis that ensures the accuracy of branch analysis in
static methods. The module of dynamic splicing of intermediate
results mitigates the risk of program state explosion in static
analysis approaches. In addition, the decoupling of the frame-
work establishes the flexibility of CBANA, which supports a
variety of alternative cache replacement policies. We implement
CBANA and evaluate it on synthetic, PolyBench, and graph
workloads. The experimental results show that CBANA can
detect cache misses efficiently and flexibly with limited static
information. Compared with the analysis result of the program
running state collected by Perf, the gap of CBANA is less than
3.79% for ten thousand data accesses and can be less than 0.89%
with a larger number of data accesses. Compared with the
dynamic analysis tool Valgrind, CBANA offers close analysis
accuracy and provides configurable parameters for the memory
architecture of the target machine. When compared with the
widely-used dynamic analysis tools Perf and Valgrind, for the
synthetic workloads with over ten thousand data accesses,
the cache miss gap is below 3.79% and 2.74% respectively. Ad-
ditionally, it provides time reduction up to 92.38% and 97.51%
for multiple-path workloads. CBANA also provides 97.71%
time reduction compared with the widely used static analysis
tool Heptane.

In the future, we can explore more complex situations by
further considering caching methods (i.e., cache write policy
and write allocation policy) and more system kernel information
(i.e., program input, the number of threads, and thread schedul-
ing strategy) to support cache behavior analysis for L2 and L3
caches and interaction between different threads and cores.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their constructive comments.

REFERENCES

[1] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A
modern primer on processing in memory,” in Emerging Computing:
From Devices to Systems: Looking Beyond Moore and Von Neumann.
Singapore: Springer Nature Singapore, 2022, pp. 171–243.

[2] A. Shrestha, H. Fang, Z. Mei, D. P. Rider, Q. Wu, and Q. Qiu, “A survey
on neuromorphic computing: Models and hardware,” IEEE Circuits Syst.
Mag., vol. 22, no. 2, pp. 6–35, 2nd Quart. 2022.

[3] I. Cutress and A. Frumusanu, “The intel 12th Gen core i9-12900K
review: Hybrid performance brings hybrid complexity.” AnandTech.
[Online]. Available: https://www.anandtech.com

[4] T. L. Johnson and W.-M. W. Hwu, “Run-time adaptive cache hierarchy
management via reference analysis,” ACM SIGARCH Comput. Archit.
News, vol. 25, no. 2, pp. 315–326, 1997.

[5] O. Ozturk, U. Orhan, W. Ding, P. Yedlapalli, and M. T. Kandemir,
“Cache hierarchy-aware query mapping on emerging multicore archi-
tectures,” IEEE Trans. Comput., vol. 66, no. 3, pp. 403–415, Mar. 2017.

[6] M. Badamo, J. Casarona, M. Zhao, and D. Yeung, “Identifying power-
efficient multicore cache hierarchies via reuse distance analysis,” ACM
Trans. Comput. Syst., vol. 34, no. 1, pp. 1–30, 2016.

[7] S. Bijo, E. B. Johnsen, K. I. Pun, and S. L. T. Tarifa, “A formal model
of data access for multicore architectures with multilevel caches,” Sci.
Comput. Program., vol. 179, pp. 24–53, Jun. 2019.

[8] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable
interface to hardware performance counters,” in Proc. Dept. Defense
HPCMP Users Group Conf., vol. 710, 1999, pp. 1–8.

[9] “perf: Linux profiling with performance counters.” Linux. [Online].
Available: https://perf.wiki.kernel.org/index.php/Main_Page

[10] C. Yu, P. Roy, Y. Bai, H. Yang, and X. Liu, “LWPTool: A lightweight
profiler to guide data layout optimization,” IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 11, pp. 2489–2502, Nov. 2018.

[11] F. Bellard, “QEMU, a fast and portable dynamic translator.” in Proc.
USENIX Annu. Tech. Conf., FREENIX Track, vol. 41, no. 46. California,
USA, 2005, pp. 10–5555.

[12] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” ACM Sigplan Notices, vol. 42, no. 6,
pp. 89–100, 2007.

[13] T. Van Dung, I. Taniguchi, and H. Tomiyama, “Cache simulation
for instruction set simulator QEMU,” in Proc. IEEE 12th Int. Conf.
Dependable, Autonomic Secure Comput., Piscataway, NJ, USA: IEEE
Press, 2014, pp. 441–446.

[14] C. Sung, B. Paulsen, and C. Wang, “CANAL: A cache timing analysis
framework via LLVM transformation,” in Proc. 33rd ACM/IEEE Int.
Conf. Automated Softw. Eng., 2018, pp. 904–907.

[15] H. Brais, R. Kalayappan, and P. R. Panda, “A survey of cache simula-
tors,” ACM Comput. Surv., vol. 53, no. 1, pp. 1–32, 2020.

[16] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proc. 4th ACM SIGACT-SIGPLAN Symp. Princ. Program.
Lang., 1977, pp. 238–252.

[17] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A timing
analyzer for embedded software,” Sci. Comput. Program., vol. 69,
nos. 1–3, pp. 56–67, 2007.

[18] D. Hardy, B. Rouxel, and I. Puaut, “The heptane static worst-case
execution time estimation tool,” in Proc. 17th Int. Workshop Worst-Case
Execution Time Anal. (WCET), Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017, pp. 8:1–8:12.

[19] D. Chen, F. Liu, C. Ding, and S. Pai, “Locality analysis through static
parallel sampling,” ACM SIGPLAN Notices, vol. 53, no. 4, pp. 557–570,
2018.

[20] M. Wu and C. Wang, “Abstract interpretation under speculative ex-
ecution,” in Proc. 40th ACM SIGPLAN Conf. Program. Lang. Des.
Implementation, 2019, pp. 802–815.

[21] A. Adileh, D. J. Lilja, and L. Eeckhout, “Architectural support for
probabilistic branches,” in Proc. 51st Annu. IEEE/ACM Int. Symp.
Microarchit. (MICRO), Piscataway, NJ, USA: IEEE Press, 2018,
pp. 108–120.

[22] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Comput. Surv. (CSUR),
vol. 51, no. 3, pp. 1–39, 2018.

[23] Q. Wang, X. Liu, and M. Chabbi, “Featherlight reuse-distance measure-
ment,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Piscataway, NJ, USA: IEEE Press, 2019, pp. 440–453.

[24] G. Stock, S. Hahn, and J. Reineke, “Cache persistence analysis: Finally
exact,” in Proc. IEEE Real-Time Syst. Symp. (RTSS), Piscataway, NJ,
USA: IEEE Press, 2019, pp. 481–494.

[25] X. Liu, K. Sharma, and J. Mellor-Crummey, “ArrayTool: A lightweight
profiler to guide array regrouping,” in Proc. 23rd Int. Conf. Parallel
Archit. Compilation Techn. (PACT), Piscataway, NJ, USA: IEEE Press,
2014, pp. 405–415.

[26] T. A. Khan, I. Neal, G. Pokam, B. Mozafari, and B. Kasikci, “DMon:
Efficient detection and correction of data locality problems using se-
lective profiling,” in Proc. 15th USENIX Symp. Operating Syst. Des.
Implementation (OSDI), 2021, pp. 163–181.

[27] Y. Lv, B. Sun, Q. Luo, J. Wang, Z. Yu, and X. Qian, “Counterminer:
Mining big performance data from hardware counters,” in Proc. 51st
Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), Piscataway, NJ,
USA: IEEE Press, 2018, pp. 613–626.

[28] S. S. Banerjee, S. Jha, Z. Kalbarczyk, and R. K. Iyer, “BayesPerf:
Minimizing performance monitoring errors using Bayesian statistics,”
in Proc. 26th ACM Int. Conf. Archit. Support Program. Lang. Oper.
Syst., 2021, pp. 832–844.

[29] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, “Hardware
performance counters can detect malware: Myth or fact?” in Proc. Asia
Conf. Comput. Commun. Secur., 2018, pp. 457–468.

[30] D. Hardy and I. Puaut, “Predictable code and data paging for real time
systems,” in Proc. Euromicro Conf. Real-Time Syst., Piscataway, NJ,
USA: IEEE Press, 2008, pp. 266–275.

[31] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. Int. Symp. Code Gener.
Optim., (CGO), Piscataway, NJ, USA: IEEE Press, 2004, pp. 75–86.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

https://www.anandtech.com
https://perf.wiki.kernel.org/index.php/Main_Page

2274 IEEE TRANSACTIONS ON COMPUTERS, VOL. 73, NO. 9, SEPTEMBER 2024

[32] C. Ding and Y. Zhong, “Predicting whole-program locality through reuse
distance analysis,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des.
Implementation, 2003, pp. 245–257.

[33] C. CaBcaval and D. A. Padua, “Estimating cache misses and locality
using stack distances,” in Proc. 17th Annu. Int. Conf. Supercomputing,
2003, pp. 150–159.

[34] Y. Zhong, X. Shen, and C. Ding, “Program locality analysis using reuse
distance,” ACM Trans. Program. Lang. Syst., vol. 31, no. 6, pp. 1–39,
2009.

[35] D. Eklov and E. Hagersten, “StatStack: Efficient modeling of LRU
caches,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. & Softw.
(ISPASS), Piscataway, NJ, USA: IEEE Press, 2010, pp. 55–65.

[36] M. A. Sasongko, M. Chabbi, M. B. Marzijarani, and D. Unat, “Reuse-
Tracker: Fast yet accurate multicore reuse distance analyzer,” ACM
Trans. Archit. Code Optim., vol. 19, no. 1, pp. 1–25, 2021.

[37] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Syst. J., vol. 9, no. 2, pp. 78–
117, 1970.

[38] Y. Zhong, M. Orlovich, X. Shen, and C. Ding, “Array regrouping
and structure splitting using whole-program reference affinity,” ACM
SIGPLAN Notices, vol. 39, no. 6, pp. 255–266, 2004.

[39] X. Hu, X. Wang, L. Zhou, Y. Luo, C. Ding, and Z. Wang, “Kinetic
modeling of data eviction in cache,” in Proc. {USENIX} Annu. Tech.
Conf. ({USENIX} {ATC} 16), 2016, pp. 351–364.

[40] J. He, G. Sivanrupan, P. Tsankov, and M. Vechev, “Learning to explore
paths for symbolic execution,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2021, pp. 2526–2540.

[41] R. E. Bryant, O. David Richard, and O. David Richard, Computer
Systems: A Programmer’s Perspective, vol. 2 Englewood Cliffs, NJ,
USA: Prentice Hall, 2003.

[42] T. Yuki and L.-N. Pouchet, “Polybench/c 4.2.” SourceForge. [Online].
Available: https://sourceforge.net/projects/polybench/

[43] M. LeBeane, S. Song, R. Panda, J. H. Ryoo, and L. K. John, “Data
partitioning strategies for graph workloads on heterogeneous clusters,”
in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2015,
pp. 1–12.

[44] T. Hussain, “A novel access pattern-based multi-core memory architec-
ture,” Accessed: Nov. 11, 2022.

[45] I. Coorporation, Intel 64 and IA-32 Architectures Optimization Refer-
ence Manual, 2023. [Online]. Available: https://cdrdv2-public.intel.com/
671488/248966_software_optimization_manual-1.pdf

Qilin Hu received the M.S. degree in computer
technology from Hunan University, China, in 2021.
She is currently working toward the Ph.D. degree in
computer science and technology with Hunan Uni-
versity, China. Her research interests include par-
allel and distributed computing, high-performance
computing, and system performance analysis.

Yan Ding (Member, IEEE) received the Ph.D. de-
gree in computer science from Hunan University,
China, in 2021. He is currently an Assistant Profes-
sor with Hunan University. His research interests
include parallel computing, mobile edge comput-
ing, big data, artificial intelligence, and architec-
ture. He has published 8 papers in journals and
conferences, including Design Automation Con-
ference, IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON

SERVICES COMPUTING, IEEE TRANSACTIONS ON

INDUSTRIAL INFORMATICS, Journal of Parallel and Distributed Computing,
Computers & Security, and 17th IEEE International Symposium on Parallel
and Distributed Processing with Applications (IEEE ISPA 2019). He received
the Outstanding Paper Award in the 17th IEEE ISPA.

Chubo Liu (Member, IEEE) received the B.S. and
Ph.D. degrees in computer science and technol-
ogy from Hunan University, China, in 2011 and
2016, respectively. He is currently a Full Professor
of computer science and technology with Hunan
University. His research interests include parallel
and distributed computing, computer architecture,
artificial intelligence, game theory, and approxi-
mation and randomized algorithms. He has pub-
lished over 40 papers in journals and conferences
such as the IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON CLOUD COMPUTING,
IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE TRANSACTIONS ON

INDUSTRIAL INFORMATICS, IEEE INTERNET OF THINGS JOURNAL, ACM Trans-
actions on Modeling and Performance Evaluation of Computing Systems,
Theoretical Computer Science, ISCA, DAC, and NPC. He won the IEEE
TCSC Early Career Researcher (ECR) Award in 2019. He is a Member of
ACM.

Keqin Li (Fellow, IEEE) received the B.S. degree
in computer science from Tsinghua University, in
1985 and the Ph.D. degree in computer science from
the University of Houston, in 1990. He is a SUNY
Distinguished Professor with the State University of
New York and a National Distinguished Professor
with Hunan University, China. He has authored or
co-authored more than 1000 journal articles, book
chapters, and refereed conference papers. He holds
nearly 75 patents announced or authorized by the
Chinese National Intellectual Property Administra-

tion. He is among the world’s top five most influential scientists in parallel and
distributed computing in terms of single-year and career-long impacts based
on a composite indicator of the Scopus citation database. He is an AAAS
Fellow, an AAIA Fellow, and an ACIS Founding Fellow. He is a Member of
Academia Europaea (Academician of the Academy of Europe).

Kenli Li (Senior Member, IEEE) received the M.S.
degree in mathematics from the Central South Uni-
versity, China, in 2000, and the Ph.D. degree in
computer science from the Huazhong University of
Science and Technology, China, in 2003. He was
a Visiting Scholar with the University of Illinois,
Urbana-Champaign, IL, USA from 2004 to 2005.
He is a Full Professor of computer science and
technology with Hunan University. His research
interests include parallel and distributed process-
ing, supercomputing and cloud computing, high-

performance computing for Big Data and artificial intelligence, etc. He has
published more than 300 papers in international conferences and journals.
He is currently served on the editorial boards for IEEE TRANSACTIONS ON

COMPUTERS. He is an outstanding Member of CCF.

Albert Y. Zomaya (Fellow, IEEE) is the Peter
Nicol Russell Chair Professor of computer science
with the School of Computer Science, Sydney Uni-
versity, and serves as the Director of the Centre
for Distributed and High-Performance Computing.
He has published more than 700 scientific papers
and articles and is author, co-author or editor of
more than 30 books. He is the Editor-in-Chief
of the ACM Computing Surveys and serves as an
Associate Editor for several leading journals. He
is a Decorated Scholar with numerous accolades

including Fellowship of the AAAS and the IET. Also, he is a Fellow of
the Australian Academy of Science, a Fellow of the Royal Society of New
South Wales, a Foreign Member of Academia Europaea, and a Member of
the European Academy of Sciences and Arts. His research interests include
parallel and distributed computing, networking, and complex systems.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on March 20,2025 at 01:33:16 UTC from IEEE Xplore. Restrictions apply.

https://sourceforge.net/projects/polybench/
https://cdrdv2-public.intel.com/671488/248966_software_optimization_manual-1.pdf
https://cdrdv2-public.intel.com/671488/248966_software_optimization_manual-1.pdf

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

